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Abstract

The fast developing �eld of extremal combinatorics provides a diverse spectrum of powerful tools

with many applications to economics, computer science, and optimization theory. In this thesis, we

focus on counting and coloring problems in this �eld.

The complete balanced bipartite graph on n vertices has
⌊
n2/4

⌋
edges. Since all of its subgraphs

are triangle-free, the number of (labeled) triangle-free graphs on n vertices is at least 2bn2/4c.

This was shown to be the correct order of magnitude in a celebrated paper Erd®s, Kleitman, and

Rothschild from 1976, where the authors furthermore proved that almost all triangle-free graphs

are bipartite. In Chapters 2 and 3 we study analogous problems for triangle-free graphs that are

maximal with respect to inclusion.

In Chapter 2, we solve the following problem of Paul Erd®s: Determine or estimate the number

of maximal triangle-free graphs on n vertices. We show that the number of maximal triangle-free

graphs is at most 2n
2/8+o(n2), which matches the previously known lower bound. Our proof uses

among other tools the Ruzsa-Szemerédi Triangle Removal Lemma and recent results on character-

izing of the structure of independent sets in hypergraphs. This is a joint work with József Balogh.

In Chapter 3, we investigate the structure of maximal triangle-free graphs. We prove that

almost all maximal triangle-free graphs admit a vertex partition (X,Y ) such that G[X] is a perfect

matching and Y is an independent set. Our proof uses the Ruzsa-Szemerédi Removal Lemma,

the Erd®s-Simonovits stability theorem, and recent results of Balogh-Morris-Samotij and Saxton-

Thomason on the characterization of the structure of independent sets in hypergraphs. The proof

also relies on a new bound on the number of maximal independent sets in triangle-free graphs with

many vertex-disjoint P3's, which is of independent interest. This is a joint work with József Balogh,

Hong Liu, and Maryam Sharifzadeh.
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In Chapter 4, we seek families in posets with the smallest number of comparable pairs. Given a

poset P , a family F ⊆ P is centered if it is obtained by `taking sets as close to the middle layer as

possible'. A poset P is said to have the centeredness property if for any M , among all families of

size M in P , centered families contain the minimum number of comparable pairs. Kleitman showed

that the Boolean lattice {0, 1}n has the centeredness property. It was conjectured by Noel, Scott,

and Sudakov, and by Balogh and Wagner, that the poset {0, 1, . . . , k}n also has the centeredness

property, provided n is su�ciently large compared to k. We show that this conjecture is false for

all k ≥ 2 and investigate the range of M for which it holds. Further, we improve a result of Noel,

Scott, and Sudakov by showing that the poset of subspaces of Fnq has the centeredness property.

Several open problems are also given. This is a joint result with József Balogh and Adam Zsolt

Wagner.

In Chapter 5, we consider a graph coloring problem. Kim and Park have found an in�nite

family of graphs whose squares are not chromatic-choosable. Xuding Zhu asked whether there

is some k such that all k-th power graphs are chromatic-choosable. We answer this question in

the negative: we show that there is a positive constant c such that for any k there is a family of

graphs G with χ(Gk) unbounded and χ`(Gk) ≥ cχ(Gk) logχ(Gk). We also provide an upper bound,

χ`(G
k) < χ(Gk)3 for k > 1. This is a joint work with Nicholas Kosar, Benjamin Reiniger, and Elyse

Yeager.
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Chapter 1

Introduction

Given a family F of discrete structures, it is natural to ask the following questions:

• What is the size of F?

• What is the structure of elements in F?

• What are the properties of elements in F?

In this work, we provide answers to several questions of this type for families of graphs and partially

ordered sets (posets). In Chapters 2 and 3, we focus on maximal triangle-free graphs, that is,

triangle-free graphs in which adding any edge results in a triangle. In Chapter 2, we count the

number of maximal triangle-free graphs, and in Chapter 3, we study their typical structure. In

Chapter 4, we investigate the structure of families in posets of �xed size that have the smallest

number of comparable pairs. In Chapter 5, we show that for every k, the family of k-th powers of

graphs is not chromatic-choosable by proving that there exists a graph G whose k-th power is close

in structure to a complete multipartite graph.

This chapter is organized as follows: In Section 1.1, we give a brief exposition of fundamental

results in extremal graph theory and state our results. In Section 1.2, we discuss essential results in

extremal set theory, in particular for partially ordered sets. In Section 1.3, we focus on chromatic

graph theory, with emphasis on proper vertex coloring and its list coloring version. The notation

and terminology used in this thesis is introduced at the end of this chapter � in Section 1.4.
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1.1 Extremal problems in graphs

A systematic study of extremal graph theory was initiated more than 100 years ago by Mantel,

who determined the maximum number of edges in a triangle-free graph.

Theorem 1.1.1 (Mantel [56], 1907). An n-vertex triangle-free graph contains at most
⌊
n2

4

⌋
edges.

This is best possible � consider the complete bipartite graph with the two parts of size
⌊
n
2

⌋

and
⌈
n
2

⌉
. Furthermore, the complete balanced bipartite graph is the only triangle-free graph that

attains this maximum.

A natural question is whether a similar result holds for Kr+1-free graphs with r > 2 as well.

This was answered by Paul Turán in the a�rmative.

Theorem 1.1.2 (Turán [76], 1941). An n-vertex Kr+1-free graph contains at most
(
1− 1

r

) ⌊
n2

2

⌋

edges.

The Turán graph T (n, r) is the complete bipartite r-partite graph of order n with parts of size

bn/rc or dn/re. The Turán number t(n, r) is then de�ned as number of edges in T (n, r). Observe

that in the case when r divides n, the Turán graph T (n, r) has exactly
(
r
2

)
n2

r2
= (1 − 1

r )n
2

2 edges.

Turán's theorem thus states that no Kr+1-free graphs on n vertices has more edges than the Turán

graph T (n, r). Moreover, as in the triangle-free case, T (n, r) is the only graph that attains the

maximum, i.e. every Kr+1-free graph with the maximum number of edges must be a complete

balanced r-partite graph.

We can further generalize the problem to any graph H. Denote by ex(n,H) the maximum

possible number of edges in an H-free graph on n vertices (so ex(n,Kr+1) = t(n, r)). The key

parameter here is the chromatic number χ(H) of H. Since the vertices of H cannot be properly

colored with χ(H)−1 colors, the graph H is not contained in T (n, χ(H)−1). Therefore, ex(n,H) ≥

t(n, χ(H)− 1). It turns out that this is asymptotically best possible.

2



Theorem 1.1.3 (Erd®s-Stone-Simonovits [38], 1966).

ex(n,H) =

(
1− 1

χ(H)− 1
+ o(1)

)
n2

2
.

Many interesting problems occur when, instead of counting edges, we attempt to count sub-

graphs. For �xed graphs T and H, let ex(n, T,H) be the maximum possible number of copies of T

in an H-free graph on n vertices. Note that ex(n,K2, H) = ex(n,H). A recent paper of Alon and

Shikhelman [5] presents history of the problem and new results for various choices of T and H.

Perharps the most powerful result in extremal combinatorics is the Szemerédi Regularity Lemma.

Before presenting the statement, we need several de�nitions. For a graph G = (V,E) and two vertex

sets X,Y ⊆ V , denote by E(X,Y ) the set of edges between X and Y , and let e(X,Y ) = |E(X,Y )|.

Furthermore, de�ne the edge density of a pair (X,Y ) by

d(X,Y ) :=
e(X,Y )

|X| · |Y | .

Given an ε > 0, a pair (X,Y ) is an ε-regular if for every X ′ ⊆ X and every Y ′ ⊆ Y with

|X ′| ≥ ε|X| and |Y ′| ≥ ε|Y |, the edge densities of (X,Y ) and (X ′, Y ′) di�er by at most ε, that is,

|d(X,Y )− d(X ′, Y ′)| ≤ ε.

Theorem 1.1.4 (Szemerédi Regularity Lemma [74, 75], 1975). For every ε > 0 and m ∈ N, there

exists an integer M such that every graph G = (V,E) has a vertex partition V (G) = V1 ∪ · · · ∪ Vt
with m ≤ t ≤M that satis�es the following two conditions:

• ||Vi| − |Vj || ≤ 1 for all i, j ∈ [t].

• All but at most εt2 pairs (Vi, Vj) are ε-regular.

The proof of the Szemerédi Regularity Lemma is technical and is based on the �density increment

argument�. In short, we start with an arbitrary equitable vertex partition, and if this partition is

not ε-regular, it can be re�ned so that a quantity called �the mean square density� increases by a

�xed amount. We can then show that the process terminates after a �nite number of steps since

this quantity is bounded from above.
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The standard application of the Szemerédi Regularity Lemma is the Triangle Removal Lemma.

Theorem 1.1.5 (Ruzsa-Szemerédi [68], 1976). For every ε > 0 there exists δ > 0 such that, every

n-vertex graph G with at most δn3 triangles can be made triangle-free by removing at most εn2

edges.

The Triangle Removal Lemma generalizes to larger cliques: Every graph with o(nr) triangles

can be made Kr-free by removing at most o(n2) edges. This result was �rst published by Alon,

Duke, Lefmann, Rödl, and Yuster [4], and independently by Füredi [41]. For more details on graph

removal lemmas, we refer the reader to an excellent survey by Conlon and Fox [29].

Another application of the Szemerédi Regularity Lemma is the celebrated result of Erd®s, Kleit-

man, and Rothschild, which determines the asymptotics for the logarithm of the number of (labeled)

Kr-free graphs on n-vertices.

Theorem 1.1.6 (Erd®s-Kleitman-Rothschild [37], 1976). The number of Kr-free graphs on the

vertex set [n] is

2ex(n,Kr)+o(n2), where ex(n,Kr) =

(
1− 1

r − 1

)
n2

2
.

The original proof of Theorem 1.1.6 did not use the Szemerédi Regularity Lemma (which was

proved around the same time), but Erd®s Frankl, and Rödl [36] later discovered that it follows from

it relatively easily: For every Kr-free n-vertex graph G, the n-vertex blow up B(CG) of the cluster

graph CG for G is Kr-free and omits at most o(n2) edges of G. Every Kr-free n-vertex graph G can

be obtained by

1. choosing a cluster graph CG, O(1)

2. choosing an n-vertex blow-up B(CG) of the cluster graph CG, ≤ nn

3. deciding which edges of the blow-up B(CG) are in G, and ≤ 2ex(n,Kr)

4. deciding which edges outside of B(CG) are in G.
(
n2

o(n2)

)
≤ 2o(n

2)

Together, there are thus at most 2ex(n,Kr)+o(n2) Kr-free n-vertex graphs.

More recently, there has been a movement to extend classical results of extremal combinatorics

to sparse random settings. Conlon and Gowers [30], and independently Schacht [70], developed a
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technique that allows them to combine an extremal result R with a supersaturation result to obtain

a random analogue of R. For example, recall that Turán's theorem states that for every r ≥ 3:

ex(n,Kr) =

(
1− 1

r − 1
+ o(1)

)
· e(Kn).

Let G(n, p) be the classical random graph model, where every edge in an n-vertex graph is chosen

independently with probability p. Then the random analogue of Turán theorem states that for every

r ≥ 3, if p� n−2/(r+1), then a.a.s.:

ex(G(n, p),Kr) =

(
1− 1

r − 1
+ o(1)

)
· e(G(n, p)).

Other applications of the technique used in [30] and [70] include sparse random analogues of Sze-

merédi's theorem on arithmetic progressions and of Ramsey's theorem.

Inspired by the new development, Balogh, Morris, and Samotij [10], and independently Saxton

and Thomason [69], established a powerful counting method called the �container method�. Not

only this method implies many results of Conlon and Gowers [30], and of Schacht [70], but it also

provides their counting counterparts. The main result roughly states that for every �nice� r-uniform

hypergraph H, we can �nd a relatively small family F of relatively small vertex subsets (called

containers), such that every independent set of H is contained in some member of F . The full result

is quite technical and we will omit it here. Instead, we state an important corollary for graphs,

obtained by setting V (H) = E(Kn) and E(H) =`copies of Kr' in the main result for independent

sets in a hypergraph H (Theorem 2.2 in [10], Theorem 3.4 in [69]). Observe that then I is an

independent set in H if and only if the edges in I do not form a copy of a Kr.

Theorem 1.1.7 (Balogh-Morris-Samotij [10], 2015; Saxton-Thomason [69], 2015). For every δ > 0

there exists a family F of 2O(n2−1/(r−1)·logn) graphs, each containing at most δnr copies of Kr, such

that every Kr-free graph is contained in some F ∈ F .

A similar statement also holds for a general subgraph H, but with the exponent O(n2−1/m2(H) ·

log n) in the term bounding the number of containers, where m2(H) := max e(H′)−1
v(H′)−2 taken over all

subgraphs H ′ of H with more than one edge.
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Theorem 1.1.7 provides a quick proof of Theorem 1.1.6 (Erd®s-Kleitman-Rothschild's theorem).

Indeed, every Kr-free graph is in some F ∈ F , and every such F has ex(n,Kr) + o(n2) edges (by a

removal lemma for Kr, which has been be proved without the use of Szemerédi Regularity Lemma

by Fox [40]). Hence, the number of Kr-free graphs is at most |F| · 2ex(n,Kr)+o(n2) = 2ex(n,Kr)+o(n2).

The container method gives new proofs of the sparse analogues of various results, including

Szemerédi's theorem, Turán theorem, Erd®s-Kleitman-Rothschild's theorem, Erd®s-Frankl-Rödl

theorem, Erd®s-Stone theorem, and Stone-Simonovits theorem. The container method moreover

provides new applications for wide spectrum of extremal problems. It was used to prove new results

on list coloring hypergraphs [69], counting C4-free graphs [21], counting metric spaces [21], counting

intersecting families of permutations [11], counting maximal sum-free subsets [13], counting r-chains

in posets [19, 20], and others.

Maximal triangle-free graphs

Recall that the number of (labeled) copies of triangle-free graphs on n vertices is 2n
2/4+o(n2) by a

result of Erd®s, Kleitman, and Rothschild (Theorem 1.1.6). Observe that most bipartite graphs are

not maximal triangle-free. It is thus natural to ask, how much smaller is the family of maximal

triangle-free graphs compared to the family of all triangle-free graphs. Erd®s suggested the following

problem (as stated in [71]): determine or estimate the number of maximal triangle-free graphs on

n vertices. In Chapter 2, we �nd the asymptotics of the logarithm of this number.

Theorem 1.1.8 (Balogh-Pet°í£ková [17], 2014). The number of maximal triangle-free graphs with

vertex set [n] is at most

2ex(n,K3)/2+o(n2) = 2n
2/8+o(n2).

Erd®s, Kleitman, and Rothschild [37] determined the typical structure of triangle-free graphs,

showing that almost all of them are bipartite (i.e., the proportion of n-vertex triangle-free graphs

that are not bipartite goes to zero as n→∞).

Theorem 1.1.9 (Erd®s-Kleitman-Rothschild [37], 1976). Let Tn be the number of triangle-free
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graphs with vertex set [n], and Sn be the number of bipartite graphs with vertex set [n]. Then

Tn = Sn

(
1 +O

(
1

n

))
.

In Chapter 3 we prove the analogue of Theorem 1.1.9 for maximal triangle free-graphs.

Theorem 1.1.10 (Balogh-Liu-Pet°í£ková-Sharifzadeh [12], 2015). For almost every maximal

triangle-free graph G on [n], there is a vertex partition X ∪ Y such that G[X] is a perfect matching

and Y is an independent set.

Furthermore, our proof yields that the number of maximal triangle-free graphs without the

desired structure is exponentially smaller than the number of maximal triangle-free graphs: Let

M3(n) denote the set of all maximal triangle-free graphs on [n], and G(n) denote the family of

graphs from M3(n) that admit a vertex partition such that one part induces a perfect matching

and the other is an independent set. Then there exists an absolute constant c > 0 such that for n

su�ciently large, |M3(n)− G(n)| ≤ 2−cn|M3(n)|.

Supersaturation in graphs

The theory of supersaturation is concerned with situations beyond the extremal threshold. In graph

theory, the typical such problem is to determine the number of copies of a graph H in a n-vertex

graph with ex(n,H) + t edges. Clearly, if t > 1, then we are guaranteed at least one copy of H.

Somewhat surprisingly, in many cases we are guaranteed many more copies of H. The �rst such

result is by Rademacher.

Theorem 1.1.11 (Rademacher, 1941, unpublished). Every graph with
⌊
n2

4

⌋
+ 1 edges contains at

least
⌊
n
2

⌋
triangles.

About two decades later, Erd®s proved the following stronger version of Theorem 1.1.11.

Theorem 1.1.12 (Erd®s [35], 1962). There exists a positive constant c such that for all t < cn/2,

every graph with
⌊
n2

4

⌋
+ t edges contains at least t ·

⌊
n
2

⌋
triangles.
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This was later extended to all t < n/2 by Lovász and Simonovits [54]. Note that sharpness

examples can be obtained by adding edges to Kdn/2e,bn/2c, in particular, to the part with
⌈
n
2

⌉

vertices in such a way that the new edges do not form a triangle.

Erd®s [33] proved the following generalization of Theorem 1.1.12:

Theorem 1.1.13 (Erd®s [33], 1962). For every r ≥ 3, there exists a positive constant cr such that

for all t < cr · n, every graph with ex(n,Kr) + t edges contains at least t · ex(n,Kr) copies of Kr.

Lovász and Simonovits obtained Theorem 1.1.13 for t = o(n2), together with a stability result,

and furthermore provided a characterization of the extremal con�gurations. The problem is noto-

riously di�cult for t = Ω(n2), but recently, there has been a signi�cant progress. Razborov [66]

found an asymptotic solution for the triangle-case, Nikiforov [60] for K4, and �nally, Reiher [67] for

general Kr. This concluded the e�orts of proving the conjecture of Lovász and Simonovits from the

1970's.

Analogous problems of determining the number of forbidden con�gurations in structures slightly

denser than the extremal threshold are called Erd®s-Rademacher-type problems, and we will see some

other examples in the next section.

1.2 Extremal problems in posets

A partially ordered set P (or poset) is a set P together with a binary relation ≤ over P that

is re�exive, antisymmetric, and transitive. Two elements x and y in P form a comparable pair (or

are comparable) if x ≤ y or y ≤ x. An r-chain is a subset of size r where every two elements are

comparable, that is, whose elements can be ordered as x1 ≤ x2 ≤ · · · ≤ xr. An antichain is a subset

with no comparable pairs.

An important example of a poset is the Boolean lattice P(n), which is the family of subsets of

[n] ordered by set-inclusion. Alternatively, the poset P(n) can be viewed as the set {0, 1}n with the

ordering A ≤ B if Ai ≤ Bi for every i ∈ [n], where Ai and Bi are the i-th coordinates of the sets A

and B, respectively.
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Figure 1.1: The Hasse diagram of the poset P(n) = {0, 1, 2}n for n = 1, n = 2, and n = 3.

A fundamental result in extremal combinatorics is the Sperner's theorem, which states that

there are no larger antichains in P(n) than the set of elements in the middle layer (or one of the

two middle layers).

Theorem 1.2.1 (Sperner [72], 1928). The largest antichain in the poset P(n) has size
(

n
bn/2c

)
.

Sperner's theorem was later generalized by Lubell [55] (1966), Yamamoto [80] (1954), and Me-

shalkin [57] (1963). Their independent discoveries are commonly known as the LYM inequality.

This inequality is however also a special case of a powerful theorem proved by Bollobás [22] in 1965

(when he was still an undergraduate student!), and should be therefore called the BLYM inequality.

Theorem 1.2.2 (BLYM inequality, [22, 55, 80, 57]). For an antichain F ∈ {0, 1}n

∑

A∈F

(
n

|A|

)−1
≤ 1.

Erd®s extended Sperner's theorem to longer chains. Also in this case, the natural choice of

families closest to the middle layer was shown to be optimal.

Theorem 1.2.3 (Erd®s [34], 1945). The maximum size of a family in {0, 1}n that does not contain

an (r + 1)-chain is

Σr(P(n)) :=

b(n+r−1)/2c∑

i=d(n−r+1)/2e

(
n

i

)
.
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Supersaturation in posets

At the end of Section 1.1 we discussed Erd®s-Rademacher-type problems in graphs. Here we consider

a similar question for posets: How many r-chains are we guaranteed in a family of a poset P which is

larger than the extremal threshold? Erd®s and Katona (see [31]) proposed the following conjecture

for r = 2 and the Boolean lattice P(n).

Conjecture 1.2.4 (Erd®s-Katona). In P(n), every family of size
(

n
bn/2c

)
+t contains at least t·

⌈
n+1
2

⌉

comparable pairs.

This conjecture was resolved by Kleitman [49] in 1966, when he showed that the minimum

number of comparable pairs occurs for a family of sets of sizes as close to n/2 as possible. He

introduced the compression method, which allows for replacing sets far from the middle level with

elements closer to the middle level, without increasing the number of comparable pairs.

Theorem 1.2.5 (Kleitman [49], 1966). Conjecture 1.2.4 is true. Moreover, the minimum is attained

by some family of sets as close to the middle level as possible.

Given a poset P , we say that a family F ⊆ P is centered if it is obtained by `taking sets as

close to the middle layer as possible'. A family F ⊆ P of size M is called M -optimal if it contains

the smallest number of comparable pairs, among families of size M . A poset P is said to have the

centeredness property if for every M ≤ |P | there exists an M -optimal centered family.

Theorem 1.2.5 thus states that the Boolean lattice has the centeredness property, i.e., that for

every M ≤ 2n there exists a family F of size M such that for every family G of size M :

1. G has at least as many comparable pairs as F (that is, F is M -optimal), and

2.
∑

F∈F ||F | − n
2 | ≤

∑
G∈G ||G| − n

2 | (that is, F is centered).

Kleitman suggested that an analogous result might hold for chains of any length r.

Conjecture 1.2.6 (Kleitman [49]). In P(n), the number of r-chains is minimized by a centered

family.
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Figure 1.2: The Hasse diagram of the poset {0, 1, 2}n for n = 1, n = 2, and n = 3.

Some partial results were recently obtained by Das, Gan, and Sudakov [31]. They con�rmed

that Kleitman's conjecture is true for families of size at most Σr(P(n)), and for families of size at

most Σr+1(P(n)) with r ≤ n− 6. In both cases, they provide a corresponding stability result, i.e.,

they show that if the number of r-chains in a family is close to the minimum, then the family must

be close in structure to the extremal example.

Using the `container method' discussed in Section 1.1, Balogh and Wagner [20] were able to

prove an asymptotic version of Kleitman's conjecture.

Theorem 1.2.7 (Balogh and Wagner [20], 2017+). For every r and ε > 0 there exists n0 = n0(k, ε)

such that if n ≥ n0 and M ≤ (1− ε)2n, then among the families of size M , the number of r-chains

is minimized by a centered family.

Another direction for extending Theorem 1.2.5 is to count the minimum number of comparable

pairs of families in other posets. In Chapter 4, we study such problems for two posets that generalize

the Boolean lattice:

• The poset on {0, 1, . . . , k}n with (A1, . . . , An) ≤ (B1, . . . , Bn) i� Ai ≤ Bi for all i ∈ [n].
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• The poset of subspaces of Fnq (where q is a prime power) ordered by inclusion.

Recently, Noel, Scott, and Sudakov [62], and Balogh and Wagner [20] conjectured that for every

k there exists an n0 such that if n ≥ n0 then the poset {0, 1, . . . , k}n has the centeredness property.

In Chapter 4 we show that this conjecture does not hold.

Theorem 1.2.8 (Balogh-Pet°í£ková-Wagner, 2017+). The poset {0, 1, . . . , k}n does not have the

centeredness property for any k ≥ 2.

We prove several other more technical results for the poset {0, 1, 2}n, and also the following

theorem for the poset of subspaces of Fnq , which generalizes a recent result of Noel, Scott, and

Sudakov [62].

Theorem 1.2.9 (Balogh-Pet°í£ková-Wagner, 2017+). For any prime power q, the poset of subspaces

of Fnq has the centeredness property.

1.3 Chromatic graph theory

In general, a proper vertex k-coloring is a function c : V (G) → [k] such that if uv ∈ E(G), then

c(u) 6= c(v). The least k such that there exist a proper vertex k-coloring of G is called the (vertex)

chromatic number of G, and is denoted χ(G). Coloring the vertices of G greedily shows that every

graph can be colored with at most ∆(G)+1 colors. The most fundamental result in vertex coloring,

Brooks' theorem, states that ∆(G) colors are su�cient for most graphs G:

Theorem 1.3.1 (Brooks [25], 1941). Let G be a connected graph. If G is not a complete graph or

an odd cycle, then χ(G) ≤ ∆(G). Otherwise χ(G) = ∆(G) + 1.

The next well-studied type of graph coloring is proper edge coloring, where we color edges instead

of vertices and require every pair of adjacent edges to receive di�erent colors. Every edge coloring

of G can be transformed into a vertex coloring by considering the line graph L(G) of G. Indeed,

two edges e and f of G are adjacent in G if and only if the corresponding vertices e and f of L(G)

are adjacent in L(G). As in the case of proper vertex coloring, a proper edge coloring is a special

case of an H-free edge coloring, where H is now a path of length two. A graph is k-edge-colorable
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TYPE OF COLORING standard list version
vertex coloring χ χ`
edge coloring χ′ χ′`
total coloring χ′′ χ′′`

Table 1.1: Basic types of graph colorings and the coresponding parameters.

if there exists a proper edge k-coloring of G. The least k such that G is k-edge-colorable is called

the edge chromatic number of G, and denoted χ′(G). The obvious lower bound on χ′(G) is ∆(G).

Somewhat surprisingly, the upper bound on χ′(G) di�ers from the lower bound only by 1, as states

the celebrated Vizing's theorem.

Theorem 1.3.2 (Vizing [78], 1964). For any graph G either χ′(G) = ∆(G) or χ′(G) = ∆(G) + 1.

A graph G is said to be of class 1 if χ′(G) = ∆(G). Otherwise, G is said to be of class 2.

Total coloring is a combination of proper vertex and proper edge coloring. The total chromatic

number χ′′(G) of G is the smallest k such we can �nd a k-coloring of V (G) ∪ E(G) that assigns

di�erent colors to adjacent/incident elements of V (G) ∪ E(G). The almost 50 year old (and still

open) Total Coloring Conjecture states that the total chromatic number is either ∆(G) + 1 or

∆(G) + 2, classifying graphs in a similar way as Vizing's theorem. We give a brief exposition of this

conjecture at the beginning of Chapter 5.

For various types of graph colorings we are often interested in their corresponding list coloring

versions. Recall that coloring is a function c : O → S that assigns colors of S to the elements in O

according to some prescribed rule(s) R. If, in addition, we are given a list Lo ⊆ S of colors for each

object o ∈ O, then a function c : O → S that maps every object o to a color from Lo is called a list

coloring. We then seek the smallest k such that for any assignment of lists of size k to the objects

in O, there is a list coloring of O. For example, the list-chromatic number χ`(G) is the least k such

that for any assignment of lists of size k to the vertices of G, there is a proper coloring of V (G) such

that every vertex v ∈ V (G) uses a color from its list Lv. The list-chromatic index χ′`(G) and the

total-list-chromatic number χ′′` (G) are de�ned analogously, with O = E(G) and O = V (G)∪E(G),

respectively, and the rule that the coloring has to be proper.

Observe that χ(G) ≤ χ`(G) for any graph G � consider assigning the list {1, 2 . . . , k} to every
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vertex in G. The list-chromatic number however cannot be bounded in terms of chromatic number.

For example, the chromatic number of a complete bipartite graph is always at most 2, but the

complete bipartite graph with
(
2k−1
k

)
vertices in each part is not k-list colorable. This follows by

assigning all possible k-subsets of [2k − 1] as list to vertices in each part. Indeed, if there were

a coloring from these lists, one of the two parts would use at most k − 1 colors (since no color

can be used in both parts). But then, the vertex in this part whose list consist of the remaining

2k − 1 − (k − 1) = k colors could not have been colored from its list. See Figure 1.3 (left) for the

case k = 2.

Similarly, the complete bipartite graph with k vertices in one part and kk vertices in the other

part is not k-list colorable. Indeed, suppose we assign list {i1, i2, . . . , ik} to the i-th vertex of the

smaller part A, and (1j1, 2j2, . . . , kjk). Then, every choice of colors for the k vertices in A will be

in the form {1j1, 2j2, . . . , kjk} for some (j1, . . . , jk) ∈ [k]k. There are kk such di�erent sets, so if we

assign them to the vertices in the large part B, we will not be able to properly color the vertices

from their lists. See Figure 1.3 (right) for the case k = 2.

A graph G is called chromatic-choosable if its chromatic number χ(G) is equal to its list-

chromatic number χ`(G). Disproving the List Square Coloring Conjecture, Kim and Park [48]

found an in�nite family of graphs whose squares are not chromatic-choosable. Xuding Zhu asked

whether there exists a k such that all k-th power graphs are chromatic-choosable. In Chapter 5, we

answer this question in the negative:

Theorem 1.3.3 (Kosar-Pet°í£ková-Reiniger-Yeager [52], 2014). There is a positive constant c such

that for every k ∈ N, there is an in�nite family of graphs G with χ(Gk) unbounded such that

χ`(G
k) ≥ cχ(Gk) logχ(Gk).

1.4 Notation and terminology

We use the symbol [n] for the set of all natural numbers from 1 to n, that is [n] = {1, . . . , n}. For

two sets A and B, we often write A−B instead of A\B to improve readability. We omit �oor and
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Figure 1.3: The graphs K2,22 and K3,3 are not 2-list-colorable.

ceiling signs when they are not crucial for the sake of clarity of presentation.

Graphs

A graph G is an ordered pair (V (G), E(G)), where V (G) is a set of vertices and E(G) ⊆
(
V (G)
2

)
is

a set of edges. We write uv for an edge {u, v} of E(G). Next, we use v(G) and e(G) to denote the

number of vertices and edges of G, respectively. The number v(G) is also called the order of G and

e(G) the size of G. Two vertices de�ning an edge are called the endpoints of that edge. We say

that a vertex v is incident with an edge e if v is an endpoint of e. Two vertices u, v are adjacent

if uv ∈ E(G). Two edges are adjacent if they share one endpoint. A vertex adjacent to v is called

a neighbor of v (in G). The set of all neighbors of v is called the neighborhood of v (in G), and is

denoted by NG(v), or simply N(v) if no confusion can arise. The degree of v, denoted by dG(v)

or d(v), is the number of edges adjacent to v (i.e., dG(v) = |NG(v)|). The maximum degree of G

maxv∈V (G) d(v) is denoted by ∆(G). A graph G is called r-regular graph, if all vertices of G have

degree r. In particular, a 3-regular is called cubic.

The set of edges with one endpoint in X and the other endpoint in Y is denoted E(X,Y ), and

the number of edges in E(X,Y ) is denoted e(X,Y ).

We say that two graphs G and H are isomorphic, and write G ' H, if there exists a bijective

function f : V (G)→ V (H) satisfying uv ∈ E(G) if and only if f(u)f(v) ∈ E(H). For a �xed graph

G, a copy H of G is a graph isomorphic to G with V (G) ∩ V (H) = ∅. A graph is called H-free if

it does not contain a copy of H as a subgraph.

The union G ∪ H of two graphs G and H is a graph with with vertex set V (G) ∪ V (H) and

edge set E(G)∪E(H). If V (G)∩V (H) = ∅, then we call the union a disjoint union. If we say that
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some graph is a disjoint union of G and H, where the vertex sets V (G) and V (H) are not speci�ed,

then we automatically assume that they are disjoint.

A graphH is said to be a subgraph of G, denoted byH ⊆ G, if V (H) ⊆ V (G) and E(H) ⊆ E(G).

If in addition, E(H) contains all edges of E(G) that have endpoints in V (H), then H is called an

induced subgraph of G or a graph induced by V (H), and is denoted by G[V (H)]. For a vertex v and

an edge e of G we de�ne G− v = G[V (G) \ {v}] and G− e = (V (G), E(G) \ {e}).

A path P is a graph isomorphic (for some n ≥ 1) to a graph with vertex set {x1, . . . , xn} and

edge set {xixi+1 : i ∈ [n − 1]}. The length of a path is the number of its edges. The distance

dG(u, v) (or d(u, v)) between two vertices u and v in G is the length of a shortest path connecting

u and v. A non-empty graph G is connected if there is a path connecting any two vertices of G.

Maximal connected subgraphs of G are called components. A cycle Cn is a graph isomorphic to a

graph with vertex set {x1, . . . , xn} and edge set {xixi+1 : i ∈ [n − 1]} ∪ {xnx1}. A graph without

cycles is called a forest. A tree is a forest with exactly one component.

A graph G is called a complete graph if E(G) =
(
V (G)
2

)
. A complete graph on n vertices is

denoted by Kn. A clique of a graph G is a complete subgraph of G. The order of a maximum clique

of G is called the clique number of G and denoted ω(G). A set I ⊆ V (G) is an independent set of

G if no two vertices of I are adjacent, or equivalently, if G[I] has no edges.

A graph is called r-partite if we can partition V (G) into r subsets, called parts, so that each part

induces a graph with no edges. A 2-partite graph is called bipartite. A complete r-partite graph is

an r-partite graph with the maximum number of edges. A complete bipartite graph with the two

parts of size r and s is denoted by Kr,s. Denote by Kr∗s the complete r-partite graph with each

part of size s.

A blow-up of a graph G is formed by replacing every vertex of G with a �nite collection of copies

so that the copies of two vertices are adjacent if and only if the originals were.

The line graph L(G) of a graph G is a graph with vertex set E(G) and an edge ef if and only if e

and f are adjacent (edges) in G. The total graph T (G) of G is a graph with vertex set V (G)∪E(G),

where two vertices are adjacent if and only if their corresponding elements are adjacent or incident

in G.
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The k-th power Gk of a graph G is a graph formed from G by connecting every two vertices of

distance at most k (in G) by an edge. For example, the second power of a path of length 3 is the

graph K4 − e (complete graph on 4 vertices with one edge removed).

A hypergraph H is an ordered pair (V (H), E(H)), where V (H) is a set of vertices and E(H) ⊆

P(V (H))− {∅} is a set of hyperedges. If E(H) ⊆
(
V (H)
r

)
, then H is an r-uniform hypergraph or an

r-graph, and its hyperedges are called r-edges.

Posets

A partially ordered set (P,≤) (or poset) is a set P together with a binary relation ≤ over P that is

• re�exive (∀x ∈ P : x ≤ x),

• antisymmetric (∀x, y ∈ P : x ≤ y and y ≤ x implies x = y), and

• transitive (∀x, y, z ∈ P : x ≤ y and y ≤ z implies x ≤ z).

Note that we will write P to denote the poset (P,≤) when the order is clear form the context.

Two elements x and y form a comparable pair (or are comparable) if x ≤ y or y ≤ x. An r-chain

is a subset of size r where every two elements are comparable, that is, whose elements can be ordered

as x1 ≤ x2 ≤ · · · ≤ xr. An antichain is a subset with no comparable pairs.

We say that the poset P is a graded poset if it is equipped with a rank function rk : P → N

which satis�es that rk(x) < rk(y) whenever x < y, and rk(y) = rk(x) + 1 whenever y covers x.

Given a graded poset P we write `i(P ) for the number of elements in P of rank i. A graded

poset of rank n is rank-symmetric if `i(P ) = `n−i(P ) for 0 ≤ i ≤ n and it is rank-unimodal if

`0(P ) ≤ . . . ≤ `j(P ) ≥ `j+1(P ) ≥ . . . ≥ `n(P ) for some 0 ≤ j ≤ n.

In a graded poset P , the r-th layer (or r-th level) Lr(P ) is the set of elements of rank r, `r(P )

is the size of Lr(P ), and Σj(P ) is the size of the j middle layers of P .

We write {0, 1, . . . , k}n for the poset over {0, 1, . . . , k}n where for two elements A = (A1, . . . , An)

and B = (B1, . . . , Bn) we have the order A ≤ B i� Ai ≤ Bi for all 1 ≤ i ≤ n. We will often write

A ⊆ B instead of A ≤ B.
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In the poset {0, 1, . . . , k}n, the r-th layer Lr(n, k) is the set of vectors in {0, 1, . . . , k}n whose

coordinates sum to r, and the size of Lr(n, k) is denoted `r(n, k). We write Σj(n, k) for the total

size of the j middle layers of {0, 1, . . . , k}n.

Probability

For each n ∈ N, letA(n) be a set of n-vertex graphs that have property P , and let B(n) be a subset of

A(n). We say that almost all graphs of B :=
⋃B(n) have property P if |A(n)−B(n)| = o (|A(n)|) .

Lemma 1.4.1 (Cherno� bound). For independent 0 − 1 random variables X1, . . . , Xn, let X =

X1 + · · ·+Xn. For every δ ∈ (0, 1),

P[X > (1 + δ)E[X]] ≤ e−δ2E[X]/3 and P[X < (1− δ)E[X]] ≤ e−δ2E[X]/2.
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Chapter 2

Number of maximal triangle-free graphs

The results of this chapter are joint work with József Balogh [17].

The maximum triangle-free graph has n2/4 edges [56]. Hence, the number of triangle-free graphs

is at least 2n
2/4, which was shown to be the correct order of magnitude by Erd®s, Kleitman and

Rothschild [37]. Moreover, almost every triangle-free graph is bipartite [37], even if there is a

restriction on the number of edges (�rst shown by Osthus-Prömel-Taraz [63], extended by Balogh-

Morris-Samotij-Warnke [15]; see [10] and [15] for a more detailed history of the problem). This

suggests that most of those graphs are bipartite, and subgraphs of a complete bipartite graph, there-

fore most of them are not maximal (with respect to inclusion) triangle-free. Paul Erd®s suggested

the following problem:

Problem 2.0.1 ([71]). Determine or estimate the number f(n) of maximal triangle-free graphs on

n vertices.

The following folklore construction (see [59], but it was known much earlier) shows that f(n) ≥

2n
2/8. Let G be a graph on a vertex set X ∪ Y with |X| = |Y | = n/2 such that X induces a perfect

matching, Y is an independent set, and there are no edges between X and Y . For each pair of

a matching edge x1x2 ∈ E(G[X]) and a vertex y ∈ Y , we add one of the edges x1y or x2y to G.

Since there are n/4 matching edges in E(G[X]) and n/2 vertices in Y , we obtain 2n
2/8 triangle-free

graphs. These graphs may not be maximal triangle-free, but since no further edges can be added

between X and Y , all of there 2n
2/8 graphs extend to distinct maximal triangle-free graphs.

In this chapter we prove a matching upper bound.

Theorem 2.0.2. The number of maximal triangle-free graphs on vertex set [n] is at most 2n
2/8+o(n2).
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Figure 2.1: A construction of 2n
2/8 maximal triangle-free graphs.

2.1 Tools

Our �rst tool is a corollary of recent powerful counting theorems of Balogh-Morris-Samotij [10,

Theorem 2.2.], and Saxton-Thomason [69]. We refer to the graphs F1, . . . , Ft in the theorem as

containers.

Theorem 2.1.1. For each δ > 0 there is t < 2O(logn·n3/2) and a set {F1, . . . , Ft} of graphs, each

containing at most δn3 triangles, such that for every triangle-free graph G there is i ∈ [t] such that

G ⊆ Fi, where n is su�ciently large.

We also use the Ruzsa-Szemerédi triangle-removal lemma [68].

Theorem 2.1.2. For every ε > 0 there is δ(ε) > 0 such that any graph G on n vertices with at

most δ(ε)n3 triangles can be made triangle-free by removing at most εn2 edges.

Our next tool is the following theorem of Hujter and Tuza [45]. Recall that a set I ∈ V (G) is an

independent set if no two vertices in I are adjacent. An independent set I is a maximal independent

set if I ∪ {v} contains an edge for every v ∈ V (G)− I. Note that we write v(G) for the number of

vertices of G.

Theorem 2.1.3. Every triangle-free graph G has at most 2v(G)/2 maximal independent sets.

In the next section we prove our main result, Theorem 2.0.2.
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Figure 2.2: The structure of Fi and Bi.

2.2 Proof of Main Theorem

We show that for every ε > 0, the number of maximal triangle-free graphs with vertex set [n]

is 2n
2/8+2εn2

for su�ciently large n. We �x an arbitrarily small constant ε > 0. First we apply

Theorem 2.1.2 with this ε, which provides us δ := δ(ε), and then we apply Theorem 2.1.1 with this

δ. Each container Fi returned by Theorem 2.1.1 has at most δn3 triangles, and thus can be made

triangle-free by removing at most εn2 edges. Also, since every triangle-free graph has at most n2/4

edges by Mantel's theorem, each Fi has at most n2/4 + εn2 edges.

For every i ∈ [t], we count the number of maximal triangle-free graphs G that satisfy G ⊆ Fi.

Denote by G the set of maximal triangle-free graphs with vertex set [n], and let Gi = {G ∈ G : G ⊆

Fi}.

Since t ≤ 2εn
2
for su�ciently large n, we have

|G| ≤
t∑

i=1

|Gi| ≤ 2εn
2

max
i∈[t]
|Gi|.

Fix an arbitrary i ∈ [t]. By Theorem 2.1.2 applied on Fi, there is Bi ⊆ E(Fi) such that |Bi| ≤ εn2

and Fi − Bi is triangle-free. For each Fi we �x one such Bi. For every B∗ ⊆ Bi, de�ne Gi(B∗) =

{G ∈ Gi : E(G) ∩Bi = B∗}.

Now we show that for every choice of B∗ we have |Gi(B∗)| ≤ 2e(Fi)/2. Fix B∗, and let

F ∗ := Fi − (Bi −B∗)− {e ∈ E(Fi) : ∃f, g ∈ B∗ such that e, f, g form a triangle}.

So, F ∗ is obtained from Fi by removing edges that are in none of G ∈ Gi(B∗). We can assume
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that B∗ is triangle-free since otherwise Gi(B∗) = ∅. We now count the number of ways to add

edges of E(F ∗)−B∗ to B∗ such that the resulting graph is maximal triangle-free. We construct an

auxiliary graph T as follows:

V (T ) := E(F ∗)−B∗ and E(T ) := {ef | ∃d ∈ B∗: {d, e, f} spans a triangle in F ∗}.

Claim 1. T is triangle-free.

Proof. Suppose not. Let e, f, g be vertices of a triangle in T . Then e, f, g ∈ E(F ∗) − B∗ and

there are d1, d2, d3 ∈ B∗ such that the 3-sets {d1, e, f}, {d2, e, g}, and {d3, f, g} span triangles in

F ∗. As Fi − Bi is triangle-free and F ∗ − B∗ ⊆ Fi − Bi, it follows that the edges e, f, g share a

common endpoint in F ∗, and that {d1, d2, d3} spans a triangle. This is a contradiction since B∗ is

triangle-free.

Claim 2. If G ∈ Gi(B∗), then E(G)−B∗ spans a maximal independent set in T .

Proof. Let G ∈ Gi(B∗). We �rst show that E(G)−B∗ spans an independent set in T . If not, then

there is an edge ef in E(T ) with e, f ∈ E(G)−B∗. By the de�nition of E(T ), there is d ∈ B∗ such

that the edges d, e, f form a triangle in F ∗, which is clearly in G.

Suppose now that E(G) − B∗ is an independent set in T that is not maximal. So, there is

x ∈ E(F ∗) − E(G) such that for every y ∈ E(G) − B∗ and for every z ∈ B∗, the edges x, y, z do

not span a triangle in F ∗. This means that G ∪ {x} is triangle-free. Hence, G is not maximal.

By Theorem 2.1.3, the number of maximal independent sets in T is at most 2v(T )/2. Since V (T )

is the edge-set of an n-vertex triangle-free graph, we have v(T ) ≤ n2/4, and thus

|Gi(B∗)| ≤ 2v(T )/2 ≤ 2(n
2/4)/2 = 2n

2/8.

The number of ways to choose B∗ ⊆ Bi for a given Bi is at most 2|Bi| ≤ 2εn
2
, so we can conclude

that for su�ciently large n,
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|G| ≤ 2εn
2

max
i∈[t]
|Gi| ≤ 2εn

2
∑

B∗⊆Bi

|Gi(B∗)| ≤ 2εn
2
2εn

2
max
B∗⊆Bi

|Gi(B∗)| ≤ 22εn
2+n2/8.

2.3 Concluding remarks

It would be interesting to have similar results for Kr+1 as well. Unfortunately, not all steps of our

upper bound method work when r > 2. We are able to get only the following modest improvement

on the trivial 2(1−1/r+o(1))n
2/2 bound: for every r there is a positive constant cr such that the number

of maximal Kr+1-free graphs is at most 2(1−1/r−cr)n
2/2 for n su�ciently large. More precisely, if we

let s = 2(r+1
2 )−1, then the number of maximal Kr+1-free graphs is at most (s− 1)n

2/(r(r+2))+o(n2).

A discussion with Alon and �uczak led to the following construction that gives 2(1−1/r)n
2/4+o(n2)

maximal Kr+1-free graphs: partition the vertex set [n] into r equal classes, place a perfect matching

into r−1 of them. Between the classes we have the following connection rule: between two matching

edges place exactly 3 edges, and between a vertex (from the class which is an independent set) and

a matching edge put exactly 1 edge.

Alon also pointed out that if the number of maximal Kr-free graphs is 2crn
2+o(n2), then cr is

monotone (though not clear if strictly monotone) increasing in r.

A similar question was raised by Cameron and Erd®s in [27], where they asked how many

maximal sum-free sets are contained in [n]. They were able to construct 2n/4 such sets. An upper

bound 23n/8+o(n) was proved by Wolfovitz [79]. Our proof method instantly improves this upper

bound to 3n/6+o(n), as observed in [13]. Balogh-Liu-Sharifzadeh-Treglown [13] pushed the method

further to prove a matching upper bound, 2n/4+o(n). As [13] contains all the details, we omit further

discussion here.

In a later work, Balogh, Liu, Pet°í£ková, and Sharifzadeh proved that almost every maximal

triangle-free graph G admits a vertex partition X ∪ Y such that G[X] is a perfect matching and Y

is an independent set, as in the construction. This will be proved in the next chapter.
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Chapter 3

Typical structure of maximal

triangle-free graphs

The results in this chapter are joint work with József Balogh, Hong Liu, and Maryam Sharifzadeh

and appear in [12].

Recently, settling a question of Erd®s, Balogh and Pet°í£ková showed that there are at most

2n
2/8+o(n2) n-vertex maximal triangle-free graphs, matching the previously known lower bound.

Here we characterize the typical structure of maximal triangle-free graphs. We show that almost

every maximal triangle-free graph G admits a vertex partition X ∪ Y such that G[X] is a perfect

matching and Y is an independent set.

Our proof uses the Ruzsa-Szemerédi Triangle Removal Lemma, the Erd®s-Simonovits Stability

Theorem, and recent results of Balogh-Morris-Samotij and Saxton-Thomason on characterization

of the structure of independent sets in hypergraphs. The proof also relies on a new bound on the

number of maximal independent sets in triangle-free graphs with many vertex-disjoint P3's, which

is of independent interest.

3.1 Background

Given a family of combinatorial objects with certain properties, a fundamental problem in extremal

combinatorics is to describe the typical structure of these objects. This was initiated in a seminal

work of Erd®s, Kleitman, and Rothschild [37] in 1976. They proved that almost all triangle-free

graphs on n vertices are bipartite, that is, the proportion of n-vertex triangle-free graphs that

are not bipartite goes to zero as n→∞. Since then, various extensions of this theorem have been

established. The typical structure of H-free graphs has been studied when H is a large clique [8, 51],

H is a �xed color-critical subgraph [65], H is a �nite family of subgraphs [7], and H is an induced

24



subgraph [9]. For sparse H-free graphs, analogous problems were examined in [15, 63]. In the

context of other combinatorial objects, the typical structure of hypergraphs with a �xed forbidden

subgraph is investigated for example in [16, 64]; the typical structure of intersecting families of

discrete structures is studied in [11]; see also [3] for a description of the typical sum-free set in �nite

abelian groups.

In contrast to the family of all n-vertex triangle-free graphs, which has been well-studied, very

little was known about the subfamily consisting of all those that are maximal (under graph inclusion)

triangle-free. Note that the size of the family of triangle-free graphs on [n] is at least 2n
2/4 (all

subgraphs of a complete balanced bipartite graph), and at most 2n
2/4+o(n2) by the result of Erd®s,

Kleitman, and Rothschild from 1976. Until recently, it was not even known if the subfamily of

maximal triangle-free graphs is signi�cantly smaller. As a �rst step, Erd®s suggested the following

problem (as stated in [71]): determine or estimate the number of maximal triangle-free graphs on n

vertices. The following folklore construction shows that there are at least 2n
2/8 maximal triangle-free

graphs on the vertex set [n] := {1, . . . , n}.

Lower bound construction. Assume that n is a multiple of 4. Start with a graph on a vertex set

X ∪ Y with |X| = |Y | = n/2 such that X induces a perfect matching and Y is an independent set

(see Figure 3.1(a)). For each pair of a matching edge x1x2 in X and a vertex y ∈ Y , add exactly one

of the edges x1y or x2y. Since there are n/4 matching edges in X and n/2 vertices in Y , we obtain

2n
2/8 triangle-free graphs. These graphs may not be maximal triangle-free, but since no further

edges can be added between X and Y , all of these 2n
2/8 graphs extend to distinct maximal ones.

Balogh and Pet°í£ková [17] recently proved a matching upper bound, that the number of maximal

triangle-free graphs on vertex set [n] is at most 2n
2/8+o(n2). Now that the counting problem is

resolved, one would naturally ask how do most of the maximal triangle-free graphs look, i.e. what

is their typical structure. Our main result provides an answer to this question.

Theorem 3.1.1. For almost every maximal triangle-free graph G on [n], there is a vertex partition

X ∪ Y such that G[X] is a perfect matching and Y is an independent set.

The proof of Theorem 3.1.1 consists of two parts. In the �rst part we show an asymptotic version

of Theorem 3.1.1, which implies that almost all maximal triangle-free graphs have a structure very
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Figure 3.1: Lower bound contruction for maximal Kr+1-free graphs.

close to the desired one (see the beginning of Section 3.3 for an outline of the proof). In the second

part, we compare directly the size of the family of �bad� maximal triangle-free graphs, i.e. those

without the desired structure, with the size of the family of �good� ones (see the beginning of

Section 3.4 for the idea of the proof).

It is worth mentioning that once a maximal triangle-free graph has the above partition X ∪ Y ,

then there has to be exactly one edge between every matching edge of X and every vertex of Y .

Thus Theorem 3.1.1 implies that almost all maximal triangle-free graphs have the same structure as

the graphs in the lower bound construction above. Furthermore, our proof yields that the number of

maximal triangle-free graphs without the desired structure is exponentially smaller than the number

of maximal triangle-free graphs: Let M3(n) denote the set of all maximal triangle-free graphs on

[n], and G(n) denote the family of graphs fromM3(n) that admit a vertex partition such that one

part induces a perfect matching and the other is an independent set. Then there exists an absolute

constant c > 0 such that for n su�ciently large, |M3(n)− G(n)| ≤ 2−cn|M3(n)|.

It would be interesting to have similar results for Mr(n), the number of maximal Kr-free

graphs on [n]. Alon pointed out that if the number of maximal Kr-free graphs is 2crn
2+o(n2),

then cr is monotone increasing in r, though not necessarily strictly monotone. For the lower bound,

a discussion with Alon and �uczak led to the following construction that gives 2(1−1/r+o(1))n
2/4

maximal Kr+1-free graphs: Assume that n is a multiple of 2r. Partition the vertex set [n] into r

equal classes X1, . . . , Xr−1, Y , and place a perfect matching into each of X1, . . . , Xr−1 (see Figure
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3.1(b)). Between the classes we have the following connection rule: between the vertices of two

matching edges from di�erent classes Xi and Xj place exactly three edges, and between a vertex

in Y and a matching edge in Xi put exactly one edge. For the upper bound, by Erd®s, Frankl and

Rödl [36], Mr+1(n) ≤ 2(1−1/r+o(1))n
2/2. A slightly improved bound is given in [17]: For every r

there is ε(r) > 0 such that |Mr+1(n)| ≤ 2(1−1/r−ε(r))n
2/2 for n su�ciently large. We suspect that

the lower bound is the �correct value�, i.e. that |Mr+1(n)| = 2(1−1/r+o(1))n
2/4.

Related problem. There is a surprising connection between the family of maximal triangle-free

graphs and the family of maximal sum-free sets in [n]. More recently, Balogh, Liu, Sharifzadeh

and Treglown [13] proved that the number of maximal sum-free sets in [n] is 2(1+o(1))n/4, settling a

conjecture of Cameron and Erd®s. Although neither of the results imply one another, the methods

in both of the papers fall in the same general framework, in which a rough structure of the family

is obtained �rst using appropriate container lemma and removal lemma. These are Theorems 3.2.1

and 3.2.2 in this paper, and a group removal lemma of Green [43] and a granular theorem of Green

and Ruzsa [44] in the sum-free case. Both problems can then be translated into bounding the

number of maximal independent sets in some auxiliary link graphs. In particular, one of the tools

here (Lemma 3.2.4) is also utilized in [14] to give an asymptotic of the number of maximal sum-free

sets in [n].

Organization. We �rst introduce all the tools in Section 3.2, then we prove Lemma 3.3.1, the

asymptotic version of Theorem 3.1.1, in Section 3.3. Using this asymptotic result we prove Theo-

rem 3.1.1 in Section 3.4.

Notation. For a graph G, denote by |G| the number of vertices in G and by e(G) the number of its

edges. An n-vertex graph G is t-close to bipartite if G can be made bipartite by removing at most t

edges. Denote by Pk the path on k vertices. Write MIS(G) for the number of maximal independent

sets in G. The Cartesian product G�H of graphs G and H is a graph with vertex set V (G)×V (H)

such that two vertices (u, u′) and (v, v′) are adjacent if and only if either u = v and u′v′ ∈ E(H), or

u′ = v′ and uv ∈ E(G). For a �xed graph G, let N(v) be the set of neighbors of a vertex v in G, and

let d(v) := |NG(v)| and Γ(v) := N(v)∪{v}. For v ∈ V (G) and X ⊆ V (G), denote by NX(v) the set

of all neighbors of v in X (i.e. NX(v) = N(v)∩X), and let dX(v) := |NX(v)|. Denote by ∆(X) the
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maximum degree of the induced subgraph G[X]. For two disjoint vertex sets X,Y ⊆ V , the edges

between X and Y are called [X,Y ]-edges and the number of [X,Y ]-edges is denoted e(X,Y ). A

(vertex) cut X ∪Y is a partition of the vertex set V into two disjoint subsets X and Y , and e(X,Y )

is the size of the cut X ∪Y . A vertex cut X ∪Y is a max-cut if e(X,Y ) is not smaller than the size

of any other cut. Given a vertex cut X ∪ Y , the inner edges (of X ∪ Y ) are the edges in G[X] and

G[Y ], the inner neighbors of a vertex v are its neighbors in the same partite set as v (i.e. NX(v) if

v ∈ X), and the inner degree of a vertex is the number of its inner neighbors. We say that a family

F of maximal triangle-free graphs is negligible if there exists an absolute constant C > 0 such that

|F| < 2−Cn|M3(n)|.

3.2 Tools

Our �rst tool is a corollary of recent powerful counting theorems of Balogh-Morris-Samotij [10,

Theorem 2.2.], and Saxton-Thomason [69].

Theorem 3.2.1. For all δ > 0 there is c = c(δ) > 0 such that there is a family F of at most

2c·logn·n
3/2

graphs on [n], each containing at most δn3 triangles, such that for every triangle-free

graph G on [n] there is an F ∈ F such that G ⊆ F , where n is su�ciently large.

The graphs in F in the above theorem will be referred to as containers. A weaker version of

Theorem 3.2.1, which can be concluded from the Szemerédi Regularity Lemma, could be used

instead of Theorem 3.2.1 here. The only di�erence is that the upper bound on the size of F is

2o(n
2).

We need two well-known results. The �rst is the Ruzsa-Szemerédi Triangle Removal lemma [68]

and the second is the Erd®s-Simonovits Stability Theorem [38]:

Theorem 3.2.2. For every ε > 0 there exists δ = δ(ε) > 0 and n0(ε) > 0 such that any graph G

on n > n0(ε) vertices with at most δn3 triangles can be made triangle-free by removing at most εn2

edges.

Theorem 3.2.3. For every ε > 0 there exists δ = δ(ε) > 0 and n0(ε) > 0 such that every triangle-

free graph G on n > n0(ε) vertices with at least n2

4 − δn2 edges can be made bipartite by removing
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at most εn2 edges.

We also need the following lemma, which is an extension of results of Moon-Moser [58] and

Hujter-Tuza [45].

Lemma 3.2.4. Let G be an n-vertex triangle-free graph. If G contains at least k vertex-disjoint

P3's, then

MIS(G) ≤ 2
n
2
− k

25 . (3.2.1)

Proof. The proof is by induction on n. The base case of the induction is n = 1 with k = 0, for

which MIS(G) = 1 ≤ 2
1
2
− 0

25 .

For the inductive step, let G be a triangle-free graph on n ≥ 2 vertices with k vertex-disjoint P3's,

and let v be any vertex in G. Observe that MIS(G− Γ(v)) is the number of maximal independent

sets containing v, and that MIS(G− {v}) bounds from above the number of maximal independent

sets not containing v. Therefore,

MIS(G) ≤ MIS(G− {v}) + MIS(G− Γ(v)).

If G has k vertex-disjoint P3's, then G− Γ(v) has at least k − d(v) vertex-disjoint P3's, and so, by

the induction hypothesis,

MIS(G) ≤ 2
n−1
2
− k−1

25 + 2
n−(d(v)+1)

2
− k−d(v)

25 ≤ 2
n
2
− k

25

(
2−

1
2
+ 1

25 + 2−
d(v)+1

2
+

d(v)
25

)
.

The function f(x) = 2−
1
2
+ 1

25 + 2−
x+1
2

+ x
25 is a decreasing function with f(3) ≈ 0.9987 < 1. So, if

there exists a vertex of degree at least 3 in G, then we have MIS(G) ≤ 2
n
2
− k

25 as desired.

It remains to verify (3.2.1) for graphs with ∆(G) ≤ 2. Observe that we can assume that G is

connected. Indeed, if G1, . . . , Gl are maximal components of G, and each of Gi has ni vertices and

ki vertex-disjoint P3's, then

MIS(G) =
∏

i

MIS(Gi) ≤
∏

i

2
ni
2
− ki

25 = 2
∑

i
ni
2
−
∑

i
ki
25 = 2

n
2
− k

25 .
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Every connected graph with ∆(G) ≤ 2 and n ≥ 2 vertices is either a path or a cycle. Suppose

�rst that G is a path Pn. We have MIS(P2) = 2 ≤ 2
2
2
− 0

25 , MIS(P3) = 2 ≤ 2
3
2
− 1

25 . By Füredi [42,

Example 1.1], MIS(Pn) = MIS(Pn−2) + MIS(Pn−3) for all n ≥ 4. By the induction hypothesis thus

MIS(Pn) ≤ 2
n−2
2
− k−1

25 + 2
n−3
2
− k−1

25 ≤ 2
n
2
− k

25

(
2−1+

1
25 + 2−

3
2
+ 1

25

)
≤ 2

n
2
− k

25 .

Let now G be a cycle Cn. We have MIS(C4) = 2 ≤ 24/2−1/25 and MIS(C5) = 5 ≤ 25/2−1/25. By

Füredi [42, Example 1.2], MIS(Cn) = MIS(Cn−2) + MIS(Cn−3) for all n ≥ 6. Therefore, by the

induction hypothesis,

MIS(Cn) ≤ 2
n−2
2
− k−1

25 + 2
n−3
2
− k−1

25 ≤ 2
n
2
− k

25 .

Remark 3.2.5. A disjoint union of C5's and a matching shows that the constant c for which

MIS(G) ≤ 2
n
2
− k

c in Lemma 3.2.4 cannot be smaller than 5.6.

3.3 Asymptotic result

In this section we prove an asymptotic version of Theorem 3.1.1:

Lemma 3.3.1. Fix any γ > 0. Almost every maximal triangle-free graph G on the vertex set [n]

satis�es the following: for any max-cut V (G) = X ∪ Y , there exist X ′ ⊆ X and Y ′ ⊆ Y such that

(i) |X ′| ≤ γn and G[X −X ′] is an induced perfect matching, and

(ii) |Y ′| ≤ γn and Y − Y ′ is an independent set.

The outline of the proof is as follows. We observe that every maximal triangle-free graph G on

[n] can be built in the following three steps.

(S1) Choose a max-cut X ∪ Y for G.

(S2) Choose triangle-free graphs S and T on the vertex sets X and Y , respectively.

(S3) Extend S ∪ T to a maximal triangle-free graph by adding edges between X and Y .
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We give an upper bound on the number of choices for each step. First, there are at most 2n ways to

�x a max-cut X ∪Y in (S1). For (S2), we show (Lemma 3.3.5) that almost all maximal triangle-free

graphs on [n] are o(n2)-close to bipartite, which implies that the number of choices for most of these

graphs in (S2) is at most 2o(n
2). For �xed X,Y, S, T , we bound, using Claim 3.3.4, the number of

choices in (S3) by the number of maximal independent sets in some auxiliary link graph L. This

enables us to use Lemma 3.2.4 to force the desired structure on S and T .

De�nition 3.3.2 (Link graph). Given edge-disjoint graphs S and A on [n], de�ne the link graph

L := LS [A] of S on A as follows:

V (L) := E(A),

E(L) := {a1a2 : ∃s ∈ E(S) such that {a1, a2, s} forms a triangle}.

Claim 3.3.3. Let S and A be two edge-disjoint graphs on [n]. If S is triangle-free, then LS [A] is

triangle-free.

Proof. Indeed, otherwise there exist a1, a2, a3 ∈ E(A) and s1, s2, s3 ∈ E(S) such that the 3-sets

{a1, a2, s1}, {a2, a3, s2}, and {a1, a3, s3} span triangles. Since S and A are edge-disjoint, the edges

a1, a2, a3 share a common endpoint, and {s1, s2, s3} spans a triangle. This is a contradiction since

S is triangle-free.

Claim 3.3.4. Let S and A be two edge-disjoint triangle-free graphs on [n] such that there is no

triangle {a, s1, s2} in S ∪ A with a ∈ E(A) and s1, s2 ∈ E(S). Then the number of maximal

triangle-free subgraphs of S ∪A containing S is exactly MIS(LS [A]).

Proof. First observe that by our assumption, every triangle in S ∪ A consists of two edges from

E(A) and one edge from E(S). It follows that for a subgraph A′ ⊆ A, the graph G = S ∪ A′ is

triangle-free if and only if E(A′) spans an independent set in L := LS [A].

A triangle-free graph G = S ∪ A′ is not maximal triangle-free subgraph of S ∪ A if and only if

there exists an edge a ∈ E(A)− (A′) such that for any two edges a′ ∈ E(A′) and s ∈ E(S), {a, a′, s}

does not form a triangle. By de�nition of a link graph LS [A], this is exactly when there exists a
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vertex a ∈ E(A)− (A′) such that the set E(A′) ∪ {a} is an independent set, i.e. when E(A′) is not

maximal independent set in LS [A].

We �x the following parameters that will be used throughout the rest of the paper. Let

γ, β, ε, ε′ > 0 be su�ciently small constants satisfying the following hierarchy:

ε′ � δ2.3(ε)� ε� β � δ2.3(γ
3)� γ � 1, (3.3.1)

where δ2.3(x) > 0 is the constant returned from Theorem 3.2.3 with input x. The notation x � y

above means that x is a su�ciently small function of y to satisfy some inequalities in the proof. In

the following proof, δ2.2(x) is the constant returned from Theorem 3.2.2 with input x, and in the

rest of the paper, we shall always assume that n is su�ciently large, even when this is not explicitly

stated.

Lemma 3.3.5. Almost all maximal triangle-free graphs on [n] are 2εn2-close to bipartite.

Proof. Let F be the family of graphs obtained from Theorem 3.2.1 using δ2.2(ε
′). Then every

triangle-free graph on [n] is a subgraph of some container F ∈ F .

We �rst show that the family of maximal triangle-free graphs in small containers is negligible.

Consider a container F ∈ F with e(F ) ≤ n2/4−6ε′n2. Since F contains at most δ2.2(ε′)n3 triangles,

by Theorem 3.2.2, we can �nd A and B, subgraphs of F , such that F = A∪B, where A is triangle-

free, and e(B) ≤ ε′n2. For each F ∈ F , �x such a pair (A,B). Then every maximal triangle-free

graph in F can be built in two steps:

(i) Choose a triangle-free S ⊆ B;

(ii) Extend S in A to a maximal triangle-free graph.

The number of choices in (i) is at most 2e(B) ≤ 2ε
′n2

. Observe that any edge A ∈ E(A) that is

in a triangle containing two edges from S cannot be added in step (ii). Therefore we remove all

such edges from A and call the resulting graph A′. Let L := LS [A′] be the link graph of S on A′.

By Claim 3.3.3, L is triangle-free. Claim 3.3.4 implies that the number of maximal triangle-free

graphs in S ∪ A containing S (i.e. the number of extensions in (ii)) is at most MIS(L). Thus, by
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Lemma 3.2.4,

MIS(L) ≤ 2|A
′|/2 ≤ 2n

2/8−3ε′n2
.

Therefore, the number of maximal triangle-free graphs in small containers is at most

|F| · 2ε′n2 · 2n2/8−3ε′n2 ≤ 2n
2/8−ε′n2

.

From now on, we may consider only maximal triangle-free graphs contained in containers of size

at least n2/4−6ε′n2. Let F be any large container. Recall that by Theorem 3.2.2, F = A∪B, where

A is triangle-free with e(A) ≥ n2/4− 7ε′n2 and e(B) ≤ ε′n2. Since ε′ � δ2.3(ε), by Theorem 3.2.3,

A can be made bipartite by removing at most εn2 edges. Since ε′ � ε, F can be made bipartite by

removing at most (ε′+ ε)n2 ≤ 2εn2 edges. Therefore, every maximal triangle-free graphs contained

in F is 2εn2-close to bipartite.

Fix X,Y, S, T as in steps (S1) and (S2). Let A be the complete bipartite graph with parts X

and Y . By Claim 3.3.4, the number of ways to extend S ∪T in (S3) is at most MIS(LS∪T [A]). The

number of ways to �x X and Y is at most 2n, and by Lemma 3.3.5, the number of ways to �x S

and T is at most
(
n2

2εn2

)
. It follows that if MIS(LS∪T [A]) is smaller than 2n

2/8−cn2
for some c� ε,

then the family of maximal triangle-free graphs with such (X,Y, S, T ) is negligible.

Claim 3.3.6. LS∪T [A] = S�T .

Proof. Note that V (LS∪T [A]) = E(A) = {(x, y) : x ∈ X, y ∈ Y } = V (S�T ). Using the de�nition

of the Cartesian product, (x, y) and (x′, y′) are adjacent in S�T if and only if x = x′ and {y, y′} ∈

E(T ), or y = y′ and {x, x′} ∈ E(S), i.e. if and only if {x = x′, y, y′} or {x, x′, y = y′} form a triangle

in S ∪ A. But by the de�nition of LS∪T [A], this is exactly when (x, y) and (x′, y′) are adjacent in

LS∪T [A].

Claim 3.3.6 allows us to rule out certain structures of S and T since, by Lemma 3.2.4, if S�T

has many vertex disjoint P3's then the number of maximal-triangle free graphs with S = G[X] and

T = G[Y ] is much smaller than 2n
2/8.

Claim 3.3.7. For almost all maximal triangle-free n-vertex graphs G with a max-cut X ∪ Y ,
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(i) |X|, |Y | ≥ n/2− βn, and

(ii) ∆(X),∆(Y ) ≤ βn.

Proof. Let G be a maximal triangle-free graph with a max-cut X ∪ Y . By Lemma 3.3.5, almost all

maximal triangle-free graphs are 2εn2-close to bipartite, which implies that the number of choices

for G[X] and G[Y ] is at most
(
n2

2εn2

)
. Denote by A the complete bipartite graph with partite sets

X and Y .

For (i), suppose that |X| ≤ n/2 − βn. Then |X||Y | ≤ n2/4 − β2n2, and for any �xed S on X

and T on Y , Lemma 3.2.4 implies MIS(LS∪T [A]) ≤ 2n
2/8−β2n2/2. Since β � ε, it follows from the

discussion before Claim 3.3.6 that the family of maximal triangle-free graphs with such max-cut

X ∪ Y is negligible.

For (ii), suppose that G has a vertex x ∈ X of inner degree at least βn. Since X∪Y is a max-cut,

|NY (x)| ≥ |NX(x)| ≥ βn. Since G is triangle-free, there is no edge in between NX(x) and NY (x).

Let A′ ⊆ A be a graph formed by deleting all edges between NX(x) and NY (x) from A. De�ne a link

graph L′ := LS∪T [A′] of S∪T on A′. In this case, the number of choices for (S3) is at most MIS(L′).

Since L′ is triangle-free (Claim 3.3.3) and |L′| = e(A′) ≤ |X||Y | − |NX(x)||NY (x)| ≤ n2

4 − β2n2, it

follows from Lemma 3.2.4 that

MIS(L′) ≤ 2|L
′|/2 ≤ 2n

2/8−β2n2/2.

Proof of Lemma 3.3.1. First, we show that for almost every maximal triangle-free graph G on [n]

with max-cut X ∪ Y and with G[X] = S and G[Y ] = T , there are very few vertex-disjoint P3's in

S∪T . Suppose that there exist βn vertex-disjoint P3's in S or in T , say in S. Since LS∪T [A] = S�T

by Claim 3.3.6, and for each of the βn vertex-disjoint P3's in S we obtain |T | vertex-disjoint P3's in

S�T , the number of vertex-disjoint P3's in LS∪T [A] is at least βn|T | = βn|Y |. By Claim 3.3.7(i),

βn|Y | ≥ βn(n/2− βn) ≥ βn2/3. Then by Lemma 3.2.4,

MIS(LS∪T [A]) ≤ 2|S�T |/2−βn
2/75 ≤ 2n

2/8−βn2/75.
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S

T

S′

T ′

β2n2 P3’s

S

T

S′′

S′

T ′

J = (S�T ′) ∪ (S′�T )

Figure 3.2: Forbidden structures in S and T .

Since β � ε, the family of maximal triangle-free graphs with such (X,Y, S, T ) is negligible. Hence,

for almost every maximal triangle-free graph G with some (X,Y, S, T ), we can �nd some induced

subgraphs S′ ⊆ S and T ′ ⊆ T with |S′| ≤ 3βn and |T ′| ≤ 3βn such that both S−S′ and T −T ′ are

P3-free. This implies that each of S − S′ and T − T ′ is a union of a matching and an independent

set.

Next, we show that at most one of the graphs S and T can have a large matching. Suppose

both S and T have a matching of size at least βn, then there are at least β2n2 vertex-disjoint C4's

in S�T , each of which contains a copy of P3 (see Figure 3.2(a)). It follows that the family of such

graphs is negligible since MIS(LS∪T [A]) ≤ 2n
2/8−β2n2/25 and β � ε. Hence, we can assume that all

but 2βn vertices in T form an independent set. Rede�ne T ′ so that |T ′| ≤ 2βn and V (T − T ′) is

an independent set.

Lastly, we show that there are very few isolated vertices in the graph S−S′. Suppose that there

are γn/2 isolated vertices in S −S′, spanning a subgraph S′′ of S. We count MIS(S�T ) as follows.

Let J := (S�T ′) ∪ (S′�T ) and L′ := S�T − J . Every maximal independent set in S�T can be

built by

(i) choosing an independent set in J , and

(ii) extending it to a maximal independent set in L′.

Since |J | ≤ |S′||T | + |T ′||S| ≤ 3βn · n + 2βn · n = 5βn2, there are at most 2|J | = 25βn
2
choices

for (i). Note that L′ consists of isolated vertices from S′′�(T − T ′) and an induced matching from
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(S − S′ − S′′)�(T − T ′) (see Figure 3.2(b)). Thus the number of extensions in (ii) is at most

MIS((S − S′ − S′′)�(T − T ′)). The graph (S − S′ − S′′)�(T − T ′) is a perfect matching with at

most
1

2
|S − S′′||T | ≤ 1

2

(
|S| − γn

2

)
(n− |S|) ≤ 1

2

(n
2
− γn

4

)2
≤ n2

8
− γn2

16

edges, and so choosing one vertex for each matching edge gives at most 2n
2/8−γn2/16 maximal

independent sets. Since β � γ, it follows that MIS(S�T ) ≤ 25βn
2 · 2n2/8−γn2/16 ≤ 2n

2/8−γn2/17.

Thus, such family of maximal triangle-free graphs is negligible, and we may assume that |S′′| ≤ γn/2.

The statement of Lemma 3.3.1 follows by setting X ′ := V (S′ ∪ S′′) and Y ′ := V (T ′). Indeed,

|X ′| ≤ 3βn + γn/2 ≤ γn, |Y ′| ≤ 2βn ≤ γn, G[X −X ′] = S − S′ − S′′ is a perfect matching, and

Y − Y ′ = V (T )− V (T ′) is an independent set.

3.4 Proof of Main Theorem

In this section, we will prove Theorem 3.1.1. Recall the hierarchy of parameters �xed in Section 3.3:

ε′ � δ2.3(ε)� ε� β � δ2.3(γ
3)� γ � 1, (3.4.1)

We will in fact show that there are exponentially fewer �bad� graphs, i.e. maximal triangle-free

graphs without the desired structure. We do so by �rst grouping graphs by some triple (X,Y,M)

(see the de�nitions below). Then we compare the number of �bad� graphs to the number of �good�

graphs within each group by showing that there are not many �bad� ones (Lemmas 3.4.2 and 3.4.3),

while there are many �good� ones (Lemma 3.4.5). There might be an overcounting issue due to

overlaps among groups. This is taken care of by Lemma 3.4.4.

De�nition 3.4.1. Fix a vertex partition V = X ∪ Y , a perfect matching M on the vertex set

X (in case |X| is odd, M is an almost perfect matching covering all but one vertex of X), and

non-negative integers r, s and t.

1. Denote by B(X,Y,M, s, t) the class of maximal triangle-free graphs G with max-cut X ∪ Y

satisfying the following three conditions:
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(i) The subgraph G[X] has a maximum matching M ′ ⊆M covering all but at most γn vertices

in X;

(ii) The size of a largest family of vertex-disjoint P3's in S := G[X] is s;

(iii) The size of a maximum matching in T := G[Y ] is t.

2. Denote by B(X,Y,M, r) ⊆ B(X,Y,M, 0, 0) the subclass consisting of all graphs in B(X,Y,M, 0, 0)

with exactly r isolated vertices in G[X].

3. When |X| is even, denote by G(X,Y,M) the class of all maximal triangle-free graphs G with

max-cut X ∪ Y , G[X] = M , and Y an independent set.

4. When |X| is even, denote by H(X,Y,M) the class of maximal triangle-free graphs G that are

constructed as follows:

(P1) Add M to X;

(P2) For every edge x1x2 ∈M and every vertex y ∈ Y , add either the edge x1y or x2y;

(P3) Extend each of the 2|X||Y |/2 resulting graphs to a maximal triangle-free graph by adding

edges in X and/or Y .

By Lemmas 3.3.1, 3.3.5 and Claim 3.3.7, throughout the rest of the proof, we may only consider

maximal triangle-free graphs in
⋃
X,Y,M,s,t B(X,Y,M, s, t) that are βn2-close to bipartite, |X|, |Y | ≥

n/2 − βn and ∆(X),∆(Y ) ≤ βn. We may further assume from the proof of Lemma 3.3.1 that

s, t ≤ βn.

Notice that graphs from G(X,Y,M) = B(X,Y,M, 0) are precisely those with the desired struc-

ture. We will show that the number of graphs without the desired structure is exponentially smaller.

The set of �bad� graphs consists of the following two types:

(i) when |X| is even, ⋃s,t B(X,Y,M, s, t)− B(X,Y,M, 0);

(ii) when |X| is odd, ⋃s,t B(X,Y,M, s, t).

Fix an arbitrary choice of (X,Y,M). For simplicity, let B(s, t) := B(X,Y,M, s, t) and B(r) :=

B(X,Y,M, r). Let A be the complete bipartite graph with parts X and Y .

Lemma 3.4.2. If s+ t ≥ 1, then |B(s, t)| ≤ 2|X||Y |/2−n/200.
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S

T

s

βn

t

sn/3

tn/5

(a) The number of vertex-disjoint P3's
in S�T is at least sn/3 + tn/5
(Lemma 3.4.2)

S

T

r

|X|−r
2

|X|−r
2 · |Y |

(b) MIS(S�T ) ≤ 2(|X|−r)|Y |/2 if s = t = 0 and X has r
isolated vertices (Lemma 3.4.3).

Figure 3.3: Forbidden structures in S and T .

Proof. Let s and t be two non-negative integers, at least one of which is nonzero. We �rst bound

the number of ways to choose S and T , i.e. the number of ways to add inner edges. The number

of ways to choose the vertex set of the s vertex-disjoint P3's in S and the t matching edges in T is

at most
(
n
3s

)(
n
2t

)
. Recall that by de�nition of B(s, t), the maximum matching M ′ ⊆ M covers all

but at most γn vertices of X. So the number of ways to choose the independent vertices in X is at

most
(
n
γn

)
. Since ∆(X),∆(Y ) ≤ βn, each of the 3s + 2t chosen vertices has inner degree at most

βn. Therefore, the number of ways to choose their inner neighbors is at most

(
n

βn

)3s+2t

≤
((

en

βn

)βn)3s+2t

≤ 2β log(e/β)·(3s+2t)n.

The number of ways to add the [X,Y ]-edges is MIS(LS∪T (A)). We claim that the link graph

L := LS∪T (A) = S�T has at least (s + t)n/5 vertex-disjoint P3's. Indeed, recall that |S| = |T | ≥

n/2 − βn and s, t ≤ βn, thus in S�T (see Figure 3.3(a)), we have at least s(|T | − 2t) ≥ sn/3

vertex-disjoint P3's coming from s vertex-disjoint P3's in S and at least 1
2(|S| − βn− 3s) · t ≥ tn/5

vertex-disjoint P3's coming from the Cartesian product of a matching in S and a matching in T .

So by Lemma 3.2.4,

MIS(L) ≤ 2|X||Y |/2−(s+t)n/125.
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Since s+ t ≥ 1 and γ and β are su�ciently small,

|B(s, t)| ≤
(
n

3s

)(
n

2t

)(
n

γn

)
· 2β log(e/β)·(3s+2t)n · 2|X||Y |/2−(s+t)n/125 ≤ 2|X||Y |/2−n/200.

Lemma 3.4.3. If s = t = 0 and r ∈ Z+, then |B(r)| ≤ 2|X||Y |/2−n/6.

Proof. By the de�nition of B(r), X consists of r isolated vertices and a matching of size (|X|−r)/2,

and Y is an independent set. Hence the graph LS∪T (A) = S�T consists of a matching of size

(|X| − r)|Y |/2 and isolated vertices (see Figure 3.3(b)). There are at most
(
n
r

)
ways to pick the

isolated vertices in X and at most MIS(LS∪T (A)) ways to choose the [X,Y ]-edges. Recall that

|Y | ≥ n/2− βn. Thus we have

|B(r)| ≤
(
n

r

)
· 2(|X|−r)|Y |/2 ≤ 2|X||Y |/2+r logn−rn/5 ≤ 2|X||Y |/2−rn/6 ≤ 2|X||Y |/2−n/6.

Case 1: |X| is even.

Lemma 3.4.4. A maximal triangle-free graph G on [n] is in at most n2 di�erent classes G(X,Y,M).

Proof. Let G ∈ G(X,Y,M). Recall that G[X] = M and Y is an independent set. Thus G can be

in a di�erent class G(X ′, Y ′,M ′) if and only if X ′ 6= X, Y ′ 6= Y and M ′ 6= M . Since M ′ 6= M and

Y is an independent set, there exists an edge xy in M ′ with x ∈ X and y ∈ Y . There are at most

n2 ways to choose such an edge. We claim that once we pick the edge xy ∈ M ′, the sets X ′ and

Y ′ (and thus also M ′ = G[X ′]) are already decided. Recall that since G is a maximal triangle-free

graph, every vertex in Y is adjacent to exactly one vertex from each edge in M .

Observe that the neighbor x∗ of x in X has to be in Y ′ since otherwise there would be a path

x∗xy in G[X ′] (see Figure 3.4). Let vv∗ ∈ M − {xx∗} such that vy ∈ E(G). Then v ∈ Y ′ since

otherwise there would be a path vyx in X ′. The set Y ′ is independent, and so v∗ ∈ X ′. It remains

to decide whether w ∈ X ′ or w ∈ Y ′ for every vertex w ∈ Y − {y}. If xw ∈ E(G), then w ∈ Y ′

39



X Y

x yx∗

vv∗
vertex in X ′

vertex in Y ′

Figure 3.4: (X ′, Y ′,M ′) is uniquely determined after choosing xy ∈M ′ (Lemma 3.4.4).

since otherwise we would have a path wxy in G[X ′]. Otherwise x∗w ∈ E(G) and so w ∈ X ′ since

otherwise there would be an edge wx∗ in G[Y ′].

By Lemma 3.4.4, it is su�cient to show that for any choice of (X,Y,M) with |X| even,

|⋃s,t B(X,Y,M, s, t)− B(X,Y,M, 0)|
|G(X,Y,M)| ≤ 2−n/300. (3.4.2)

For simplicity, let G := G(X,Y,M) and H := H(X,Y,M).

Lemma 3.4.5. We have |G| ≥ (1 + o(1))2|X||Y |/2.

Proof. Recall that |X|, |Y | ≥ n/2 − βn, and therefore |H| = 2|X||Y |/2 � 2n
2/8−βn2

. Running the

same proof as Lemma 3.3.5 (start the proof by invoking Theorem 3.2.1 with δ2.2(β), replace ε′ by

β and ε by γ3) implies that almost all graphs in H are 2γ3n2-close to bipartite. Let H′ ⊆ H be

the subfamily consisting of all those that are 2γ3n2-close to bipartite. Then it is su�cient to show

|H′ − G| = o(2|X||Y |/2). There are two types of graphs in H′ − G:

(i) H1: those that are not maximal after (P2),

(ii) H2: those that are maximal after (P2), but X ∪ Y is not one of its max-cut.

We �rst bound the number of graphs in H1. For any graph G ∈ H1, some inner edges were

added in (P3). Suppose that [X,Y ]-edges added in (P2) were chosen randomly (each of x1y and

x2y with probability 1/2). Clearly, uv can be added in (P3) if and only if u and v have no common

neighbor. Consider the case when u, v ∈ X and let uu′, vv′ be the corresponding edges in M (see

Figure 3.5(a)). Every y ∈ Y is adjacent to exactly one of u, u′ and exactly one of v, v′. Thus the
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v′

cannot
add uv

cannot
add uv

(a) Two examples of uv that cannot be
added when forming a graph from H1.

X ′

Y ′

X Y

X ′ ∩X

Y ′ ∩ Y

Y ′ ∩X

X ′ ∩ Y

size a

size b

(b) Bounding |H2|: the probability
that e(X ′, Y ′) > e(X,Y ) is o(1).

Figure 3.5: Bounding the number of graphs in H1 and H2 in Lemma 3.4.5.

probability that y is a common neighbor of u and v is 1/4, which implies that uv can be added

with probability (3/4)|Y |. Let now u, v ∈ Y . Then u and v have no common neighbor if and only

if for every x1x2 ∈ M , u and v chose di�erent neighbors among x1 and x2. So in this case we can

add u, v with probability (1/2)|X|/2. Summing over all possible outcomes of (P2) and all possible

choices for uv implies

|H1| ≤ 2|X||Y |/2 ·
(
n

2

)
·
((

1

2

)|X|/2
+

(
3

4

)|Y |)
� 2|X||Y |/2−n/5.

We can bound |H2| in a similar way. It su�ces to show that if the [X,Y ]-edges added in (P2)

were chosen uniformly at random, then the probability that X ∪ Y is not a max-cut is o(1). Let

X ′∪Y ′ be a di�erent vertex cut, where we may assume that |X ′∩X| ≥ |Y ′∩X| (see Figure 3.5(b)).

Then |X ′ ∩X| ≥ |X|/2 > n/5. Let MX′,Y ′ be the event that X ′ ∪ Y ′ is a cut greater than X ∪ Y

and let a := |X ′ ∩ Y | and b := |Y ′ ∩ X|. Recall that the number of inner edges of X ∪ Y is

e(G[X]) = |X|/2 < n/3. If a ≥ 200, then the expected number of edges in G[X ′] is at least

E[e([X ′ ∩ X,X ′ ∩ Y ])] ≥ 1
2 ·
|X′∩X|

2 · a ≥ 10n. Therefore, by Cherno� bound (Lemma 1.4.1),

P[MX′,Y ′ ] ≤ P[e(G[X ′]) < n/3] = o(2−n). We may thus assume that a ≤ 200, which implies

|Y ′ ∩ Y | = |Y | − a > n/5. If b ≥ 200, then E[e(G[Y ′])] ≥ 1
2 · b2 · |Y ′ ∩ Y | ≥ 10n, and so P[MX′,Y ′ ] ≤

P[e(G[Y ′]) < n/3] = o(2−n). Hence, we may further assume that b ≤ 200. Note now that both

X ′ ∩X and Y ′ ∩Y have size at least n/2−βn− 200 ≥ n/2− 2βn. Since X ′ ∪Y ′ 6= X ∪Y , we have
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a+ b ≥ 1. Hence, the expected number of inner edges of X ′ ∪ Y ′ is at least

E[e([X ′ ∩X,X ′ ∩ Y ])] + E[e(G[Y ′])] + e(G[X ′ ∩X])

≥ 1

2
· |X

′ ∩X|
2

· a+
1

2
· b

2
· |Y ′ ∩ Y |+ (e(G[X])− b)

≥ 1

4
· (a+ b) ·

(n
2
− 2βn

)
+
|X|
2
− b ≥ 3n

8
− 300βn.

Thus, by Cherno� bound (Lemma 1.4.1), P[MX′,Y ′ ] ≤ P[e(G[X ′]) + e(G[Y ′]) < n/3] ≤ 2−n/1000.

The number of X ′ ∪ Y ′ with a, b ≤ 200 is only at most
(
n
200

)2 ≤ n400.

Since s, t, r ≤ n, Lemmas 3.4.2, 3.4.3 and 3.4.5 imply (3.4.2):

∣∣∣∣∣
⋃

s,t

B(s, t)− B(0)

∣∣∣∣∣
|G| =

∑

s+t≥1
|B(s, t)|+

∑

r≥1
|B(r)|

|G| ≤ (n2 + n) · 2|X||Y |/2−n/200
(1 + o(1))2|X||Y |/2

≤ 2−n/300.

Case 2: |X| is odd.

Fix an arbitrary choice of X,Y,M with |X| odd and let x ∈ X be the vertex not covered by M .

By Lemmas 3.4.2 and 3.4.3,

∣∣∣∣∣
⋃

s,t

B(X,Y,M, s, t)

∣∣∣∣∣ ≤
∑

s,t: s+t≥1
|B(X,Y,M, s, t)|+

∑

r≥1
|B(X,Y,M, r)| ≤ 2|X||Y |/2−n/300.

Pick an arbitrary vertex y ∈ Y , de�ne X0 = X ∪ {y}, Y0 = Y − {y} and M0 = M ∪ {xy}. Then

by Lemma 3.4.5, we have

|G(X0, Y0,M0)| ≥ (1 + o(1))2|X0||Y0|/2 ≥ 2|X||Y |/2−(|X|−|Y |)/2−1 ≥ 2|X||Y |/2−2βn,

since |X| − |Y | ≤ 2βn. Notice that any (X0, Y0,M0) with |X0| even can be obtained from at most

n di�erent triples (X,Y,M) with |X| odd in this way. Together with Lemma 3.4.4, it is su�cient
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to show that
⋃
s,t B(X,Y,M, s, t) is negligible compared to G(X0, Y0,M0):

∣∣∣
⋃
s,t B(X,Y,M, s, t)

∣∣∣
|G(X0, Y0,M0)|

≤ 2|X||Y |/2−n/300

2|X||Y |/2−2βn
≤ 2−n/400.

This completes the proof of Theorem 3.1.1.
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Chapter 4

Families in posets minimizing the

number of comparable pairs

The results of this chapter are joint work with József Balogh and Adam Zsolt Wagner [18] (in

preparation).

Given a poset P we say a family F ⊆ P is centered if it is obtained by `taking sets as close to the

middle layer as possible'. A poset P is said to have the centeredness property if for any M , among

all families of size M in P , centered families contain the minimum number of comparable pairs.

Kleitman showed that the Boolean lattice {0, 1}n has the centeredness property. It was conjectured

by Noel, Scott, and Sudakov, and by Balogh and Wagner, that the poset {0, 1, . . . , k}n also has the

centeredness property, provided n is su�ciently large compared to k. We show that this conjecture

is false for all k ≥ 2 and investigate the range of M for which it holds. Further, we improve a result

of Noel, Scott, and Sudakov by showing that the poset of subspaces of Fnq has the centeredness

property. Several open questions are also given.

4.1 Introduction

Given a poset P , we say that two elements A,B ∈ P form a comparable pair if A ≤ B or B ≤ A.

The study of families of sets containing few comparable pairs started with Sperner's Theorem, a

cornerstone result of combinatorics. It states that the largest antichain (i.e. family containing no

comparable pairs) in the Boolean lattice P(n) = {0, 1}n has size
(

n
bn/2c

)
. The following natural

question was �rst posed by Erd®s and Katona for r = 2 and then extended by Kleitman [49] some

�fty years ago: Given a poset P(n) and an integer M , what is the minimum number of r-chains

that a family of M elements in P(n) must contain? For r = 2, the case of comparable pairs, the

question was completely resolved by Kleitman [49]. For r ≥ 3, we refer the reader to [20, 31, 32].
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Here we are interested in the case r = 2, but for a general poset P .

Centered families in {0, 1, . . . , k}n

We say that a family F ⊆ {0, 1}n is centered if for any two sets A,B ∈ {0, 1}n with A ∈ F and

B /∈ F we have that ∣∣∣∣|A| −
n

2

∣∣∣∣ ≤
∣∣∣∣|B| −

n

2

∣∣∣∣,

where |A| denotes the number of 1-coordinates in A. That is, F is centered if it is constructed by

�taking sets that are as close to the middle layer as possible�. This same notion can be extended

to the poset {0, 1, . . . , k}n where A ≤ B if Ai ≤ Bi for all i ∈ [n], where Ai and Bi are the ith

coordinates of A and B. We say that a family F ⊆ {0, 1, . . . , k}n is centered if for any two sets

A,B ∈ {0, 1, . . . , k}n with A ∈ F and B /∈ F we have that

∣∣∣∣
n∑

i=1

Ai −
nk

2

∣∣∣∣ ≤
∣∣∣∣
n∑

i=1

Bi −
nk

2

∣∣∣∣.

Denote by comp(F) the number of comparable pairs in F ⊆ P . A family F ⊆ P of size M is

M -optimal if for all families F ′ ⊆ P of size M we have comp(F) ≤ comp(F ′). A poset P ∈ P has

the centeredness property if for all M ≤ |P | there exists an M -optimal centered family. Using this

terminology, Kleitman's celebrated theorem [49] can be stated as follows:

Theorem 4.1.1 (Kleitman [49], 1966). The poset {0, 1}n has the centeredness property for all

n ∈ N.

In [31] the authors characterised precisely which families achieve the minimum number of con-

tained comparable pairs. It is natural to ask whether Theorem 4.1.1 holds for the poset {0, 1, . . . , k}n

with k ≥ 2 as well. It was showed in [20] that there exists a counterexample with n = 2 and k = 16.

The following conjecture was raised independently in [62] and [20]:

Conjecture 4.1.2 (Noel�Scott�Sudakov [62], Balogh�Wagner [20]). For every k there exists an n0

such that if n ≥ n0 then the poset {0, 1, . . . , k}n has the centeredness property.

Our main result is the construction of two di�erent classes of explicit counterexamples to this
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natural generalisation of Theorem 4.1.1. We show that for every k, if n is su�ciently large, then

there exists a suitable choice ofM and a family F of sizeM that contains strictly fewer comparable

pairs than the centered families of the same size.

Denote by Lr(n, k) the r-th layer of {0, 1, . . . , k}n, i.e. the set of vectors in {0, 1, . . . , k}n whose

coordinates sum to r, and let `r(n, k) := |Lr(n, k)|. Write Σr(n, k) for the total size of the r middle

layers of {0, 1, . . . , k}n. For M ≤ Σ1(n, k) there exists an antichain of size M in the middle layer

Lbnk/2c(n, k) and hence Conjecture 4.1.2 trivially holds.

Our main result for the poset {0, 1, 2}n is the following.

Theorem 4.1.3. (a) Let ε > 0, n be su�ciently large, and M ≤ (1 − ε)Σ3(n, 2). Then there

exists an M -optimal centered family in {0, 1, 2}n.

(b) Let n be su�ciently large and M = Σ6(n, 2)−
(
n
3

)
− 1. Then none of the centered families in

{0, 1, 2}n are M -optimal.

Theorem 4.1.3 says that the smallestM = M0 for which Conjecture 4.1.2 breaks down (for k = 2)

satis�es (1 − ε)Σ3(n, 2) < M0 < Σ6(n, 2) −
(
n
3

)
. For k = 2 and M slightly larger than Σ1(n, 2)

it was previously shown by Noel�Scott�Sudakov [62] that centered families contain asymptotically

the optimal number of comparable pairs. They also obtained good lower bounds for the number of

comparable pairs in larger families.

Theorem 4.1.4 (Noel�Scott�Sudakov [62]). Let r be a �xed positive integer. Then there exists a

constant n0(r) such that if n ≥ n0(r) and F ⊆ {0, 1, 2}n has cardinality at least Σr(n, 2) + t then

comp(F) ≥
(
`3r−1(n, 2)

`2r−1(n, 2)
− 1

)
t.

While at �rst sight it may seem feasible that Conjecture 4.1.2 holds for much larger M , Theo-

rem 4.1.5 shows that this is not the case.

Theorem 4.1.5. Let k ≥ 2 and ε > 0. There exists a constant n0 = n0(k, ε) such that for every

n ≥ n0, if M = Σj(n, k), where (1 + ε) log2 n ≤ j ≤ √n/ log2 n, then none of the centered families

in {0, 1, . . . , k}n are M -optimal.

46



Centered families in other posets

The notion of centeredness can be readily extended to several other common posets that satisfy some

nice properties. In a poset P , y covers x if x < y and there is no element z such that x < z < y. We

say that the poset P is a graded poset if it is equipped with a rank function rk:P → N which satis�es

that rk(x) < rk(y) whenever x < y, and rk(y) = rk(x) + 1 whenever y covers x. The rank of a poset

P is the maximum rank of an element of P . Given a graded poset P , the r-th layer Lr(P ) is the

collection of elements in P of rank r, `r(P ) is the size of Lr(P ), and Σr(P ) is the total number of

elements of P in the middle r layers. A graded poset of rank n is rank-symmetric if `i(P ) = `n−i(P )

for 0 ≤ i ≤ n and it is rank-unimodal if `0(P ) ≤ . . . ≤ `j(P ) ≥ `j+1(P ) ≥ . . . ≥ `n(P ) for some

0 ≤ j ≤ n. Denote by P the family of all graded posets that are rank-symmetric and rank-unimodal,

and by P(n) the posets in P of rank n.

We will extend the notion of centeredness only to the posets in P. Note that every P ∈ P(n)

satis�es that its largest layer is Lbn/2c(P ) and its k largest layers are the k layers closest to the

middle layer. Examples of such posets include {0, 1, . . . , k}n where (A1, . . . , An) ≤ (B1, . . . , Bn) if

Ai ≤ Bi for all 1 ≤ i ≤ n, and the poset V(q, n) of subspaces of Fnq ordered by inclusion where q is

a prime power.

Similarly as before, given a poset P ∈ P(n), we say that a family F ⊆ P is centered if for any

two sets A,B ∈ P with A ∈ F and B /∈ F we have that their ranks rk(A), rk(B) satisfy

∣∣∣∣rk(A)− n

2

∣∣∣∣ ≤
∣∣∣∣rk(B)− n

2

∣∣∣∣.

In other words, F is centered if it is constructed by �taking sets that are as close to the middle layer

as possible�. Note that if P = {0, 1, . . . , k}n, then this de�nition is the same as the de�nition of

`centered' introduced in the previous section (where the rank of P was nk).

Consider now for a prime power q the poset V(q, n) of subspaces of Fnq ordered by inclusion.

Denote by
[
n
i

]
q
the number of subspaces of Fnq of dimension i. Note that

[
n
i

]
q

=
∏i−1
j=0

1−qn−j

1−qj+1 . The

following result of Noel, Scott, and Sudakov [62] provides a lower bound on comp(F) for F ⊆ V(q, n).

Theorem 4.1.6 (Noel�Scott�Sudakov [62]). Let q be a prime power and k be a �xed positive integer.
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There exists a constant n0(k) such that for n ≥ n0(k) and F ⊆ V(q, n),

If |F| ≥
k−1∑

r=0

[
n

dn−k+1+2r
2 e

]

q

+ t, then comp(F) ≥ t
[d(n+ k)/2e

k

]

q

.

They pointed out that this bound is attained by a centered family and hence best possible when

k = 1 and 0 ≤ t ≤
[

n
b(n−1)/2c

]
q
. We show that centered families are best for all sizes.

Theorem 4.1.7. Let q be a prime power and n ≥ 1. Then the poset V(q, n) has the centeredness

property.

Our proofs of Theorem 4.1.3 (a) and Theorem 4.1.7 are heavily based on the compression

techniques of Kleitman [49]. The proof of Theorem 4.1.3 (b) arose when we attempted to prove that

Conjecture 4.1.2 holds in the range M ≤ Σ(1−ε) log2 n(n, 2) � all our proof attempts kept breaking

down and they eventually led us to this counterexample. The construction in Theorem 4.1.5 came

from the observation that for large enough M , centered families are not even locally optimal, and

in fact by replacing one of its elements in an appropriate way we can decrease the number of

comparable pairs in the family.

For the corresponding maximization question, i.e. determining the maximum possible number

of comparable pairs among families of size M in P(n) we refer the reader to [2].

4.2 Proof of Theorem 4.1.3 (a)

Whenever A = (A1, . . . , An) is an element of {0, 1, 2}n, we will de�ne the size (or rank) of A by

|A| :=
∑n

i=1Ai. We will use a0, a1 and a2 to denote the number of 0-, 1-, and 2-coordinates of A

(that is, ai := |{j : Aj = i}|). Similarly for B ∈ {0, 1, 2}n we will use the variables b0, b1, b2 in the

same fashion. The complement of a set A ∈ {0, 1, 2}n is de�ned as Ac := (2 − A1, . . . , 2 − An).

For a permutation π ∈ Sn and a set A ∈ {0, 1, 2}n we denote by π(A) the set (Aπ(1), . . . , Aπ(n)).

For a family F ⊆ {0, 1, 2}n and integer 0 ≤ r ≤ 2n, we write Fr = {A ∈ F : |A| = r} and

Nr(A) := {B : |B| = r,B ⊆ A or A ⊆ B}. Recall that in the poset {0, 1, 2}n, Lr(n, 2) denotes the

r-th layer and Σj(n, 2) the total size of the j middle layers. In this section, we will often shorten
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Lr(n, 2) to Lr and Σj(n, 2) to Σj . Recall also that a family F ⊆ {0, 1, 2}n of size M is called M -

optimal if there is no other family F ′ ⊆ {0, 1, 2}n of size M that contains strictly fewer comparable

pairs than F . Our goal is to show that there exists an M -optimal family that is centered.

Let ε > 0, let n be su�ciently large so that all the following estimates hold, and �x an M ≤

(1 − ε)Σ3(n, 2). The proof is by induction on M , with the base case M ≤ Σ1(n, 2) in which case

there is an antichain in Ln of size M and the claim follows. Hence we will assume that there exists

an (M − 1)-optimal centered family, and show that there exists an M -optimal centered family. Our

�rst goal is to show that there existM -optimal families that are contained in the middle three layers

of {0, 1, 2}n.

The following claim will be useful for us:

Claim 4.2.1. Let A,B ∈ {0, 1, 2}n such that B ( A. If |A|, |B| ≥ n, then for every i ∈ {1, . . . , |A|−

|B|}:

|N|B|+i(B)| ≤ |N|A|−i(A)|.

Proof. Suppose that |A|, |B| ≥ n. We show that Bc has at most as many 2's and at least as many

0's as A. This implies that there exists a permutation π(Bc) of the coordinates of Bc such that

π(Bc) ( A. Thus, π(Bc) has at most as many neighbors in level Lπ(Bc)−i as A does in level LA−i,

for every i ∈ N ∪ {0}, so

|N|B|+i(B)| = |N|Bc|−i(B
c)| = |N|Bc|−i(π(Bc))| ≤ |N|A|−i(A)|.

The number of 0's in Bc is equal to b2 and the number of 2's in Bc is equal to b0. Hence we

want to show that b0 ≤ a2 and b2 ≥ a0. Note �rst that since B ⊆ A, we have b2 ≤ a2 and b0 ≥ a0.

Let k, l be such that |A| = n+ k and |B| = n+ l. From |A| > |B| ≥ n we have that k > l ≥ 0.

Since a0 + a1 + a2 = n and a1 + 2a2 = n+ k, we have a2 − a0 = k, and similarly b2 − b0 = l.

b0 = b2 − l ≤ a2 − l ≤ a2 and b2 = b0 + l ≥ b0 ≥ a0.
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A family F in a poset P ∈ P is compressed if for every element A ∈ F , every element comparable

with A that is closer to the middle than A is in F . Kleitman proved that every family in the Boolean

lattice �can be compressed� without increasing the number of comparable pairs. It is not clear why

this would be the case for {0, 1, . . . , k}n with k > 2. In the poset {0, 1, 2}n we can however at

least obtain an analogous result for a weaker notion of top- and bottom-compressed, given in the

following de�nition.

De�nition 4.2.2. A family F ⊆ {0, 1, 2}n is top-compressed if the following condition holds:

(T) If A ∈ F with |A| > n and B ⊆ A with |B| ≥ n, then B ∈ F .

A family F ⊆ {0, 1, 2}n is bottom-compressed if the following condition holds:

(B) If A ∈ F with |A| < n and B ⊇ A with |B| ≤ n, then B ∈ F .

Lemma 4.2.3. For every natural number M ≤ 3n, there exists an M -optimal family that is top-

and bottom-compressed.

Proof. Let F be an M -optimal family. Suppose that there exist elements A ∈ F and B 6∈ F that

violate condition (T). Pick such A for which |A| is maximum, and then pick such B for which

|A| − |B| is minimal, and let a = |A| and b = |B|. Then all elements in levels Lb+1, . . . ,La−1 that

are comparable with A are in F .

We form a bipartite graph with parts Fa = F ∩ La and Fb = Lb \ F and with edges between

comparable pairs. We write NX (A) for the set of elements in X comparable with A. Additionally,

let Nr(A) := NLr(A), N(A) := N{0,1,2}n(A), and NX (A) := ∪A∈ANX (A).

We will show that we can iteratively replace some elements of Fa by elements of Fb without

increasing the number of comparable pairs. We will consider several cases based on sizes of Fa and

Fb and the existence of �good� matchings that allow us to top-compress F . Since b < a, the total

value
∑

C∈F ||C| − n| of the family strictly decreases, ensuring that this process will terminate.

Suppose that we have families A ⊆ Fa and B ⊆ Fb such that there is a perfect matching f

between A and B. We de�ne a new family G = (F \ A) ∪ B and show that the new family G has

no more comparable pairs than F does. We compare the sizes of neighborhoods of A and B in the

following four parts of the poset {0, 1, 2}n:
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1. In levels La+1, . . . ,L2n: Since A is a greatest element of F , no elements of F are in these

levels.

2. In levels L0, . . . ,Lb−1: Let A ∈ A and B := f(A). Since B ⊆ A, if C ⊆ B then C ⊆ A. So

the number of comparable pairs cannot increase here.

3. In levels Lb+1, . . . ,La−1: Since all elements in these levels are in F , by Claim 4.2.1, for every

i ∈ [a− b− 1],

|F ∩Nb+i(B)| ≤ |Nb+i(B)| ≤ |Na−i(A)| = |F ∩Na−i(A)|.

Thus, every element B ∈ B has at most as many neighbors in Lb+1∪· · ·∪La−1 as every A ∈ A

does.

4. In levels La and Lb: This will be checked in each case separately.

In each case below, we present suitable sets A ∈ Fa and B ∈ Fb with a perfect matching f between

A and B for which

e(B,Ga) ≤ e(A,Fb), (4.2.1)

where e(C,D) denotes the number of edges between the families C and D.

Suppose �rst that there exists a matching f between Fa and Fb covering Fa. Let A = Fa and

B = f(Fa). Then there are no elements of G in Fa, so e(B,Ga) = 0. Henceforth we assume that

there is no matching f between Fa and Fb covering Fa, and we restrict our attention to the bipartite

graph (X ,Y), where

X := Fa and Y := N(Fa) ∩ Fb.

Case 1: |X | ≤ |Y|. By Hall's theorem, since there is no matching between X and Y covering

X , there must be a vertex set X0 ⊆ X such that |NY(X0)| < |X0|. Choose X0 to be a maximal such

vertex set. Then there must exist a matching f between X \ X0 and Y \NY(X0) covering X \ X0.

De�ne A = X \X0 and B = f(X \X0). Since there is no edge between B = f(X \X0) and Ga = X0,

the relation (4.2.1) holds.
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X0

NY(X0)

X

Y

X − X0

f(X −X0)

Case 2: |X | > |Y|. Suppose �rst that there exists a matching f between X and Y covering Y.

Let A = f(Y) and B = Y. By Claim 4.2.1 applied with i = a− b on every pair (A, f(A)) ∈ (A,B),

we have e(B,La) ≤ e(A,Lb), so

e(B,Ga) + e(B,A) = e(B,Fa) ≤ e(B,La) ≤ e(A,Lb) = e(A,Fb) + e(A,B).

The inequality (4.2.1) follows by subtracting e(A,B) on both sides.

X

B = N(X ) ∩ Fb N(X ) ∩ Fb

X − f(Y)A = f(Y)

Y

Suppose now that there is no matching covering Y. By Hall's theorem, there must exist a

minimal vertex set Y0 ⊆ Y such that |NX (Y0)| < |Y0|. Consider the following two subcases:

a) There is a matching f between Y0 and NX (Y0) covering N(Y0). Let A = NX (Y0) and

B = f(NX (Y0)). There is no edge between B and Ga = Fa \ A, hence e(B,Ga) = 0 and the

inequality (4.2.1) trivially holds.

X

Y

NX (Y0)

Y0
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b) There is no matching between Y0 and NX (Y0) covering NX (Y0). By Hall's theorem, there

exists a vertex set Z ⊆ NX (Y0) with |NY0(Z)| < |Z|. Then Y ′0 := Y0 \NY0(Z) is smaller than

Y0. Since |NX (Y0)| < |Y0| and |Z| > |NY0(Z)|, we also have

|NX (Y ′0)| ≤ |NX (Y0)| − |Z| < |Y0| − |NY0(Z)| = |Y ′0|,

and we can conclude that Y0 was not a minimal set with |NX (Y0)| < |Y0|.

X

Y

NX (Y0)

Y ′
0

Z

NX (Y ′
0)

We showed that there exists an M -optimal family F that is top-compressed. The proof that F

can �be made� bottom-compressed without increasing the number of comparable pairs follows by

the above proof applied on Fc = {Ac : A ∈ F}.

Lemma 4.2.3 ensures the existence of an M -optimal top- and bottom-compressed family. Al-

though we will use the lemma only for M ≤ (1− ε)Σ3, we emphasize that the result holds for any

M , which might be of independent interest. Our next goal is to �nd an M -optimal family which

additionally satis�es conditions (C1) and (C2) in the following de�nition.

De�nition 4.2.4. We say that a family F ⊆ {0, 1, 2}n of size M is 3-compressed if F is top-

compressed, bottom-compressed, and additionally the following two conditions hold:

(C1) If A is a maximal element of F with |A| = n + 2 and B ⊆ A is such that |B| = n − 1 and

b0 > a0 then B ∈ F .

(C2) If A is a minimal element of F with |A| = n − 2 and B ⊇ A is such that |B| = n + 1 and

b2 > a2 then B ∈ F .

The following claim is an analogue statement to Claim 4.2.1.
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Claim 4.2.5. Let A,B ∈ {0, 1, 2}n such that B ⊆ A. If |A| = n+ 2, |B| = n− 1, and b0 6= a0, then

for every i ∈ {1, 2, 3},

|N|B|+i(B)| ≤ |N|A|−i(A)|.

Proof. Suppose that |A| = n + 2 and |B| = n − 1. Since b0 6= a0, we only need to consider the

following two cases:

Case 1: b2 = a2. The number of elements in levels n+ 1, n, and n− 1, comparable with A, are

α1 := a2 + a1, α2 :=

(
a2 + a1

2

)
+ a2, and α3 :=

(
a2 + a1

3

)
+ a2 · (a1 + a2 − 1),

respectively. Similarly, the number of elements in levels n, n+ 1, and n+ 2, comparable with B, is

β1 := b0 + b1, and β2 :=

(
b0 + b1

2

)
+ b0, and β3 :=

(
b0 + b1

3

)
+ b0 · (b1 + b0 − 1),

respectively. Note that a1 = b1 + 3 and a2 = b2 = b0 − 1, and so a2 + a1 = b0 + b1 + 2. We show

that α1 ≥ β1, α2 ≥ β2, and α3 ≥ β3.

α1 − β1 = a2 + a1 − (b0 + b1) = b0 + b1 + 2− (b0 + b1) > 0,

α2 − β2 =
(
b0+b1+2

2

)
+ (b0 − 1)−

((
b0+b1

2

)
+ b0

)
= 2(b0 + b1) ≥ 0,

α3 − β3 =
(
b0+b1+2

3

)
+ (b0 − 1)(b1 + b0 + 1)−

((
b0+b1

3

)
+ b0(b1 + b0 − 1)

)

= b20 + 2b0b1 + b21 + b0 − b1 − 1.

The last expression is negative only if b0 = 0 and b1 = 1, which is not possible since every element

B ∈ Ln−1 must contain at least one 0-coordinate.

Case 2: b2 ≤ a2 − 1 and b0 ≥ a0 + 1. Then

b0 = b2 + 1 ≤ a2 and b2 = b0 − 1 ≥ a0.

So Bc has at most as many 2's and at least as many 0's as A, which implies that there exists a

permutation π(Bc) of the coordinates of Bc such that π(Bc) ⊆ A. This implies that for every
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i ∈ {1, 2, 3},

|N|B|+i(B)| = |N|Bc|−i(B
c)| = |N|Bc|−i(π(Bc))| ≤ |N|A|−i(A)|.

Lemma 4.2.6. For every natural number M ≤ 3n, there exists an M -optimal family that is 3-

compressed.

Proof. Let F be an M -optimal family in {0, 1, 2}n that is top- and bottom-compressed, whose

existence is guaranteed by Lemma 4.2.3. If F is not 3-compressed, then at least one of the conditions

(C1) and (C2) fails. We assume that (C1) does not hold, keeping in mind that in the other case

we can apply the same proof on Fc. Suppose that there exists a comparable pair (A,B) in F such

that A is a maximal element with |A| = n+ 2, |B| = n− 1, and b0 > a0. Let a = |A| and b = |B|.

Let G be a bipartite graph with parts Fa and Fb and with edges between comparable pairs

(A,B) for which b0 6= a0. As in the proof of Lemma 4.2.3, we can iteratively replace some elements

of Fa by elements of Fb without increasing the number of comparable pairs. We need to consider

several cases based on sizes of Fa and Fb and existence of �good� matchings in G that allow us to

compress F . Since b < a, the total value
∑

C∈F ||C| − n| of the family strictly decreases, ensuring

that this process will terminate. These cases are the same as in the proof of Lemma 4.2.3, except

now we only consider matchings in the graph G (in which all pairs with b0 = a0 are removed), and

we apply Claim 4.2.5 at every place we applied Claim 4.2.1 before.

We are almost ready to tackle Theorem 4.1.3 (a). We will need to make use of the fact that a

typical set in {0, 1, 2}n of size n has about n/3 zeros n/3 ones, and n/3 twos.

Claim 4.2.7. For every ε > 10
(

1
1.1

)0.005n
,

∣∣∣∣
{
A ∈ Ln+1 :

0.9

3
n ≤ a0 ≤

1.1

3
n

}∣∣∣∣ ≥ (1− ε2)`n+1.

Proof. For an integer c ≥ 0, let f(c) := |{A ∈ Ln+1 : a0 = c}|. Note that f(c) =
(
n
c

)(
n−c
c+1

)
, and
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hence
f(c)

f(c+ 1)
=

(c+ 1)(c+ 2)

(n− 2c− 2)(n− 2c− 1)
.

If c > 1.07
3 n we get f(c)/f(c+ 1) > 1.1 and if c < 0.93

3 n = 0.31n we have f(c)/f(c− 1) > 1.1. This

means that

∑

i≤0.3n
f(i) ≤ 1

1− 1
1.1

· f(0.3n) ≤ 11 ·
(

1

1.1

)0.01n

· f(0.31n) ≤ ε2

2
· `n+1.

A similar computation gives
∑

i≥1.1n/3 f(i) ≤ ε2

2 · `n+1, and the claim follows.

The next claim shows that for slightly varying values of M , the M -optimal families contain

about the same number of comparable pairs. For an integer N , write comp(N) for the number of

comparable pairs in an N -optimal family:

comp(N) := min{comp(F) : F ⊆ {0, 1, 2}n, |F| = N}.

Claim 4.2.8. If M ≤ (1− ε)∑3(n, 2), then comp(M) ≤ comp(M − 1) + n2

4 .

Proof. By the induction hypothesis, there exists an (M − 1)-optimal centered family G. Since

M ≤ (1− ε)∑3, the family G consists of all elements in layer Ln and some elements in layers Ln−1
and Ln+1. De�ne

G1 := {B ∈ Ln+1 : b0 ≥
0.9

3
n} and G2 := {B ∈ Ln−1 : b2 ≥

0.9

3
n}.

Claim 4.2.7 implies |G1|, |G2| ≥ (1−ε2)|Ln+1|. ForM ≤ (1−ε)Σ3 we thus haveM < |Ln|+|G1|+|G2|.

Add an element B ∈ (G1 ∪ G2) \ G to G. The element B is in at most
(
2.1n/3

2

)
+ n ≤ n2

4 comparable

pairs of G ∪ {B}, hence

comp(M) ≤ comp(G ∪ {B}) ≤ comp(G) +
n2

4
= comp(M − 1) +

n2

4
.
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We are ready to �nish the proof of Theorem 4.1.3 (a). Let F be an M -optimal family that is

3-compressed, whose existence is guaranteed by Lemma 4.2.6, and assume that F is not centered.

This can mean one of two things:

1. The �rst possibility is that there exists an A /∈ F of size |A| = n. Since F is both top- and

bottom-compressed, this means that there is no B ∈ F with A ⊆ B or B ⊆ A, hence unless F

itself is an antichain we may decrease the number of comparable pairs in F by replacing one of its

elements by A.

2. The second possibility is that Ln ⊆ F but F 6⊆ Ln−1 ∪ Ln ∪ Ln+1. Then there exists an

element A ∈ F of size at least n+ 2 or at most n−2. By symmetry we may assume that there is an

A ∈ F with |A| ≥ n+ 2. Since F is 3-compressed, the number of elements in Fa−1 ∪ Fa−2 ∪ Fa−3
comparable with A is at least

(a1 + a2) +
((
a1+a2

2

)
+ a2

)
+

((
a1+a2

3

)
+ a2(a1 + a2 − 1)−

(
a2
3

))
. (4.2.2)

The term
(
a2
3

)
accounts for the elements of Ln−1 comparable with A that have a0 zeros, which are

not necessarily in F by the de�nition of 3-compressed. Observe that every such element is formed by

decreasing three 2-coordinates of A to 1-coordinates, giving
(
a2
3

)
choices. Since a1 +a2 ≥ n+2−a2,

the quantity (4.2.2) is minimized when a1 = 0 and a2 = n+2
2 . It follows that this quantity is at least

a2 +
(
a2
2

)
+ a22 ≥ 3

2a
2
2 ≥ 3

8n
2. But then comp(F) > comp(F \ {A}) + 3n2

8 , and F was not M -optimal

(by Claim 4.2.8), a contradiction.

4.3 Proof of Theorem 4.1.3 (b)

Recall that for an integer a ≥ 0 and a family G ⊆ {0, 1, 2}n we have the notation Ga = {A ∈

G : |A| = a} and La = La(n, 2). We say that a centered family G ⊆ P is canonical centered if

there exists at most one ` ≥ 0 with 0 < |G`| < |L`(P )|, i.e. if it has at most one partial layer

(while centered families could have two). As in Section 4.2, whenever A and B are elements

of {0, 1, 2}n, we write a0, a1, a2 and b0, b1, b2 for the number of 0-, 1-, 2-coordinates in A and
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n+ 3
n+ 2
n+ 1
n
n− 1
n− 2

X = (0, 0, 1, . . . , 1)

B
permutations of (2, 2, 2, 1, . . . , 1)

F

n+ 3
n+ 2
n+ 1
n
n− 1
n− 2

B

F∗
cc

B = (0, 2, 2, 2, 2, 1, . . . , 1)

Figure 4.1: A non-centered family F and a canonical centered family F∗cc such that comp(F) <
comp(F∗cc) ≤ comp(Fcc) for every canonical centered family Fcc of size M = Σ6 −

(
n
3

)
− 1.

B respectively. For an element A ∈ {0, 1, 2}n and family G ⊆ {0, 1, 2}n, we use the notation

comp(A,G) := |{B ∈ G : B ( A or A ( B}| and Comp(G) := {(A,B) ∈ G × G : A ⊂ B}, so that

|Comp(G)| = comp(G).

Let X = (0, 0, 1, 1, . . . , 1) ∈ Ln−2, B = {B ∈ Ln+3 : b0 = 0}, and C := {C ∈ {0, 1, 2}n :

n − 2 ≤ |C| ≤ n + 3}. Finally, let F := C \ (B ∪ {X}) (see Figure 4.1). Then F is not centered,

but we claim that F contains fewer comparable pairs than every centered family of size M = |F| =

Σ6(n, 2)−
(
n
3

)
− 1. The proof of this claim goes in two stages. First we show that F contains fewer

comparable pairs than the best canonical centered family of this size (Claim 4.3.1), and next we

show that among centered families of this size the canonical families are the best (Lemma 4.3.2).

Claim 4.3.1. Whenever Fcc is a canonical centered family of size M = Σ6(n, 2)−
(
n
3

)
− 1 we have

comp(F) < comp(Fcc).

Proof. Every canonical centered family Fcc of size M = Σ6(n, 2) −
(
n
3

)
− 1 consists of all elements

in levels Ln−2, . . . ,Ln+2 and `n+3 −
(
n
3

)
− 1 elements in Ln+3 (or `n−3 −

(
n
3

)
− 1 elements in Ln−3,

in which case the proof is symmetrical). Let B = (0, 2, 2, 2, 2, 1, 1, . . . , 1) ∈ Ln+3 and note that

F∗cc := F ∪ {X} \ {B} is one of the canonical centered families of size M with the least number of

contained comparable pairs. Indeed, removing all elements with no 0-coordinates plus one element

with one 0-coordinate from Ln+3 ensures the smallest possible number of comparable pairs. This can

be seen because it is always better to replace a 2-coordinate and a 0-coordinate by two 1-coordinates,

or directly from the formula (4.2.2).

It su�ces to show that comp(B,F) < comp(X,F) since then we can improve F ∪{X}\{B} by
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deleting X and adding B. Now, comp(X,F) ≥
(
n
5

)
+
(
n
4

)
whereas comp(B,F) =

(
n−1
5

)
+
(
n−1
4

)
+

O(n3), which is Θ(n4) smaller than comp(X,F) and the claim follows.

Lemma 4.3.2. Among centered families of size M = Σ6(n, 2)−
(
n
3

)
−1 the function comp(·) attains

its minimum on a canonical centered family.

Proof. De�ne a partial order on the collection of centered families of size M by letting H < H′

if comp(H) < comp(H′), or if comp(H) = comp(H′) and |Hn+3| > |H′n+3|. We will show that

one of the minimal elements of this partial order is canonical centered, which immediately implies

Lemma 4.3.2. Let G be a centered family of size M = Σ6(n, 2)−
(
n
3

)
− 1 that is minimal according

to this ordering. Note that Ln−2 ∪ · · · ∪ Ln+2 ⊆ G ⊆ Ln−3 ∪ · · · ∪ Ln+3.

Given a permutation π ∈ Sn of order 2 (i.e., π2 = 1) de�ne the π-compression of G by �replace

A ∈ Gn−3 by π(Ac) unless it is already in Gn+3�. That is,

cprπ(G) = G ∪ {π(Ac) ∈ Ln+3 : A ∈ Gn−3} \ {A ∈ Gn−3 : π(Ac) 6∈ Gn+3}.

Claim 4.3.3. For every π ∈ Sn of order 2 we have cprπ(G) < G, unless G = cprπ(G). That is,

π-compression improves the family unless it is already π-compressed.

Proof. Note �rst that unless G = cprπ(G) we have that |cprπ(G)n+3| > |Gn+3|. It thus remains to

show comp(cprπ(G)) ≤ comp(G). Suppose that B ⊂ π(Ac) is a new comparable pair. Then A was

replaced by π(Ac), so A ∈ G \ cprπ(G). The element B was not replaced by π(Bc), so π(Bc) ∈ G.

Observe that for every π ∈ Sn, B ⊂ π(Ac) implies A ⊂ π−1(Bc). Since our permutation π is of

order 2, we have π−1(Bc) = π(Bc), and thus A ⊂ π(Bc). Together, for every new comparable pair

B ⊂ π(Ac) there is an old comparable pair A ⊂ π(Bc) which got deleted during the compression.

This de�nes an injection from Comp(cprπ(G)) \ Comp(G) into Comp(G) \ Comp(cprπ(G)) and the

claim follows.

We sketch the idea of the remaining part of the proof. By Claim 4.3.3 and the minimality of G,

the family G is π-compressed for all permutations π of order 2. For A ∈ Gn−3, de�ne

Π(Ac) := {π(Ac) ∈ Ln+3 : π ∈ Sn ∧ π2 = 1},
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and count the elements of Π(Ac) comparable with A. Every such element has to be in Gn+3

by de�nition of π-compression. To obtain a superset of A in Π(Ac), we �rst need to switch all

0-coordinates of Ac with some of its 2-coordinates. After that we can freely switch any of the

remaining three 2-coordinates with any three 1-coordinates. Any permutation that is formed in this

fashion is obviously of order 2. The number of such permutations is
(
a0
3

)(
a1
3

)
. It follows that if the

number of 0's and 1's in A is (close to) linear in n, then the number of elements in Gn+3 comparable

with A is of order (close to) n6. Therefore, Gn−3 cannot have many such elements since otherwise

we could replace Gn−3 by elements of Ln+3 \G and the number of comparable pairs would decrease.

We partition G into G′, G′′, and G∗ as follows:

G′ =
{
A ∈ Gn−3 : a2 ≤ n2/3 log n

}
, G′′ =

{
A ∈ Gn−3 : a2 ≥

n

2
− n2/3 log n

}
, G∗ = Gn−3\

(
G′ ∪ G′′

)
.

Observe that G′ contains elements with a small number of 0- and 2-coordinates while G′′ contains

elements with small number of 1-coordinates. Claim 4.3.4 states that there cannot be more elements

in G∗ than in G′∪G′′. Claim 4.3.5 uses a similar averaging argument to bound |G′∪G′′| by 2|H′∪H′′|,

where H′ ∪H′′ is the family of sets in G′ ∪ G′′ that are in a small number of comparable pairs in G.

Claim 4.3.6 then implies that H′∪H′′ must be empty, and we conclude that G is canonical centered.

Claim 4.3.4. |Gn−3| ≤ 2|G′ ∪ G′′|.

Proof. Let A be an element of G∗ and consider all its supersets of the form π(Ac) with π2 = 1.

Since G is π-compressed for every involution π, we know that all these supersets are in G. Let

ΠA be the set of a permutations π of order 2 such that each π switches all 0-coordinates of Ac

with all but three of its 2-coordinates, and the remaining three 2-coordinates with three arbitrary

1-coordinates. Equivalently, for every π ∈ ΠA, the element π(Ac) is formed from A by increasing

three 0-coordinates and three 1-coordinates by one. We thus always have A ⊂ π(Ac), and hence the

number of supersets of A in Π(Ac) is at least |ΠA| =
(
a0
3

)(
a1
3

)
. Since A 6∈ G′ ∪ G′′ and a0 = a2 + 3,

we have

n2/3 log n+ 3 ≤ a0 ≤
n

2
− n2/3 log n+ 3.
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From a0 + a1 + a2 = n we have a1 = n− 2a0 + 3, and thus

a1 ≥ n− 2
(n

2
− n2/3 log n+ 3

)
+ 3 = 2n2/3 log n− 3.

As either a0 or a1 is larger than n/10, we have

|ΠA| =
(
a0
3

)(
a1
3

)
≥ n5 log2 n.

We claim that the elements of Gn−3 are in at most n5 comparable pairs each on average. Indeed,

otherwise we could replace Gn−3 by an arbitrary subset of Gn+3 = Ln+3 \ Gn+3 of size |Gn−3| and

obtain a canonical centered family with a smaller number of comparable pairs. Because each element

of G∗ is in at least n5 log2 n comparable pairs, we have |G∗| ≤ |G′ ∪ G′′|, and the claim follows.

Let

H′ =
{
A ∈ G′ : comp(A,G) ≤ 2n5

}
and H′′ =

{
A ∈ G′′ : comp(A,G) ≤ 2n5

}
.

Claim 4.3.5. |G′ ∪ G′′| ≤ 2|H′ ∪H′′|.

Proof. As before, the elements of Gn−3 must be in at most n5 comparable pairs each on average

since otherwise we could replace Gn−3 by an arbitrary subset of Gn+3. Recall that the family Gn−3
is partitioned into G′, G′′ and G∗, and that every element of G∗ is in at least n5 log2 n comparable

pairs of G (see proof of Claim 4.3.4). We thus necessarily have |G′ ∪ G′′| ≤ 2|H′ ∪H′′|.

Claim 4.3.6.

|H′|, |H′′| ≤ log8 n

n2
· |Gn+3|.

Proof. We �rst count the number E′′ of comparable pairs (A,B) ∈ H′′ × Gn+3 such that a2 = b2.

We count E′′ two ways:

1. Let A ∈ H′′ ⊆ G′′. Then a0 = a2 + 3 ≥ n
2 − n2/3 log n + 3 by the de�nition of G′′. We need

to count the number of sets B ∈ Gn+3 formed from A by increasing six of its 0-coordinates
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to 1-coordinates. Since comp(A,Gn+3) ≤ 2n5 by the de�nition of H′′, this number is at least
(
a0
6

)
− 2n5 ≥

(
n/3
6

)
≥ n6/109.

2. Let now B ∈ Gn+3 for which there exists an A ∈ H′′ with a2 = b2. Then

b1 = n+ 3− 2b2 = n+ 3− 2a2 ≤ n+ 3− 2
(n

2
− n2/3 log n

)
≤ 3n2/3 log n.

Therefore, the number of sets A formed from B by decreasing six of its 1-coordinates to

0-coordinates is at most
(
3n2/3 logn

6

)
≤ n4 log7 n.

Together we obtain

|H′′| · n
6

109
≤ E′′ ≤ |Gn+3| · n4 log7 n, (4.3.1)

and the second inequality in Claim 4.3.6 follows.

Similarly, we count the number E′ of comparable pairs (A,B) ∈ H′ × Gn+3 such that a0 = b0.

1. Let A ∈ H′ ⊆ G′. Then a1 = n − 3 − 2a2 ≥ n − 3 − 2n2/3 log n by the de�nition of G′. The

number of sets B ∈ Gn+3 formed from A by increasing six of its 1-coordinates to 2-coordinates

is at least
(
a1
6

)
− 2n5 ≥

(
n/3
6

)
≥ n6/109.

2. Let now B ∈ Gn+3 for which there exists an A ∈ H′ with a0 = b0. Then b2 = a2 + 6 ≤

n2/3 log n + 6. Therefore, the number of sets A formed from B by decreasing six of its 1-

coordinates to 0-coordinates is at most
(
n2/3 logn+6

6

)
≤ n4 log7 n.

Similarly to 4.3.1 we have

|H′| · n
6

109
≤ E′ ≤ |Gn+3| · n4 log7 n,

and the �rst inequality in Claim 4.3.6 follows.

We are ready to �nish the proof of Lemma 4.3.2. Applying the previous three claims, we obtain

|Gn−3|
C4.3.4
≤ 2|G′ ∪ G′′|

C4.3.5
≤ 4|H′ ∪H′′|

C4.3.6
≤ log9 n

n2
· |Gn+3| =

log9 n

n2

(
|Gn−3|+

(
n

3

)
+ 1

)
,

and therefore

|Gn−3| ≤ n log10 n. (4.3.2)
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{

δ(B)δ(C)

...

...

Figure 4.2: A non-centered family F ′ ⊆ {0, . . . , k}n which has smaller number of comparable pairs
than the centered family F .

Assume that H′′ 6= 0 and let A ∈ H′′. As in the proof of Claim 4.3.6, comp(A,Gn+3) ≥
(
a0
6

)
−2n5 ≥

n6/109, and so |Gn+3| ≥ n6/109. This implies |Gn−3| ≥ n6/1010, which contradicts equation (4.3.2).

By the same argument we have H′ = ∅. Hence Gn−3 = ∅ by Claims 4.3.4 and 4.3.5, and we conclude

that G is canonical centered, proving the lemma.

4.4 Proof of Theorem 4.1.5

Let P = {0, 1, . . . , k}n where k is a �xed constant, 0 < ε < 0.01, and n be su�ciently large so that

all following estimates hold. We are given an integer j with (1 + ε) log2 n ≤ j ≤
√
n/ log2 n and we

have M = Σj(n, k). For simplicity we will assume nk + j is even, the odd case is very similar, and

we omit the details. Let

F :=

{
A ∈ P :

nk − j
2

< |A| ≤ nk + j

2

}
.

Let B be such that |B| = nk+j
2 and every coordinate of B is either bk2c or bk2 + 1c. Let C be such

that |C| = nk+j
2 + 1 and every coordinate of C is k or 0, except possibly one. Note that C has at

least n−j
2 zeros and at most n+j

2 non-zeros. Now de�ne
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F ′ := F ∪ {C} \ {B},

so that F ′ is not a centered family (see Figure 4.2). We claim that comp(F ′) < comp(F). We only

need to compare the number of subsets of B and C that are contained in F (or F ′). For a set D

and an integer `, write

δ`(D) := {A ∈ F : A ⊆ D, |A| = |D| − `},

that is, the collection of subsets of D that are in F , and are ` levels below D. Let

δ(D) =

n⋃

`=0

δ`(D).

We have the estimate

|δ(B)| =
j−1∑

`=0

|δ`(B)| > |δj−1(B)| >
(

n

j − 1

)
.

Note that for 0 ≤ ` ≤ j we have

|δ`(C)| ≤
(n+j

2 + `− 1

`

)
= (1 + o(1))

(n+j
2

`

)
,

since the right hand side of the �rst inequality counts the number of non-negative solutions to the

equation a1 + . . .+ a(n+j)/2 = `. Hence we get

|δ(C)| =
j∑

`=0

|δ`(C)| ≤ (1 + o(1))

j∑

`=0

(n+j
2

`

)
≤ 2

(
(0.5 + ε3/2)n

j

)

≤ n · (0.5 + ε4/3)(1+ε) log2 n
(

n

j − 1

)
< |δ(B)|,

where the last inequality holds because (0.5 + ε4/3)(1+ε) < 1
2 for ε < 0.01. Hence comp(F ′) <

comp(F) and this completes the proof.
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4.5 Proof of Theorem 4.1.7

Recall that P(n) denotes the collection of posets of order n that are rank-symmetric and rank-

unimodal, and let P ∈ P(n). Furthermore, recall that |A| denotes the rank of an element A ∈ P ,

comp(A,G) := |{B ∈ G : B ⊂ A or A ⊂ B}|, and Nr(A) := {B : |B| = r,B ⊆ A or A ⊆ B}.

A poset P of rank n has property (Q) if all of the following hold:

(Q1) If |B| < |A| and ||B| − n/2| < ||A| − n/2|, then |N|B|+i(B)| ≤ |N|A|−i(A)| for every i ∈

{1, . . . , |A| − |B|}.

(Q2) If |B| > |A| and ||B| − n/2| < ||A| − n/2|, then |N|B|−i(B)| ≤ |N|A|+i(A)| for every i ∈

{1, . . . , |B| − |A|}.

(Q3) If n/2 ≤ |B| < |A|, then |N|B|−i(B)| ≤ |N|A|−i(A)| for every i ≥ 1.

(Q4) If n/2 ≥ |B| > |A|, then |N|B|+i(B)| ≤ |N|A|+i(A)| for every i ≥ 1.

The key result of this section is the lemma below, which will easily imply Theorem 4.1.7.

Lemma 4.5.1. If a rank-symmetric and rank-unimodal poset P of rank n has Property (Q), then

P has the centeredness property.

Proof. Let P ∈ P(n) that has Property (Q). We say that a family F ⊆ P is mid-compressed if for

every comparable pair (A,B) ∈ Comp(F) such that ||B|−n/2| < ||A|−n/2|, A ∈ F implies B ∈ F .

Claim 4.5.2. For every M ∈ {1, . . . , |P |}, there exists an M -optimal family in P that is mid-

compressed.

Proof. The proof of this claim is essentially the same as Kleitman's proof [49] of Theorem 4.1.1 and

hence similar to our proof of Lemma 4.2.3, so we only give a sketch here. We show by induction on

M that there exists an M -optimal family that is centered. The base case is M ≤ Σ1(n, k), in which

case there exists an antichain in Ln/2 of size M .

Let now M > Σ1(n, k), and de�ne an order relation on the collection of subsets of P of order

M by setting G < F if

• comp(G) < comp(F), or
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• comp(G) = comp(F) and
∑

G∈G ||G| − n/2| <
∑

F∈F ||F | − n/2|.

Given a family F ⊂ P of size M that is not mid-compressed we will �nd a family G of size M that

improves F (that is, G < F). Since only mid-compressed families cannot be improved this way this

will show that there exists an M -optimal mid-compressed family.

Let F ⊂ P be a family of size M that is not mid-compressed. Then there exist elements A and

B such that A ∈ F , B /∈ F , and ||B| − n/2| < ||A| − n/2|. W.l.o.g. there exists such a pair with

|A| > n/2. Among all such pairs (A,B) consider the pairs with |A| is maximal, and then among

these pick one with |B| maximal. Note that this implies that whenever C ∈ P is such that C ⊂ A

and |C| > |B| then C ∈ F . Moreover whenever C ∈ P is such that B ⊂ C and |C| > |A| then

C /∈ F . Let a := |A| a and b := |B|.

Form a bipartite graph with vertex sets Fa and Fb with edges between comparable pairs. If

there exists a matching f between Fa and Fb covering Fa, then replacing Fa with the matching

elements f(Fa) does not increase the number comparable pairs in F (since P has Property (Q1)),

but decreases
∑

F∈F ||F | −n/2| and hence improves the family. From now on suppose that there is

no such matching. Let X = Fa and let Y be the family of neighbors of Fa in Fb.

Case 1: |X | ≤ |Y|. Since there is no matching between X and Y covering X , we can �nd a

maximal vertex set X0 ⊂ X such that |N(X0)| < |X0|. Let f be a matching between Fa − X0 and

Y−N(X0) covering X−X0, which exists by the maximality of X0. Then G := F∪f(X−X0)−(X−X0)

satis�es G < F (again using that P has Property (Q1)).

Case 2: |X | > |Y|. If there exists a matching f covering Y then replacing f(Y) by Y improves

F . Otherwise, let Y0 ⊂ Y be minimal such that |N(Y0)| < |Y0|. Consider the following two cases:

a) If there is a matching f between Y0 and NX (Y0) covering N(Y0), then let G := (F \NX (Y0))∪

f(NX (Y0)). Since there is no edge between f(NX (Y0)) and Fa, we have comp(G) < comp(F).

b) Otherwise, there exists a vertex set Z ⊆ NX (Y0) with |NY0(Z)| < |Z|. Then Y ′0 := Y0\NY0(Z)

is smaller than Y0 and it is easy to check that |NX (Y0)| < |Y0|, a contradiction with minimality

of Y0.

This �nishes the proof of the claim that there exists an M -optimal mid-compressed family.
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From now on we assume that there exists an M -optimal mid-compressed family F∗ that is not

centered. Recall that Σr(P ) denotes the total size of the middle r layers of P . De�ne the integer

j ≥ 0 such that Σj−1(P ) < M ≤ Σj(P ). Let G ⊂ P be the centered family of size Σj(P ) and write

∆(G) := max{comp(A,G) : A ∈ G} for the maximum degree of the graph with vertex set G and edges

corresponding to comparable pairs in P . Let comp(M−1) := min{comp(F) : F ⊆ P, |F| = M−1}.

The following statement is very similar to Claim 4.2.8:

Claim 4.5.3. We have comp(F∗) ≤ comp(M − 1) + ∆(G).

Proof. It su�ces to construct a family F of size M with at most comp(M − 1) + ∆(G) comparable

pairs. As F∗ is M -optimal it contains at most this many comparable pairs. By induction we know

there exists a centered (M − 1)-optimal family H. Since H ⊂ G, adding to it any element of G \ H

increases the number of comparable pairs by at most ∆(G).

Since F∗ is not centered, it contains an element A such that for all elements B ∈ G we have

||A| − n/2| > ||B| − n/2|. Since F∗ is mid-compressed and P has properties (Q3) and (Q4), this

implies that comp(A,F∗) ≥ ∆(G). Hence comp(F∗) ≥ comp(M − 1) + ∆(G). By Claim 4.5.3 this

implies that every family of size M contains at least comp(M − 1) + ∆(G) comparable pairs. As

shown in the proof of Claim 4.5.3 this value can be achieved by a centered family, completing the

proof of Lemma 4.5.1.

One well-known poset that satis�es the assumptions of Lemma 4.5.1 is the Boolean lattice

P(n). Therefore, Lemma 4.5.1 implies Theorem 4.1.1 � rather unsurprisingly since the proof of

Lemma 4.5.1 was motivated by Kleitman's proof of Theorem 4.1.1.

Let q be a prime power and let n ≥ 1. To �nish the proof of Theorem 4.1.7, we only need to

check that the assumptions of Lemma 4.5.1 hold for V(q, n).

Claim 4.5.4. V(q, n) is rank-symmetric.

Proof. The map V → Fnq \ V takes the set of subspaces of dimension k into the set of subspaces of

dimension n− k bijectively.

Claim 4.5.5. V(q, n) is rank-unimodal.
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Proof. Note that the number of subspaces of V(q, n) of dimension k, written as
[
n
k

]
q
, can be expressed

as (see e.g. [73]): [
n

k

]

q

=
[n]!

[k]![n− k]!
,

where

[n]! = [1] · [2] · . . . · [n], and [i] = qi − 1.

Rank-unimodality of V(q, n) is easily seen to follow from this formula.

Claim 4.5.6. V(q, n) has Property (Q).

Proof. Properties (Q1)�(Q4) follow from the observation that if S is a subspace of Fnq of dimension

m then the number of spaces S′ ⊂ S of dimension m− k is
[
m
k

]
q
and the number of spaces S′ with

S ⊂ S′ and dim(S′) = m+ k is
[
n−m
k

]
q
.

4.6 Open problems

Recall that P is the collection of posets that are rank-symmetric and rank-unimodal and let C ⊂ P

be the collection of posets which have the centeredness property. The main open problem that this

paper has only barely begun to explore asks for an easy way to decide whether a poset P ∈ P is in C.

We know that {0, 1}n ∈ C and V(q, n) ∈ C but for k ≥ 2 and n large we have {0, 1, . . . , k}n ∈ P\C.

Now let PG be the lattice of subgroups of a �nite Abelian group G. It was shown in [26] that PG

is rank-unimodal. The following general question is likely to be di�cult to solve in full generality

but any progress would be interesting.

Question 4.6.1. For what Abelian groups G is it true that PG ∈ C?

Observe that most results of this paper are special cases of Question 4.6.1:

• if G = Cp1 × Cp2 × . . .× Cpn for distinct primes p1, p2, . . . , pn then PG is (isomorphic to) the

Boolean lattice and hence PG ∈ C,

• if G = Cpk1
× Cpk2 × . . . × Cpkn for distinct primes p1, p2, . . . , pn then PG is isomorphic to the

lattice {0, 1, . . . , k}n under inclusion and hence if n ≥ n0(k) then PG ∈ P \C.
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• if G = (Cp)
n for p prime then PG is isomorphic to V(p, n) and hence PG ∈ C.

Question 4.6.1 can be asked for other members of P, see e.g. [73]. A natural generalization

of the centeredness property is as follows. For an integer r ≥ 2 say that a poset P ∈ P has the

r-centeredness property if for all M with 0 ≤ M ≤ |P |, among all families F ⊂ P of size M , the

number of r-chains contained in P is minimized by a centered family. Denote the collection of posets

with the r-centeredness property by Cr and note that C = C2. A long-standing conjecture in this

area due to Kleitman [49] is that {0, 1}n ∈ Cr for all n, r. For recent progress on this conjecture

we refer the reader to [20, 31, 32]. Asking for a characterisation of Cr is currently out of reach, but

�nding interesting necessary and/or su�cient conditions for a poset P ∈ P to be in Cr could be a

�ne result.

In a di�erent direction one could improve Theorem 4.1.3 and investigate further for which M

Conjecture 4.1.2 holds.

Question 4.6.2. For which k and M is there an M -optimal centered family in {0, 1, . . . , k}n?

The same question can be asked for `centered' replaced by `canonical centered' (i.e. centered

families with at most one partially �lled layer). We expect that for k = 2 the answer to Question 4.6.2

contains the interval [0,Σ5(n, 2)]. It seems plausible that forM ≤ Σlog2 n(n, k) the centered families

are not too far from being best possible, but for much larger M we do not even have a guess what

the best families could be. The following question is open whenever
√
n is replaced by any value

between log2 n and n.

Question 4.6.3. Let M = Σ√n(n, 2). What do the M -optimal families in {0, 1, 2}n look like?
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Chapter 5

Chromatic-choosability of graph powers

The results in this chapter are joint work with Nicholas Kosar, Benjamin Reiniger, and Elyse Yeager

and appear in [52].

Kim and Park found an in�nite family of graphs whose squares are not chromatic-choosable,

that is χ`(G2) > χ(G2). Xuding Zhu asked whether there is some k such that all k-th power graphs

are chromatic-choosable. We answer this question in the negative: we show that there is a positive

constant c such that for any natural number k, there is a family of graphs G with χ(Gk) unbounded

and χ`(Gk) ≥ cχ(Gk) logχ(Gk). Furthermore, we provide an upper bound, χ`(Gk) < χ(Gk)3 for

k > 1.

5.1 Introduction

The list-chromatic number (or choosability) of a graph G, denoted χ`(G), is the least l such that for

any assignment of lists of size l to the vertices of G, there is a proper coloring of V (G) where the color

at each vertex is in that vertex's list. A graph is said to be chromatic-choosable if χ`(G) = χ(G).

The k-th power of a graph G, denoted by Gk, is the graph on the same vertex set as G such that

uv is an edge if and only if the distance from u to v in G is at most k.

Recall that the line graph L(G) of G is a graph on the vertex E(G) where two vertices are

adjacent if and only if their corresponding edges are incident in G. The total graph T (G) of G is a

graph on the vertex V (G)∪E(G) where two vertices are adjacent if and only if their corresponding

elements are adjacent or incident in G.

Several conjectures on the chromatic-choosability of various classes of graphs have been made.

The List-Edge-Coloring Conjecture (LECC) asserts that χ′`(G) = χ′(G) for every graph G. Accord-
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ing to Jensen and Toft [46], the LECC �rst appeared in a paper by Bollobás and Harris [23], but

it was thought of earlier by several other authors. Since χ′`(G) = χ`(L(G)) and χ′(G) = χ(L(G)),

the LECC can be stated as follows:

LECC Conjecture (Bollobás�Harris [23]; Vizing; Gupta; Albertson�Collins). L(G) is chromatic-

choosable for every graph G.

A generalization of the LECC is the The List-Total-Coloring Conjecture (LTCC), which states

that χ′′` (G) = χ′′(G) for every graph G. Since χ′′` (G) = χ`(T (G)) and χ′′(G) = χ(T (G)), we can

rewrite the LTCC in the following form:

LTCC Conjecture (Borodin�Kostochka�Woodall [24], 1997). T (G) is chromatic-choosable for

every graph G.

The List-Square-Coloring Conjecture(LSCC) suggests that even more is true.

LSCC Conjecture (Kostochka�Woodall [53], 2001). G2 is chromatic-choosable for every graph G.

The LSCC is stronger than the LTCC since, given a graph G, its total graph T (G) can be

obtained by subdividing each edge of G and taking the square. The LSCC was recently disproved

by Kim and Park [48], who constructed an in�nite family of counter examples to the conjecture,

and showed that the value χ`(G2)− χ(G2) can be arbitrarily large. Let Kr∗s denote the complete

r-partite graph with each part of size s.

Theorem 5.1.1 (Kim-Park [48], 2015). For each prime n ≥ 3, there exists a graph G such that G2

is the complete multipartite graph K(2n−1)∗n.

Since χ(K(2n−1)∗n) = 2n − 1 and χ`(K(2n−1)∗n) ≥ (n − 1)b4n−3n c by [77], the authors conclude

that there exists a graph G such that χ`(G2) − χ(G2) ≥ n − 1 for any prime n ≥ 3. Xuding Zhu

asked whether there is any k such that all k-th powers are chromatic-choosable [81]. We give a

negative answer to Zhu's question, with a lower bound on χ`(Gk) that matches that of Kim and

Park for k = 2.
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Figure 5.1: An a�ne plane for n = 3 and the decomposition of L into {L0, L1, L2, L3}.

Theorem 5.3.5. There is a positive constant c such that for every k ∈ N, there is an in�nite family

of graphs G with χ(Gk) unbounded such that

χ`(G
k) ≥ cχ(Gk) logχ(Gk).

While preparing this note, it has come to our attention that Kim, Kwon, and Park have arrived

at a similar result [47]. They have found, for each k, an in�nite family of graphs G whose k-th

powers satisfy χ`(Gk) ≥ 10
9 χ(Gk)− 1.

Let fk(m) = max{χ`(Gk) : χ(Gk) = m}. Then Theorem 5.3.5 says that fk(m) ≥ cm logm.

Kwon (see [61]) observed that f2(m) < m2. We extend this observation to larger k in section 5.4.

Theorem 5.4.1. Let k > 1. If k is even, then fk(m) < m2. If k is odd, then fk(m) < m3.

5.2 Construction

The example of Kim and Park [48] for k = 2 is based on complete sets of mutually orthogonal latin

squares. We will use this structure to �nd examples for all k, but we �nd the language of a�ne

planes to be more convenient.

Take an a�ne plane (P,L) on n2 points. Let {L0, L1, . . . , Ln} be the decomposition of L into

parallel classes. Recall that we call the elements of P the points and the elements of L the lines of

the plane, and that we have the following properties (see for instance [28]):

• Each line is a set of n points.

72



p11 p12 p13 p21 p22 p23 p31 p32 p33

`11 `12 `13 `21 `22 `23 `31 `32 `33

a1 a2 a3

L1 L2 L3

Figure 5.2: The graph H, here with n = 3.

• For each pair of points, there is a unique line containing them.

• The set of lines admits a partition into n+1 parallel classes L0, . . . , Ln of equal size such that

two lines in the same parallel class do not intersect and two lines in di�erent parallel classes

intersect in exactly one point.

• Such a plane exists whenever n is a (positive) power of a prime.

Form the bipartite graph H with parts P and B = L−L0, with p` ∈ E(H) if and only if p ∈ `.

Let a1, . . . , an denote the lines of L0. Consider the re�nement V ′ of the bipartition of H obtained

by partitioning P into a1, . . . , an and B into L1, . . . , Ln. Note that the set of edges between ai and

Lj is a matching for each i and j. In Figure 5.2, the graph H is shown with n = 3. Edges are drawn

di�erently according to which parallel class their line-endpoint belongs to, and the parts of V ′ are

indicated.

Let k ≥ 2. Subdivide the edges of H into paths of di�erent lengths: edges incident to L1

are subdivided into paths of length k, while edges not incident to L1 are subdivided into paths

of length k + 1. For an edge p` ∈ E(H), denote the vertices along the subdivision path as p =

(p`)0, (p`)1, (p`)2, . . . . If ` ∈ L1, then (p`)k = `, and if ` /∈ L1, then (p`)k+1 = `. For a vertex

(p`)i, say its level is i, its point is p, and its line is ` (levels are well-de�ned, and points and lines of

vertices of degree 2 are well-de�ned). Form the graph G by, for each ` ∈ ⋃2≤i≤n Li, adding edges to

make the neighborhood of ` a clique and then deleting `. For each i, j ∈ [n] and m ∈ {0, . . . , k}, let
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Figure 5.3: The graph G when n = 3.

Vi,j,m = {(p`)m : p` ∈ E(H), p ∈ ai, ` ∈ Lj}; then {Vi,j,m : i, j ∈ [n],m ∈ {0, . . . , k}} is a partition

of V (G) into sets of size n, which we call V. In Figure 5.3, the graph G is shown. Again we use

n = 3, and here the parts of V are indicated.

5.3 Proof of Main Theorem

Lemma 5.3.1. G4k is multipartite with partition V.

Proof. Let p and q be two points in some ai. Any path from p to q must start by increasing levels,

arriving at (p`)k. If ` /∈ L1, then the path must move from (p`)k to (p′`)k for some p′ not on ai.

Continuing along the path to level 0, we arrive at p′. Since p′ is not on ai, p′ and q are on a common

line `′ ∈ ⋃n
i=1 Li. If `′ ∈ L1, the shortest path from p′ to q is to increase levels to `′ and decrease

levels to q. If `′ ∈ ⋃n
i=2 Li, the shortest path from p′ to q is to increase levels to (p′`′)k, move over

to (q`′)k, and then decrease levels to q. Notice, if p and p′ are on a common line in L1, p′ and q

cannot be on a common line in L1 because then p and q would be on a common line in L1. Thus,

the path uses at least 3 vertices in level k, and so has length at least 4k + 1.
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Let `1, `2 ∈ L1. Any path would have to have both ends decrease to level 0. If both `1 and `2

connect to points in some ai, then since these vertices are a distance at least 4k+ 1 apart, the path

between `1 and `2 would have length at least 4k + 1. Otherwise, the paths from `1 and `2 arrive

at points on di�erent lines in L0, say p and q, respectively. These two points are on a common line

not in L0 or L1, say `. The shortest path between p and q is to go from p to (p`)k, over to (q`)k,

and �nally to q. However, this results in a path between `1 and `2 of length at least 4k + 1.

Let (p`1)k, (q`2)k be two vertices in the same part other than L1; that is, p, q are both on some

ai and `1, `2 are two lines in the same parallel line class. If a path joining them starts by decreasing

levels from both ends to level 0, that is connects (p`1)k to p and (q`2)k to q, then since p and q

are a distance at least 4k + 1 apart, the path between (p`1)k and (q`2)k would have length at least

4k + 1. Otherwise, at least one of (p`1)k or (q`2)k must �rst go to (p′`1)k or (q′`2)k. Without loss

of generality connect (p`1)k to (p′`1)k. Now, any path must connect (p′`1)k to p′ and (q`2)k to q.

These are on a common line not in L0, however, increasing levels from each of p′ and q to level k

results in a total of at least 4k + 1 steps.

Now consider two degree-two vertices in the same part. Any path joining them has ends that

either increase or decrease levels from the endpoint. If the path increases levels from both ends or

decreases levels from both ends, then we arrive at di�erent vertices in the same level 0 or level k

part. Since the rest of the path must have length at least 4k + 1, the total path must have length

at least 4k + 1. Otherwise, one end increases levels and the other decreases levels. The resulting

point, p, is not on the resulting line, `. The path must next increase levels from p to a line. If this

line is in the same parallel line class as `, then the resultant path has length over 4k+1. Otherwise,

since this line is not in the same class as `, these two lines share a common point. The shortest

completion of the path is through this point. However, since at least one of these lines is not in L1,

the path must contain at least 3 vertices in level k. Thus, the path has length at least 4k + 1.

Lemma 5.3.2. The subgraph of G4k induced by the vertices in levels 0 through k − 1 is complete

multipartite with partition V restricted to those levels.

Proof. Consider two points p, q on di�erent lines in L0. They are on a common line ` ∈ ⋃n
i=1 Li. If

` ∈ L1, connect p to ` then ` to q. If ` /∈ L1, connect p to (p`)k to (q`)k to q. In each case the path
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has length at most 2k + 1 < 4k.

Consider two vertices in di�erent parts at level i, 1 ≤ i ≤ k − 1. Either their points are on

di�erent lines in L0 or their lines are from di�erent parallel classes. If their points are from di�erent

lines in L0, go to these points. These points share a common line not in L0. Connect via the path

between this line. This takes at most 2i + 2k + 1 ≤ 4k − 1 steps. If their lines are from di�erent

parallel classes, increase levels to level k. These two lines share a common point. By, if necessary,

�rst changing vertices at level k, connecting through this point, we get a path of length at most

2(k − i) + 2 + 2k = 4k − 2i+ 2 ≤ 4k.

Finally, consider two vertices in levels i and j, 0 ≤ i < j < k. Start a path joining them

by decreasing levels from the lower-level vertex, and increasing levels from the larger-level vertex.

Let the point we arrive at from decreasing the lower-level vertex be p. If the increasing from the

larger-level vertex takes us to a line in L1, we can connect from this line to a point on a di�erent line

of L0 than p, say q. Now p and q are on a common line not in L0. Connecting through this gives

us a path of length at most k − 1 + k + 2k + 1 = 4k. If instead the increasing from the larger-level

vertex takes us to a vertex of the form (q`)k, ` /∈ L1, then let `′ be the line through p in L1. Now `

and `′ intersect at a point, say q′. We can complete the path by going from (q`)k to (q′`)k to q′ to

`′ to p. This takes a total of at most k − 1 + 1 + 3k = 4k steps.

We will use the following result of Alon.

Theorem 5.3.3 (Alon [1]). Let Kr∗s denote the complete r-partite graph with each part of size s.

There are two constants, d1 and d2, such that

d1r log s ≤ χ`(Kr∗s) ≤ d2r log s.

The proof of the lower bound in Theorem 5.3.3 is based on a probabilistic argument that gives

the following lemma:

Lemma 5.3.4 (Alon [1]). There is a constant c such that for every r, s ≥ 2 there is a set S of

cardinality cr log s and a family F of s subsets of S, each of size at least |S|/20, so that there is no

X ⊂ S of size |X| ≤ c log s that intersects each member of F .
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We sketch how the above lemma implies that χ`(Kr∗s) ≥ d1r log s with d1 = c/20. Let V1, . . . , Vr

be the vertex classes in Kr∗s. Consider using the set S as the set of cr log s colors, and the family

F = {F1, . . . , Fs} as the family of lists. For each j ∈ [s], assign the list Fj to the j-th vertex in each

V1, . . . , Vr. Suppose that there exists a coloring of Kr∗s from these lists, and for each i ∈ [r], let Xi

be the set of colors used on the vertex set Vi. Since Xi's are pairwise disjoint, |X1|+ · · ·+ |Xr| ≤ |S|,

and so there exists i such that |Xi| ≤ |S|/r = c log s. By the lemma, there exists j ∈ [s] such that

Xi ∩ Fj = ∅. But then the i-th vertex in part Vi could not have been colored, a contradiction.

Everything is now in place to complete the proof of our main theorem.

Theorem 5.3.5. There is a positive constant c such that for every k ∈ N, there is an in�nite family

of graphs G with χ(Gk) unbounded such that

χ`(G
k) ≥ cχ(Gk) logχ(Gk).

Proof. Since G4k is multipartite on kn2 + 1 parts, χ(G4k) ≤ kn2 + 1, and so n ≥
√

(χ(G4k)− 1)/k.

Since G4k contains a complete multipartite subgraph with (k − 1)n2 parts of size n, we have from

Theorem 5.3.3 that

χ`(G
4k) ≥ d1(k − 1)n2 log n

≥ d1
k − 1

k

(
χ(G4k)− 1

)
log

√
χ(G4k)− 1

k

=
d1
2

k − 1

k

(
χ(G4k)− 1

)(
log(χ(G4k)− 1)− log k

)

≥ d1
4

(
χ(G4k)− 1

)(
log(χ(G4k)− 1)− log k

)
.

Taking n large enough makes χ(G4k) as large as we like, and so by taking a constant c just smaller

than d1/4 and taking n su�ciently large, we obtain

χ`(G
4k) ≥ cχ(G4k) logχ(G4k).

The family {G4} is an in�nite family of graphs whose k-th powers have the desired properties.
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5.4 Upper bound

We now provide an upper bound on χ`(Gk) in terms of χ(Gk).

Theorem 5.4.1. Let k > 1. If k is even, then fk(m) < m2. If k is odd, then fk(m) < m3.

When k is even, this follows from Kwon's observation (see [61]) that χl(G2) < χ(G2)2 for every

graph G. Since G2k = (Gk)2, we have χl(G2k) < χ(G2k)2 and so f2k(m) < m2.

When k is odd, we generalize Kwon's argument and prove the following.

Lemma 5.4.2. Let k ≥ 3, k odd. Then for any G, χ`(G
k) ≤ ∆(G) · χ(Gk)2.

Theorem 5.4.1 follows by noting that ∆(G) < ω(Gk) ≤ χ(Gk) when k > 1.

Proof of Lemma 5.4.2. Let x be a vertex with maximum degree in Gk. Let A be the set of vertices

at distance dk/2e from x in G. Let B(v, r) denote the ball of radius r centered at v in G. Note that

∆(Gk) = max{|B(v, k)| : v ∈ V (G)} and ω(Gk) ≥ max{|B(v, bk/2c)| : v ∈ V (G)}.

Since k is odd and bigger than 1, we have

B(x, k)−B(x, bk/2c) ⊆
⋃

y∈A
B(y, bk/2c). (5.4.1)

Hence

χ`(G
k) ≤ 1 + ∆(Gk) (degeneracy)

= |B(x, k)|

≤ |B(x, bk/2c)|+
∑

y∈A
|B(y, bk/2c)| (equation (5.4.1))

≤ (1 + |A|) max
v∈V (G)

|B(v, bk/2c)| (bounding terms in sum)

≤
(

1 + (∆(G)− 1)ω(Gk)
)
ω(Gk)

≤ ∆(G)ω(Gk)2

≤ ∆(G)χ(Gk)2.
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5.5 Concluding Remarks

Using constructions similar to that of section 5.2, we have found in�nite families of graphs G whose

k-th powers are complete multipartite on roughly kn2/4 parts each of size n, but only when k 6≡ 0

mod 4. The construction presented here is messier and does not yield complete multipartite powers,

but it proves the theorem for all values of k simultaneously.

Question 5.5.1. What is the correct order of magnitude of fk(m)? Does it depend on k?
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