52 research outputs found

    Global hypercontractivity and its applications

    Get PDF
    The hypercontractive inequality on the discrete cube plays a crucial role in many fundamental results in the Analysis of Boolean functions, such as the KKL theorem, Friedgut's junta theorem and the invariance principle. In these results the cube is equipped with the uniform measure, but it is desirable, particularly for applications to the theory of sharp thresholds, to also obtain such results for general pp-biased measures. However, simple examples show that when p=o(1)p = o(1), there is no hypercontractive inequality that is strong enough. In this paper, we establish an effective hypercontractive inequality for general pp that applies to `global functions', i.e. functions that are not significantly affected by a restriction of a small set of coordinates. This class of functions appears naturally, e.g. in Bourgain's sharp threshold theorem, which states that such functions exhibit a sharp threshold. We demonstrate the power of our tool by strengthening Bourgain's theorem, thereby making progress on a conjecture of Kahn and Kalai and by establishing a pp-biased analog of the invariance principle. Our results have significant applications in Extremal Combinatorics. Here we obtain new results on the Tur\'an number of any bounded degree uniform hypergraph obtained as the expansion of a hypergraph of bounded uniformity. These are asymptotically sharp over an essentially optimal regime for both the uniformity and the number of edges and solve a number of open problems in the area. In particular, we give general conditions under which the crosscut parameter asymptotically determines the Tur\'an number, answering a question of Mubayi and Verstra\"ete. We also apply the Junta Method to refine our asymptotic results and obtain several exact results, including proofs of the Huang--Loh--Sudakov conjecture on cross matchings and the F\"uredi--Jiang--Seiver conjecture on path expansions.Comment: Subsumes arXiv:1906.0556

    Polynomial growth of concept lattices, canonical bases and generators:: extremal set theory in Formal Concept Analysis

    Get PDF
    We prove that there exist three distinct, comprehensive classes of (formal) contexts with polynomially many concepts. Namely: contexts which are nowhere dense, of bounded breadth or highly convex. Already present in G. Birkhoff's classic monograph is the notion of breadth of a lattice; it equals the number of atoms of a largest boolean suborder. Even though it is natural to define the breadth of a context as being that of its concept lattice, this idea had not been exploited before. We do this and establish many equivalences. Amongst them, it is shown that the breadth of a context equals the size of its largest minimal generator, its largest contranominal-scale subcontext, as well as the Vapnik-Chervonenkis dimension of both its system of extents and of intents. The polynomiality of the aforementioned classes is proven via upper bounds (also known as majorants) for the number of maximal bipartite cliques in bipartite graphs. These are results obtained by various authors in the last decades. The fact that they yield statements about formal contexts is a reward for investigating how two established fields interact, specifically Formal Concept Analysis (FCA) and graph theory. We improve considerably the breadth bound. Such improvement is twofold: besides giving a much tighter expression, we prove that it limits the number of minimal generators. This is strictly more general than upper bounding the quantity of concepts. Indeed, it automatically implies a bound on these, as well as on the number of proper premises. A corollary is that this improved result is a bound for the number of implications in the canonical basis too. With respect to the quantity of concepts, this sharper majorant is shown to be best possible. Such fact is established by constructing contexts whose concept lattices exhibit exactly that many elements. These structures are termed, respectively, extremal contexts and extremal lattices. The usual procedure of taking the standard context allows one to work interchangeably with either one of these two extremal structures. Extremal lattices are equivalently defined as finite lattices which have as many elements as possible, under the condition that they obey two upper limits: one for its number of join-irreducibles, other for its breadth. Subsequently, these structures are characterized in two ways. Our first characterization is done using the lattice perspective. Initially, we construct extremal lattices by the iterated operation of finding smaller, extremal subsemilattices and duplicating their elements. Then, it is shown that every extremal lattice must be obtained through a recursive application of this construction principle. A byproduct of this contribution is that extremal lattices are always meet-distributive. Despite the fact that this approach is revealing, the vicinity of its findings contains unanswered combinatorial questions which are relevant. Most notably, the number of meet-irreducibles of extremal lattices escapes from control when this construction is conducted. Aiming to get a grip on the number of meet-irreducibles, we succeed at proving an alternative characterization of these structures. This second approach is based on implication logic, and exposes an interesting link between number of proper premises, pseudo-extents and concepts. A guiding idea in this scenario is to use implications to construct lattices. It turns out that constructing extremal structures with this method is simpler, in the sense that a recursive application of the construction principle is not needed. Moreover, we obtain with ease a general, explicit formula for the Whitney numbers of extremal lattices. This reveals that they are unimodal, too. Like the first, this second construction method is shown to be characteristic. A particular case of the construction is able to force - with precision - a high number of (in the sense of "exponentially many'') meet-irreducibles. Such occasional explosion of meet-irreducibles motivates a generalization of the notion of extremal lattices. This is done by means of considering a more refined partition of the class of all finite lattices. In this finer-grained setting, each extremal class consists of lattices with bounded breadth, number of join irreducibles and meet-irreducibles as well. The generalized problem of finding the maximum number of concepts reveals itself to be challenging. Instead of attempting to classify these structures completely, we pose questions inspired by Turán's seminal result in extremal combinatorics. Most prominently: do extremal lattices (in this more general sense) have the maximum permitted breadth? We show a general statement in this setting: for every choice of limits (breadth, number of join-irreducibles and meet-irreducibles), we produce some extremal lattice with the maximum permitted breadth. The tools which underpin all the intuitions in this scenario are hypergraphs and exact set covers. In a rather unexpected, but interesting turn of events, we obtain for free a simple and interesting theorem about the general existence of "rich'' subcontexts. Precisely: every context contains an object/attribute pair which, after removed, results in a context with at least half the original number of concepts

    The Power of Pivoting for Exact Clique Counting

    Full text link
    Clique counting is a fundamental task in network analysis, and even the simplest setting of 33-cliques (triangles) has been the center of much recent research. Getting the count of kk-cliques for larger kk is algorithmically challenging, due to the exponential blowup in the search space of large cliques. But a number of recent applications (especially for community detection or clustering) use larger clique counts. Moreover, one often desires \textit{local} counts, the number of kk-cliques per vertex/edge. Our main result is Pivoter, an algorithm that exactly counts the number of kk-cliques, \textit{for all values of kk}. It is surprisingly effective in practice, and is able to get clique counts of graphs that were beyond the reach of previous work. For example, Pivoter gets all clique counts in a social network with a 100M edges within two hours on a commodity machine. Previous parallel algorithms do not terminate in days. Pivoter can also feasibly get local per-vertex and per-edge kk-clique counts (for all kk) for many public data sets with tens of millions of edges. To the best of our knowledge, this is the first algorithm that achieves such results. The main insight is the construction of a Succinct Clique Tree (SCT) that stores a compressed unique representation of all cliques in an input graph. It is built using a technique called \textit{pivoting}, a classic approach by Bron-Kerbosch to reduce the recursion tree of backtracking algorithms for maximal cliques. Remarkably, the SCT can be built without actually enumerating all cliques, and provides a succinct data structure from which exact clique statistics (kk-clique counts, local counts) can be read off efficiently.Comment: 10 pages, WSDM 202

    Saturation of Ordered Graphs

    Get PDF
    Recently, the saturation problem of 0-1 matrices gained a lot of attention. This problem can be regarded as a saturation problem of ordered bipartite graphs. Motivated by this, we initiate the study of the saturation problem of ordered and cyclically ordered graphs. We prove that dichotomy holds also in these two cases, i.e., for a (cyclically) ordered graph its saturation function is either bounded or linear. We also determine the order of magnitude for large classes of (cyclically) ordered graphs, giving infinite many examples exhibiting both possible behaviours, answering a problem of Pálvölgyi. In particular, in the ordered case we define a natural subclass of ordered matchings, the class of linked matchings, and we start their systematic study, concentrating on linked matchings with at most three links and prove that many of them have bounded saturation function. In both the ordered and cyclically ordered case we also consider the semisaturation problem, where dichotomy holds as well and we can even fully characterize the graphs that have bounded semisaturation function

    Extremal problems on counting combinatorial structures

    Get PDF
    The fast developing field of extremal combinatorics provides a diverse spectrum of powerful tools with many applications to economics, computer science, and optimization theory. In this thesis, we focus on counting and coloring problems in this field. The complete balanced bipartite graph on nn vertices has \floor{n^2/4} edges. Since all of its subgraphs are triangle-free, the number of (labeled) triangle-free graphs on nn vertices is at least 2^{\floor{n^2/4}}. This was shown to be the correct order of magnitude in a celebrated paper Erd\H{o}s, Kleitman, and Rothschild from 1976, where the authors furthermore proved that almost all triangle-free graphs are bipartite. In Chapters 2 and 3 we study analogous problems for triangle-free graphs that are maximal with respect to inclusion. In Chapter 2, we solve the following problem of Paul Erd\H{o}s: Determine or estimate the number of maximal triangle-free graphs on nn vertices. We show that the number of maximal triangle-free graphs is at most 2n2/8+o(n2)2^{n^2/8+o(n^2)}, which matches the previously known lower bound. Our proof uses among other tools the Ruzsa-Szemer\'{e}di Triangle Removal Lemma and recent results on characterizing of the structure of independent sets in hypergraphs. This is a joint work with J\'{o}zsef Balogh. In Chapter 3, we investigate the structure of maximal triangle-free graphs. We prove that almost all maximal triangle-free graphs admit a vertex partition (X,Y)(X, Y) such that G[X]G[X] is a perfect matching and YY is an independent set. Our proof uses the Ruzsa-Szemer\'{e}di Removal Lemma, the Erd\H{o}s-Simonovits stability theorem, and recent results of Balogh-Morris-Samotij and Saxton-Thomason on the characterization of the structure of independent sets in hypergraphs. The proof also relies on a new bound on the number of maximal independent sets in triangle-free graphs with many vertex-disjoint P3P_3's, which is of independent interest. This is a joint work with J\'{o}zsef Balogh, Hong Liu, and Maryam Sharifzadeh. In Chapte 4, we seek families in posets with the smallest number of comparable pairs. Given a poset PP, a family \F\subseteq P is \emph{centered} if it is obtained by `taking sets as close to the middle layer as possible'. A poset PP is said to have the \emph{centeredness property} if for any MM, among all families of size MM in PP, centered families contain the minimum number of comparable pairs. Kleitman showed that the Boolean lattice {0,1}n\{0,1\}^n has the centeredness property. It was conjectured by Noel, Scott, and Sudakov, and by Balogh and Wagner, that the poset {0,1,,k}n\{0,1,\ldots,k\}^n also has the centeredness property, provided nn is sufficiently large compared to kk. We show that this conjecture is false for all k2k\geq 2 and investigate the range of MM for which it holds. Further, we improve a result of Noel, Scott, and Sudakov by showing that the poset of subspaces of Fqn\mathbb{F}_q^n has the centeredness property. Several open problems are also given. This is a joint result with J\'{o}zsef Balogh and Adam Zsolt Wagner. In Chapter 5, we consider a graph coloring problem. Kim and Park have found an infinite family of graphs whose squares are not chromatic-choosable. Xuding Zhu asked whether there is some kk such that all kk-th power graphs are chromatic-choosable. We answer this question in the negative: we show that there is a positive constant cc such that for any kk there is a family of graphs GG with χ(Gk)\chi(G^k) unbounded and χ(Gk)cχ(Gk)logχ(Gk)\chi_{\ell}(G^k)\geq c \chi(G^k) \log \chi(G^k). We also provide an upper bound, χ(Gk)1\chi_{\ell}(G^k)1. This is a joint work with Nicholas Kosar, Benjamin Reiniger, and Elyse Yeager

    Exact solutions for the Erdos-Rothschild problem

    Get PDF
    corecore