19 research outputs found

    A Brief Review of Security in Emerging Programmable Computer Networking Technologies

    Get PDF
    Recent programmable networking paradigms, such as cloud computing, fog computing, software- defined networks, and network function virtualization gain significant traction in industry and academia. While these newly developed networking technologies open a pathway to new architectures and enable a faster innovation cycle, there exist many problems in this area. In this article, we provide a review of these programmable networking architectures for comparison. Second, we provide a survey of security attacks and defense mechanisms in these emerging programmable networking technologies

    The dark side of network functions virtualization: A perspective on the technological sustainability

    Get PDF
    The Network Functions Virtualization (NFV) paradigm is undoubtedly a key technological advancement in the Information and Communication Technology (ICT) community, especially for the upcoming 5G network design. While most of its promise is quite straightforward, the implied reduction of the power consumption/carbon footprint is still debatable, and not in line with the energy efficiency perspective forecasted by the ETSI NFV working group (WG). In this paper, we provide an estimate of the possible future requirements of this upcoming technology when deployed according to the virtual Evolved Packet Core (vEPC) use case specified by the ETSI NFV WG. Our estimation is based on real performance levels, certified by independent third-party laboratories, and datasheet values provided by existing commercial products for both the legacy and NFV network architectures, under different deployment scenarios. Obtained results show that a massive deployment of the current NFV technologies in the EPC may lead to a minimum increase of 106 % in the carbon footprint/energy consumption with respect to the Business As Usual (BAU) network solutions. Moreover, these values tend to increase at a very high pace when the most suitable software/hardware combination is not applied, or when packet processing latency is taken into account

    Decentralized Scalable Dynamic Load Balancing among Virtual Network Slice Instantiations

    Get PDF
    In the virtualized environment of 5G networks, the control and management of dynamic network slices poses a set of challenges that are still largely unsolved. Though the architectural framework and the elements of abstraction and orchestration mechanisms have been defined, the dynamic orchestration of resources based on them entails the adoption of existing sophisticated control techniques, or the design of new ones for the specific environment. In the present paper, we address the problem of load balancing among multiple network service chains (which represent network slice instantiations of a Network Service Provider referring to a specific vertical application) originating from different Points of Presence (PoPs). For scalability reasons, we want to maintain the problem within an informationally decentralized setting, where each PoP has the knowledge of the aggregate workload generated by the slice users accessing through it, but not of that of the other PoPs (to avoid the exchange of information for control purposes). By taking also into account power consumption policies of the Infrastructure Provider, we find a set of candidate team-optimal solutions to this load-balancing problem, which are characterized by piecewise-linear functions, and compare their performance with that of other resource allocation strategies

    Migration cost optimization for service provider legacy network migration to software-defined IPv6 network

    Full text link
    This is the peer reviewed version of the following article: Dawadi, BR, Rawat, DB, Joshi, SR, Manzoni, P, Keitsch, MM. Migration cost optimization for service provider legacy network migration to software-defined IPv6 network. Int J Network Mgmt. 2021; 31:e2145, which has been published in final form at https://doi.org/10.1002/nem.2145. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] This paper studies a problem for seamless migration of legacy networks of Internet service providers to a software-defined networking (SDN)-based architecture along with the transition to the full adoption of the Internet protocol version 6 (IPv6) connectivity. Migration of currently running legacy IPv4 networks into such new approaches requires either upgrades or replacement of existing networking devices and technologies that are actively operating. The joint migration to SDN and IPv6 network is considered to be vital in terms of migration cost optimization, skilled human resource management, and other critical factors. In this work, we first present the approaches of SDN and IPv6 migration in service providers' networks. Then, we present the common concerns of IPv6 and SDN migration with joint transition strategies so that the cost associated with joint migration is minimized to lower than that of the individual migration. For the incremental adoption of software-defined IPv6 (SoDIP6) network with optimum migration cost, a greedy algorithm is proposed based on optimal path and the customer priority. Simulation and empirical analysis show that a unified transition planning to SoDIP6 network results in lower migration cost.U.S. National Science Foundation (NSF), Grant/Award Number: CNS 1650831 and HRD 1828811; ERASMUS+ KA107; Nepal Academy of Science and Technology (NAST); Norwegian University of Science and Technology; University Grant Commission (UGC), Nepal, Grant/Award Number: FRG/74_75/Engg-1Dawadi, BR.; Rawat, DB.; Joshi, SR.; Manzoni, P.; Keitsch, MM. (2021). Migration cost optimization for service provider legacy network migration to software-defined IPv6 network. International Journal of Network Management. 31(4):1-24. https://doi.org/10.1002/nem.2145S124314APNIC.IPv6 capability measurement.https://stats.labs.apnic.net/ipv6. Accessed April 22 2020.Google Incl. IPv6 user access status.https://www.google.com/intl/en/ipv6/statistics.html. Accessed February 16 2020.Rawat, D. B., & Reddy, S. R. (2017). Software Defined Networking Architecture, Security and Energy Efficiency: A Survey. IEEE Communications Surveys & Tutorials, 19(1), 325-346. doi:10.1109/comst.2016.2618874Dai, B., Xu, G., Huang, B., Qin, P., & Xu, Y. (2017). Enabling network innovation in data center networks with software defined networking: A survey. Journal of Network and Computer Applications, 94, 33-49. doi:10.1016/j.jnca.2017.07.004Kobayashi, M., Seetharaman, S., Parulkar, G., Appenzeller, G., Little, J., van Reijendam, J., 
 McKeown, N. (2014). Maturing of OpenFlow and Software-defined Networking through deployments. Computer Networks, 61, 151-175. doi:10.1016/j.bjp.2013.10.011Gumaste, A., Sharma, V., Kakadia, D., Yates, J., Clauberg, A., & Voltolini, M. (2017). SDN Use Cases for Service Provider Networks: Part 2. IEEE Communications Magazine, 55(4), 62-63. doi:10.1109/mcom.2017.7901478Dawadi, B. R., Rawat, D. B., & Joshi, S. R. (2019). Software Defined IPv6 Network: A New Paradigm for Future Networking. Journal of the Institute of Engineering, 15(2), 1-13. doi:10.3126/jie.v15i2.27636Shah, J. L., Bhat, H. F., & Khan, A. I. (2019). Towards IPv6 Migration and Challenges. International Journal of Technology Diffusion, 10(2), 83-96. doi:10.4018/ijtd.2019040105Rojas, E., Doriguzzi-Corin, R., Tamurejo, S., Beato, A., Schwabe, A., Phemius, K., & Guerrero, C. (2018). Are We Ready to Drive Software-Defined Networks? A Comprehensive Survey on Management Tools and Techniques. ACM Computing Surveys, 51(2), 1-35. doi:10.1145/3165290Contreras, L. M., Doolan, P., LĂžnsethagen, H., & LĂłpez, D. R. (2015). Operational, organizational and business challenges for network operators in the context of SDN and NFV. Computer Networks, 92, 211-217. doi:10.1016/j.comnet.2015.07.016Amin, R., Reisslein, M., & Shah, N. (2018). Hybrid SDN Networks: A Survey of Existing Approaches. IEEE Communications Surveys & Tutorials, 20(4), 3259-3306. doi:10.1109/comst.2018.2837161Audi Marc Amjad A.The Advancement in Information and Communication Technologies (ICT) and Economic Development: A Panel Analysis. MPRA.https://mpra.ub.uni-muenchen.de/93476/. Published 2019. Accessed November 29 2019.Main, A., Zakaria, N. A., & Yusof, R. (2015). Organisation Readiness Factors Towards IPv6 Migration: Expert Review. Procedia - Social and Behavioral Sciences, 195, 1882-1889. doi:10.1016/j.sbspro.2015.06.427Dawadi, B. R., Rawat, D. B., Joshi, S. R., & Baral, D. S. (2019). Affordable Broadband with Software Defined IPv6 Network for Developing Rural Communities. Applied System Innovation, 3(1), 4. doi:10.3390/asi3010004Nikkhah, M. (2016). Maintaining the progress of IPv6 adoption. Computer Networks, 102, 50-69. doi:10.1016/j.comnet.2016.02.027Dell, P. (2018). On the dual-stacking transition to IPv6: A forlorn hope? Telecommunications Policy, 42(7), 575-581. doi:10.1016/j.telpol.2018.04.005GilliganRE NordmarkE GilliganRE et alBasic Transition Mechanisms for IPv6 Hosts and Routers.2000.Cui, Y., Dong, J., Wu, P., Wu, J., Metz, C., Lee, Y. L., & Durand, A. (2013). Tunnel-Based IPv6 Transition. IEEE Internet Computing, 17(2), 62-68. doi:10.1109/mic.2012.63BlanchetM ParentF.IPv6 Tunnel Broker with the Tunnel Setup Protocol (TSP).2010.HuitemaC.Teredo: Tunneling IPv6 over UDP through Network Address Translations (NATs) RFC 4380.2006.CarpenterB MooreK.Connection of IPv6 domains via IPv4 clouds.2001.JungC CarpenterBE.Transmission of IPv6 over IPv4 Domains without Explicit Tunnels.1999.CuiY WuJ LeeY WuP VautrinO.Public IPv4‐over‐IPv6 access Network2013.CuiY SunQ LeeYL TsouT FarrerI BoucadairM.Lightweight 4over6: an extension to the dual‐stack lite Architecture2015.TemplinF GleesonT TalwarM ThalerD.Intra‐Site Automatic Tunnel Addressing Protocol (ISATAP) RFC 5214.2008.DurandA DromsR WoodyattJ LeeY.RFC 6333: Dual‐Stack Lite Broadband Deployments Following IPv4 Exhaustion. IETF Aug.2011.BaoC DecW LiX TroanO MatsushimaS MurakamiT.Mapping of Address and Port with Encapsulation (MAP‐E). IETF Internet Draft.2015.TownsleyW TroanO.IPv6 Rapid Deployment on IPv4 Infrastructures (6rd)‐‐Protocol Specification.2010.ChenM ChenG JiangS LeeY DespresR PennoR.IPv4 Residual Deployment via IPv6‐A Stateless Solution (4rd).2015.WuP CuiY XuM et alPET: Prefixing encapsulation and translation for IPv4‐IPv6 coexistence. In: 2010IEEE Global Telecommunications Conference GLOBECOM2010. 2010:1–5.LiX BaoC ChenM ZhangH WuJ.IVI translation design and deployment for the IPv4/IPv6 coexistence and transition.IETF RFC6219 Internet Eng Task Force Fremont CA.2011.Bagnulo, M., Garcia-Martinez, A., & Van Beijnum, I. (2012). The NAT64/DNS64 tool suite for IPv6 transition. IEEE Communications Magazine, 50(7), 177-183. doi:10.1109/mcom.2012.6231295BagnuloM SullivanA MatthewsP VanBeijnumI.DNS64: DNS extensions for network address translation from IPv6 clients to IPv4 servers RFC 6147.2011.LiuD DengH.NAT46 Considerations.2010.MawatariM KawashimaM ByrneC.464XLAT: Combination of stateful and stateless translation. IETF Internet‐Draft.2013.PerreaultS YamagataI MiyakawaS NakagawaA.Common Requirements for Carrier‐Grade NATs (CGNs) RFC6888.2013.YamaguchiJ ShirasakiY NakagawaA AshidaH.Nat444 addressing models. Req Comments Draft Internet Eng Task Force.2012.ChenG CaoZ XieC BinetD.NAT64 Deployment Options and Experience RFC 7269.2014.LiX BaoC DecW TroanO MatsushimaS MurakamiT.Mapping of Address and Port using Translation (MAP‐T) RFC 7599. IETF Internet Draft.2013.Wu, P., Cui, Y., Wu, J., Liu, J., & Metz, C. (2013). Transition from IPv4 to IPv6: A State-of-the-Art Survey. IEEE Communications Surveys & Tutorials, 15(3), 1407-1424. doi:10.1109/surv.2012.110112.00200Hernandez-Valencia, E., Izzo, S., & Polonsky, B. (2015). How will NFV/SDN transform service provider opex? IEEE Network, 29(3), 60-67. doi:10.1109/mnet.2015.7113227BogineniK et alThe Open Networking Lab (ON.Lab). Introducing ONOS—a SDN network operating system for Service Providers.White Pap.2014;1:14.http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-ONOS-final.pdfTR‐506 O ONF TR‐506.SDN Migration Considerations and Use Cases.2014.https://www.opennetworking.org/wp-content/uploads/2014/10/sb-sdn-migration-use-cases.pdfRisdiantoAC LingTC TsaiP YangC KimJ.Leveraging open‐source software for federated multisite SDN‐cloud playground. In: 2016 IEEE NetSoft Conference and Workshops (NetSoft). ;2016:423‐427.https://doi.org/10.1109/NETSOFT.2016.7502479GalizaH SchwarzM BezerraJ IbarraJ.Moving an ip network to sdn: a global use case deployment experience at amlight. In:Anais Do WPEIF2016Workshop de Pesquisa Experimental Da Internet Do Futuro: 15.LevinD CaniniM SchmidS SchaffertF Feldmann A.Panopticon: Reaping the Benefits of Incremental {SDN} Deployment in Enterprise Networks. In: 2014 {USENIX} Annual Technical Conference ({USENIX}{ATC} 14). ;2014:333–345.Vissicchio, S., Tilmans, O., Vanbever, L., & Rexford, J. (2015). Central Control Over Distributed Routing. ACM SIGCOMM Computer Communication Review, 45(4), 43-56. doi:10.1145/2829988.2787497Huang, X., Cheng, S., Cao, K., Cong, P., Wei, T., & Hu, S. (2019). A Survey of Deployment Solutions and Optimization Strategies for Hybrid SDN Networks. IEEE Communications Surveys & Tutorials, 21(2), 1483-1507. doi:10.1109/comst.2018.2871061Csikor, L., Szalay, M., Retvari, G., Pongracz, G., Pezaros, D. P., & Toka, L. (2020). Transition to SDN is HARMLESS: Hybrid Architecture for Migrating Legacy Ethernet Switches to SDN. IEEE/ACM Transactions on Networking, 28(1), 275-288. doi:10.1109/tnet.2019.2958762Dawadi, B. R., Rawat, D. B., Joshi, S. R., & Manzoni, P. (2020). Legacy Network Integration with SDN-IP Implementation towards a Multi-Domain SoDIP6 Network Environment. Electronics, 9(9), 1454. doi:10.3390/electronics9091454HongDK MaY BanerjeeS MaoZM.Incremental deployment of SDN in hybrid enterprise and ISP networks. In: Proceedings of the Symposium on SDN Research. 2016:1‐7.Karakus, M., & Durresi, A. (2018). Economic Viability of Software Defined Networking (SDN). Computer Networks, 135, 81-95. doi:10.1016/j.comnet.2018.02.015Rizvi, S. N., Raumer, D., Wohlfart, F., & Carle, G. (2015). Towards carrier grade SDNs. Computer Networks, 92, 218-226. doi:10.1016/j.comnet.2015.09.029Sezer, S., Scott-Hayward, S., Chouhan, P., Fraser, B., Lake, D., Finnegan, J., 
 Rao, N. (2013). Are we ready for SDN? Implementation challenges for software-defined networks. IEEE Communications Magazine, 51(7), 36-43. doi:10.1109/mcom.2013.6553676Raza, M. H., Sivakumar, S. C., Nafarieh, A., & Robertson, B. (2014). A Comparison of Software Defined Network (SDN) Implementation Strategies. Procedia Computer Science, 32, 1050-1055. doi:10.1016/j.procs.2014.05.532Goransson, P., & Black, C. (2014). SDN in the Data Center. Software Defined Networks, 145-167. doi:10.1016/b978-0-12-416675-2.00007-3AT & T.Introducing the “User Defined Network Cloud”.https://about.att.com/newsroom/introducing_the_user_defined_network_cloud.html. Published 2014. Accessed August 12 2018.CsikorL TokaL SzalayM PongrĂĄczG PezarosDP RĂ©tvĂĄriG.HARMLESS: Cost‐effective transitioning to SDN for small enterprises. In: 2018 IFIP Networking Conference (IFIP Networking) and Workshops. ; 2018:1–9.ON.LAB.Driving SDN Adoption in Service Provider Networks.2014.http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-Service-Provider-SDN-final.pdfBabikerH NikolovaI ChittimaneniKKK.Deploying IPv6 in the Google Enterprise Network. Lessons learned. In:LISA'11 Proceedings of the 25th International Conference on Large Installation System Administration 2011:10.ParkHW HwangISLS LeeJR.Study on the sustainable migration to software defined network for nation‐wide R&E network.Proc—201610th Int Conf Innov Mob Internet Serv Ubiquitous Comput IMIS2016.2016:392‐396.https://doi.org/10.1109/IMIS.2016.117CariaM JukanA HoffmannM.A performance study of network migration to SDN‐enabled traffic engineering. In:2013 IEEE Global Communications Conference (GLOBECOM); 2013:1391‐1396.Sandhya, Sinha, Y., & Haribabu, K. (2017). A survey: Hybrid SDN. Journal of Network and Computer Applications, 100, 35-55. doi:10.1016/j.jnca.2017.10.003LENCSE, G., & KADOBAYASHI, Y. (2019). Comprehensive Survey of IPv6 Transition Technologies: A Subjective Classification for Security Analysis. IEICE Transactions on Communications, E102.B(10), 2021-2035. doi:10.1587/transcom.2018ebr0002NIST.Technical and Economic Assessment of Internet Protocol Verson 6 9IPv6.2006.https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=912231NIST.IPv6 Economic Impact Assessment. NY;2005.https://www.nist.gov/system/files/documents/director/planning/report05-2.pdfDasT CariaM JukanA HoffmannM.A Techno‐economic Analysis of Network Migration to Software‐Defined Networking.2013.http://arxiv.org/abs/1310.0216Das, T., Drogon, M., Jukan, A., & Hoffmann, M. (2014). Study of Network Migration to New Technologies Using Agent-Based Modeling Techniques. Journal of Network and Systems Management, 23(4), 920-949. doi:10.1007/s10922-014-9327-3Yuan, T., Huang, X., Ma, M., & Zhang, P. (2017). Migration to software-defined networks: The customers’ view. China Communications, 14(10), 1-11. doi:10.1109/cc.2017.8107628TĂŒrkS LiuY RadekeR LehnertR.Network migration optimization using genetic algorithms. In: Meeting of the European Network of Universities and Companies in Information and Communication Engineering. 2012:112–123.TĂŒrk, S. (2014). Network migration optimization using meta-heuristics. AEU - International Journal of Electronics and Communications, 68(7), 584-586. doi:10.1016/j.aeue.2014.04.005TĂŒrkS RadekeR LehnertR.Network migration using ant colony optimization. In:2010 9th Conference of Telecommunication Media and Internet; 2010:1–6.TurkS LiuH RadekeR LehnertR.Improving network migration optimization utilizing memetic algorithms. In: Global Information Infrastructure Symposium—GIIS 2013. 2013:1‐8.https://doi.org/10.1109/GIIS.2013.6684345ShayaniD Mas MachucaC JagerM GladischA.Cost analysis of the service migration problem between communication platforms. In: NOMS 2008–2008 IEEE Network Operations and Management Symposium. 2008:734‐737.https://doi.org/10.1109/NOMS.2008.4575201Shayani, D., Mas Machuca, C., & Jager, M. (2010). A techno-economic approach to telecommunications: the case of service migration. IEEE Transactions on Network and Service Management, 7(2), 96-106. doi:10.1109/tnsm.2010.06.i8p0297Naudts, B., Kind, M., Verbrugge, S., Colle, D., & Pickavet, M. (2015). How can a mobile service provider reduce costs with software-defined networking? International Journal of Network Management, 26(1), 56-72. doi:10.1002/nem.1919Dawadi, B. R., Rawat, D. B., & Joshi, S. R. (2019). Evolutionary Dynamics of Service Provider Legacy Network Migration to Software Defined IPv6 Network. Advances in Intelligent Systems and Computing, 245-257. doi:10.1007/978-3-030-19861-9_24BezrukVM ChebotarovaD V KaliuzhniyNM QiangG YuZ.Optimization and mathematical modeling of communication networks.Monogr—Open Electron Arch Kharkov Natl Univ Radio Electron.2019.http://openarchive.nure.ua/handle/document/10121Omantek. Open‐AudIT: Device Information Management System.https://www.open-audit.org/about.phpNet. Inventory Advisor.Network Inventory Software.https://www.network-inventory-advisor.com/. Accessed December 3 2019.OCS‐Inventory. OCSING: Open Inventory Next Generation.https://ocsinventory-ng.org/?lang=en. Accessed December 3 2019.Group MW. Migration Use Cases and Methods Migration Working Group Open Networking Foundation Use Cases and Migration Methods 2.www.opennetworking.orgSohn, S. Y., & Kim, Y. (2011). Economic Evaluation Model for International Standardization of Correlated Technologies. IEEE Transactions on Engineering Management, 58(2), 189-198. doi:10.1109/tem.2010.2058853ONF TS‐006.OpenFlow 1.3 Switch Specification.2012.https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdfMahlooM MontiP ChenJ WosinskaL.Cost modeling of backhaul for mobile networks. In: 2014 IEEE International Conference on Communications Workshops (ICC). 2014:397–402.https://doi.org/10.1109/ICCW.2014.6881230DawadiBR RawatDB JoshiSR KeitschMM.Joint cost estimation approach for service provider legacy network migration to unified software defined IPv6 network. In: Proceedings—4th IEEE International Conference on Collaboration and Internet Computing CIC 2018.2018.https://doi.org/10.1109/CIC.2018.00056FengT BiJ.OpenRouteFlow: Enable legacy router as a software‐defined routing service for hybrid SDN. In: 2015 24th International Conference on Computer Communication and Networks (ICCCN).2015:1–8.MachucaCM EberspaecherJ JĂ€gerM GladischA.Service migration cost modeling. In: 2007 ITG Symposium on Photonic Networks. ; 2007:1–5.Poularakis, K., Iosifidis, G., Smaragdakis, G., & Tassiulas, L. (2019). Optimizing Gradual SDN Upgrades in ISP Networks. IEEE/ACM Transactions on Networking, 27(1), 288-301. doi:10.1109/tnet.2018.2890248GalĂĄn-JimĂ©nez, J. (2017). Legacy IP-upgraded SDN nodes tradeoff in energy-efficient hybrid IP/SDN networks. Computer Communications, 114, 106-123. doi:10.1016/j.comcom.2017.10.010Vizarreta, P., Trivedi, K., Helvik, B., Heegaard, P., Blenk, A., Kellerer, W., & Mas Machuca, C. (2018). Assessing the Maturity of SDN Controllers With Software Reliability Growth Models. IEEE Transactions on Network and Service Management, 15(3), 1090-1104. doi:10.1109/tnsm.2018.2848105Salsano, S., Ventre, P. L., Lombardo, F., Siracusano, G., Gerola, M., Salvadori, E., 
 Prete, L. (2016). Hybrid IP/SDN Networking: Open Implementation and Experiment Management Tools. IEEE Transactions on Network and Service Management, 13(1), 138-153. doi:10.1109/tnsm.2015.2507622DasT GurusamyM.Resilient Controller Placement in Hybrid SDN/Legacy Networks. In: 2018 IEEE Global Communications Conference (GLOBECOM). 2018:1–7.DasT GurusamyM.INCEPT: INcremental ControllEr PlacemenT in software defined networks. In: 2018 27th International Conference on Computer Communication and Networks (ICCCN). 2018:1–6

    Economic Viability of Software Defined Networking (SDN)

    Get PDF
    Economical and operational facets of networks drive the necessity for significant changes towards fundamentals of networking architectures. Recently, the momentum of programmable networking attempts illustrates the significance of economic aspects of network technologies. Software Defined Networking (SDN) has got the attention of researchers from both academia and industry as a means to decrease network costs and generate revenue for service providers due to features it promises in networking. In this article, we investigate how programmable network architectures, i.e. SDN technology, affect the network economics compared to traditional network architectures, i.e. MPLS technology. We define two metrics, Unit Service Cost Scalability and Cost-to-Service, to evaluate how SDN architecture performs compared to MPLS architecture. Also, we present mathematical models to calculate certain cost parts of a network. In addition, we compare different popular SDN control plane models, Centralized Control Plane (CCP), Distributed Control Plane (DCP), and Hierarchical Control Plane (HCP), to understand the economic impact of them with regards to the defined metrics. We use video traffic with different patterns for the comparison. This work aims at being a useful primer to providing insights regarding which technology and control plane model are appropriate for a specific service, i.e. video, for network owners to plan their investments

    MPLS & QoS in Virtual Environments

    Get PDF
    The rise of high performance computing has seen a shift of services from locally managed Data Centers, to centralized globally redundant Data Centers (Cloud Computing). The scale of operation and churn required for cloud computing has in turn led to the rise of faster and programmable network pathing, via SDN & NFV. Cloud compute resources are accessible to individual researchers, as well as larger organizations. Cloud computing relies heavily on virtualization and abstraction of resources. The interconnect between these resources is more complex than ever, due to the need to seamlessly move from virtual to physical to hybrid networks and resources. MPLS as a technology is robust and has been used as transport for decades with a good track record. QoS has been available within most protocols to ensure service levels are maintained. The integration of MPLS, QoS and virtual environments is a space of increasing interest. It would allow for the seamless movement of traffic from end to end without the need for specialized hardware or vendor lock-in. In this thesis, the performance gains of IP/MPLS networks utilizing QoS on commercially available virtual environments has been investigated and studied. Latency was captured via round trip time metrics and tabulated for voice, video and data, with QoS and congestion as the primary differentiators. The study discusses the approach taken, the common thinking, and finally analyzes the results of a simulation, in order to show that MPLS & QoS benefits are viable in virtualized environments

    Analyses and design of a new integrated mobile SIP proxy to enhance the scalability in mobile network operators

    Get PDF
    The emergence of the two new technologies, namely Software Defined Network (SDN) and Network Function Virtualization (NFV) have radically changed the development of computer network fun etions and the evolution of mobile network operators (MN Os) infrastructures. The se two technologies bring to MN Os the promises of reducing costs, enhancing network flexibility and scalability to handle the growth in the number of mobile users and the need to extend its coverage to rural areas. The aim of this thesis 1s to exploit the advantages of the NFV concept to support the implementation of full y integrated solution with an external Session Initial Protocol (SIP) proxy application to enhance the scalability in MN Os. The proposed solution offers a hosted SIP proxy application installed on a virtual machine (VM) environment. The SIP proxy provides full Private Branch Exchange (PBX) and Switch (SW) functionality with Interactive Voice Response (IVR) capabilities. It maximizes the capacity in the existing servers and value-added services (VAS) data centers within the MNOs. The proposed solution enhances the usage of the existing bandwidth by using the unlicensed radio frequency (RF) spectrum bandwidth instead of the licensed RF spectrum to support a larger number of smartphones and data plans. In the initial experimental testbed, TeleFinity IP PBX, which is an external SIP proxy, 1s deployed on a virtual platform and integrated with the mobile network. The integration 1s realized by establishing a point to point protocol (PPP) SIP trunk connection between TeleFinity IP PBX and the Gateway Mobile Switch Center (GMSC). Severa! Testing scenarios were carried out over a local area network (LAN) and a wide area network (W AN) using different voice codees: G.711 u-law, G. 723, and G. 729 to validate the voice cali quality offered by the proposed solution. The Network analyzer software solutions: 1) Startrinity SIP tester, 2) Commview and 3) Resource Monitor are used to measure severa! Quality of Service (QoS) metrics. These include voice jitter, delay, packet Joss, and MOS. This procedure ensures that the proposed solution can handle voice communications with acceptable quality compared to LTE standards

    Yleiskatsaus ympÀristövaatimuksiin talonrakennusliiketoiminnassa

    Get PDF
    Ilmastonmuutos on meitÀ kaikkia maailmanlaajuisesti koskettava uhka. Rakentamisesta ja rakennusten koko elinkaaresta aiheutuu suuri mÀÀrÀ ympÀristöÀ kuormittavia pÀÀstöjÀ. Euroopan unionilla on tavoitteena saavuttaa hiilineutraalius vuoteen 2050 mennessÀ. Kyseinen tavoite on siirtynyt sitÀ myötÀ myös kansalliselle tasolle ja Suomen osalta se on asetettu jo vuoteen 2035; ollen yksittÀisten kuntien osalta sitÀkin kunnianhimoisempi. Tavoitteiden saavuttamiseksi niin kansallisella kuin kansainvÀlisellÀkin tasolla on ryhdytty toimenpiteisiin. Talonrakentamisen osalta nÀmÀ kyseiset toimenpiteet nÀyttÀytyvÀt erilaisina vapaaehtoisina sekÀ pakollisina ympÀristövaatimuksina. Eri tahoilta tulevat ympÀristövaatimukset muodostavat erittÀin laajan ja vaikeasti ymmÀrrettÀvÀn kokonaisuuden. TÀstÀ johtuen tÀmÀn tutkimuksen tarkoituksena on koota eri tahoilta tulevat talonrakentamista koskettavat ympÀristövaatimuksia yhteen, jotta niiden kokonaisuuden hallinnasta tulisi helpommin ymmÀrrettÀvÀÀ. TÀmÀn tutkimuksen osalta taksonomia-asetus osoittautui merkittÀvimmÀksi kansainvÀliseksi ympÀristövaatimukseksi. Tutkimuksessa paneudutaan syvemmin kahteen ensimmÀiseen taksonomiaa koskevaan pÀÀtavoitteeseen, jotka ovat ilmastonmuutoksen hillintÀ ja ilmastonmuutokseen sopeutuminen. LisÀksi ilmastonmuutoksen hillintÀÀn liittyviin, talonrakentamista koskeviin, teknisiin arviointikriteereihin tutustutaan tarkemmin. Kansallisten ympÀristövaatimusten osalta merkittÀvimpiÀ ovat uusi kaavoitus- ja rakentamislaki sekÀ kuntien ja tilaajien ympÀristövaatimukset. TÀmÀ tutkimus on luonteeltaan laadullinen tapaustutkimus. Sen tavoitteena on auttaa pohjoismaisen rakennusliikkeen case-esimerkin kautta ymmÀrtÀmÀÀn paremmin ympÀristövaatimuksia ja niiden merkitystÀ sen talonrakentamisen liiketoiminnassa. Työn alussa laadittiin kirjallisuuskatsaus, jolla muodostettiin kokonaiskuva aiheesta. Teoriaosuudessa perehdyttiin merkittÀvimpiin talonrakentamista koskeviin kansallisiin ja kansainvÀlisiin ympÀristövaatimuksiin. Aiheeseen tutustumisen jÀlkeen jÀrjestettiin kohdeyritystÀ koskeva sisÀinen haastattelukierros, jolla luotiin kÀsitys kohdeyrityksen ympÀristöraportoinnin nykytilasta. Nykytilan kartoittamiseksi apuna oli kÀytössÀ myös kohdeyrityksen sisÀisiÀ ja julkisia asiakirjoja. SisÀisistÀ haastatteluista jÀrjestettiin toinen haastattelukierros, jonka avulla pyrittiin syventÀmÀÀn ymmÀrrystÀ kohdeyrityksen nykytilasta ja toimista vastata ympÀristövaatimusten mukanaan tuomiin haasteisiin. SisÀisten haastatteluiden lisÀksi jÀrjestettiin kohdeyrityksen ulkoisia haastatteluita, joiden avulla oli tarkoitus saada lisÀnÀkemystÀ niin kansallisiin kuin kansainvÀlisiinkin ympÀristövaatimuksiin. Tutkimusaineisto osoittaa, ettÀ talonrakentamista koskevat ympÀristövaatimukset ovat kokonaisuudessaan hyvin monimutkainen ja laaja kokonaisuus. Taksonomia-asetuksen voidaan todeta olevan kokonaisuudessaan vielÀ keskenerÀinen. TÀrkeintÀ taksonomia-asetuksen suhteen olisikin pysyÀ ajanhermolla ja luoda valmiudet sille, ettÀ yrityksellÀ on kykyÀ vastata sen sisÀltÀmiin vaatimuksiin tulevaisuudessa. Kansallisten vaatimusten osalta kohdeyrityksen tilanne on hyvÀ pakollisten ympÀristövaatimusten, niin nykyisten kuin tulevienkin, suhteen. Sen sijaan huomio tulisikin siirtÀÀ vapaaehtoisiin vaatimuksiin, jotka ovat useimmiten perÀisin kunnilta ja tilaajilta. Niiden osalta tulisi pyrkiÀ luomaan toimivat toimintamallit, jotta vapaaehtoisten vaatimusten tunnistettaisiin yleistyvÀt vuosi vuodelta ja jotta niihin olisi helpompi vastata nyt ja tulevaisuudessa. Tutkimuksen lopussa kansallisista vaatimuksista laadittiin tiekartta. LisÀksi tÀssÀ tutkimuksessa nÀkemykset talonrakentamiselle osoitettujen ympÀristövaatimuksiin liittyvistÀ uhista ja mahdollisuuksista tuotiin esille SWOT-analyysin avulla
    corecore