8,220 research outputs found

    Human action recognition using distribution of oriented rectangular patches

    Get PDF
    We describe a "bag-of-rectangles" method for representing and recognizing human actions in videos. In this method, each human pose in an action sequence is represented by oriented rectangular patches extracted over the whole body. Then, spatial oriented histograms are formed to represent the distribution of these rectangular patches. In order to carry the information from the spatial domain described by the bag-of-rectangles descriptor to temporal domain for recognition of the actions, four different methods are proposed. These are namely, (i) frame by frame voting, which recognizes the actions by matching the descriptors of each frame, (ii) global histogramming, which extends the idea of Motion Energy Image proposed by Bobick and Davis by rectangular patches, (iii) a classifier based approach using SVMs, and (iv) adaptation of Dynamic Time Warping on the temporal representation of the descriptor. The detailed experiments are carried out on the action dataset of Blank et. al. High success rates (100%) prove that with a very simple and compact representation, we can achieve robust recognition of human actions, compared to complex representations. © Springer-Verlag Berlin Heidelberg 2007

    Histogram of oriented rectangles: A new pose descriptor for human action recognition

    Get PDF
    Cataloged from PDF version of article.Most of the approaches to human action recognition tend to form complex models which require lots of parameter estimation and computation time. In this study, we show that, human actions can be simply represented by pose without dealing with the complex representation of dynamics. Based on this idea, we propose a novel pose descriptor which we name as Histogram-of-Oriented-Rectangles (HOR) for representing and recognizing human actions in videos. We represent each human pose in an action sequence by oriented rectangular patches extracted over the human silhouette. We then form spatial oriented histograms to represent the distribution of these rectangular patches. We make use of several matching strategies to carry the information from the spatial domain described by the HOR descriptor to temporal domain. These are (i) nearest neighbor classification, which recognizes the actions by matching the descriptors of each frame, (ii) global histogramming, which extends the idea of Motion Energy Image proposed by Bobick and Davis to rectangular patches, (iii) a classifier-based approach using Support Vector Machines, and (iv) adaptation of Dynamic Time Warping on the temporal representation of the HOR descriptor. For the cases when pose descriptor is not sufficiently strong alone, such as to differentiate actions "jogging" and "running", we also incorporate a simple velocity descriptor as a prior to the pose based classification step. We test our system with different configurations and experiment on two commonly used action datasets: the Weizmann dataset and the KTH dataset. Results show that our method is superior to other methods on Weizmann dataset with a perfect accuracy rate of 100%, and is comparable to the other methods on KTH dataset with a very high success rate close to 90%. These results prove that with a simple and compact representation, we can achieve robust recognition of human actions, compared to complex representations. (C) 2009 Elsevier B.V. All rights reserved

    Histogram of oriented rectangles: A new pose descriptor for human action recognition

    Get PDF
    Most of the approaches to human action recognition tend to form complex models which require lots of parameter estimation and computation time. In this study, we show that, human actions can be simply represented by pose without dealing with the complex representation of dynamics. Based on this idea, we propose a novel pose descriptor which we name as Histogram-of-Oriented-Rectangles (HOR) for representing and recognizing human actions in videos. We represent each human pose in an action sequence by oriented rectangular patches extracted over the human silhouette. We then form spatial oriented histograms to represent the distribution of these rectangular patches. We make use of several matching strategies to carry the information from the spatial domain described by the HOR descriptor to temporal domain. These are (i) nearest neighbor classification, which recognizes the actions by matching the descriptors of each frame, (ii) global histogramming, which extends the idea of Motion Energy Image proposed by Bobick and Davis to rectangular patches, (iii) a classifier-based approach using Support Vector Machines, and (iv) adaptation of Dynamic Time Warping on the temporal representation of the HOR descriptor. For the cases when pose descriptor is not sufficiently strong alone, such as to differentiate actions "jogging" and "running", we also incorporate a simple velocity descriptor as a prior to the pose based classification step. We test our system with different configurations and experiment on two commonly used action datasets: the Weizmann dataset and the KTH dataset. Results show that our method is superior to other methods on Weizmann dataset with a perfect accuracy rate of 100%, and is comparable to the other methods on KTH dataset with a very high success rate close to 90%. These results prove that with a simple and compact representation, we can achieve robust recognition of human actions, compared to complex representations. © 2009 Elsevier B.V. All rights reserved

    Automatic annotation for weakly supervised learning of detectors

    Get PDF
    PhDObject detection in images and action detection in videos are among the most widely studied computer vision problems, with applications in consumer photography, surveillance, and automatic media tagging. Typically, these standard detectors are fully supervised, that is they require a large body of training data where the locations of the objects/actions in images/videos have been manually annotated. With the emergence of digital media, and the rise of high-speed internet, raw images and video are available for little to no cost. However, the manual annotation of object and action locations remains tedious, slow, and expensive. As a result there has been a great interest in training detectors with weak supervision where only the presence or absence of object/action in image/video is needed, not the location. This thesis presents approaches for weakly supervised learning of object/action detectors with a focus on automatically annotating object and action locations in images/videos using only binary weak labels indicating the presence or absence of object/action in images/videos. First, a framework for weakly supervised learning of object detectors in images is presented. In the proposed approach, a variation of multiple instance learning (MIL) technique for automatically annotating object locations in weakly labelled data is presented which, unlike existing approaches, uses inter-class and intra-class cue fusion to obtain the initial annotation. The initial annotation is then used to start an iterative process in which standard object detectors are used to refine the location annotation. Finally, to ensure that the iterative training of detectors do not drift from the object of interest, a scheme for detecting model drift is also presented. Furthermore, unlike most other methods, our weakly supervised approach is evaluated on data without manual pose (object orientation) annotation. Second, an analysis of the initial annotation of objects, using inter-class and intra-class cues, is carried out. From the analysis, a new method based on negative mining (NegMine) is presented for the initial annotation of both object and action data. The NegMine based approach is a much simpler formulation using only inter-class measure and requires no complex combinatorial optimisation but can still meet or outperform existing approaches including the previously pre3 sented inter-intra class cue fusion approach. Furthermore, NegMine can be fused with existing approaches to boost their performance. Finally, the thesis will take a step back and look at the use of generic object detectors as prior knowledge in weakly supervised learning of object detectors. These generic object detectors are typically based on sampling saliency maps that indicate if a pixel belongs to the background or foreground. A new approach to generating saliency maps is presented that, unlike existing approaches, looks beyond the current image of interest and into images similar to the current image. We show that our generic object proposal method can be used by itself to annotate the weakly labelled object data with surprisingly high accuracy

    Recognizing actions from still images

    Full text link
    In this paper, we approach the problem of understanding human actions from still images. Our method involves representing the pose with a spatial and orientational histogramming of rectangular regions on a parse probability map. We use LDA to obtain a more compact and discriminative feature representation and binary SVMs for classification. Our results over a new dataset collected for this problem show that by using a rectangle histogramming approach, we can discriminate actions to a great extent. We also show how we can use this approach in an unsupervised setting. To our best knowledge, this is one of the first studies that try to recognize actions within still images

    Indoor Activity Detection and Recognition for Sport Games Analysis

    Full text link
    Activity recognition in sport is an attractive field for computer vision research. Game, player and team analysis are of great interest and research topics within this field emerge with the goal of automated analysis. The very specific underlying rules of sports can be used as prior knowledge for the recognition task and present a constrained environment for evaluation. This paper describes recognition of single player activities in sport with special emphasis on volleyball. Starting from a per-frame player-centered activity recognition, we incorporate geometry and contextual information via an activity context descriptor that collects information about all player's activities over a certain timespan relative to the investigated player. The benefit of this context information on single player activity recognition is evaluated on our new real-life dataset presenting a total amount of almost 36k annotated frames containing 7 activity classes within 6 videos of professional volleyball games. Our incorporation of the contextual information improves the average player-centered classification performance of 77.56% by up to 18.35% on specific classes, proving that spatio-temporal context is an important clue for activity recognition.Comment: Part of the OAGM 2014 proceedings (arXiv:1404.3538

    Expanded Parts Model for Semantic Description of Humans in Still Images

    Get PDF
    We introduce an Expanded Parts Model (EPM) for recognizing human attributes (e.g. young, short hair, wearing suit) and actions (e.g. running, jumping) in still images. An EPM is a collection of part templates which are learnt discriminatively to explain specific scale-space regions in the images (in human centric coordinates). This is in contrast to current models which consist of a relatively few (i.e. a mixture of) 'average' templates. EPM uses only a subset of the parts to score an image and scores the image sparsely in space, i.e. it ignores redundant and random background in an image. To learn our model, we propose an algorithm which automatically mines parts and learns corresponding discriminative templates together with their respective locations from a large number of candidate parts. We validate our method on three recent challenging datasets of human attributes and actions. We obtain convincing qualitative and state-of-the-art quantitative results on the three datasets.Comment: Accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI
    corecore