
Open Research Online
The Open University’s repository of research publications
and other research outputs

Packing and Counting Permutations
Thesis

How to cite:

Sliačan, Jakub (2018). Packing and Counting Permutations. PhD thesis The Open University.

For guidance on citations see FAQs.

c© 2018 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/159766434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

PACKING AND COUNTING
PERMUTATIONS

Jakub Sliačan

a thesis submitted to The Open University
for the degree of Doctor of Philosophy in Mathematics

March 2018

2

Abstract

A permutation class is a set of permutations closed under taking subpermutations.
We study two aspects of permutation classes: enumeration and packing.

Our work on enumeration consists of two campaigns. First, we enumerate all
juxtaposition classes of the form “Av(abc) next to Av(xy)”, where abc and xy

are permutations of lengths three and two, respectively. We represent elements
from such a juxtaposition class by Dyck paths decorated with sequences of points.
Context-free grammars are then used to enumerate these decorated Dyck paths.
Second, we classify as algebraic the generating functions of 1×m permutation grid
classes where one cell is context-free and the remaining cells are monotone. We
rely on properties of combinatorial specifications of context-free classes and use
operators to express juxtapositions. Repeated application of operators resolves
cases for m > 2. We provide examples to re-prove known results and give new
ones. Our methods are algorithmic and could be implemented on a PC.

Our work on packing consolidates current knowledge about packing densities of
4-point permutations. We also improve the lower bounds for the packing densities
of 1324 and 1342 and provide rigorous upper bounds for the packing densities
of 1324, 1342, and 2413. All our bounds are within 10−4 of the true packing
densities. Together with the known bounds, we have a fairly complete picture
of 4-point packing densities. Additionally, we obtain several bounds (lower and
upper) for permutations of length at least five. Our main tool for the upper bounds
is the framework of flag algebras introduced by Razborov in 2007. We also present
Permpack — a flag algebra package for permutations.

3

4

Acknowledgements

I would like to thank my supervisor Robert Brignall for finding nice balance be-
tween guidance and freedom. I especially valued the opportunity to pursue side
projects with little or no relationship to my thesis without the pressure of produc-
ing measurable results. It made mathematics more enjoyable. Thank you.

My acknowledgements go to the Department of Mathematics and Statistics at
The Open University for funding my PhD and providing support in various forms
throughout the past three years.

Special thanks go to my office mates who tolerated my smelly running clothes
as well as my constant chewing in our office: Grahame Erskine, Michael Ewetola,
Jay Fraser, and Olivia Jeans. I am particularly grateful to David Bevan for his
welcome when I first came to the department, for maths conversations and help.
Thanks also go to Lax Chan, Argyris Christodoulou, Ioannis Dourekas, Vasso
Evdoridou, Matthew Jacques, Robert Lewis, Alison Maidment, David Marchant,
Maha Moustafa, David Martí-Pete, Tony Royle, Margaret Stanier, Brigitte Sten-
house, and James Tuite.

Additionally, I would like to thank my co-authors, collaborators, and influences
outside of my department: Dan Kráľ, Oleg Pikhurko, Jozef Skokan, Kostas Tyros,
Walter Stromquist, and Michael Albert.

Thanks also go to my parents and Veronika for being supportive throughout.

Lastly, I thank Fiona who helps me stay mathematically curious.

5

6

Declarations

There are five chapters in this thesis.

1. Chapter 1 consists of a general exposition of the area of permutation patterns
and the two viewpoints of the area that we take in this thesis: enumeration
and packing. Most of the text in this chapter follows parts of the compre-
hensive exposition in Bevan’s thesis [Bev15b].

2. Chapter 3 consists of joint work with Robert Brignall. The corresponding
paper [BS17] is published in Electronic Journal of Combinatorics. We use
PermLab [Alb12], Mathematica [Incb] and Sage [Dev17] for computations.

3. Chapter 4 consists of joint work with Robert Brignall. We use PermLab [Alb12]
and Mathematica [Incb] for our computations.

4. Chapter 5 consists of joint work with Walter Stromquist. The corresponding
paper [SS18] is published in Discrete Mathematics and Theoretical Computer
Science in Permutation Patterns 2016 special issue. We make use of: Flag-
matic package [Vau13], Mathematica [Incb], Sage [Dev17], and Permpack [Sli16].

5. Chapter 6 consists of a description of Permpack that the author wrote for
the work in Chapter 5. It was written to resemble Flagmatic to make it
easier to use alongside Flagmatic. No Flagmatic code was used, nor were
any algorithms taken into Permpack. Permpack is a Sage [Dev17] package.

None of the results appear in any other thesis and all co-authors have agreed with
inclusion of joint work in this thesis.

7

8

Contents

Abstract 3

Acknowledgements 5

Declarations 7

1 General Introduction 12
1.1 Concepts and definitions . 13

1.1.1 Special permutations . 14
1.1.2 Permutation classes . 15

I Enumeration 18

2 Introduction to Enumeration 19

3 Simple juxtapositions 24
3.1 Introduction . 24
3.2 Definitions and overview . 25
3.3 Enumeration . 29

3.3.1 Class A = Av(231|12) . 31
3.3.2 Class B = Av(321|21) . 32
3.3.3 Class C = Av(312|21) . 35

3.4 Bijections . 37
3.5 Conclusion . 42

4 Iterated juxtapositions 43

9

4.1 Introduction, definitions, prerequisites 44
4.2 Main results . 62

4.2.1 Extension to decreasing classes and both sides 67
4.3 Applications to exact enumeration 74

4.3.1 Example: Av(321|21) . 74
4.3.2 Example: Av(21|21|21) . 81
4.3.3 Example: Separable next to monotone 88

4.4 Conclusion . 92

II Packing 96

5 Packing small permutations 99
5.1 Introduction . 99
5.2 Definitions and concepts . 102

5.2.1 Flag Algebras . 104
5.2.2 Example . 109

5.3 Results . 110
5.3.1 Packing 1324 . 114
5.3.2 Packing 1342 . 117
5.3.3 Packing 2413 . 120

5.4 Packing other small permutations 121
5.5 Conclusion . 124

6 Permpack 126
6.1 Set-up . 127

6.1.1 Solvers . 127
6.2 Usage . 128

6.2.1 Entering the problem into Permpack 130
6.2.2 Solving SDP . 132
6.2.3 Assumptions . 133
6.2.4 Rounding . 134
6.2.5 Certificates . 135

6.3 Miscellaneous . 137

10

6.4 Conclusion . 137

Bibliography 138

11

Chapter 1

General Introduction

Enumerating permutations is sometimes hard and usually tedious. Packing
permutations is often hard and always tedious.

— folklore

This entire thesis is concerned with only one kind of object — permutations.
We treat permutations as patterns or words that use every letter in the alphabet
exactly once, the alphabet being [n] = {1, . . . , n}. In fact, we study permutation
classes rather than permutations themselves. These are collections of permutations
closed under taking subpermutations. There are several natural approaches to
studying permutation classes. Let C be a permutation class. Then one can enquire
about the properties of a what a typical object from C “looks” like? Alternatively,
one could be interested in how many permutations of each length are there in
C? Yet another different approach would be to ask questions such as what is the
maximum number of inversions that a permutation in C can have? While all three
are interesting directions of study, we focus on questions of the second and third
kinds only.

The enumerative approach to permutation classes has been quite dominant in
the permutation patterns community. There are several works that survey this

12

area chronologically and systematically. We point to the chapter Permutation
Classes by Vatter [V.15] in the Handbook of Enumerative Combinatorics. For fur-
ther book material, refer to the references therein. On the other hand, additional
surveys of the field can be found in the conference proceedings of Permutation
Patterns 2007 [LRV10]. The contributions relevant to this thesis are A survey of
simple permutations by Brignall [Bri10], An introduction to structural methods in
permutation patterns by Albert [Alb10], and parts of Some general results in com-
binatorial enumeration by Klazar [M.10]. Another relevant survey is Some open
problems on permutation patterns by Steingrimsson [Ste12]. The general back-
ground of enumerative combinatorics from the perspective of generating functions
via the symbolic method is best treated in Analytic Combinatorics by Flajolet and
Sedgewick [FS09].

Permutation packing has been less prevalent among research topics in the area
of permutation patterns. The single best survey article, containing new (at that
time) results, is On packing densities of permutations by Albert, Atkinson, Han-
dley, Holton, and Stromquist [AAH+02]. Although there have been significant
advances in permutation packing since 2002, there have not been many of them,
e.g. Barton [Bar04] or Presutti and Stromquist [PS10]. Hence the article is still
relevant in 2018.

1.1 Concepts and definitions

We now proceed to define key concepts needed throughout the thesis. We postpone
the particular definitions needed in individual chapters to those chapters. A pattern
of length k, where k ≤ n, is a k-tuple of distinct integers from [n] := {1, . . . , n}.
A pattern of length n is called a permutation. We write tuples as strings: 1324
stands for (1, 3, 2, 4). Two patterns π and σ of length k are identical, if π[i] = σ[i]

for all i ∈ [k]. They are order-isomorphic if for all pairs of indices i, j, it holds
that π[i] < π[j] if and only if σ[i] < σ[j]. For a set I = {i1, . . . , im} of m indices
from [n], the sub-pattern π[I] is the m-tuple π[i1]π[i2] · · · π[im]. By overloading
the notation slightly, we also use π[I] to refer to the subpermutation of length m

13

which is order-isomorphic to the sub-pattern π[I]. Finally, we do not distinguish
between different representations of the same permutation. For example, 2413 and
its plot on the grid in Figure 1.1 will be referred to as 2413 interchangeably. Let
F be a set of forbidden permutations. We say that permutation π is F-free if no
φ ∈ F is a subpermutation of π. Such π is also said to avoid F or be admissible.

(a) 1234 (b) 1243 (c) 2413

Figure 1.1: Pictorial representations of selected permutations.

1.1.1 Special permutations

An interval refers to a set of integers appearing contiguously in a permutation,
e.g. 3645 is an interval in 213645. A permutation π is simple if it does not contain
any non-trivial intervals. For instance, 2413 is simple while 1243 is not (both 12

and 43 are intervals). We call π an inflation of σ if it can be obtained from σ

by substituting points of σ for permutations. We denote π as an inflation of σ
by π = σ[α1, . . . , α|σ|], where α1, . . . , α|σ| are permutations that inflate σ into π.
Consider the example of 1243 as an inflation of 12, so 1243 = 12[12, 21]. In this
case, it is also an inflation of 12 by 1 and 132 as in 1243 = 12[1, 132]. There is
a fundamental result by Albert and Atkinson [AA05] which says that if σ is of
length at least three and simple, then for any π which is an inflation of σ there is
always a unique way to inflate σ into π. Hence, 12 and 21 are special.

A decreasing (increasing) permutation of length k is k . . . 321, respectively
123 . . . k. A permutation π is layered, if it is an increasing sequence of decreasing
permutations. To be exact, a layered permutation π is a concatenation of smaller
permutations π = π1π2 . . . π` such that for all 1 ≤ i ≤ `, πi is a decreasing sequence
of consecutive integers satisfying the following: if x ∈ πi and y ∈ πj with i < j,

14

then x < y. For instance, 321465987 can be partitioned as 321|4|65|987, so it is lay-
ered. On the other hand, 2413 is not layered. This brings us to the notion of sum
and skew-sum of permutations. Let π1 and π2 be permutations of lengths k and `.
We say that π is a sum of π1 and π2, denoted by π = π1⊕π2, if π consists of two in-
tervals π[1] · · · π[k] and π[k+1] · · · π[`] such that π[1] · · · π[k] is order-isomorphic to
π1, π[k+1] · · · π[`] is order-isomorphic to π2, and π[i] < π[j] for all i ≤ k and j > k.
Similarly, π is a skew-sum of π1 and π2, denoted by π = π1	π2, if π consists of the
two intervals as above, except this time we require that π[i] > π[j] for all i ≤ k and
j > k. A permutation is called sum-indecomposable if it cannot be expressed as
a sum of two non-empty permutations. Analogously, skew-indecomposable permu-
tations cannot be expressed as skew sums of non-empty permutations. With this
new notation in place, a layered permuation with k layers is π = π1⊕· · ·⊕πk such
that all πi are decreasing permutations. A permutation is called separable, if it
can be obtained from single points by repeated application of sum and skew-sum.
For instance, 42315 = (1	 (1⊕ 1)	 1)⊕ 1 is separable, but 2413 is not.

1.1.2 Permutation classes

A permutation class C is a set of permutations which is closed under taking sub-
permutations, i.e. if π is in C and σ ⊆ π, then σ is also in C. Given that the sub-
permutation relation is a partial order on a permutation class C, there is a minimal
set of forbidden permutations called the basis B of C. We also write C = Av(B)

to make explicit the fact that C is the set of avoiders of B. For example, the class
Av(231, 312) is the class of layered permutations. Similarly, Av(2413, 3142) is the
class of separable permutations. The subset of a class C containing only permuta-
tions of length n is referred to by Cn. Hence, C =

⋃
n≥0 Cn. We use |Cn| to denote

the number of elements of length n in C.

To enumerate a permutation class C means to provide a sequence (an)n≥0 such
that an = |Cn|. Given that (an)n has infinitely many terms, we need a clever
data structure to store it in finite memory. A generating function C(z) of C is a
formal power series C(z) =

∑
n≥0 anz

n with the coefficient of zn being the n-th

15

term of the sequence. Ideally we would know the closed form of C(z), e.g. the
closed form of C(z) =

∑
n≥0 z

n = 1/(1− z). A rational generating function is one
whose closed form is a ratio of two polynomials. An algebraic generating function
f = f(z) is a root of a polynomial equation in f and z. As a shortcut, when we say
that a generating function enumerating C is rational/algebraic/etc., we mean that
the closed form of the formal power series storing the counting sequence which
enumerates C is rational/algebraic/etc.

All work in this thesis is on enumeration of permutation (grid) classes. When-
ever we obtain a generating function and a counting sequence, we refer to the
result as an “exact enumeration”. On the other hand, if we can only comment on
the quality of the generating function yet we did not find one explicitly, we do not
use the term “exact”. This constitutes a slight deviation from the customary usage
of the term “exact enumeration”. We do not use “exact” to create contrast against
“asymptotic”. Mentioning it here hopefully prevents confusion later on.

It may not always be possible to find the generating function for a class. One
cruder way of “enumerating” a permutation class is asymptotically, by determining
its growth rate. The growth rate of a class C is denoted by gr (C) and is defined as
below provided that the limit exists.

gr (C) = lim
n→∞

n
√
|Cn|

Naturally, if the above limit does not exist despite being conjectured to always
exist, we speak about an upper growth rate of C defined as lim supn→∞

n
√
|Cn| and

a lower growth rate of C defined as lim infn→∞
n
√
|Cn|. Conveniently, by proving the

Füredi-Hajnal conjecture, Marcus and Tardos [MT04] also proved the Stanley-Wilf
conjecture that the upper growth rate is finite for all proper permutation classes.
Together with Arratia’s observation in [Arr99], this implies that all permutation
classes with basis of size one — also called principal classes — have finite growth
rates. Interestingly, there were conjectures about the growth rates of principal
classes and all were refuted by this point in time. First Arratia [Arr99] conjectured
that for every permutation σ of length k, gr (Av(σ)) ≤ (k− 1)2. However, in 2006
Albert, Elder, Rechnitzer, Westcott, and Zabrocki [AER+06] disproved this by

16

showing that gr (Av(1324)) > 9.47 > (4 − 1)2. Bóna first suggested in [Bó05]
that layered permutations may be the easiest to avoid, i.e. their principal avoider
classes tend to have highest growth rates, an impression strengthened by the result
of Albert et al. [AER+06]. However, in 2013 Fox [Fox13] confirmed what we knew
already: that we do not understand the growth rates of permutation classes very
well. His result states that almost all patterns σ of length k have growth rates of
a completely different order than we thought: gr (Av(σ)) = 2Ω(k).1 Although this
was tangential to the core topic of the thesis, it shows that permutation patterns
form an exciting area to study.

1Given two functions f, g, we say that f = Ω(g) if there exist c > 0 and n0 > 0 such that for
all n > n0 it holds that f(n) ≥ c · g(n). Note that Ω(g) is actually a set and by f = Ω(g) we
mean f ∈ Ω(g). For more details look up big-O notation.

17

Part I

Enumeration

18

Chapter 2

Introduction to Enumeration

This part contains results on the enumeration of permutation grid classes. They
are useful given that one of the approaches to enumerating permutation classes
is through permutation grid classes. These are permutation classes themselves
but offer additional insight into the structure of the permutations in them. For
instance, if a permutation σ can be split by a vertical line into a left part and a
right part so that the left part (as a subpermutation of σ) avoids 21 and the right
part avoids 12, then σ belongs to C = Av(21|12), a 1 × 2 grid class with the left
cell being Av(21) and the right cell being Av(12). All permutations in C can be
split this way, and all permutations that admit such a gridding belong to C.

The grid class that we just described, in our notation Av(21|12), was enumer-
ated by Atkinson [Atk98]. In [Atk99], Atkinson used grid classes to enumerate
classes such as Av(132, 4321), Av(321, 2134), and Av(321, 1324) (Bevan calls these
“skinny grid classes” in his thesis [Bev15b]). In recent years, grid classes were crit-
ical to the enumeration of two-by-four classes with two basis elements of length
four. See Pantone [Pan17] for enumeration of Av(3124, 4312). Albert, Atkinson,
and Brignall used grid classes to enumerate Av(2143, 4231) in [AAB11] and three
other two-by-four classes in [AAB12]. Albert, Atkinson, and Vatter [AAV14] use
a special kind of grid classes to enumerate three specific permutation classes. An-
other paper making use of grid classes to enumerate Av(4231, 35142, 42513, 351624)

19

is by Albert and Brignall [AB14]. We also mention Bevan’s enumeration of
Av(4213, 2143) in [Bev17] which utilizes permutation grid classes.

Generalized grid classes were introduced in Vatter’s proof [Vat11] of the fact
that there are only countably many permutation classes with growth rates below
κ ≈ 2.20557 while there are uncountably many permutation classes of growth
rate κ (note: this is a threshold in the number of permutation classes). On the
other hand, Vatter [Vat16] determines a constant ξ ≈ 2.30522 such that there are
only countably many growth rates of permutation classes below ξ and uncountably
many growth rates of permutation classes in any open neighbourhood of ξ (note:
this is a threshold in the number of growth rates). The grid classes, whether
generalized or not, were instrumental in the characterization of the classes with
sub-κ growth rates as well as in establishing the threshold ξ. The subsequent paper
of Pantone and Vatter [PV16] characterizes the growth rates below ξ and makes
use of grid classes as well.

Apart from enumerating permutation classes, several other applications of grid
classes exist, among them [AAB11] and [Bev17]. We give further examples, with
accompanying commentaries, in the next paragraph. For a comprehensive intro-
duction to grid classes and their further uses, see Bevan’s PhD thesis [Bev15b],
Sections 2 and 6 in Part I, as well as parts of the general introduction in Section
1 of Part I.

Because of their more general applicability, the study of grid classes in their
own right has emerged in a few directions. For instance, it is conjectured that
all monotone grid classes are finitely based, but this is only known for a few
special cases, most notably those whose row-column graph is acyclic [AAB+13],
and a few other special cases (see [AB16, Atk99, Wat07, Bev15b]). In another
direction, the role of grid classes with respect to partial well-ordering has been
explored in e.g. [Bri12, MV03, VW11]. Finally, while the asymptotic enumeration
of monotone grid classes was answered completely by Bevan [Bev15a], exact enu-
meration is harder, primarily due to the difficulty of handling multiple griddings:
that is, enumerating ‘griddable’ objects rather than ‘gridded’ ones. One gen-
eral result here is that all geometrically griddable classes have rational generating

20

functions [AAB+13], but the move from ‘gridded’ to ‘griddable’ is nonconstructive,
instead relying on properties of regular languages.

Since grid classes are often used on the way to enumerating other permutation
classes, it would be convenient to be able to enumerate grid classes. Ideally, we
would have exact enumerations of classes of the form shown in Figure 2.1 — the
most generic form of grid classes. For the current level of discussion, Figure 2.1
also suffices as a definition of a grid class (a grid of permutation classes).

C11 C12 C13

C21 C22 C23

C31 C32 C33

...
. . .

. . .

Cn1 Cn2 Cn3

C1m

C2m

C3m

Cnm

Figure 2.1: A generic format of a generalised grid class, where Cij are arbitrary but fixed
permutation classes.

The current state of affairs is much more grim. We cannot even enumerate
grid classes of the form shown in Figure 2.2a or in Figure 2.2b. However, there are
several important results in this direction. For instance, due to Bevan [Bev15a]
we at least know the growth rates of monotone grid classes (where every cell is
monotone, like Figure 2.2b). The growth rates are equal to the square of the
spectral radius of a certain associated row-column graph.

Approaching the topic from another angle, Albert, Atkinson, Bouvel, Ruškuc
and Vatter [AAB+13] proved that geometrically griddable monotone classes are
enumerated by rational generating functions. Notice that this result is different
from the exact enumeration type of results. And that along two dimensions. First,
the authors do exact enumeration in the usual constructive fashion. Second, they
assume certain niceness of the grid class — the monotone classes are geometric

21

MMMM
MM C M
MMMM

...
. . .

. . .

MMM

M
M
M

M
(a) All cells are monotone except for C,
which is a more complex class.

MMMM
MMMM
MMMM

...
. . .

. . .

MMM

M
M
M

M
(b) All cells are monotone (increasing or
decreasing).

Figure 2.2: We cannot enumerate either of the two grid classes in 2.2a and 2.2b.

and therefore the grid avoids cycles. Still, their result is important and goes to
show how unreasonable it is at this point to ask for exact enumeration of arbitrary
grid classes.

Lastly, Conjecture 3.2 on page 34 of Bevan [Bev15b] suggests the generating
functions of monotone increasing grid classes of dimension 1×k for each k. Bevan
also provides a method for enumerating 1 × k monotone grid classes in the sense
that for any fixed 1 × k monotone grid class, he gives a finite procedure that
enumerates it.

The aim of Part I of this thesis is to make progress on describing permutation
grid classes along the lines of previous research. In Chapter 3 we pick the simplest
possible non-trivial grid classes of the form shown in Figure 2.2a and enumerate
them exactly. They are 1 × 2 grid classes, also referred to as juxtapositions, of a
Catalan class C with a a monotone class M. In Chapter 4 we choose to prove a
result similar in character to that of [AAB+13]. We show that all 1×m monotone
grid classes with one cell substituted for a context-free class C admit algebraic
generating functions. Our methods allow us to enumerate several new grid classes
exactly.

Recall that each permutation in a grid class can be drawn into a grid so that
the subpermutation in each box is in the class specified by the corresponding cell
in a gridding matrix. See Figure 2.1, where the gridding matrix is represented by

22

a square grid, and Figure 2.3 for an example of permutations from a monotone
grid class (where each cell in the gridding matrix is a 21-avoider, 12-avoider, or
empty).

Figure 2.3: On the left is the unique gridding of 1243 by the gridding matrix
M =

(
∅ Av(12)

Av(21) ∅

)
. On the right are the two griddings of 1243 byM = (Av(21) Av(12)).

Juxtapositions are a simple special case of permutation grid classes. To shift
the burden of definitions away from Chapter 3 and 4, and as a first step towards
enumerating more general grid classes, we now define juxtapositions.

Let Pi and Sj be permutations, for all 1 ≤ i ≤ k and 1 ≤ j ≤ l. Also, let
U = Av(P1, . . . , Pk) and V = Av(S1, . . . , S`) be classes of permutations that avoid
P1, . . . , Pk and S1, . . . , S`, respectively. A juxtaposition class W = Av(P1, . . . , Pk |
S1, . . . , S`) of classes U and V is the set of permutations whose form is AB with
A ∈ U and B ∈ V . We say that U is on the left-hand side (LHS) of W and that
V is on the right-hand side (RHS) of W . The diagram on the right in Figure 2.3
shows a permutation 1243 from the juxtaposition class Av(21|12), together with
two possible griddings of 1243. An early treatment of juxtapositions can be found
in Atkinson’s Restricted permutations [Atk99], where the author establishes many
fundamental properties. For instance, Atkinson proved that if permutation classes
C and C ′ both have finite bases, then their juxtaposition C|C ′ also has a finite basis.
We make indirect use of this in Chapter 3 when we list juxtaposition classes in
terms of their bases.

23

Chapter 3

Simple juxtapositions

3.1 Introduction

As a first step towards enumerating more general grid classes, in this chapter we
replace one cell in the gridding matrix M of a monotone grid class by a Catalan
class, that is, one avoiding a single permutation of length 3. For simplicity, we
restrict our attention to 1× 2 grids, although the techniques presented here could
be used in larger grids. These 1×2 grid classes are also referred to as juxtapositions
— in our case a Catalan class in the left cell, and a monotone class in the right
one.

Av(213|21), Av(231|12) θ←→ Av(123|21), Av(321|12)

Av(123|12), Av(321|21) ψ←→ Av(213|12), Av(231|21)

Av(132|12), Av(312|21) φ←→ Av(132|21), Av(312|12)

Table 3.1: Each row contains equinumerous classes. Classes in pairs (separated by com-
mas) are equinumerous by symmetry. Left column and right column (of the same row)
are equinumerous by one of the bijections θ, ψ, φ, see Section 3.4. Each bijection de-
scribes a correspondence between the underlined classes in the given row. The classes in
bold are enumerated via context-free grammars.

Recall the definition of a juxtaposition from Chapter 2 and refer to Table 3.1.

24

It schematizes the relationships between juxtapositions Av(π|σ), where π is of
length three and σ of length two or vice versa. Out of all these, only twelve
are essentially distinct (not symmetries of each other), and all of them have the
Catalan class Av(abc) on the same side in the juxtaposition. So, without loss
of generality, we assume a Catalan class to be on the left and a monotone class
on the right. By further symmetries, these twelve juxtaposition classes can be
coupled into equinumerous pairs. See Table 3.1. To the best of our knowledge,
only two of the twelve classes in Table 3.1 have been enumerated — Av(231|12)

by Bevan [Bev17] (and hence Av(213|21)) and Av(321|12) by Miner [Min16] (and
hence Av(123|21)). The goal of this chapter is to enumerate the remaining two
juxtaposition classes in bold in Table 3.1 and find bijections between the pairs
of underlined classes. This completes the enumeration for all juxtapositions of a
Catalan class with a monotone one.

In section 3.2 we introduce the concepts that we need and demonstrate them on
an example. Section 3.3 contains enumerations of the boldface classes Av(231|12),
Av(321|21) and Av(312|21). Bijections between the underlined classes are pre-
sented in Section 3.4. We mention open questions in Section 3.5.

3.2 Definitions and overview

We assume the reader is familiar with elementary definitions. They are conve-
niently presented in a note by Bevan [Bev15c]. We refer to the three juxtaposition
classes in bold in Table 3.1 as A,B, and C, respectively. We list them below
together with their representations in terms of bases, using [Atk99].

A := Av(231|12) = Av(2314, 2413, 3412)

B := Av(321|21) = Av(4321, 32154, 42153, 52143, 43152, 53142)

C := Av(312|21) = Av(4132, 4231, 31254, 41253)

A quick enumeration (using PermLab [Alb12]) of the first twelve elements in A,B,
and C yields the following sequences.

25

A: A033321 1, 2, 6, 21, 79, 311, 1265, 5275, 22431, 96900, 424068, 1876143
B: A278301 1, 2, 6, 23, 98, 434, 1949, 8803, 39888, 181201, 825201, 3767757
C: A165538 1, 2, 6, 22, 88, 367, 1568, 6810, 29943, 132958, 595227, 2683373

We observe that the sequence A165538 enumerates both classes C and Av(4312, 3142).
The latter is studied as Example 2 in [AAV14]. We do not know of a straightfor-
ward reason for these to be equinumerous.

A Dyck path of length 2n is a path on the integer grid from (0, 0) to (n, n)

where each step is either (k,m) → (k + 1,m) or (k,m) → (k,m + 1). A Dyck
path must stay on one side of the diagonal, i.e. it is not allowed to cross but can
touch the diagonal. See Figure 3.1 for an example. The orientation of the Dyck
path in our definition is arbitrary, and we will use the term “Dyck path” to refer to
any of the four symmetries of a Dyck path (above/below the diagonal and top-to-
bottom/bottom-to-top). In this chapter, we only need two kinds of Dyck paths:
those that use up and right steps (bottom-left to top-right Dyck paths that stay
above the diagonal) and those that use down and left steps (top-right to bottom-
left Dyck paths that stay below the diagonal). We will always specify which one
of the two cases we work with.

Figure 3.1: Example of a Dyck path of length 20.

Let D be Dyck path of length 2n from top right to the bottom left corner of

26

http://oeis.org/A033321
http://oeis.org/A278301
http://oeis.org/A165538
http://oeis.org/A165538

the grid. Let it be below the diagonal. Offsetting a diagonal means considering a
line with slope one from (1, 0) to (n, n−1) on a square grid, instead of the original
diagonal (0, 0) to (n, n) (in case D is above the diagonal, we offset in the opposite
direction). Figure 3.2 illustrates this with the dotted line moving downwards along
the \-diagonal from 3rd to 4th and from 4th to 5th subfigure. An excursion in D
is the part of the Dyck path D which meets the diagonal only at the beginning
and at the end.

It is well known that permutations of length n in Av(231) are in one-to-one
correspondence with Dyck paths of length 2n. And so are permutations of length
n in Av(321). There are a number of bijections between these Catalan objects.
We now fix one for each correspondence and describe them in detail.

Figure 3.2: An example of a reversible process (left to right) of associating a unique
231-avoider with a given Dyck path. [ABRV16].

This paragraph is best read alongside Figure 3.2. To obtain a 231-avoider of
length n from a Dyck path D, one places a point into each corner (a down step
followed by a left step) to obtain the right-to-left minima of the permutation to
be constructed. This is the second diagram from the left in Figure 3.2. We place
the remaining points of the permutation for each excursion of D separately. Given
such an excursion, the first and last steps are not consecutive/adjacent and must
be a down step and a left step, respectively. Insert a point in the square where
the respective row and column of these steps meet. This is documented in the
third diagram of Figure 3.2. The points inserted in a given step are marked by a
circle. Do the same for each excursion of D. In the next step offset the diagonal,
disregard the points above the new diagonal, and repeat the process. It is easy to
check that this procedure is correct (gives a 231-avoider) and reversible, since the
corners of the Dyck path are right-to-left minima.

27

Figure 3.3: An example of a reversible process (left to right) of associating a unique
321-avoider with a given Dyck path.

This paragraph is accompanied by Figure 3.3. To obtain a 321-avoider of length
n from a Dyck path D, place right-to-left minima as in the case above (231-avoider
to Dyck path). Then, find the first down step that is not immediately succeeded
by a left step and find the first left step that is not immediately preceded by a
down step. Place a point in the square where the row and column of these two
meet. This step is shown in the third diagram in Figure 3.3 — the new point at
each step is denoted by a circle. Add the rest of the points for the further down
steps and left steps in the same fashion.

Having fixed bijections between Dyck paths and 231-avoiders and Dyck paths
and 321-avoiders, we will refer to the Dyck path corresponding to a permutation
P , and vice versa, whenever one of the bijections transforms one into the other.

A context-free grammar (CFG) is a formal grammar that describes a language
consisting of only those words which can be obtained from a starting string by
repeated use of permitted production rules/substitutions. Formally, a context-free
grammar is a four-tuple (V,Σ, R, S): a finite set of variables V , a set of terminal
characters (symbols) Σ, a finite relation R from V to (V ∪Σ)∗ where ∗ is the Kleene
star, and the start variable S, S ∈ V . The pairs in R are called production rules,
because they specify what we are allowed to substitute into a given variable. In
our context-free grammars, the starting symbol is always S (unless CFG describes
a Catalan object, then it is C) and ε denotes an empty word. A good reference for
formal languages is [HMU01].

Example 3.2.1 (Enumerating Av(231)). Enumerating this class serves as a tem-
plate for how we intend to use CFGs in Section 3.3. Recall that Dyck paths are
in one-to-one correspondence with 231-avoiding permutations. We use this fact

28

to enumerate permutations in Av(231) by counting Dyck paths. A Dyck path
corresponding to a 231-avoider (we start in the bottom left corner, and stay below
the diagonal) is either empty or starts with a step right, followed by an arbitrary
Dyck path, followed by a step up, followed by an arbitrary Dyck path. Denote
by C a Dyck path (C stands for Catalan object), by ε the empty Dyck path, and
by U, R up step and right step respectively. Then the CFG for Dyck paths (and
hence also for 231- and 321-avoiders) looks as follows

C→ ε | RCUC.

As written, this grammar is unambiguous, and can be transcribed syntactically
into a functional equation. We let z count the number of up steps (or alternatively
the number of right steps) in the Dyck path. We find that the generating function
c = c(z) of the class Av(231) satisfies the relation below

c = 1 + zc2.

Consequently, we obtain c as a function of z by “solving for” c formally

c(z) =
1−
√

1− 4z

2z
.

3.3 Enumeration

Let π be a permutation from Av(abc) with P being the corresponding Dyck path,
and let ξ ∈ Av(xy). Recall that when enumerating elements of Av(abc|xy), we
chose to place the vertical gridline as far right as possible. If it was any further
right, there would be a point on the RHS which would serve as c in a copy of abc.
In Figure 3.4b, for instance, there is no copy of 231 on the LHS, but if the vertical
gridline was shifted one place to the right, the three unfilled points would form
a copy of 231 on the LHS of the gridline. The gridline is already as far right as
possible. The permutations gridded this way are exactly the Av(abc|xy)-griddable
permutations and we are free to enumerate these gridded permutations. The setup

29

will be as in Figure 3.4. A Dyck path P on the left decorated by sequences of points
from the right. We will always specify whether a sequence of points corresponding
to a vertical step V in P is placed immediately below V or immediately above
V . Figure 3.4a shows the “below”case. Every griddable permutation from the
juxtaposition class has a unique gridding that maximizes the size of the Av(abc)

class, i.e. pushing the gridline as far to the right as possible. We call the leftmost
point on the RHS the first point on the RHS. We say that a point r on the RHS
is enclosed by two points p, q on the LHS if p is above r and r is above q in the
drawing of the juxtaposition. If D′ is a section of a Dyck path D on the LHS, we
say that a point r on the RHS is contained in D′ whenever the end points of D′

enclose r. A Catalan block D′ (or a Dyck block) is a section of a Dyck path D
which is a Dyck path with respect to some offset of the diagonal (it begins and
ends on it and stays on one side of it at all times). Notice that a Dyck block is
essentially a collection of consecutive excursions that all have the same offset from
the diagonal.

(a) Sequences of points are placed at
the bottom of the corresponding verti-
cal steps (highlighted).

(b) Gridline is pushed as far right as
possible: the distinguished points would
form a copy of 231 on the LHS.

Figure 3.4: On the left is a decorated Dyck path of a 231-avoider, while on the right is the
gridded permutation from Av(231|12) corresponding to it. Every griddable permutation
in Av(231|12) has exactly one such gridding.

30

3.3.1 Class A = Av(231|12)

As we mentioned already, a symmetry of this class was enumerated by Bevan [Bev17]
as a step towards the enumeration of Av(4213, 2143), by exploiting a tree-like
structure of the permutations in Av(231). Here, we enumerate Av(231|12) by first
describing through a context-free grammar.

We represent a 231-avoiding permutation π by a Dyck path P from top-right
to bottom-left, and below the diagonal. Sequences of points (each possibly empty)
on the RHS are placed immediately below the corresponding down steps. Again,
the gridding of π ∈ Av(231|12) is chosen to maximize the number of points on
the LHS. Therefore, the leftmost point on the RHS must be below the “1” in the
topmost 12 on the LHS. In a corresponding Dyck path P, this means that we can
start placing point sequences on the RHS as soon as we have encountered a down
step (D) in P that has a left step (L) before it. The following letters will be needed
to build P.

L – left step

D – down step before any left steps occurred

D – down step after left step already occurred

We denote by C a Dyck path over letters L and D, while C is a standard
Dyck path over L and D. Given these building blocks, a Dyck path representing
a 231-avoider can only start with a D, followed by a possibly empty Dyck path,
and returning to the diagonal with a left-step L. Afterwards any other Dyck path
can be appended as long as it is over letters L,D. Hence, the CFG describing the
elements of Av(231|12) has the following rules.

S→ ε | DSLC

C→ ε | DCLC

31

From here we can directly pass to the functional equations by letting z track
the down steps (whether D or D) and t track the sequences of points in the right
compartment of the grid. In particular, D transcribes as tz. Both s and c are
functions of t and z.

s = 1 + zsc

c = 1 + tzc2

Since there is no ambiguity to how we place points in the right compartment
of the grid, only decreasing sequences are allowed, we let t = 1/(1 − z). Solving
for s gives the next theorem.

Theorem 3.3.1 (Bevan [Bev17]). The generating function for A = Av(231|12) is

sA(z) =
1 + z −

√
1− 6z + 5z2

2z(2− z)

The generating function sA(z) stores terms of A033321 in OEIS [Inca]. The
initial twelve coefficients of sA(z) are 1, 2, 6, 21, 79, 311, 1265, 5275, 22431,
96900, 424068, 1876143. Again, see Bevan [Bev17] for a different approach to
enumerating this juxtaposition class. Also, Miner [Min16] recently enumerated
Av(321|12) (via yet another approach), which is in bijection with Av(231|12) as
we show in Section 3.4.

3.3.2 Class B = Av(321|21)

We represent a 321-avoiding permutation π by a Dyck path P from the bottom left
to the top right corner of the grid, and staying above the diagonal. The sequences
of points (each possibly empty) on the RHS, associated with vertical steps (up
steps) on the LHS, are always placed directly below the corresponding U on the
LHS (i.e. below the point in π associated with the U). Additionally, we need to

32

http://oeis.org/A033321

correct for the points on the RHS which can occur above everything on the LHS.
We do this when transcribing the grammar to equations. Below is the alphabet
used for our CFG.

U – up step, no sequence of points on the RHS associated with it

R – right step

U – up step with a possible sequence of points right below it on RHS

U1 – up step associated with the first point on the RHS

The CFG rules are below. Starting state is S.

S→ C | CMC

M→ UCMCR | U1C+R | BEUC+R

B→ U1R | UCBER

C→ ε | UCRC

C→ ε | UCRC

C+ → UCRC

E→ ε | URE

We now describe the rules above in detail.

S – Start rule. The entire object is either a Catalan object without points on
the RHS, or there is at least one point on the RHS. In the latter case, the
entire word starts with a Catalan object C, then there is the middle part
M containing U1 and a 21 above this U1. All this is followed by a possibly
empty Catalan object C that allows points on the RHS.

33

M – Middle part (possibly multiple excursions) with U1 and the first 21 above
this U1. Part M either starts with a point on the RHS and then U1C+R

guarantees a 21 in the same Catalan block that sits on the diagonal (the U1

is not in the corner). Or we first see the initial point on the RHS without a
21 above it and in the same Catalan block (call this block B) but we then
see a 21 later (in this case, the U1 is in the corner, i.e. not in U1R). This is
the case BEUC+R. Or we offset the diagonal and repeat the process, i.e. we
recur M. That is, UCMCR.

B – An excursion with the first point on the RHS and no 21 above it in the same
excursion. Either we are in the base case, U1R, or we recur the construction
of B. That is, nothing before B can contain a point on the RHS, and nothing
after B can contain a 21. We get UCBER as desired.

C – Catalan block without restrictions.

C – Catalan block with points allowed on the RHS.

E – Stairs with points allowed on the RHS (repeated UR).

C+ – Catalan block that is not empty.

We obtain the following equations from the rules above. The additional t at the
end of the first equation tracks the gap on the RHS above everything on the LHS.
This gap could contain a non-empty increasing sequence of points.

s = c+ cmct

b = z2t+ zcbe

m = zcmc + bezt(c− 1) + z2t(c− 1)

c = 1 + zc2

c = 1 + ztc2

e = 1 + zte

34

Given the role of t, to track sequences of points whose position is determined, we
can again replace it with 1/(1 − z). After the substitution and after solving the
above equations, we find the following theorem.

Theorem 3.3.2. The generating function for B = Av(321|21) is

sB(z) = −1−
√

1− 4z + z(−4 +
√

1− 4z +
√

1− 5z/
√

1− z)

2z2

The generating function sB(z) stores the sequence A278301 of OEIS [Inca].
The initial twelve coefficients of sB(z) are 1, 2, 6, 23, 98, 434, 1949, 8803, 39888,
181201, 825201, 3767757.

3.3.3 Class C = Av(312|21)

We represent a 312-avoiding permutation π by a Dyck path P starting in the
bottom-left and ending in the top-right corner of the grid, and staying above the
diagonal. The sequences of points (each possibly empty) on the RHS associated
with Us are placed immediately above those respective Us. The letters in the
alphabet stay the same as above when we described the class B.

U – up step, no sequence of points on the RHS associated with it

R – right step

U – up step with a possible sequence of points right above it on RHS

U1 – first U, marks the up step with the first point on the RHS

The following rules describe the context-free grammar enumerating Av(312|21).

S→ C | CMC

35

http://oeis.org/A278301

M→ U1C+R | UCBC+R | UCMCR

B→ U1R | UCBR

C→ ε | UCRC

C→ ε | UCRC

C+ → UCRC

We now justify the above rules.

S – the entire sequence S is either a Catalan object C (no points on the RHS) or
it has a distinguished middle part M which is a Catalan object sitting on the
diagonal which contains the first point on the RHS. Given the way a 312-
avoiding permutation sits in the Dyck path, it follows that M also contains
the 21 that encloses this first point on the RHS. Such M is then followed by
C allowing points on the RHS.

M – The middle part is either one of the two base cases, or the recursive case. In
the base cases, the first point on the RHS occurs in M – either in a corner
(U1R) or not. If not in the corner, then the rule to capture this is U1C+R –
the Catalan object must be non-empty as this part sits on the diagonal and
so the point on the RHS associated with U1 must be enclosed by a 21 on the
LHS. If the first point on the RHS occurs in the corner, then we refer to B,
i.e. the rule is UCBC+R. Notice that we want the Catalan object after B to
be non-empty, as B only contains R steps after a U1. Finally, the recursive
step is UCMCR as expected.

B – this part describes the Catalan object containing U1 (first up-step which is
immediately followed by a point on the RHS) that is in the corner – i.e. forms
U1R. Notice that B cannot sit on the diagonal, for otherwise the first point
on the RHS would not be enclosed in a 21 on the LHS. So the base case for B
is just a corner with a point on the RHS, and the recursive step is an object
B preceded by an arbitrary Catalan object, this all offset from the start level.
The way B is used inside M makes it unnecessary to have UCBCR instead of
UCBR. It would lead to double-counting.

36

C – Catalan block without any restrictions.

C – Catalan block with arbitrary point sequences allowed on the RHS immedi-
ately after every up step on the LHS.

C+ – Catalan block that is not empty.

The equations that follow from the above rules are as follows (in the same order).
The functions s,m, b, c, c take arguments z and t. As before, set t = 1/(1− z) as
it represents a (possibly empty) sequence of points on the RHS.

s = c+ cmc

m = z2t(c− 1) + zcb(c− 1) + zcmc

b = zcb+ z2t

c = 1 + c2z

c = 1 + c2zt

Theorem 3.3.3. The generating function for the class C = Av(312|21) is

sC(z) = −(1 +
√

1− 4z)(1− z +
√
z − 1

√
5z − 1)

4z

The initial twelve coefficients of sC(z) are 1, 2, 6, 22, 88, 367, 1568, 6810, 29943,
132958, 595227, 2683373. It turns out that this sequence enumerating Av(312|21)

is the sequence A165538 in OEIS. As we mention in Section 3.2, A165538 also
enumerates the class Av(4312, 3142), see [AAV14].

3.4 Bijections

Before we describe bijections between the juxtaposition classes, let us introduce the
notion of an articulation point in 231-avoiders and 321-avoiders in order to define
a canonical bijection between the two classes (in which the articulation point is
fixed).

37

http://oeis.org/A165538
http://oeis.org/
http://oeis.org/A165538

(a) 231-avoider. (b) 321-avoider.

Figure 3.5: Articulation points in a 231-avoider and 321-avoider (left and right, respec-
tively) at the position (12, 10), marked by empty circles in both pictures.

Let π be a 231-avoider and P the corresponding Dyck path below the diagonal
from the top-right corner to the bottom-left corner. The articulation point x on P
is any and all of the following.

• The end-point of the first down step after a left-step has occurred in P.

• The intersection of P and the gridline directly below the “1” in the topmost
copy of 12 in π.

The two descriptions are readily seen equivalent from Figure 3.5a where π and P
are drawn into the same picture. It follows that an articulation point x partitions
P into P′ (from the top to x) and P′′ (from x to the bottom). Notice that P′ is
unique in the sense that it is the very part of a Dyck path that for which x is an
articulation point. In other words, there is one and only one P′ that completes P′′

into P. To be exact, P′ must end with a D (down step) and this D must be the
first D after an L occurred. Hence, P′ = XD, where X is a string of consecutive Ds
followed by consecutive Ls.

Let ω be a 321-avoider and W its Dyck path below the diagonal from the
top-right corner to the bottom-left corner. Then the articulation point y on W is
defined as any/all of the following.

38

• It is the end-point of the first left step that does not end on the diagonal.

• It is the bottom left corner of the grid box of “1” in the topmost 21 in ω

which is simultaneously also a point on W.

Again, example is in Figure 3.5b. Therefore, y partitions W into W′ (from the
top to y) and W′′ (from y to the bottom). Given W′′, there is a unique W′ that
completes it into W. Indeed, W′ must end with an L. It must start with a sequence
of DL pairs, followed by a sequence of Ds until the final letter L.

By an articulation point of a permutation we mean the articulation point of
the corresponding Dyck path. Next lemma tells us that we can pass between the
two classes, Av(231) and Av(321), and keep the articulation point fixed.

Lemma 3.4.1. There exists a bijective map λ : Av(231) → Av(321) that fixes
articulation points.

Proof. Given the position of an articulation point x, let P′′ and W′′ be identical.
Then there are unique completions P′ and W′, of P′′ and W′′, that make them into
Dyck paths P and W, respectively. Clearly, this is a bijection, say λ′, between Dyck
paths P with an articulation point x and Dyck paths W with the same articulation
point x. Given the bijections between 231-avoiders and Dyck paths, and 321-
avoiders and Dyck paths from Section 3.2, we can define λ as a composition of
these with λ′. This makes λ a bijection as desired.

Av(231)→ Dyck(Av(231))
λ′→ Dyck(Av(321))→ Av(321).

For later use, we define two more notions. Firstly, when we write π = π1π2

we mean that π1 and π2 are the permutations on the LHS and the RHS of the
gridding of π that maximizes the size of π1, i.e. if π1 contained the first point of π2,
it would not be an abc-avoider. In particular, note the interplay of an articulation
point and the vertical gridline. If the gridline was more to the left, then the

39

(possibly different) articulation point would be below the first point on the RHS.
Secondly, assume the down steps (vertical steps) in a Dyck path P corresponding
to a permutation π1 are labelled 1 through n in order of their appearance in P.
Then we can describe the permutation π2 on the RHS of the gridding by a sequence
h of length n. Given h = (h1, . . . , hn), hi is the length of the sequence of points
associated with the i-th down step Di. Depending on our choice (see Section 3.3),
these sequences of hi points are placed either immediately above or immediately
below the point of the permutation corresponding to Di. In any case, such a
sequence h together with a Dyck path P uniquely describe a permutation from one
of the juxtaposition classes Av(abc|xy). Therefore, we can refer to a π = π1π2 ∈
Av(231|21) as a pair (π, hπ) (or alternatively (π1, hπ)) for the appropriate sequence
hπ.

Theorem 3.4.2 and 3.4.3 both make use of the bijection λ from Lemma 3.4.1.

Theorem 3.4.2. There exists a bijection θ : Av(231|12)→ Av(321|12).

Proof. For visual aid, see Figure 3.5. Let (π, hπ) be a permutation from Av(231|12).
We define θ to be λ when restricted to π1 and to be an identity map on hπ. Pro-
vided the gridding is unique for every π ∈ Av(231) and the resulting object is a
permutation from Av(321|12), θ is a bijection. Every Av(231|12) griddable per-
mutation has exactly one gridding of our choice – pushing the gridline as right
as possible. Given that λ fixes the articulation point of π and hπ is unchanged
under θ, the gridline in the image of θ is as far right as possible – making the
gridding unique. Hence, θ : (π, hπ) 7→ (λ(π), hπ) is a bijection from Av(231|12) to
Av(321|12).

The next bijection acts in an analogous way to θ, except this time the sequence
on the RHS is increasing. Therefore, we additionally need to show that there
always is a point on the RHS below an articulation point.

Theorem 3.4.3. There exists a bijection ψ : Av(231|21)→ Av(321|21).

Proof. Since the LHS classes in these juxtapositions are the same as those in

40

Theorem 3.4.2, the above proof carries over to this case as it is. One only needs
to notice, additionally, that θ (and hence ψ) fixes the articulation point and acts
as identity on the RHS sequence of points. This preserves the relative vertical
position of the articulation point and any point on the RHS. Therefore, if there is
a point on the RHS below the articulation point in a π ∈ Av(231|21), then there
is a point on the RHS and below the articulation point of ψ(π) ∈ Av(321|21).

Unlike the bijections θ and ψ, the last bijection φ does not make use of
Lemma 3.4.1. Instead, we reshuffle excursions in the Dyck paths and reverse
the order of up steps in the middle excursion M.

Theorem 3.4.4. There exists a bijection φ : Av(312|21)→ Av(312|12).

Proof. The idea of this bijection is to “reverse” the Dyck path on the LHS of the
juxtaposition in some sensible way — this also leads to the sequence hπ being re-
ordered. Provided this is done in a reversible way, we are done. Let π ∈ Av(312|12)

be π = π1π2. Let π1 be represented by a Dyck path P and let P1 ⊕ · · · ⊕ Pk,
k ≥ 1, be the decomposition of P into excursions. Recall from Section 3.3.3 the
way Av(312|21) was enumerated. One of the excursions in P, say Pi, was de-
scribed by part M in the CFG. Construct a new Dyck path W′ from P by setting
W′ = Pi+1⊕ · · · ⊕ Pn⊕ Pi⊕ P1⊕ · · · ⊕ Pi−1. Recall that the part Pi is of the form
U . . .U1 . . .R. We can, without interfering with the structure of the excursion Pi
write the names of the up steps in the opposite direction to obtain Wi: a letter
from {U,U1,U} at position ` in Pi will assume position |Pi| − ` in the new Wi.
This way, up steps and down staps remain preserved (the shapes of Pi and Wi are
the same). Given that Pi (hence also Wi) is an excursion, there is a 21 in π1 to
enclose the lowest (in the case of Wi the highest) point on the RHS. Given the
transformation from P to W = Pi+1⊕· · ·⊕Pn⊕Wi⊕P1⊕· · ·⊕Pi−1, vertical steps in
W are in a different order than they originally were in P. This results in the corre-
sponding sequence hω being a respective reshuffle of hπ. It is easy to check that the
permutation (ω, hω) is in the juxtaposition class Av(312|12). Given that the above
transformation from Av(312|21) to Av(312|12) is unambiguous (i.e. reversible), we

41

conclude that

P1 ⊕ · · · ⊕ Pk 7→ Pi+1 ⊕ · · · ⊕ Pn ⊕Wi ⊕ P1 ⊕ · · · ⊕ Pi−1

gives rise to the bijection φ : Av(312|21) → Av(312|12) such that φ : (π, hπ) 7→
(ω, hω).

Theorems 3.4.2, 3.4.3 and 3.4.4 complete the information in Table 3.1.

3.5 Conclusion

Table 3.1 enumerates the “simplest” grid classes that are not monotone. The next
step could see Catalan class replaced by a more complicated one, or increased
number of cells. If exact enumeration is beyond reach, it would be interesting
to obtain information about the generating functions of such grid classes. For
instance, consider a 1× k monotone grid class with one cell replaced with a more
complex permutation class C. Can we say anything about the generating function
of such classes? Or even enumerate some of them exactly? For what type of cells
C? In Chapter 4, we consider these 1 × k monotone grid classes with one cell
replaced by a context-free class C. We are able to prove that such grid classes are
context-free themselves and their generating functions are algebraic. We do this
in a constructive way and thereby allowing for exact enumeration in cases with
manageable complexity. Nevertheless, there is much scope for generalizations in
other directions. We elaborate on these thoughts in Section 4.4.

A problem not closely related to the exploration of grid classes, but interesting
nevertheless, is finding a bijection between the juxtaposition class C = Av(312|21)

and the class Av(4312, 3142). They happen to be enumerated by the same sequence
A165538 on OEIS as we repeatedly mentioned before. See Albert, Atkinson and
Vatter [AAV14] for their enumeration of Av(4312, 3142).

42

http://oeis.org/A165538
http://oeis.org

Chapter 4

Iterated juxtapositions

The goal of this chapter is to make further progress on describing permutation grid
classes. In Chapter 3, we focused on exact enumeration of a specific set of permu-
tation grid classes of the form C|M, where C is a Catalan class,M is a monotone
class, and the gridding is right-most. In this chapter, we trade some amount of
“exactness” for more generality. In particular, we address permutation grid classes
of the form M1| . . . |Mk|C|Mk+1|, . . . |Mk+`, for some k, ` ≥ 0, where C is an
arbitrary context-free permutation class. We define what context-free means in
Section 4.1. For now, let us note that “Context-free” is significantly more general
than “Catalan”, yet well-behaved enough to deal with. As opposed to the Cata-
lan classes, we do not enumerate all these context-free juxtapositions exactly as
there are infinitely many of them (compare that to the six Catalan juxtapositions)
and they could be very disparate. In principle though, our method allows us to
enumerate each one of such classes individually. However, exact enumeration is a
mere side-product. Instead, we focus on proving that the permutation classes of
the formM1| . . . |Mk|C|Mk+1| . . . |Mk+` admit algebraic generating functions.

Algebraicity follows from the context-free property of the class itself. In fact,
context-freeness is what we work with and exploit. Algebraicity of the generating
function is a consequence of it. Still, notice that algebraic generating functions are
as “nice” as one can hope for given that many generating functions enumerating

43

context-free classes are already algebraic and non-rational. Below is a hierarchy of
families of generating functions showing that the family of algebraic power series
is one of the more special ones.

rational ⊂ algebraic ⊂ D-finite ⊂ D-algebraic ⊂ power series

From this viewpoint, our result states that by appending an arbitrary but
finite number of monotone classes on either side of a context-free class C, the
resulting class does not lose context-freeness and its generating function does not
get qualitatively worse compared to the one enumerating C. A notable corollary of
this result is, for instance, that juxtaposition of monotone classes on either side of
a permutation class C with finitely many simple permutations admits an algebraic
generating function. This is a significant subcase and classes with finitely many
simples were studied in e.g. [AA05] and [BHV08a]. Moreover, we work out several
examples explicitly to obtain exact generating functions. These are Av(321|21)

(enumerated in Chapter 3 by a different method), M|M|M from [Bev15b], and
S|M (separable next to monotone).

4.1 Introduction, definitions, prerequisites

To begin, we juxtapose a context-free permutation class C with a finite row of
monotone classesM1| . . . |Mk on the right. Additionally, we assume for the mo-
ment that eachMi is monotone and increasing. We later argue that for decreasing
classes, a symmetry of our argument applies and renders the case essentially iden-
tical to monotone increasing M. We also show that by extending our original
arguments, we can handle appending M on both sides: the left-hand side and
the right-hand side of C. So eventually without loss of generality, we append only
increasing M and only from the right — at least for now. As mentioned above,
the work in this chapter extends the work in Chapter 3 in two directions. One,
the condition that C is a Catalan permutation class is replaced by requiring C to
only be context-free. Two, juxtaposition from the right is iterated a finite num-

44

ber of times instead of just once. Before we proceed with the statement of the
result, let us set the scene. The following definition is taken from Flajolet and
Sedgewick [FS09], Section I.5.4, Definition I.13.

Definition 4.1.1 (Context-free specification). A class C is said to be context-free
if it coincides with the first component S1 of a system of equations

S1 = f1(Z,S1, . . . ,Sr)
...

Sr = fr(Z,S1, . . . ,Sr)

(4.1)

where each fi is a constructor that only involves operations of combinatorial sum
(+) and cartesian product (×), as well as the neutral/empty class E = {∅}.

For our purposes, two classes are the same if there exists a bijection between
them. The following definition implies this.

Definition 4.1.2. Two combinatorial classes are combinatorially isomorphic if and
only if their counting sequences are identical. This is equivalent to the existence
of a size-preserving bijection between the two classes.

Before we proceed to modify the definition of a context-free class, we state
the key result of Chomsky and Schützenberger as Theorem 4.1.3. It relates the
character of the class’s context-free combinatorial specification to the character of
the class’ generating function. If the former is “nice”, then so is the latter. Our
work then consists of proving that the juxtaposition classes in question have “nice”
combinatorial specifications. Once that is known, Theorem 4.1.3 translates the
result into the language of generating functions.

Theorem 4.1.3 (Chomsky-Schützenberger, Proposition I.7. in [FS09]). A com-
binatorial class C that is context-free admits an ordinary generating function that
is an algebraic function. In other words, there exists a (non-null) bivariate poly-
nomial P (z, y) ∈ C[z, y] such that

P (z, C(z)) = 0.

45

As mentioned, we are going to need a modification of the definition of a context-
free class that will allow us to decorate context-free permutation classes.

Definition 4.1.4 (Tracking the left-most and the right-most points). We say that
a context-free specification of C tracks the right-most and the left-most point by
vertical position if it is combinatorially isomorphic to the context-free class with
the specification S in (4.2) and all Cartesian products in S are recorded left-to-
right as they occur bottom-to-top in C. The asterisk (∗) [circle (◦)] in S mark the
right-most [left-most] point, or the block which contains the right-most [left-most]
point inside C∗i [C◦i]. Notice that a class can contain both the left-most and the
right-most point, e.g. C◦∗. Analogously, we use four different atoms to describe
permutation points: the usual point Z, the rightmost point Z∗, the leftmost point
Z◦, and the rightmost point that is also leftmost, Z◦∗.

S =



C∗0 = f ∗0 (Z,Z∗, Ci, C∗i)
...

C∗r = f ∗r (Z,Z∗, Ci, C∗i)

C◦0 = f ◦0 (Z,Z◦, Ci, C◦i)
...

C◦r = f ◦r (Z,Z◦, Ci, C◦i)

C◦∗0 = f ◦∗0 (Z,Z∗,Z◦,Z◦∗, Ci, C∗i , C◦i , C◦∗i)

...

C◦∗r = f ◦∗r (Z,Z∗,Z◦,Z◦∗, Ci, C∗i , C◦i , C◦∗i)

C0 = f0(Z, C0, . . . , Cr)
...

Cr = fr(Z, C0, . . . , Cr)



(4.2)

where 0 ≤ i ≤ r.

If a class C∗ tracks the right-most point as outlined above, we refer to C∗ as
a starred class. Similarly, Z∗ is a starred point, or simply the right-most point.

46

Analogously, we have a circled class C◦ and a circled point Z◦. On the other hand,
we will also use the terms starless class or starless point to refer to a class without
a star/asterisk. For example, C, C◦ and Z,Z◦. Given the above definition, we
assume from now on that every permutation in class C is context-free and admits
a specification that tracks the right-most point. When we need to track the left-
most point we declare it explicitly.

The Cartesian product is naturally non-commutative which conveniently helps
us to keep track of vertical positions. Therefore, requiring that the combinatorial
specification keeps track of the rightmost point by its value amounts to merely
picking a specific combinatorial specification according to how it happens to encode
the right-most point in C.

Let us consider an example of how vertical order translates into left-to-right
order in the Cartesian product. For instance, ZCCD refers to a term which has
a single point at the bottom, then somewhere above it (and to the left or to the
right of it) there is an element from C, then another element of C is further above
the previous one, and above all of this there is an element from D. Schematically,
it could look something like the class in Figure 4.1.

D

C

C

Z

Figure 4.1: An example of a class which would correspond to a term ZCCD in a combi-
natorial specification that preserves the vertical (bottom-to-top) order of elements.

Example 4.1.5. The following is a context-free specification for the class of sep-
arable permutations (non-empty):

S = Z + S⊕S + S	S

S	 = Z + S⊕S

47

S⊕ = Z + S	S,

where we use S	 and S⊕ to denote the skew-indecomposable and sum-indecomposable
permutation classes. Now, among all context-free specifications of S, we insist on
picking the following one to track the rightmost point:

S∗ = Z∗ + S⊕S∗ + S∗S	
S = Z + S⊕S + SS	
S	 = Z + S⊕S

S⊕ = Z + SS	.

(4.3)

In (4.3), the class of separable permutations is represented according to the de-
composition in (4.4), encoding vertical order as left-to-right. Notice, in particular,
that there are multiple combinatorial specifications of S that track the right-most
points. The correctness of the one we chose is clearer in the following schematic
diagram.

S∗ = Z +
S⊕

S∗
+

S∗
S	

S = Z +
S⊕

S
+

S

S	

S	 = Z +
S⊕

S

S⊕ = Z +
S

S	

(4.4)

Another combinatorial specification of S that tracks the rightmost point is the

48

following one.

S∗ = Z∗ +
S

S∗⊕
+

S∗	

S

S∗	 = Z∗ +
S

S∗⊕

S∗⊕ = Z∗ +
S∗	

S

S = Z +
S

S⊕
+

S	

S

S	 = Z +
S

S⊕

S⊕ = Z +
S	

S

You will have noticed that we needed to define S∗	 and S∗⊕ in order for this second
specification to be closed. That is why, in Section 4.3.3, we prefer to work with (4.4)
instead.

Moving from Example 4.1.5 back to the general setting, let

V = {Z,Z∗, C0, . . . , Cr, C∗0 , . . . , C∗r , C◦0 , . . . , C◦r , C◦∗0 , . . . , C◦∗r }

be the collection of all variables occurring in the polynomials fi, f ∗i , f ◦i , and f ◦∗i .
When we do not care to distinguish between fi and fj or fi, f ∗i , f ◦i , and f ◦∗i , we
simply write f for a polynomial in variables from V . Similarly, when we do not
distinguish between two variables in V , we simply write X ∈ V . As we just
mentioned, each f is a polynomial. We refer to its terms by Th as in f =

∑N
h=0 Th.

Each term Th is a product of the variables in V and for a function f ∗, each Th

49

contains exactly one starred variable (there is exactly one rightmost point in each
term). The same holds for f ◦.

One of the problems of enumerating permutation grid classes is that there are
often multiple legal ways to grid a permutation in a given grid class. Therefore,
one of the key issues we need to address is to choose a particular gridding. We
represent every griddable permutation from a juxtaposition by a unique gridded
version of it. We pick the gridded version that maximises the element on the right-
hand side (RHS) of the juxtaposition. Note that this is a diversion from Chapter 3.
The following convention makes this concept explicit. See also Figure 4.2 for an
illustration.

Figure 4.2: On the LHS is a permutation from C while on the RHS is a monotone
increasing permutation. The gridline is as far left as possible: if it were shifted further
to the left, the red points would form a copy of 21 on the RHS.

Convention: Let π be a permutation from C1|C2. The gridline in π is chosen to
be the left-most possible. I.e. if it was any further left, the sub-permutation to the
right of it would not belong to the designated class C2.

The Convention above is a direct consequence of the leftmost gridding. Indeed,
let C|M be a juxtaposition of any permutation class C with a monotone increasing
permutation classM. Given that the gridline is pushed as far left as possible, the
rightmost point in the left cell must be above the leftmost point in the right cell.
Otherwise, the gridline could be shifted one more point further left. Figure 4.2

50

shows this well. The left red point must be above the right left point, otherwise
the gridline would not have been between these two red points.

Although this will be stated later when needed for Proposition 4.2.4, dealing
with juxtapositions from both sides is quite natural. Given a permutation π from
M1| . . . |Mk|C|Mk+1| . . . |Mk+`, we first grid ` monotone classes from the right
according to the Convention. Then flip the picture around a vertical axis and grid
the k monotone classes from the right (they used to be on the left), again according
to the Convention. Of course, after the flip, we need to treat increasingMi as a
decreasing class, and vice versa. At the end, the leftover middle part belongs to C.

We make some further remarks about the way we represent permutations in a
juxtaposition. Let x, y be two vertically consecutive points on the left-hand side
of the juxtaposition C1|C2. An object on the RHS (e.g. a sequence of points if
C2 = M) is said to be associated with x if it is in the horizontal section of the
RHS that falls below x and above y. If x is the bottom most point on the LHS,
then everything below it on the RHS is associated with x. See Figure 4.3 for an
example.

y

x

Figure 4.3: The shaded regions on the RHS each correspond to a gap between two
vertically consecutive points on the LHS. The part of the right-hand side associated with
x is the hatched region.

Juxtapositions will be expressed via application of operators to context-free
classes. We are going to need the following operators: Ω0,Ω1,Ω∞,Ω10,Ω01,Ω11.
They represent various forms/stages of juxtaposing a monotone class next to C, in
other words, Ωi : C 7→ C ′, where both C and C ′ are context-free permutation classes

51

and C ′ is C with some kind of monotone class next to it on the right. It is important
that the property of being context-free is invariant under these operators. Before
we present the properties of Ω operators, we give a short conceptual description
of each of them. All of them juxtapose some form of a monotone increasing class
to the right of an object (whether a class or a point).

Ω0 : juxtaposes (interleaves) an empty permutation to the right of a class or a
point (i.e. it does nothing except remove the star)

Ω1 : juxtaposes a single point to the right of a class or a point

Ω∞ : juxtaposes an increasing sequence (possibly empty) to the right of a class or
a point

Ω10 : juxtaposes an increasing sequence with at least the bottom point, to the
right of a class or a point

Ω01 : juxtaposes an increasing sequence with at least the top point, to the right of
a class or a point

Ω11 : juxtaposes an increasing sequence with distinct top and bottom points, to
the right of a class or a point

Furthermore, to ensure we adhere to the convention for gridding, it is desirable
that all Ω operators respect the rightmost point of the class C they are acting on
according to the following rules.

1. If the operator’s code begins with 1, namely Ω1,Ω10, and Ω11, then the
operator can only be applied to a starred class, or alternatively, to a starless
class occuring before (in left-to-right order) the starred class in the Cartesian
product.

2. If the operator’s code ends with 0 or∞, namely Ω0,Ω10,Ω∞, then its output
is starless. If the operator’s code ends with 1, namely Ω1,Ω01,Ω11, then every
term of the output contains exactly one rightmost point (a starred class or
point).

52

Rules 1 and 2 capture the observations that:

1. If we juxtapose a monotone increasing class next to any class C to obtain
C|M, then the leftmost/lowest point on the RHS must be below the right-
most point on the LHS. This follows from the Convention as already discussed
and even pictured in Figure 4.2.

2. Juxtaposing a class on the right sometimes takes over the rightmost point
from the class on the left and it always removes the star from the class on
the left. See figures associated with definitions of Ω-operators for examples
of when that happens.

Recall that Xi are variables from V . We view every f as a finite sum of terms
Th, each of which is a product of Xis, i.e. Th = X1X2 · · ·Xm for some m = m(h),
with all Xi ∈ V . Without loss of generality, we let k ∈ [m] be the index of a starred
class, i.e. X∗k . In the forthcoming definitions of Ω operators, let C be a permutation
class that admits a combinatorial specification (combinatorially) isomorphic to S

in (4.2). Of course, after applying the Ω-operators, S changes its details but not
the context-free nature. For example, the set of variables V will expand as it must
now include Ωi(X) for some X in the original V .

Operator Ω0

This operator juxtaposes a class (starred or not) with an empty sequence on the
right. Notice, in particular, that Ω0 distributes over both + and ×, and that it
erases ∗.

Ω0(Z) = Z

Ω0(Z∗) = Z

Ω0(Z◦) = Z◦

Ω0(Z◦∗) = Z◦

Ω0(Th) = Ω0(X1 · · ·Xm) = Ω0(X1)Ω0(X2 · · ·Xm)

(4.5)

Operator Ω∞

53

This operator juxtaposes a class (starred or not) with a monotone increasing class
– possibly empty. Again, Ω∞ is distributive over operations + and ×. As Ω0, it
also erases the ∗. We get the following definition of Ω∞. Consult Figure 4.4 with
this definition, where E denotes the empty class.

M = Z +MZ

Ω∞(Z) =M

Ω∞(Z∗) =M

Ω∞(Z◦) = (M+ E)Z◦

Ω∞(Z◦∗) = (M+ E)Z◦

Ω∞(Th) = Ω∞(X1)Ω∞(X2 · · ·Xm)

(4.6)

We only includeM to keep the definition self-contained.

Z/Z∗ Ω∞

Z

ME

Z◦/Z◦∗ Ω∞

Z◦

ME

Figure 4.4: Ω∞: Since Ω∞ erases stars, Z and Z∗ are mapped to the same object.
However, Z◦ is preserved under all Ω operators. We denoteM+ E byME .

Operator Ω1

This operator juxtaposes a class (starred or not) with a single point. It turns out
that Ω1 is linear (over +), but does not distribute over ×. It either introduces or

54

relocates the right-most point ∗.

Ω1(Z) = Z∗Z

Ω1(Z∗) = Z∗Z

Ω1(Z◦) = Z∗Z◦

Ω1(Z◦∗) = Z∗Z◦

Ω1(Th) =

Ω1(X∗1)Ω0(X2 · · ·Xm) if k = 1

Ω1(X1)Ω0(X2 · · ·Xm) + Ω0(X1)Ω1(X2 · · ·Xm), if k > 1.

(4.7)

The base cases (Z,Z∗ and Z◦) are drawn in Figure 4.5. The recursive step Th
consists of two cases. Either the bottom-most class/point X1 in Th is starred (i.e.
X1 = X∗1 orX1 = X◦∗1) or not. IfX∗1/X◦∗1 , then Ω1 must be applied to it (as it must
be applied to a starred class/point or a class/point below it) and Ω0 is applied to
the rest of the classes, Ω0(X2 · · ·Xm). If the first class (or point) X1 is not starred,
then there are two options. Either apply Ω1 to X1 and Ω0 to X2 · · ·Xm, or apply
Ω0 to X1 and recursively apply Ω1 to X2 · · ·Xm. Defining operators recursively
will be useful when we apply them to permutation classes iteratively.

Z/Z∗ Ω1

Z
Z∗

Z◦/Z◦∗ Ω1

Z◦

Z∗

Figure 4.5: Ω1: Juxtaposing a single point to the right of any point means that the
original point is not the right-most anymore and the new one becomes right-most. The
left-most point is unafected.

Operator Ω01

This operator juxtaposes a class C with a monotone sequence that has a distin-
guished right-most (top-most) point but not the left-most (bottom-most) point.
Here, distinguished simply means that we can isolate it from the rest of the points
and treat it separately. Recall that this was not the case for Ω∞. As usual, Ω01

is linear. It does not distribute over the Cartesian product. Also, Ω01 introduces

55

the right-most point if there was none in C/C◦. Like the rest of the operators, Ω01

does not interact with the left-most point in C◦/C◦∗. See Figure 4.6.

Ω01(Z) = (M+ E)Z∗Z

Ω01(Z∗) = (M+ E)Z∗Z

Ω01(Z◦) = (M+ E)Z∗Z◦

Ω01(Z◦∗) = (M+ E)Z∗Z◦

Ω01(Th) = Ω01(X1)Ω0(X2 · · ·Xm) + Ω∞(X1)Ω01(X2 · · ·Xm)

(4.8)

Z/Z∗ Ω01

Z
Z∗

ME

Z◦/Z◦∗ Ω01

Z◦

Z∗

ME

Figure 4.6: Ω01: Juxtaposing a monotone sequence with tracked right-most point to the
right of a point renders that point not right-most (regardless of whether it was or was
not before). The right-most point is now the right-most point on the RHS. Also, Ω01

does not affect whether the original point is left-most. We denoteM+ E byME .

Operator Ω10:
This operator juxtaposes a class C, which might or might not track the left-most
and right-most points, with a monotone sequence on the right which has a distin-
guished left-most (bottom-most) point. Again, Ω10 is linear over +. It erases the
right-most point from C∗/C◦∗ and does not affect the left-most point in C◦/C◦∗.

56

The base cases of the definition below are described in Figures 4.7.

Ω10(Z) = Z(M+ E)Z

Ω10(Z∗) = Z(M+ E)Z

Ω10(Z◦) = Z(M+ E)Z◦

Ω10(Z◦∗) = Z(M+ E)Z◦

Ω10(Th) =


Ω10(X∗1)Ω∞(X2 · · ·Xm) if k = 1

Ω10(X1)Ω∞(X2 · · ·Xm)+

+Ω0(X1)Ω10(X2 · · ·Xm)

}
if k > 1.

(4.9)

Z/Z∗ Ω10

Z

ME

Z

Z◦/Z◦∗ Ω10

Z◦

ME

Z

Figure 4.7: Ω10: Juxtaposing a monotone sequence with tracked left-most point to the
right of a point renders that point not right-most (regardless of whether it was or was
not before) and does not affect whether that point is left-most. We denote M + E by
ME .

Operator Ω11: This operator juxtaposes a class C, which might or might not
track the right-most or left-most points, on the right with a monotone increasing
sequence that has both its extremal points distinguished: the left-most point and
the rightmost point. As usual, Ω11 is linear over +. Also, Ω11 does not affect
the left-most point of C◦/C◦∗ and replaces the right-most point of C∗/C◦∗. See

57

Figure 4.8.

Ω11(Z) = Z(M+ E)Z∗Z

Ω11(Z∗) = Z(M+ E)Z∗Z

Ω11(Z◦) = Z(M+ E)Z∗Z◦

Ω11(Z◦∗) = Z(M+ E)Z∗Z◦

Ω11(Th) =



Ω11(X∗1)Ω0(X2 · · ·Xm)+

+Ω10(X∗1)Ω01(X2 · · ·Xm)

}
if k = 1

Ω11(X1)Ω0(X2 · · ·Xm)+

+Ω10(X1)Ω01(X2 · · ·Xm)+

+Ω0(X1)Ω11(X2 · · ·Xm)

 if k > 1.

(4.10)

Z/Z∗ Ω11

Z
Z∗

ME

Z

Z◦/Z◦∗ Ω11

Z◦

Z∗

ME

Z

Figure 4.8: Ω11: juxtaposing a monotone sequence with tracked left-most and right-most
most points to the right of a single point. The RHS now contains the right-most point
whether we started with Z,Z∗,Z◦ or Z◦∗. The original point was the left-most, this
property of it remains unaffected. We denoteM+ E byME .

To help us with enumeration, we append phantom points to permutations or
permutation classes. By phantom, we mean a temporary extra point that is not
really supposed to be there. The reason we need to do such a thing comes up in
the situation portrayed in Figure 4.9. We said that in a juxtaposition we associate
monotone sequences (on the RHS) with points (on the LHS) by placing them into
the gaps directly below those points, see Figure 4.3. However, in a juxtaposition,
the points on the RHS can occur above the top-most point on the LHS as well. So
we are one gap short. To remedy this, we add a temporary point to the permutation

58

on the LHS. It is placed above all other points on the LHS and thereby creates
the additional gap that we were missing. After applying the operators, we then
remove this extra point from our counting expression. Next, we offer a formal
definition of a phantom point.

p

x
new gap

Figure 4.9: Compare with Figure 4.3. Phantom point p created an extra gap where we
can place a monotone sequence — above the topmost point x of π = 2413. When done
with enumeration, it is necessary to remove p as it is not part of π and we do not want
it to distort the generating function.

Definition 4.1.6 (Phantom point). Let π be a permutation from C. An upper
phantom point p of π is a point temporarily added to π that has value |π|+ 1 and
position 0. In other words, if π′ denotes π with an added upper phantom point,
then

π′ = p	 π.

We sometimes refer to π as an upper phantom point of C, meaning that every π in
C is treated as π′ = p	 π. A lower phantom point of π, usually denoted by q, is a
point external to π that has value 0 and position 0. In other words, if π′ denotes
π with an added lower phantom point, then

π′ = q ⊕ π.

We always need only one phantom point at a time and we will always specify which
one. If C is equipped with a phantom point, it is denoted by C.

59

Given that phantom points act as usual points of a permutation, they get acted
on by Ω operators. Exactly as intended. It will become clear why we need the
lower phantom point when we append decreasing sequences on the right side of
context-free classes.

Before we give an example of how to apply Ω11 and how a phantom point
behaves in practice, let us phrase one last observation as a lemma. It will be
useful in the forthcoming proofs and examples.

Lemma 4.1.7. The following operators “ignore” the right-most points (stars) in
their arguments as indicated below.

1. Ω0(C∗) = Ω0(C) = C

2. Ω∞(C∗) = Ω∞(C)

3. Ω01(C∗) = Ω01(C).

Proof. First, notice that any term in any polynomial from a context-free specifica-
tion of some C remains unaffected by Ω0. This follows from the definition. Second,
again by definition, Ω0 acts identically on starred and starless objects. This proves
the first item. For the same reasons, action of Ω∞ and Ω01 does not depend on
the rightmost point in the class they take as argument.

Having defined all necessary concepts, let us consider an example of Ω11 acting
on a term Th = X1X2X

∗
3X4p = X1X2X

∗
3X4Z, where p is an upper phantom point.

For no particular reason we assume that X1X2X3X4 are classes inflating 2413.
See Figure 4.10 for pictorial representation of the juxtapositions as well as their
descriptions in terms of Ω operators in the captions. We use Lemma 4.1.7 to
simplify the expressions by omitting Ω0 operator, e.g. Ω0(Z) reduces to Z. The
first row of Figure 4.10 shows the terms in the recursion which only rely on Ω11

and Ω0 operators. The remaining terms do not use Ω11, however they additionally
employ Ω∞, Ω10, and Ω01 operators.

60

p

X4

X∗3
X2

X1

Ω11(X1)X2X3X4Z

p

X4

X∗3
X2

X1

X1Ω11(X2)X3X4Z

p

X4

X∗3
X2

X1

X1X2Ω11(X∗3)X4Z

p

X4

X∗3
X2

X1

Ω10(X1)Ω01(X2)X3X4Z

p

X4

X∗3
X2

X1

Ω10(X1)Ω∞(X2)Ω01(X∗3)X4Z

p

X4

X∗3
X2

X1

Ω10(X1)Ω∞(X2X
∗
3)Ω01(X4)Z

p

X4

X∗3
X2

X1

Ω10(X1)Ω∞(X2X
∗
3X4)Ω01(Z)

p

X4

X∗3
X2

X1

X1Ω10(X2)Ω01(X∗3)X4Z

p

X4

X∗3
X2

X1

X1Ω10(X2)Ω∞(X∗3)Ω01(X4)Z

p

X4

X∗3
X2

X1

X1Ω10(X2)Ω∞(X∗3X4)Ω01(Z)

p

X4

X∗3
X2

X1

X1X2Ω10(X∗3)Ω01(X4)Z

p

X4

X∗3
X2

X1

X1X2Ω10(X∗3)Ω∞(X4)Ω01(Z)

Figure 4.10: We apply Ω11 to T = X1X2X
∗
3X4p. Inflation 2413[X2, X4, X1, X3] repre-

sents X1X2X
∗
3X4. Lowest and top-most points on the RHS are bold (distinguished under

Ω11). Lowest point on RHS is below right-most point on LHS.

61

4.2 Main results

Just briefly in this first paragraph we use context-free to refer to “context-free
admitting a combinatorial specification tracking the right-most point”. This sec-
tion presents general results that we are able to obtain with the tools set up in
Section 4.1. First, we prove that a juxtaposition of a non-empty context-free cell
with a non-empty monotone increasing cell is context free. This invariant is stated
as Lemma 4.2.1 and we need it for the proof of the key result, Proposition 4.2.2.
In Proposition 4.2.2, we state that appending monotone increasing classes on the
right side of a context-free permutation class does not change the character of
the original combinatorial specification and hence the generating function of the
obtained juxtaposition class is algebraic. Next we prove that by left-right flips
and up-down flips, we can rephrase appending a decreasing monotone permuta-
tion class into appending an increasing monotone permutation class, and we can
do so on either side of C (left or right). This is established in Propositions 4.2.3
and 4.2.4. Therefore, it turns out that appending a monotone class (increasing or
decreasing) on either side of a context-free permutation class preserves the char-
acter of the combinatorial specification and hence the character of the generating
function of such a class. We use induction to prove that after finitely many such
juxtapositions, the resulting class is still context-free and is enumerated by an alge-
braic generating function. This is our main result and is stated as Theorem 4.2.5.
In addition to this general setting, we show in a Corollary 4.2.6 that the same
holds for all permutation classes with finitely many simple permutations. These
form a large special case.

Let us now state the key lemma expressing the “context-freeness invariant” with
care.

Lemma 4.2.1. Let C be a context-free permutation class and let S be its com-
binatorial specification which tracks the rightmost point of C by vertical position
(value). Let M be a monotone increasing permutation class. Consider a class C ′

of permutations π which admit our usual leftmost gridding as π = π1|π2 where
π1 ∈ C and π2 ∈ M and neither π1 nor π2 is empty. Then C ′ is context-free and
admits a combinatorial specification S ′ that tracks the rightmost point by vertical

62

position (value).

Proof. In the language of Ω operators, expressing C ′ requires installing a phantom
point p above C to construct C∗. Furthermore, we will express C ′Z instead of C ′,
since removing the phantom point from each permutation in C ′Z is simply a matter
of later removing that trailing Z from every term (product) T in its combinatorial
specification. Notice that every term T indeed has such a Z at the end of it as
every term has a phantom point on top. This means that if C ′Z has a context-free
specification that tracks the rightmost point by value, then so does C ′. Therefore,
the expression for C ′Z is the following one.

C ′Z = Ω1(C∗) + Ω11(C∗). (4.11)

Notice that as defined, C ′Z is merely a combinatorial class (as opposed to a per-
mutation class) because it does not contain E +M. Given that C ′Z is simply a
building block in claims about permutation classes, we do not need C ′Z itself to
be a permutation class. It now remains to show two things

1. Ω1(C∗) + Ω11(C∗) indeed represents C ′Z.

2. Ω1(C∗) and Ω11(C∗) admit context-free combinatorial specifications that track
the rightmost points.

If 1. is true, then we simply know that we are proving the right thing. If also 2. is
true, then Ω1(C∗) + Ω11(C∗) also admits a context-free combinatorial specification
that tracks the rightmost point and by 1. we have indeed shown that the conclusion
of Lemma 4.2.1 holds.

Let us begin by proving 1. This follows from the definitions of Ω1 and Ω11. We
only briefly describe how as it is straightforward yet tedious. One has to accept
that Ω1 represents a cell with a single point juxtaposed on the right of its argument
so that this point is always below the rightmost point of the left cell (to ensure

63

the leftmost possible gridding). We recall the definition of Ω1.

Ω1(Z) = Z∗Z

Ω1(Z∗) = Z∗Z

Ω1(Th) =

Ω1(X∗1)Ω0(X2 · · ·Xm) if k = 1

Ω1(X1)Ω0(X2 · · ·Xm) + Ω0(X1)Ω1(X2 · · ·Xm), if k > 1.

The base cases clearly do juxtapose a point on the RHS below the point on the LHS.
See Figure 4.5 and recall that reading the Cartesian product left-to-right reflects
the bottom-to-top order in the permutation. As for the recursive step, notice that
if the rightmost point is in the bottom-most term of the product, then we do not
apply Ω1 above it at all (and so the leftmost point on the RHS is not above the
rightmost point on the LHS). Operator Ω0 is applied to the rest of the terms in
the product, meaning that there is nothing on the RHS next to those terms. If
the bottom-most term of the product does not contain the rightmost point, then
there are two options. Either the single point on the RHS is next to this term or
it is not. These are the two expressions on the second line of the recursive step.
Notice that second term involves a recursion on the tail of the product which is
strictly shorter in length than Th, so the procedure terminates. And therefore, Ω1

indeed represents a juxtaposition of two non-empty cells as desired, provided that
its argument is non-empty (which we make sure it is). To show that Ω11 correctly
expresses the juxtaposition we want is slightly more complicated. The definition
of Ω11 depends on the definitions of Ω10,Ω01,Ω∞ and requires a more tedious
verification which we do not do here. However, in Figure 4.10 we demonstrate the
definition of Ω11 on a simple Th to make it easier to work through the definition.
We conclude that point 1. is valid.

To show that 2. holds, we need to revisit the definitions of Ω1 and Ω11 again.
Notice that items of the form Ωi(X) (for X ∈ V) will need to be added to V .
We work our way through the definition Ω1 and leave Ω11 to the reader as it
is analogous but significantly longer. The goal is to show that Ω1 preserves the
context-freeness of the combinatorial specification of its input and correctly re-
places the right-most point in the input with the new right-most point (the single

64

point on the RHS). Looking at the definition above, Ω1 does two things. One,
it replaces Z with Z∗Z or Z∗ with Z∗Z. Two, it splits a product Th into two
products: Ω1(X1)Ω0(X2 · · ·Xm) and Ω0(X1)Ω1(X2 · · ·Xm). Each of these prod-
ucts has Ω1 applied to a smaller expression than Th and by induction those are of
the correct form. The rest of each of the two products has Ω0 applied to it which
does not change that part of the expression. Therefore, given that Ω1 is linear over
+, it indeed preserves the context-freeness of the combinatorial specification of its
input. We argued that the rightmost point gets tracked correctly in 1. This con-
cludes our task for Ω1. Similarly, one can verify that Ω11 produces a context-free
output that tracks the rightmost point, provided the input is of this form.

As shown before, 1. together with 2. imply the statement of Lemma 4.2.1.

Proposition 4.2.2. Let C be a context-free permutation class and S its combina-
torial specification which tracks the rightmost point of C by vertical position (value).
LetM1, . . . ,Mk be a sequence of monotone increasing permutation classes. Then
C|M1| . . . |Mk admits a context-free combinatorial specification which tracks the
rightmost point by value. Consequently, C|M1| . . . |Mk admits an algebraic gener-
ating function.

Proof. We prove by induction that for every k ≥ 1, the class C|M1| . . . |Mk ad-
mits a context-free combinatorial specification which tracks the rightmost point
by value. It then follows that there also exists a context-free combinatorial speci-
fication of such a class, simply by dropping ∗ and ◦ decorations. Consequently, it
follows by Theorem 4.1.3 that C|M1| . . . |Mk admits a generating function that is
algebraic.

First, notice that we can rewrite the original juxtaposition as follows to obtain
disjoint terms and every cell in each term non-empty.

C|M1| . . . |Mk = E +M′
k + . . .+M′

1| . . . |M′
k + C ′|M′

1| . . . |M′
k, (4.12)

where, for the moment,M′ and C ′ denote the non-empty versions of the respective
classes. To see where each term comes from, recall that we grid greedily from the

65

right. So if all k cells are empty, then the cell with C must also be empty and
this is represented by E . If there is one non-empty cell, then it must be Mk —
again thanks to the greedy gridding from the right. We continue this way and
obtain exactly (4.12). Furthermore, since all Mi are identical, it follows that
M′

1| . . . |M′
k−1 =M′

2| . . . |M′
k. We will use this during induction.

Base case:
If k = 1, then (4.12) has the following form.

C|M1 = E +M′
1 + C ′|M′

1 (4.13)

Clearly,M′
1 is context-free and admits a combinatorial specification which tracks

the rightmost point by value (we saw this in Section 4.1 asM∗). By Lemma 4.2.1,
C ′|M′

1 is also context-free and admits a combinatorial specification which tracks
the rightmost point by value. Therefore, C|M1 is context-free and admits the right
combinatorial specification — we are done.

Induction step:
For any k greater than 1, let C ′0 = C ′|M′

1| . . . |M′
k−1. By induction assumption, C ′0

is context-free and admits a combinatorial specification that tracks the rightmost
point by value. This is the case as C0 = C|M1| . . . |Mk−1 is all that by induction
assumption and C ′0 is one term of an expression like (4.12) for C0. Therefore,
we need to show that C ′0|M′

k is context-free and admits the right combinatorial
specification. But C ′0 andM′

k meet the conditions of Lemma 4.2.1 and hence the
claim follows. The only term in (4.12) which does not fall within the induction
assumption in an obvious way isM′

2| . . . |M′
k. There was no 1× k− 1 row of non-

empty monotone cells in an expression like (4.12) for C|M1| . . . |Mk−1. On the
other hand, M2 is a context-free class that admits a combinatorial specification
which tracks the rightmost point by value. Therefore, let CM = M2, and we get
M′

2| . . . |M′
k = C ′M|M′

3| . . . |M′
k. Now, this juxtaposition of non-empty cells does

fall under the induction assumption and we are done. Every term in (4.12) is
context-free and admits a combinatorial specification which tracks the rightmost
point by value. Therefore, C|M1| . . . |Mk is such a context-free class and the
Proposition 4.2.2 follows.

66

The major message in Lemma 4.2.1 is that juxtaposing a monotone increasing
class on the right of a context-free class does not qualitatively affect the context-
free class that we started with. This turns out to be a key invariant as it lends itself
to repeated juxtapositions. That is the other crucial message and we introduced it
in Proposition 4.2.2 as “repeated juxtaposing is allowed” for monotone increasing
classes on the right side of a context-free class. These two building blocks are going
to be used as black boxes when we generalise the increasing monotone classes to
any monotone classes and allow the juxtapositions on both sides of the context-free
class.

4.2.1 Extension to decreasing classes and both sides

As advertised, this subsection transforms more general juxtapositions into a form
that Lemma 4.2.1 and Proposition 4.2.2 can deal with. The culmination is The-
orem 4.2.5 which concludes that finitely many juxtapositions of any monotone
classes on either side of a context-free class form a context-free class, which thereby
admits an algebraic generating function.

We begin by proving that it is possible to append decreasing monotone classes
on the right-hand side of a context-free class.

Proposition 4.2.3. Let D be a monotone decreasing permutation class and C
a context-free permutation class that admits a combinatorial specification which
tracks the right-most point by value. Then C|D admits a combinatorial specification
which tracks the rightmost point by value.

Proof. We reduce the juxtaposition C|D to a juxtaposition of the form
C
|M (an

upside-down C|D). However, there are several details that require attention. For
instance, in a juxtaposition C|M, a point x on the LHS is associated with a
sequence on the RHS that falls into the gap immediately below x, see Figure 4.3. If
we want this to be the case for the juxtaposition

C
|M, we must start by associating

points on the RHS of C|D above the points on the LHS. Similarly, If we want an
upper phantom point p to be above and to the left of

C
|M, we must start with a

67

lower phantom point q as in q⊕C|D. Given this set-up, we write C|D as a sum of
disjoint terms.

C|D = E +D′ + C ′|D′, (4.14)

where C ′ and D′ are non-empty versions of C and D′, respectively.

We transform q ⊕ C∗|D into p 	
C∗|M by a flip along the horizontal axis —

otherwise known as complementation. We call the operator that does this job Θ.
The rightmost point stays right-most after the flip, i.e. Θ(∗) = ∗. The phantom
point q assumes the usual position of the phantom point p, i.e. Θ(q) = p, a mere
renaming. The points on the RHS now appear below the ones on the LHS that
they are associated with. It goes without saying that a bottom-to-top specification
can be simply reversed into a top-to-bottom specification in order to facilitate the
upside-down flip. The entire situation is analogous to the one in Lemma 4.2.1.
The only term we need to worry about is when both C and D are non-empty.
Writing the juxtaposition of two non-empty cells in terms of Ω operators gives the
following expression.

C ′|D′ = Θ−1(Ω1(Θ(q ⊕ C∗))) + Θ−1(Ω11(Θ(q ⊕ C∗))).

In other words, we can use all the infrastructure that is in place for monotone
increasing classes to append monotone decreasing classes. Since Θ is bijective, we
transform the decreasing setting into increasing, apply the operators we need to
apply, and then bring the situation back by Θ−1. Figure 4.11 gives an instance of
the upside-down flip transformation.

Proposition 4.2.4. Let D be a monotone decreasing permutation class and C
a context-free permutation class that admits a combinatorial specification which
tracks the leftmost point. Then D|C is context-free and admits a combinatorial
specification which tracks the leftmost point.

Proof. Similar to the upside-down flip in Proposition 4.2.3, the proof proceeds
by transformation of C via a left-to-right flip Φ, then applying Ω operators, and

68

q

C4

C∗3

C2

C1

x

v

y

Θ : ∗ 7→ ∗, q 7→ p

p

H4

H3

H∗2

H1

x

v

y

Figure 4.11: Appending a monotone decreasing class to C amounts to appending a mono-
tone increasing class to C upside-down. In the notation of the figure, H4 =

C1
, H3 =

C2
,

H∗2 =C∗
3
, and H1 =

C4
. Before the flip one needs to associate decorations with gaps

above LHS points, not below LHS points. Additionally, the lower phantom point which
is transformed to the upper phantom point by the upside-down flip.

69

p

C4

C∗3
C◦2

C1

a

b

w

z

Φ : ∗ 7→ ◦

p

H4

H◦3
H∗2

H1

a

b

w

z

Figure 4.12: Left-to-right flip swaps starred and circled points (or classes) and causes the
monotone class to change from decreasing to increasing or vice versa. We also begin with
a point p which is not a phantom point as it is to the right of C. It becomes a phantom
point after Φ is applied to the set-up. The bottom picture is the arrangement representing
the action of Ω operators. We have H1 = C1 , H∗2 = C◦2 (with Z◦ in C◦2 becoming Z∗ in
H∗2), H◦3 = C∗3 (with Z∗ in C∗3 becoming Z◦ in H◦3), H4 = C4 .

undoing the flip. In the process, we need to make sure that the left-most and
the rightmost points are treated correctly, and that the phantom points work
as expected. For this purpose, we need to keep track of the left-most point of
C. First, we require that the combinatorial specification of C tracks the leftmost
point of C. Recall that we denote the objects containing the leftmost point by
C◦ or Z◦. As before, enumerating D|C amounts to enumerating the juxtaposition

70

of two non-empty cells where the one on the left-hand side is D′ and the one on
the right-hand side is C ′. If Φ is the left-to-right flip operator, then enumerating
D|C is the same as enumerating C|M, where M stands for monotone increasing
class, if we remember to keep track of the details (critical points). In particular,
Φ(Z◦) = Z∗ and Φ(Z∗) = Z◦. In contrast to the upside-down flip operator Θ, we
begin with appending an invalid phantom point to C, which becomes valid after
the flip, and is removed afterwards when Φ is undone. Please refer to Figure 4.12
for a visual guide.

D′|C ′ = Φ−1(Ω1(Φ(C◦ ⊕ p))) + Φ−1(Ω11(Φ(C◦ ⊕ p))).

It is clear that after the transformation by Φ, the arrangement is suitable for
application of Ω operators. The correctness follows from Lemma 4.2.1 and Propo-
sition 4.2.2. Therefore, D|C admits a combinatorial specification which tracks the
rightmost point.

Notice that by Proposition 4.2.3 and Proposition 4.2.4, appending increasing
classes on the left-hand side also becomes possible. We wrap up our efforts in the
following theorem.

Theorem 4.2.5. Let C be a context-free permutation class that admits a combina-
torial specification which tracks both the right-most and the left-most points. Let
M1, . . . ,Mk+` be a sequence of monotone, increasing or decreasing, permutation
classes. Then M1| . . . |Mk|C|Mk+1| . . . |Mk+` is a context-free permutation class
that admits an algebraic generating function.

Proof. Once we decide which gridding (from the left side or from the right side) gets
priority, the claim follows by repeated applications of Proposition 4.2.2, Proposi-
tion 4.2.3, and Proposition 4.2.4. Recall that the Ω operators only use the right-
most point and ignore the presence of the left-most point (not deleting the circle,
simply leaving it unchanged). Having both decorations (∗ and ◦) present in C at the
same time does not negatively affect nor gets negatively affected by Ω operators.

In short, Lemma 4.2.1 together with Proposition 4.2.2 guarantee that whatever

71

we start with before the next juxtaposition is context-free and tracks the desired
points correctly. Additionally, Proposition 4.2.2 also deals with the case when we
append an increasing class on the right. The remaining cases are covered by first
manipulating the situation via Proposition 4.2.3 and Proposition 4.2.4 into the
arrangement when Proposition 4.2.2 applies again. Therefore, juxtaposing finitely
many monotone classes on both sides of a context-free C leads to just another
context-free class. Therefore, Theorem 4.1.3 then implies that the generating
function of the resulting class is in fact algebraic.

Corollary 4.2.6. Let C be a context-free permutation class with finitely many
simple permutations and letM1, . . . ,Mk+` be as in Theorem 4.2.5. Then

M1| . . . |Mk|C|Mk+1| . . . |Mk+`

is a context-free permutation class which admits a generating function that is an
algebraic function.

Proof. We show that every context-free permutation class with finitely many sim-
ple permutations admits a combinatorial specification that tracks the right-most
and left-most points. The claim then follows from Theorem 4.2.5.

If Si(C) is the set of simple permutations in C, we say that a vector (C1, . . . , C|σ|)
is admissible, if σ ∈ Si(C) and σ[α1, . . . , α|σ|] is in C for all choices of αi ∈ Ci.
In case of 12 or 21, we insist that C1 in an admissible vector (C1, C2) is always
sum-indecomposable or skew-indecomposable, respectively. For convenience, we
temporarily violate the customary notation about inflations. We use Ci to denote
the i-th class from the bottom in the inflation of σ, i.e. σ[C1, . . . , Ci, . . . , C|σ|] means
that the bottom-most point in σ is inflated by C1, the point immediately above
it in σ is inflated by C2, and so on. In other words, we list the inflation by value
instead of by position. Additionally, assume that the point with value kσ in σ is
the rightmost point of σ and the point with value `σ is the left-most point of σ.
Furthermore, we use a variable X to stand for a class from {C1, . . . , Cr}. We now
give the combinatorial specification template that every context-free class C with
finitely many simples fits into. We only define the classes with both the left-most

72

and the right-most points tracked. However, the combinatorial specification needs
definitions of starred, circled, starles and circleless classes as well. Their definitions
are analogous and take up a lot of space. We skip them.

C◦∗1 = Z +
∑

admissible
(X1,X2)

12[X◦1 , X
∗
2] +

∑
admissible
(X1,X2)

21[X∗1 , X
◦
2]+

+
∑

σ∈Si(C)

∑
admissible

(C1,...,C∗k ,...,C
◦
` ,...,C|σ|)

σ[C1, . . . , C∗k , . . . , C◦` , . . . , C|σ|]

...

C◦∗r = Z +
∑

admissible
(X1,X2)

12[X◦1 , X
∗
2] +

∑
admissible
(X1,X2)

21[X∗1 , X
◦
2]+

+
∑

σ∈Si(C)

∑
admissible

(C1,...,C∗k ,...,C
◦
` ,...,C|σ|)

σ[C1, . . . , C∗k , . . . , C◦` , . . . , C|σ|]

(4.15)

This completes the proof.

Section 4.3.3 gives an example of a small non-trivial class with finitely many
simple permutations (no simple permutations) — the class of separable permuta-
tions, or S. We know Si(S) = ∅ and therefore, the last terms on the RHS in (4.15)
vanishes. We enumerate exactly the juxtaposition of the class of separable permu-
tations with the class of monotone increasing permutations.

Notice that Corollary 4.2.6 is strictly weaker than Theorem 4.2.5. For instance,
Av(321) is a class with infinitely many simple permutations. Indeed, 2413, 246135,
24681357, . . . are all 321-avoiders and all of them are simple. Yet Av(321) admits
a combinatorial specification required by Theorem 4.2.5. We show this in Sec-
tion 4.3.1 where we juxtapose it with a monotone increasing class and enumerate
this juxtaposition exactly using methods developed in Section 4.1.

In Section 4.3.2, we enumerate exactly a repeated juxtaposition of the form
C|M|M where C =M andM is a monotone increasing class.

73

4.3 Applications to exact enumeration

4.3.1 Example: Av(321|21)

In Chapter 3 we dealt with the juxtaposition of a Catalan class with a mono-
tone class by enumerating all such juxtapositions. Here, we re-enumerate one
of these cases, which also serves to illustrate that the method applies to classes
other than those with finitely many simples. This demonstrates the gap between
Corollary 4.2.6 and Theorem 4.2.5.

We represent permutations in Av(321) by Dyck paths below the diagonal, start-
ing in the bottom left corner and going to the top right corner of the grid. An exact
definition of Dyck path can be found in Section 3.2, including Figure 3.1. Also,
below we replicate Figure 3.3 that demonstrates how we associate permutations
from Av(321) with Dyck paths.

Figure 4.13: An example of a reversible process (left to right) of associating a unique
321-avoider with a given Dyck path.

Having set the scene, we can start the enumeration. Let C := Av(321). In a
Dyck path, we denote the right step with R and the up step with U. We choose
the following combinatorial specification that tracks the right-most point of C (we
do not need to track the left-most point).

C∗ = (C + E)RC∗U + (C + E)RU∗

C = (C + E)R(C + E)U.

In a Dyck path, U and R are like brackets – they are interpreted in pairs. Hence,

74

we rewrite the specification into the canonical form (4.16).

C∗ = CC∗Z + C∗Z + CZ∗ + Z∗

C = CCZ + 2CZ + Z.
(4.16)

We use this example to demonstrate the method of Ω operators in full detail. In
practice, one would be able to make the analysis that follows significantly shorter
by exploiting certain ad-hoc properties of this particular juxtaposition. However,
we follow the recipe.

We need to apply Ω operators to C∗ in such a way that the expression represents
the juxtaposition C|M, whereM = Av(21). The final expression that represents
Av(321|21) is

F = E +M+
Ω1(C∗) + Ω11(C∗)

Z
(4.17)

Indeed, the juxtaposition is either empty (term E in F), or the left cell is empty
(termM in F) or both cells are non-empty (terms Ω1(C∗) and Ω11(C∗) in F with
the former representing a single point in the right cell and the latter representing
a sequence of length at least two in the right cell). Notice that the situation where
only the right cell is empty cannot occur because the gridline is as far left as
possible. Enumeration ofM is trivial and so the main issue will be to enumerate
the last two terms of F . The last thing to explain about (4.17) is the “division”
by Z on the RHS. In short, Z−1 removes the phantom point after it is not needed
anymore. Indeed, in Lemma 4.2.1 is written with the Z on the LHS of the identity.
This is merely a notational convenience. The enumeration of Av(321|21) proceeds
by obtaining the generating function for Ω1(C∗) + Ω11(C∗), correcting it by Z−1 to
remove phantom points, and then adding to it the generating function for E +M.
Notice that, in general, any “algebraic” post-correction does not affect the character
of the generating function (if it was algebraic to begin with).

Let us first recall the specification of C∗.

C∗ = Z 	 C∗ = C∗Z

75

Let B be the set of all the classes that need to be defined within the combinatorial
specification of Ω11(C∗). We start with all the terms in F inside B, as we need
them all to be in the combinatorial specification.

B = {E ,M,Ω1(C∗),Ω11(C∗)}

We pop E first, as it is trivial to define.

E = 1 (4.18)

Next, we popM and define it below.

M = Z +MZ (4.19)

The new B is as follows
B = {Ω1(C∗),Ω11(C∗)}.

Next we pop Ω1(C∗) and define it.

Ω1(C∗) = Ω1(C∗Z)

= Ω1(C∗)Z
(4.20)

We update B to include the new undefined class (in red).

B = {Ω1(C∗),Ω11(C∗)}.

We pop the new element from B and define it next. The color coding in (4.21)
and most of the future calculations is there to help the reader trace the origin of
the expressions.

Ω1(C∗) = Ω1(CC∗Z + C∗Z + CZ∗ + Z∗)

= Ω1(C)Ω0(C∗Z) + Ω0(C)Ω1(C∗)Ω0(Z) + Ω1(C∗)Ω0(Z)+

+ Ω1(C)Ω0(Z∗) + Ω0(C)Ω1(Z∗) + Ω1(Z∗)

= Ω1(C)CZ + CΩ1(C∗)Z + Ω1(C∗)Z+

+ Ω1(C)Z + CZ∗Z + Z∗Z

(4.21)

76

We used the facts from Lemma 4.1.7. For instance, Ω0(C∗) = Ω0(C) = C. We also
used the definitions of Ω1 and Ω0, for instance Ω1(Z∗) = Z∗Z and Ω0(Z∗) = Z.
One term remains undefined on the RHS of (4.21), Ω1(C). Since it is the only
new class that needs defining, we will skip pushing it to B and then immediately
popping it out of there. The definition is below.

Ω1(C) = Ω1(CCZ + 2CZ + Z)

= Ω1(C)CZ + CΩ1(C)Z + CCZ∗Z + 2Ω1(C)Z + 2CZ∗Z + Z∗Z
(4.22)

There is no undefined term on the RHS of (4.22) and therefore B is currently a
singleton.

B = {Ω11(C∗)}

Therefore, we define the only class in B.

Ω11(C∗) = Ω11(C∗Z)

= Ω11(C∗)Z + Ω10(C∗)Ω01(Z)

= Ω11(C∗)Z + Ω10(C∗)(M+ E)Z∗Z

(4.23)

We update B according to the last line above (recall that M is already defined
in (4.19)). Both items are new.

B = {Ω11(C∗),Ω10(C∗)}.

Before we proceed, we remark that if an expression is not an argument to any
Ωi, i.e. it is a top-level expression, then it can be evaluated. In what follows,
we will immediately evaluate all top-level expressions as far as is convenient. No-
tice that, because we only apply one layer of Ω operators to any original class
(C, C∗,M,Z,Z∗), all our expressions are top-level.

77

We pop Ω11(C∗) out of B to define it below.

Ω11(C∗) = Ω11(CC∗Z + C∗Z + CZ∗ + Z∗)

= Ω11(CC∗Z) + Ω11(C∗Z) + Ω11(CZ∗) + Ω11(Z∗)

= Ω11(C)Ω0(C∗)Ω0(Z) + Ω0(C)Ω11(C∗)Ω0(Z)+

+ Ω10(C)Ω01(C∗)Ω0(Z) + Ω10(C)Ω∞(C∗)Ω01(Z)+

+ Ω0(C)Ω10(C∗)Ω01(Z) + Ω11(C∗)Ω0(Z) + Ω10(C∗)Ω01(Z)+

+ Ω11(C)Ω0(Z∗) + Ω0(C)Ω11(Z∗) + Ω10(C)Ω01(Z∗)+

+ Ω11(Z∗)

= Ω11(C)CZ + CΩ11(C∗)Z + Ω10(C)Ω01(C∗)Z+

+ Ω10(C)Ω∞(C)(M+ E)Z∗Z + CΩ10(C∗)(M+ E)Z∗Z+

+ Ω11(C∗)Z + Ω10(C∗)(M+ E)Z∗Z+

+ Ω11(C)Z + CZ(M+ E)Z∗Z + Ω10(C)(M+ E)Z∗Z+

+ Z(M+ E)Z∗Z

(4.24)

Updating B yields the following list. The red items those that have not yet been
defined and occur on the RHS of (4.24).

B = {Ω10(C∗),Ω∞(C),Ω11(C),Ω10(C),Ω01(C),Ω01(C∗)}

Before we proceed, we define Ω∞(C) as, in the scheme of things, it is a trivial task.

Ω∞(C) = Ω∞(C)Ω∞(C)Ω∞(Z) + 2Ω∞(C)Ω∞(Z) + Ω∞(Z))

= Ω∞(C)2(M+ E)Z + 2Ω∞(C)(M+ E)Z + (M+ E)Z
(4.25)

Notice that Ω∞(C) is essentially class C where every atom/point is replaced with a
nonempty sequence of points. Indeed, the generating function of Ω∞(C) is C(z/(1−
z), where C(z) is the generating function of C. Having defined Ω∞(C), we can
reduce what are essentially duplicities in B by applying Lemma 4.1.7. This allows
us to disregard Ω01(C∗) and only keep Ω01(C). The new B is below.

B = {Ω10(C∗),Ω11(C),Ω10(C),Ω01(C)}

78

Next, pop Ω10(C∗) out of B. To speed up the procedure, we apply Lemma 4.1.7 to
the expressions below as soon as we can. This way there will not be any need to
post-adjust B.

Ω10(C∗) = Ω10(CC∗Z + C∗Z + CZ∗ + Z∗)

= Ω10(C)Ω∞(C)(M+ E)Z + CΩ10(C∗)(M+ E)Z

+ Ω10(C∗)(M+ E)Z+

+ Ω10(C)(M+ E)Z + CZ(M+ E)Z+

+ Z(M+ E)Z

(4.26)

We do not augment B at all after this definition as everything on the RHS has
either been defined or is already in B. Therefore, we have

B = {Ω11(C),Ω10(C),Ω01(C)}.

We pop Ω11(C) and define it below.

Ω11(C) = Ω11(CCZ + 2CZ + Z)

= Ω11(C)CZ + CΩ11(C)Z + CCZ(M+ E)Z∗Z + Ω10(C)Ω01(C)Z+

+ Ω10(C)Ω∞(C)(M+ E)Z∗Z + CΩ10(C)(M+ E)Z∗Z+

+ 2Ω11(C)Z + 2CZ(M+ E)Z∗Z + 2Ω10(C)(M+ E)Z∗Z+

+ Z(M+ E)Z∗Z

(4.27)

Again, there is nothing in the definition (4.27) which would not be known or
already in B. We do not augment B and it remains as it was.

B = {Ω10(C),Ω01(C)}

79

We pop the next item, Ω10(C).

Ω10(C) = Ω10(CCZ + 2CZ + Z)

= Ω10(C)Ω∞(C)(M+ E)Z + CΩ10(C)(M+ E)Z+

+ CCZ(M+ E)Z+

+ 2Ω10(C)(M+ E)Z + 2CZ(M+ E)Z + Z(M+ E)Z

(4.28)

In (4.28) we do not require any new items. In fact, it turns out that Ω10(C) is
computable from its own definition only, a standalone recursion. There is only one
class left in B.

B = {Ω01(C)}

We pop the last item from B, Ω01(C).

Ω01(C) = Ω01(CCZ + 2CZ + Z)

= Ω01(C)CZ + Ω∞(C)Ω01(C)Z + Ω∞(C)Ω∞(C)(M+ E)Z∗Z+

+ 2Ω01(C)Z + 2Ω∞(C)(M+ E)Z∗Z + (M+ E)Z∗Z

(4.29)

As there is nothing in B and we do not augment it after (4.29), the definition of
Ω11(C∗) is self-contained assuming that we include definitions (4.18), (4.19), (4.20),
(4.21), (4.22), (4.23), (4.24), (4.25), (4.26), (4.27), (4.28), and (4.29).

The corresponding calculations are done in Mathematica [Incb] and can be
found in exampleAv321Av21.nb inside the scripts folder at

https://github.com/jsliacan/thesis.

The gerating function of Av(321|21) coincides with the one obtained in Sec-
tion 3.3.2 and we restate it below for convenience.

F (z) = −1−
√

1− 4z + z(−4 +
√

1− 4z +
√

1− 5z/
√

1− z)

2z2

80

https://github.com/jsliacan/thesis

The first twelve term sof the counting sequence enumerating Av(321|21) are

1, 1, 2, 6, 23, 98, 434, 1949, 8803, 39888, 181201, 825201, 3767757.

The sequence is in the OEIS [Inca] as A278301.

4.3.2 Example: Av(21|21|21)

As before, Av(21) denotes the class of increasing permutations and Av(21|21|21)

then refers to a juxtaposition of Av(21) with Av(21), and then the resulting class
juxtaposed with Av(21) (on the right). We know that Av(21), and its non-empty
version that we call M, are context-free classes and clearly admit combinatorial
specifications that track the right-most point. This example is a very simple yet
not completely degenerate case of iterated juxtapositions with at least three cells.
We choose to give full details of enumeration to illustrate how our methods work on
repeated juxtapositions. While it is entirely possible to enumerate this class by fol-
lowing the algorithmic definitions in Section 4.2, we exploit the slight degeneracies
in this example to shorten the write-up.

First of all, we rewrite Av(21|21|21) in terms of Ω operators (defined in Sec-
tion 4.1). Because we choose the gridding with gridlines as far left as possible
(gridding from the right), every griddable permutation is griddable in one of the
following ways: either all three cells are non-empty, or only the leftmost cell is
empty, or only the rightmost cell is non-empty, or all three cells are empty. If
all three cells are empty, this case is represented by the empty class E . If the
leftmost two cells are empty, this is essentially the monotone increasing class M
(non-empty, as before). For the remaining cases, observe that the rightmost jux-
taposition does not need to track the rightmost point as nothing further will be
juxtaposed on its right. Therefore, at the outermost layer, we are only interested
in expressions of the form Ω10(M) and Ω10(M|M) (when one and zero cells are
empty, respectively). Consider the case when the leftmost cell is empty and the
remaining two cells are non-empty. We express this situation by Ω10(M∗)(M+E)

— the left of the two cells is a non-empty monotone increasing class whose combi-

81

https://oeis.org/A278301

natorial specification tracks the rightmost point,M∗ (defined in (4.32)). The term
(M+ E) makes sure that we allow the right cell to place points above everything
in the left cell. We either use a phantom point or need the term (M+ E) to place
points above the topmost point on the LHS. The other case is when all three cells
are nonempty. Then we need to use the phantom point and track the rightmost
point in the middle cell. So, the middle cell can have a single point or a sequence of
length at least two. Therefore, the first two cells are either Ω1(M∗

) or Ω11(M∗
).

We then apply Ω10 to them. Notice that we do not multiply by M + E as we
are already using the phantom point. Consequently, we remove the trace of the
phantom point by dividing the 3-cell expression by Z. Therefore, the final object
that we aim to enumerate is F below.

F = E +M+ (M+ E)Ω10(M∗) +
1

Z
(Ω10(Ω1(M∗

)) + Ω10(Ω11(M∗
))) (4.30)

Notice that F is not a class or a combinatorial specification of a class. It is merely
an expression that is formally correct and captures both structure and enumera-
tion of Av(21|21|21). It is a sort of hybrid benefiting from both the combinatorial
specification and the generating function of Av(21|21|21). Therefore, we will han-
dle (4.30) term by term. The “division” in the last term will be resolved in a
manner similar to that in Lemma 4.2.1 or Section 4.3.1 — we will enumerate
Ω10(Ω1(M∗

)) + Ω10(Ω11(M∗
)) and remove the phantom point afterwards.

We begin by defining the most simple classes so that we do not have to worry
about them later.

M = Z +MZ (4.31)

M∗ = Z∗ +MZ∗ (4.32)

M∗
=M∗Z (4.33)

Ω0(M) = Z +MZ =M (4.34)

Ω0(M∗) = Z +MZ =M (4.35)

82

We will often use the fact that (M+ E)Z =M, such as in (4.34) and (4.35). We
also use it to collapse Ω∞(Z∗) into M as follows: Ω∞(Z∗) = (M + E)Z = M.
First, define Ω∞(M).

Ω∞(M) = Ω∞(Z) + Ω∞(M)Ω∞(Z)

=M+ Ω∞(M)M
(4.36)

Next, we define the terms with two nonempty cells.

Ω10(M) = Ω10(Z) + Ω10(MZ)

= Ω10(Z) + Ω10(M)Ω∞(Z) + Ω0(M)Ω10(Z)

=MZ + Ω10(M)M+MMZ

(4.37)

Observation 4.3.1. Notice that Ω10 has the same effect on M as on M∗, i.e.
Ω10(M∗) = Ω10(M). This is quite peculiar as Ω10 does not ignore the rightmost
point in its argument. However, in M and M∗, the rightmost point is also the
topmost point. And hence every point inM andM∗ is below the rightmost point.
By the same reasoning, Ω1(M∗) = Ω1(M) and Ω11(M∗) = Ω11(M). We will use
these identities below to avoid defining expressions duplicitously.

We have now defined every class needed for the first three terms of (4.30).
Next, we define the terms that represent the three nonempty cells with a phantom
point above the first cell. As in Section 4.3.1, let B be the stack of undefined items.
We begin with

B = {Ω10(Ω1(M∗
)) + Ω10(Ω11(M∗

))}.

Since we have definedM∗ in (4.33), we now need to push Ω1(M∗
) and Ω11(M∗

)

onto the stack before we define anything else. Hence,

B = {Ω1(M∗
),Ω11(M∗

),Ω10(Ω1(M∗
)),Ω10(Ω11(M∗

))}.

83

We pop the first item and define it below.

Ω1(M∗
) = Ω1(M∗)Ω0(Z)

= Ω1(M)Z
(4.38)

Recall that Ω1(M∗) is the same object as Ω1(M) thanks to the Observation 4.3.1,
that the rightmost point is also the topmost point in M. Therefore, we need to
define Ω1(M). We skip pushing and popping it onto and from the stack and define
it straight away.

Ω1(M) = Ω1(Z +MZ)

= Ω1(Z) + Ω1(M)Ω0(Z) + Ω0(M)Ω1(Z)

= Z∗Z + Ω1(M)Z +MZ∗Z

(4.39)

Currently, B looks as follows

B = {Ω11(M∗
),Ω10(Ω1(M∗

)),Ω10(Ω11(M∗
))}.

We pop the next element and break it down.

Ω11(M∗
) = Ω11(M∗Z)

= Ω11(M∗)Ω0(Z) + Ω10(M∗)Ω01(Z)

= Ω11(M∗)Z + Ω10(M∗)MZ

(4.40)

Where the last line follows from the definition of Ω0 and Ω01 and from the fact
that (M + E)Z =M. Given that Ω11(M∗) = Ω11(M) and Ω10(M∗) = Ω10(M),
we push the only new element Ω11(M) onto B (recall that Ω10(M) was defined
in (4.37)).

B = {Ω11(M),Ω10(Ω1(M∗
)),Ω10(Ω11(M∗

))}

We pop Ω11(M) next.

Ω11(M) = Ω11(Z) + Ω11(M)Ω0(Z) + Ω0(M)Ω11(Z)+

+ Ω10(M)Ω01(Z)

=MZ∗Z + Ω11(M)Z +MMZ∗Z + Ω10(M)M∗Z

(4.41)

84

We used the definition of Ω11, Ω0 and Ω01 to evaluate them on the base case input
Z. There is no new class on the last line of (4.41) and hence we need not update
B which now is

B = {Ω10(Ω1(M∗
)),Ω10(Ω11(M∗

))}.

Notice that we now know both inner expressions of the items in B: Ω1(M∗
) and

Ω11(M∗
). It therefore remains to define the action of Ω10 on them. We pop the

next item from B.

Ω10(Ω1(M∗
)) = Ω10(Ω1(M∗)Ω0(Z)) by (4.33)

= Ω10(Ω1(M∗))Ω∞(Ω0(Z)) by def of Ω10

= Ω10(Ω1(M))M

(4.42)

where the last line follows from Ω∞(Ω0(Z)) = Ω∞(Z) = M and Ω10(Ω1(M∗)) =

Ω10(Ω1(M)) by Observation 4.3.1. Given that again we only have one new term
to be defined, we omit pushing and popping it to and from B. Therefore,

Ω10(Ω1(M)) = Ω10(Ω1(Z)) + Ω10(Ω1(M)Ω0(Z)) + Ω10(Ω0(M)Ω1(Z))

= Ω10(Z∗)Ω∞(Z) + Ω10(Ω1(M))Ω∞(Ω0(Z))+

+ Ω10(Ω0(M))Ω∞(Z∗Z) + Ω0(Ω0(M))Ω10(Z∗)Ω∞(Z)

=MZM+ Ω10(Ω1(M))M+ Ω10(M)MM+MMZM

(4.43)

There are no undefined objects in the last line and hence B is now a singleton: it
remains to define Ω10(Ω11(M∗

)).

Ω10(Ω11(M∗
)) = Ω10(Ω11(M∗Z))

= Ω10(Ω11(M∗)Ω0(Z)) + Ω10(Ω10(M∗)Ω01(Z))

= Ω10(Ω11(M∗))Ω∞(Ω0(Z))+

+ Ω10(Ω10(M∗))Ω∞(Ω01(Z)) + Ω0(Ω10(M∗))Ω10(Ω01(Z))

= Ω10(Ω11(M))M+ Ω10(Ω10(M))Ω∞(M)M+

+ Ω10(M)Ω10(M)M

(4.44)

The first three equalities above follow from the definitions of M∗, Ω11, and Ω10,

85

respectively. The last equality evaluates as many expressions as possible. We used
facts from Observation 4.3.1: Ω11(M∗) = Ω11(M) and Ω10(M∗) = Ω10(M), as
well as the definitions of Ω0,Ω∞,Ω01,Ω10 on the base case input Z. However,
for (4.44) to be well-defined, we need to include the following set of expressions in
the combinatorial specification:

B = {Ω10(Ω10(M)),Ω10(Ω11(M))}.

We pop the top item and define it below.

Ω10(Ω10(M)) = Ω10(MZ + Ω10(M)M+MMZ)

= Ω10(M)Ω∞(Z) + Ω0(M)Ω10(Z)+

+ Ω10(Ω10(M))Ω∞) + Ω0(Ω10(M))Ω10(M)+

+ Ω10(M)Ω∞(MZ) + Ω0(M)Ω10(M)Ω∞(Z)+

+ Ω0(MM)Ω10(Z)

= Ω10(M)M+MMZ + Ω10(Ω10(M))Ω∞(M)+

+ Ω10(M)Ω10(M) + Ω10(M)Ω∞(M)M+

+MΩ10(M)M+MMMZ

(4.45)

Since everything in (4.45) is either already known or in B, which currently contains
only one element

B = {Ω10(Ω11(M))}.

86

Let us now define Ω10(Ω11(M)).

Ω10(Ω11(M)) = Ω10(MZ∗Z) + Ω10(Ω11(M)Z) + Ω10(MMZ∗Z)+

+ Ω10(Ω10(M)M∗Z)

= Ω10(M)Ω∞(Z∗Z) +MΩ10(Z∗)Ω∞(Z)+

+ Ω10(Ω11(M))Ω∞(Z)+

+ Ω10(M)Ω∞(MZ∗Z) +MΩ10(M)Ω∞(Z∗Z)+

+MMΩ10(Z∗)Ω∞(Z)

+ Ω10(Ω10(M))Ω∞(M∗Z) + Ω0(Ω10(M))Ω10(M∗)Ω∞(Z)

= Ω10(M)MM+MMZM+ Ω10(Ω11(M))M+

+ Ω10(M)Ω∞(M)MM+MΩ10(M)MM+

+MMMZM+

+ Ω10(Ω10(M))Ω∞(M)M+ Ω10(M)Ω10(M)M

(4.46)

Now, everything in the last line of (4.46) has already been defined. Hence, with
the information in (4.31)–(4.46), we transform (4.30) into the following expression.

E +M+ (M+ E)Ω10(M) + 1/Z
(

Ω10(Ω1(M))M+

+ Ω10(Ω11(M))M+ Ω10(Ω10(M))Ω∞(M)M+ Ω10(M)Ω10(M)M
) (4.47)

From (4.47) we see that not all our definitions need to be included in the “combina-
torial specification” (4.30). It turns out that some can be skipped as we managed to
express their content directly through lower-level operators. In particular, we need
to include the following definitions in our combinatorial specification: M (4.31),
Ω∞(M) (4.36), Ω10(M) (4.37), Ω10(Ω1(M)) (4.43), Ω10(Ω10(M)) (4.45), and
Ω10(Ω11(M)) (4.46). However, recall despite “division” being an illegal operation,
it is simply our notation for removing the added phantom point from every single
permutation in Av(21|21|21). This is expressed in (4.47) whose formal meaning is
valid and represents the class Av(21|21|21). Therefore, the generating function of
F stores the counting sequence enumerating Av(21|21|21).

87

The relevant Mathematica script implementing enumeration of Av(21|21|21)

via the process described in this section can be found in exampleMMM.nb. The file
resides in the scripts folder of the accompanying thesis repository at

https://github.com/jsliacan/thesis.

The generating function of Av(21|21|21) is

F (z) =
22z5 − 52z4 + 56z3 − 32z2 + 9z − 1

(z − 1)3(2z − 1)2(3z − 1)
. (4.48)

The counting sequence that we obtain for the number of permutations in Av(21|21|21)

of length k = 0, . . . , 12 is

1, 1, 2, 6, 23, 93, 360, 1312, 4541, 15111, 48854, 154674, 482355 . . .

This agrees with Bevan’s enumeration of Av(21|21|21) in his thesis [Bev15b], Part
I, Table 3.1. The sequence is not in the OEIS [Inca].

4.3.3 Example: Separable next to monotone

The class of separable permutations has finitely many simple permutations and is
relatively simple. We still think this example is useful in that it demonstrates that
our method can be used to enumerate various juxtapositions exactly. To the best of
our knowledge, the juxtaposition class S|M, whereM is an increasing monotone
class, has not been enumerated yet. We juxtapose M on the right of the class
of separable permutations S and choose to work with the following combinatorial
specification of S.

S∗ = Z∗ + S⊕S∗ + S∗S	
S = Z + S⊕S + SS	
S	 = Z + S⊕S

S⊕ = Z + SS	.

(4.49)

88

https://github.com/jsliacan/thesis

We also know that

M = Z +MZ

M∗ = Z∗ +MZ∗
(4.50)

Before we proceed with the enumeration, notice that whether M is a monotone
increasing or a monotone decreasing class, S|M is enumerated by the same gener-
ating function. This is obvious from the chosen combinatorial specification (4.49).
Indeed, if M is monotone decreasing, we flip the entire juxtaposition around a
horizontal axis (so that it is upside down). The main observation is that if π ∈ S,
then a “flip” of π around the horizontal axis is also in S. This is easy to verify.
Therefore, in case of decreasingM, we enumerate the upside down juxtaposition.

Back to the example with a monotone increasing M. To make this example
as short as possible, we will not write out the whole derivation of expressions in
the combinatorial specification. It is a routine process which could, in principle,
be automated. Also, instead of keeping track of a set B of classes that we need
to define, we will determine the whole list of classes that we need ahead of time.
Then we just define the classes in that list.

Notice that we will not need to define S∗⊕ or S∗	. This is because S⊕ and S	,
the way they are used in (4.49), can never contain the rightmost point. Refer to
the pictorial definition (4.4) of S for a clearer image. Moreover, notice that

Ω0(S∗) = Ω0(S)

Ω∞(S∗) = Ω∞(S)

Ω01(S∗) = Ω01(S).

All of these operators ignore and erase the rightmost points of their arguments.
Hence, it does not matter if we feed them S∗ or S. Moreover, Ω0(S) = S, and
therefore Ω0(S∗) = S as well. We are left with Table 4.1 of items (combinations of
arguments and operators) that we need to define in the combinatorial specification
of S.

89

S S∗ S	 S⊕
Ω0 7 7 7 7

Ω∞ 7

Ω1

Ω10

Ω11

Ω01 7

Table 4.1: The positions with 7 mark the combinations (operator-argument) which we
do not need to define in the combinatorial specification of S|M because we either know
them already or they amount to the same output as some other combinations.

We are looking to enumerate F , which is just S|M rewritten in the language
of Ω operators.

F = E +M+ (Ω1(S∗) + Ω11(S∗))(M+ E) (4.51)

Clearly, according to the number of empty cells, we have three cases. The case
when both cells are empty is represented by E . If only one cell is empty, then it
must be the left cell because our choice of gridding places the gridline as far left as
possible. The remaining cell must then be non-empty and monotone increasing,
orM. If both cells are non-empty, then there is either a single point on the right-
hand side, represented by Ω1(S∗), or there are at least two points on the right-hand
side, represented by Ω11(S∗). In both these cases we need to allow points on the
right-hand side to be above all points on the left-hand side. This is achieved by
the term (M + E). Notice that we do not use phantom point for this term as we
juxtapose the monotone class only once and it is easier to just multiply it with
the term (M + E). Using this shortcut for repeated juxtapositions would mean
significant deviation from the framework in Section 4.1 that uses phantom points.

Before we proceed, let us recall that all operators are linear. Let us begin by
defining the action of Ω∞.

Ω∞(S) =M+ Ω∞(S⊕)Ω∞(S) + Ω∞(S)Ω∞(S)

Ω∞(S) =M+ Ω∞(S⊕)Ω∞(S)

Ω∞(S⊕) =M+ Ω∞(S)Ω∞(S)

(4.52)

90

This deals with the second row of the Table 4.1. We define Ω1 next.

Ω1(S) = Z∗Z + Ω1(S⊕)S + S⊕Ω1(S) + Ω1(S)S	 + SΩ1(S)

Ω1(S∗) = Z∗Z + Ω1(S⊕)S + S⊕Ω1(S∗) + Ω1(S∗)S	
Ω1(S⊕) = Z∗Z + Ω1(S)S	 + SΩ1(S)

Ω1(S) = Z∗Z + Ω1(S⊕)S + S⊕Ω1(S)

(4.53)

This deals with the third row in Table 4.1. The next operator we define is Ω10.

Ω10(S) =MZ + Ω10(S⊕)Ω∞(S) + S⊕Ω10(S) + Ω10(S)Ω∞(S)+

+ SΩ10(S)

Ω10(S∗) =MZ + Ω10(S⊕)Ω∞(S∗) + S⊕Ω10(S∗) + Ω10(S∗)Ω∞(S)

Ω10(S⊕) =MZ + Ω10(S)Ω∞(S) + SΩ10(S)

Ω10(S) =MZ + Ω10(S⊕)Ω∞(S) + S⊕Ω10(S)

(4.54)

This deals with the fourth row of Table 4.1. The operator Ω11 is next.

Ω11(S) =MZ∗Z + Ω11(S⊕)S + S⊕Ω11(S) + Ω10(S⊕)Ω01(S)+

+ Ω11(S)S	 + SΩ11(S) + Ω10(S)Ω01(S)

Ω11(S∗) =MZ∗Z + Ω11(S⊕)S + S⊕Ω11(S∗) + Ω10(S⊕)Ω01(S∗)+

+ Ω11(S∗)S	 + Ω10(S∗)Ω01(S)

Ω11(S⊕) =MZ∗Z + Ω11(S)S	 + SΩ11(S) + Ω10(S)Ω01(S)

Ω11(S) =MZ∗Z + Ω11(S⊕)S + S⊕Ω11(S) + Ω10(S⊕)Ω01(S)

(4.55)

This defines the row five of Table 4.1. It now remains to define Ω01.

Ω01(S) =M∗Z + Ω01(S⊕)S + Ω∞(S⊕)Ω01(S)+

+ Ω01(S)S	 + Ω∞(S)Ω01(S)

Ω01(S) =M∗Z + Ω01(S⊕)S + Ω∞(S⊕)Ω01(S)

Ω01(S⊕) =M∗Z + Ω01(S)S	 + Ω∞(S)Ω01(S)

(4.56)

The combinatorial specification describing S|M involves all terms from Ta-

91

ble 4.1 together withM,M∗,S and S∗. One can check that there is no undefined
term on the RHS of any of the items in Table 4.1 — meaning that every term used
on the RHS of any one of the equations is defined elsewhere in the combinatorial
specification. Let F (z) be the generating function of F (thus of S|M). Since F (z)

is not sufficiently compact to be given here in full, we define a couple of variables.

x =
√
z(z − 6) + 1

y =
√

8z(z − 1) + 1

Then, the generating function for S|M is given below.

F (z) =
−z4(y + 9) + z3(−xy + 6y + 7x+ 66) + z2(5xy + y − 15x− 99)

4(z(z(z − 7) + 7)− 2)(z − 1)2

+
z(−6xy − 6y + 10x+ 54) + 2(xy + y − x− 5)

4(z(z(z − 7) + 7)− 2)(z − 1)2

(4.57)

The first twelve terms of the counting sequence of S|M are below.

1, 1, 2, 6, 24, 115, 609, 3409, 19728, 116692, 701062, 4261581, 26146111.

The sequence is not on the OEIS [Inca]. The accompanying Mathematica [Incb]
file can be found in the scripts folder as exampleSeparable.nb at:

https://github.com/jsliacan/thesis/.

4.4 Conclusion

Let us first summarise what the yields of this chapter are and then we point out
several obvious and powerful ways to continue exploring the topic. Section 4.1
outlines what is known about enumerating grid classes. We contribute by describ-
ing a way for enumerating any 1 × n monotone grid class one of whose cells has
been replaced by an arbitrary context-free class (that admits point tracking as
described in Section 4.1). Apart from the framework for producing exact enumer-

92

https://github.com/jsliacan/thesis

ation results for these classes, we also prove that this general setting is as nice
as possible — that any such class admits a generating function that is algebraic.
Recall that context-free classes are often enumerated by counting sequences whose
generating functions are algebraic non-rational. Moreover, we give an example of
a large family of context-free permutation classes which satisfy the conditions we
set in Theorem 4.2.5 — the classes with finitely many simple permutations.

We demonstrate how to use this general framework for exact enumeration of
specific permutation classes. We do this by enumerating three key permutation
classes.

The example in Section 4.3.1 uses our Ω operators to enumerate Av(321|21)

(also enumerated in Chapter 3 via other means). What makes this example in-
teresting is that Av(321) contains infinitely many simples and therefore, in some
sense, we require the full strength of Theorem 4.2.5 to deal with this example.

The next example, in Section 4.3.2, illustrates how our framework deals with
repeated juxtapositions. This was the whole point of our work from the beginning
and this example shows how straightforward the task became with Ω operators.
Additionally, Bevan [Bev15b] enumerates this class in his thesis via a different
method.

The last example, in Section 4.3.3, demonstrates the enumeration of separable
permutations juxtaposed with a monotone increasing class. The class of separable
permutations contains finitely many simple permutations (zero, to be exact – 1,
12, and 21 are not simple: they cannot possibly contain non-trivial contiguous in-
tervals and so it is natural to exclude them from the class of simple permutations
for being trivial; this is also consistent with the related literature, e.g. [BHV08b]
and [BBP+17]). The enumeration of this class is of interest for multiple reasons.
Firstly, separable permutations are in one-to-one correspondence with Schröder
paths (lattice paths that stay below the diagonal and allows steps (1, 0), (0, 1),
and (1, 1)) — a generalization of Dyck paths. In other words, juxtaposing a mono-
tone class next to the class of separable permutations is a natural next step after
Catalan juxtapositions in Chapter 3. Secondly, separable permutations are the

93

least complex non-degenerate class with finitely many simples, thereby serving as
an example for Corollary 4.2.6. Thirdly, to the best of our knowledge, the juxtapo-
sition of separable permutations with a monotone class has not been enumerated
before. Therefore, this is an example that is also a new result at the same time.

Even though the three examples above were chosen carefully to fit well with the
existing work, their main purpose is to illustrate the practical side of the machinery
leading to Theorem 4.2.5 — the main result of this chapter.

When defining Ω operators in Section 4.1, we present the definitions as re-
cursions in functional form. Assuming that the user constructs on her own the
expression F — the one which represents the juxtaposition in question as a dis-
joint union of juxtapositions of non-empty cells, and whose generating function
enumerates the desired juxtaposition — the rest of the task towards obtaining the
generating function and the counting sequence of the desired juxtaposition class
lends itself to automation. In other words, after parsing the input from the user,
the rest is an algorithmic task, and hence implementable on a PC. This would be
a very useful tool for enumerating small juxtaposition classes of the form that we
described. We do plan to address this in the near future.

C M1

M2

M3 M4

M5

M6 M7

M8

M9

M10

M11

M12

M13

Figure 4.14: An example of unrestricted iterative juxtaposition of thirteen monotone
classesM1, . . . ,M13 onto a context-free class C.

94

The one major direction of research that suggests itself after our work is the
generalisation to juxtapositions from all four sides: top, bottom, right, and left.
See Figure 4.14. This would require tracking all four extremal points in the per-
mutation. This in itself is not an easy task, as it would require two mutually
dependent combinatorial specifications. One that tracks the vertical position of
points and the other one that tracks their horizontal positions. Both horizontal
and vertical positions of each point are needed to deal with top and side juxta-
positions. Assuming we can deal with that, it still remains to determine how to
uniquely grid any one given permutation (provided that it is griddable into a given
class).

Notice that the grid classes like the one in Figure 4.14 contain all acyclic grid
classes with one context-free cell. Therefore, a result along the lines of Theo-
rem 4.2.5 about these acyclic classes is among the goals of our continued work
in this area. Another natural question is whether the respective results translate
to regular class C juxtaposed with monotone classes, i.e. are such juxtapositions
regular? Do they have rational generating functions?

Finally, we would like to point out that a context-free class C was chosen
because it is a “nicely behaved” object to juxtapose monotone classes next to.
However, other objects — maybe more general ones — could be manageable under
favourable circumstances. It remains a direction to pursue.

95

Part II

Packing

96

Whenever we deal with structures and the notion of a substructure is available
to us, we can talk about densities of substructures within some larger structures.
Even without formal definitions, the concept of density in permutations is so in-
tuitive, that we can start thinking about it right away. It is easy to identify the
“problem” of maximising the number of copies of a small fixed subpermutation in a
larger permutation. Clearly, if we are trying to maximise the number of inversions
(patterns 21) in a permutation, we will not choose an increasing permutation for
the job as it contains no inversions at all. We hint at the spectrum of densities for
123 in Figure 4.15.

(a) Increasing permuta-
tion. Density of 123 is 1.

(b) Sampled uniformly at
random from permuta-
tions of length 10. Density
of 123 is 13/40 = 0.325.

(c) Decreasing permuta-
tion. Density of 123 is 0.

Figure 4.15: If every triple is a copy of our 123, the density is 1. If no triple is a copy of
123, the density is 0. There is a spectrum of admissible densities for every pattern, but
it does not go all the way to 1 for almost any of them. What is the highest density in
the spectrum for a fixed pattern σ? We deal with these questions in Part II of the thesis.

The question becomes significantly harder when trying to maximise the density
of, say, 132 pattern. As we mention later in Chapter 5, a well-known theorem of
Erdős and Szekeres implies that any permutation of length n (think large) must
contain a monotone subpermutation of length at least ∼

√
n, thereby dashing our

hopes for the density of 132 ever being exactly 1 for large n (as some triples will
be 123 and 321 patterns). This directly motivates the study of questions such as
what is the maximum density of a small pattern σ in a permutation of length n?
We address these, or questions about the asymptotic versions — packing densities,
in Chapter 5.

The purpose of Chapter 6 is to introduce the tool that we developed for our

97

work in Chapter 5. The package is called Permpack and it automates our search
for packing densities of small permutations.

98

Chapter 5

Packing small permutations

We consolidate what is currently known about packing densities of 4-point permu-
tations and improve the lower bounds for the packing densities of 1324 and 1342.
We also provide rigorous upper bounds for the packing densities of 1324, 1342, and
2413. All our bounds are within 10−4 of the true packing densities. Together with
the known bounds, this gives us a fairly complete picture of all 4-point packing
densities. We also list a number of upper bounds for small permutations of length
at least five. Our main tool for the upper bounds is the framework of flag algebras
introduced by Razborov in 2007.

5.1 Introduction

In this chapter, we study packing densities of small permutations. We change
the notation slightly for this chapter only to fit the wider area of permutation
packing and extremal graph theory. Even though the concepts remain the same,
we redefine them using the appropriate notation. A permutation is an ordered
tuple utilizing all integers from {1, . . . , n}. We say that S = S[1]S[2] · · ·S[m] is a
sub-permutation of P = P [1]P [2] · · ·P [n] if there exists an m-subset {k1, . . . , km}
of {1, . . . , n} such that for all 1 ≤ i, j ≤ m, S[i] < S[j] whenever P [ki] < P [kj].

99

We denote the number of occurrences of S as a sub-permutation of P by #(S, P) .
Let Pn be the set of all permutations of length n. If #(S, n) = maxP∈Pn #(S, P),
then the packing density of S is defined to be p(S) = limn→∞#(S, n)/

(
n
m

)
.

S lower bound ref LB upper bound ref UB
1234 1 trivial 1 trivial
1432 β [Pri97] β [Pri97]
2143 3/8 trivial 3/8 [Pri97]
1243 3/8 trivial 3/8 [AAH+02]
1324 0.244∗ [Pri97] −∗ [Pri97]
1342 γ∗ [Bat] 0.1988373∗ [BHL+15]
2413 ≈ 0.104724 [PS10] 0.1047805∗ [BHL+15]

Table 5.1: Overview of packing densities for 4-point permutations. Values β and γ are
known exactly: β = 6

3
√√

2− 1 − 6/
3
√√

2− 1 + 4 ∼ 0.423570, γ = (2
√

3 − 3)β ∼
0.19657960. We know that the packing density of 1324 is close to 0.244 but there is no
non-trivial upper bound. The bounds updated by the current work are shown with an
asterisk (∗).

The study of permutation packing densities began with Wilf’s 1992 SIAM ad-
dress. Galvin (unpublished) soon rediscovered the averaging argument of Katona,
Nemetz, and Simonovits [KNS64], thus proving that p(S) exists for all permu-
tations S. The original argument was in the setting of graph theory. In 1993,
Stromquist, and independently Galvin and Kleitman (both unpublished), found
the packing density of 132. Up to symmetry, 132 is the only permutation of length
3 with a non-trivial packing density. We reprove some results about packing den-
sity of 132 in our examples, see e.g. Section 5.2.2.

For 4-point permutations and their packing densities, it is useful to consult
Table 5.1. The first results for 4-point permutations, including 1324, 1432, and
2143, came as part of the investigation of various layered patterns by Price [Pri97].
Later, Albert, Atkinson, Handley, Holton, and Stromquist [AAH+02] proved a
tight upper bound for 1243, and upper bounds of 2/9 for both 2413 and 1342. The
current lower bound for the packing density of 2413 was given by [PS10]. The upper
bounds of 0.1047805 and 0.1988373 for 2413 and 1342, respectively, are mentioned
in passing by Balogh, Hu, Litidký, Pikhurko, Udvari, and Volec [BHL+15]. They
do not discuss them any further.

100

Balogh et al. [BHL+15] used flag algebras to attack the packing density problem
for monotone sequences of length 4. To the best of our knowledge, the only other
application — although indirect — of flag algebras to permutation packing is by
Falgas-Ravry and Vaughan [FRV13]. They obtained the inducibility (as packing
density is refered to in graph theory) of a 2-star directed graph . Their result im-
plies the known upper bound for the packing density of 132. Later, Huang [Hua14]
used an argument exploiting equivalence classes of vertices to extend this result to
all directed k-stars. This argument was known in the permutations setting since
Price [Pri97] used it to establish the packing densities p(1k . . . 2) for all k. Sim-
ilarly, the flag algebra software package Flagmatic, written by Vaughan [Vau13],
has not previously been used to obtain an upper bound on the packing density of
1324, although it has been available since 2013.

Therefore, we decided to use the flag algebras method to collect and improve
results in permutation packing densities. In addition to the mathematical content,
we make available a flag algebras package for permutations, Permpack [Sli16],
written as a Sage script. We provide all the necessary information about Permpack
and how to use it in Chapter 6. For more information about SageMath, see [Dev17].
Permpack does most of our computations (one bound is done with Flagmatic) and
can be used for further research. It uses syntax similar to Flagmatic, but requires
no installation. This should make it more user friendly.

The rest of this chapter is structured as follows. The aim of Section 5.2 is
to introduce notation and concepts, including the part of flag algebras that we
need. While Razborov [Raz07] presented flag algebras in the general setting of a
universal model theory without constants and function symbols, we choose per-
mutations as the structures on which we base our exposition. Section 5.3 presents
the main results of this chapter. We use flag algebras to provide upper bounds for
the packing densities of 4-point permutations 1324, 1342, and 2413. We learnt be-
latedly about the existence of the latter two bounds from Balogh et al. [BHL+15].
Regarding lower bounds, we give a new lower bound construction for the packing
density of 1342 that meets our upper bound to within 10−5. In case of 1324, we
provide a lower bound that agrees with the upper bound on the first five decimal

101

http://jsliacan.github.io/permpack/
http://sagemath.org

places. Section 5.4 gives a list of selected upper bounds to illustrate the potential
of the flag algebras method in the area of permutation packing. These results can
be obtained effortlessly by using our flag algebras package Permpack. They are
not best possible though.

5.2 Definitions and concepts

Given S and P of lengths m and n, respectively, we let #(S, P) denote the number
of times that S occurs as a subpermutation of P . The density of S in P is

p(S, P) =
#(S, P)(

n
m

) .

If n < m, we set p(S, P) = 0. Intuitively, p(S, P) is the probability that a random
m-set of positions from [n] induces a pattern in P that is order-isomorphic to S.
For example, p(12, 132) = 2/3 as both 13 and 12 are order-isomorphic to 12 while
32 is not.

Recall that if F is a set of forbidden permutations. We say that permutation
P is F-free if #(F, P) = 0 for all F ∈ F . Such P is also said to avoid F or be
admissible. We denote by Pn the set of all admissible permutations of length n.
It will always be clear from context what F is. If F = ∅, then the admissible set
Pn is the set of all permutations of length n. Notice that if P is admissible, then
so are all its subpermutations. Most of the work in this chapter concerns the case
when F = ∅. However, the setting remains the same whenever F is non-empty,
and we provide a few examples to this effect.

Figure 5.1: Permutations in P3, with F = ∅. From left to right: 123, 132, 213, 312, 231,
321.

Let P ∈ Pn and S ∈ Pm be admissible permutations, and assume m ≤ n.
The maximum value of p(S, P) over P ∈ Pn is denoted by p(S, n). Conversely,

102

a permutation P such that p(S, P) = p(S, n) is an S-maximiser of length n. It
is well-known that for every S, the sequence (p(S, n))n≥0 converges to a value in
[0, 1] because it is non-increasing and stays between 0 and 1. See [KNS64]. We are
now ready to define the quantity that we study, packing density.

Definition 5.2.1. Let S be a fixed permutation and P = ∪n≥1Pn the set of
admissible permutations. The packing density of S is

p(S) = lim
n→∞

p(S, n).

For example, the packing density of 12 in 123-free permutations is 1/2. Notice
that every maximiser of size n has at most two layers. It is then easy to see
that they should be of balanced sizes for the packing density to be maximised,
i.e. bn/2c and dn/2e. Let Pn be such balanced 2-layered maximizer of length n.
Clearly, p(12, Pn)→ 1/2 as n→∞.

We now formalise the ideas about asymptotic quantities and objects that the
discussion is leading to. Let (Pn)n = P1, P2, P3, . . . be a sequence of permutations
of increasing lengths. We say that (Pn)n is convergent if for every permutation
S, (p(S, Pn))∞n=1 converges. A permuton µ is a probability measure with uniform
marginals on the Borel σ-algebra B([0, 1]2), i.e. for every a, b ∈ [0, 1] with a < b, it
holds that µ([a, b]× [0, 1]) = b− a = µ([0, 1]× [a, b]). See examples of permutons
in Figure 5.2.

(a) Increasing (b) Lebesgue (c) 1243-maximiser

Figure 5.2: Examples of permutons. In (a) we have the limit of (1 . . . n)∞n=1, in (b) it is,
with probability one, the limit of a sequence of randomly chosen permutations of each
length, and in (c) we have the limit of (1 . . . bn/2cn . . . dn/2e)∞n=1.

Let µ be a permuton and S a permutation on [m]. One can sample m points

103

from [0, 1]2 according to µ and with probability one they will be in general position
(no two aligned vertically or horizontally). We define p(S, µ) as the probability that
a randomly sampled m points from [0, 1]2 according to µ are order-isomorphic to
S. It turns out that every convergent sequence of permutations has its permuton
and vice versa. In particular, Hoppen, Kohayakawa, Moreira, Ráth, and Sam-
paio [HKM+13] proved that for every (Pn)n≥0 there exists a unique permuton µ

such that for every S, p(S, µ) = limn→∞ p(S, Pn). In this sense, µ is the limit of
the sequence (Pn)n. In the other direction, they proved that if µ is a permuton
and Pn is a permutation of length n sampled at random according to µ from [0, 1]2,
then with probability one the sequence (Pn)n is convergent (with µ as its limit).
The concept of permutation limits was known as “packing measures” since Presutti
and Stromquist [PS10] used them for constructing the 2413 lower bound. In the
current work, we use permutons mainly to describe extremal constructions that
yield our lower bounds.

5.2.1 Flag Algebras

The term flag algebras refers to a framework first introduced by Razborov [Raz07].
It proved to be a very useful tool for researchers in extremal graph theory, but
found use in other fields as well. For an overview of results aided by flag al-
gebras, see Razborov’s own survey [Raz13]. For more extensive expositions, see
the PhD theses of Sperfeld [Spe12] and Volec [Vol14]. By now, there are also
many papers with explanations and examples such as Baber and Talbot [BT11],
Falgas-Ravry, Marchant, Pikhurko, and Vaughan [FRMPV15], Falgas-Ravry and
Vaughan [FRV12] and [FRV13]. For a long list of important results across dis-
ciplines of discrete mathematics that were aided by flag algebras, see the above-
mentioned theses, especially Chapter 1 of [Vol14]. The main flag algebra result
in permutations is Balogh et al. [BHL+15]. In their work on quasirandom per-
mutations, Kráľ and Pikhurko [KP13] mention flag algebras as another way to
think about the subject. It is important to note that the method of flag alge-
bras has evolved from other combinatorial and analytic methods in combinatorics
which had been used by researchers for a long time. The Cauchy-Schwarz type

104

arguments can be found in e.g. work by Bondy [Bon97] as early as 1990s. The
ideas pertinent to quasirandomness have been around since Chung, Graham, and
Wilson [CGW88]. Also, while there are other analytic methods that have been
used successfully to attack extremal problems in combinatorics, the method of flag
algebras is syntactical and lends itself to automation. The syntax-based nature of
flag algebras is the main feature that distinguishes the theory of flag algebras from
the theory of dense graph limits (see e.g. Lovász [Lov12]). The crux of the method
is the systematic conversion of the combinatorial problem into a semidefinite pro-
gramming problem. The latter can be solved (efficiently) by current SDP solvers.
The numerical values returned by the SDP solvers then need to be transformed
to exact values (rational or algebraic) to provide valid upper bounds on packing
densities.

Before we delve into the method itself, let us consider an example from before.
For the remainder of this section, assume that all objects (permutations, flags,
types) are admissible unless stated otherwise. Now, assume that we are looking
for 123-free permutations P that are as 12-dense as possible. We get the following
bound without much effort.

p(12, P) = p(12, 123)p(123, P)︸ ︷︷ ︸
=0

+ p(12, 132)p(132, P) + p(12, 213)p(213, P)

+ p(12, 231)p(231, P) + p(12, 312)p(312, P) + p(12, 321)p(321, P)

≤ max

{
2

3
,
2

3
,
1

3
,
1

3
, 0

}
=

2

3

(5.1)

This is strictly better than a trivial bound of 1. However, observe that there is no
P of length greater than 4 such that p(132, P) + p(213, P) = 1. This follows from
Erdős-Szekeres theorem (adapted) which states that a permutation of length (r−
1)(s−1)+1 contains either an increasing subpermutation of length r or a decreasing
subpermutation of length s. Hence, a permutation of length 5 contains 123 or 321
as a subpermutation. So there are always subsets of size 3 in P which do not induce
132 or 213. Therefore, the bound of 2/3 is unachievable in practice. Knowing this,

105

it would be useful to be able to control how copies of small permutations, such
as 132 and 213, interact inside larger permutations. The method of flag algebras
helps us systematically take into account the ways in which small patterns overlap
inside larger structures. This takes the form of extra coefficients in front of p(12, P)

terms in (5.1). If chosen well, they shift weight away from the large values like
p(12, 231) and p(12, 312) and thereby reduce the maximum over all of them.

In general, the process is analogous to the example above. If S is a small
permutation whose packing density we seek to determine, we pick a reasonably
small value N ≥ |S|. The crude bound then looks as follows.

p(S, P) =
∑
P ′∈PN

p(S, P ′)p(P ′, P)

≤ max
P ′∈PN

p(S, P ′) (5.2)

Before we describe exactly how we leverage overlaps between small patterns,
we need to define flags, types, and operations on them.

Definition 5.2.2 (Flag). A permutation τ -flag Sτ is a permutation S together
with a distinguished subpermutation τ , also called an intersection type.

S1
1 S1

2 S1
3 S1

4

Figure 5.3: If τ = 1 (as permutation), then there are four distinct τ -flags of length two.
The empty circle marks τ in each flag.

See Figure 5.3 for a list of all 1-flags on two vertices. The set of all admissible
τ flags of length m is denoted by Pτm. If τ is the permutation of length 0 or 1, we
write P0

m and P1
m, respectively. Notice that P0

m = Pm. The support T of τ in Sτ

is the set of indices of S that span τ in Sτ . We say that two permutation flags
Sτ11 and Sτ22 are type-isomorphic if S1 = S2 and if the supports of τ1 and τ2 are
identical. For instance, in Figure 5.3, S1

1 and S1
4 are not type-isomorphic, because

the support of τ in S1
1 is 1 and in S1

4 it is 2. For convenience, we set t := |τ |.

106

Definition 5.2.3. Let Sτ be a τ -flag of length m, P τ a τ -flag of length n ≥ m.
We define #(Sτ , P τ) to be the number of m-sets M ⊆ [n] such that P [M] is
type-isomorphic to Sτ . The flag density is then defined as follows

p(Sτ , P τ) =
#(Sτ , P τ)(

n−t
m−t

) .

In other words, p(Sτ , P τ) is the probability that a uniformly at random chosen
subpermutation of length m from P τ , subject to it containing τ , induces a flag
type-isomorphic to Sτ . For instance, consider the following flag densities. The
empty circle denotes τ = 1.

p(,) = 1, p(,) = 0, p(,) = 1/2

Finally, we define joint density of two flags, p(Sτ1 , Sτ2 ;P τ), as the probability
that choosing an m1-setM1 ⊆ [n] such that P [M1] contains τ and choosing an m2-
set M2 ⊆ [n] such that P [M2] contains τ and M1 ∩M2 = τ induces τ -flags P [M1]τ

and P [M2]τ in P τ which are type-isomorphic to Sτ1 and Sτ2 , respectively. The
following proposition turns out to be useful (Lemma 2.3 in [Raz07]). It says that
choosing subflags with or without replacement makes no difference asymptotically.

Proposition 5.2.4. Let Sτ1 and Sτ2 be flags on m1 and m2 vertices. Let n ≥
m1 +m2 − t and P τ be a flag on n vertices. Then

p(Sτ1 , P
τ)p(Sτ2 , P

τ) = p(Sτ1 , S
τ
2 ;P τ) + o(1),

where o(1)→ 0 as n→∞.

Let ` = |Pτm| and fix an order on elements of Pτm. Let Sτi , Sτj be τ -flags from Pτm
and P a τ -flag from Pτn . Furthermore, let x be a vector with i-th entry p(Sτi , P τ),
and let Qτ be a positive semi-definite matrix with dimensions ` × `. Then by
Proposition 5.2.4 and since Qτ � 0, we have

0 ≤ xQτxT =
∑
i,j≤`

Qτ
ijp(S

τ
i , S

τ
j , P

τ) + o(1).

107

Moreover, if we let σ be a uniformly at random chosen type in P of length t,
the inequality above remains true. Moreover, an “average” σ preserves the non-
negativity as well.

0 ≤ Eσ
(
xQτxT

)
=
∑
i,j≤`

Qτ
ij

1(
n
t

) ∑
σ∈([n]

t)

p(Sτi , S
τ
j ;P σ) + o(1). (5.3)

Next we write the above expression in terms of permutations on N vertices.
Having all information in terms of the same objects allows us to combine it to-
gether.

Eσ
(
xQτxT

)
=
∑
i,j≤`

Qτ
ij

1(
n
t

) ∑
σ∈([n]

t)

∑
P ′∈PN

p(Sτi , S
τ
j ; (P ′, σ))p(P ′, P) + o(1)

=
∑
P ′∈PN

∑
i,j≤`

Qτ
ij

1(
n
t

) ∑
σ∈([n]

t)

p(Sτi , S
τ
j ; (P ′, σ))


︸ ︷︷ ︸

α(P ′,m,τ)

p(P ′, P) + o(1)

Notice that the last expression is of the form
∑

P ′∈PN α(P ′,m, τ)p(P ′, P). There
is one of those for each type τ and value m. Every such choice will require another
matrix Qτ . In practice, we first choose N , then take all possible pairs of t and
m such that N = 2m − t. Thus once N is fixed, the choice of t determines the
rest. Therefore, let α(P ′) =

∑
τ α(P ′,m, τ) and recall that the expression that we

are trying to minimise, subject to Qτ � 0 for all τ , comes from (5.2). By adding
inequalities of the form of (5.3) to (5.2), we obtain

p(S, P) =
∑
P ′∈PN

p(S, P ′)p(P ′, P)

≤
∑
P ′∈PN

p(S, P ′)p(P ′, P) +
∑
P ′∈PN

α(P ′)p(P ′, P)

≤ max
P ′∈PN

{p(S, P ′) + α(P ′)}. (5.4)

This problem (5.4) has the form of a semidefinite programming problem subject to

108

the condition that Qτ � 0 for every type τ . There are numerical solvers, such as
CSDP or SDPA, that we can use. However, the solution is in the form of numerical
PSD matrices. These need to be converted to exact matrices without floating-point
entries in a way that preserves their PSD property and still yields a bound that
we are satisfied with. Since none of our bounds is tight, we will take a shortcut in
rounding. Let Q′ be a numerical matrix returned by the solver. Since it is positive
semi-definite, it admits a Cholesky decomposition into lower and upper triangular
matrices: Q′ = L′L′T . We compute this decomposition and then round the L′

matrices into L matrices in such a way that they do not have negative entries on
the diagonals. In certificates, we provide these L matrices instead of Q matrices.
This way, one can readily check that Q = LLT � 0 by inspecting the diagonal
entries of the L matrices.

5.2.2 Example

The following example is a done-by-hand flag algebras method on a small problem
of determining the packing density of 132. We have a lower bound of 2

√
3 − 3 ≈

0.464101615 . . . given by the standard construction. Assume we want to obtain an
upper bound for the packing density of 132. Let P be a (large) 132-maximiser of
length n and let 3 ≤ ` ≤ n. By (5.2) we get

p(132) ≤ p(132, P)

=
∑
P ′∈P`

p(132, P ′)p(P ′, P)

≤ max
P ′∈P`

p(132, P ′).

We choose ` = 3 and set λ = 2
√

3− 3. Now consider

∆ = λp(123, P) + (λ− 1)p(132, P) + λp(213, P) +
5λ− 3

6
p(231, P)

+
5λ− 3

6
p(312, P) + λp(321, P).

109

Adding the linear combination ∆ of P ′ densities to the previous crude upper bound
improves it to λ.

p(132, P) ≤
∑
P ′∈P`

p(132, P ′)p(P ′, P) + ∆

≤ max
P ′∈P`

{λ, λ, λ, 5λ− 3

6
,
5λ− 3

6
, λ}

= λ

The key property of ∆ is that it is non-negative for all P , including all P ′ ∈ P3.
Let σ be a randomly chosen vertex out of the three available. The matrix Q below
is positive semi-definite and xP ′ is a vector of flag densities for flags in Figure 5.3:

xP ′ =
(
p(, (P ′, σ)) p(, (P ′, σ)) p(, (P ′, σ)) p(, (P ′, σ))

)
.

Q =


0 0 0 0

0 λ λ 3(λ− 1)/2

0 λ λ 3(λ− 1)/2

0 3(λ− 1)/2 3(λ− 1)/2 3λ

 (5.5)

Averaging over σ gives the expression (5.6) that makes the non-negativity of ∆

apparent.

∆ = Eσ

(∑
P ′∈P3

xP ′Qx
T
P ′

)
≥ 0 (5.6)

Therefore, we proved that p(132) ≤ 2
√

3− 3.

5.3 Results

Before we delve into the mathematics of this section, we refer the reader to Chap-
ter 6 for information related to the certificates (files that witness the flag algebras

110

solutions we refer to in our proofs). Chapter 6 contains information on what the
certificates are, how we obtained them, and how they facilitate verification of our
results. Moreover, Chapter 6 contains information on how to use Permpack (to e.g.
reproduce our results or obtain new ones), and all information about the software.

The following theorem will be needed later. While there are further variations
of it, e.g. Proposition 2.1 and Theorem 2.2 in [AAH+02], we only need the original
version. The proof of Theorem 5.3.1 is very different from flag algebraic methods
that we rely on throughout this chapter (it represents the classic combinatorial
style prevalent in the area of permutation packing). We decided to present Reid
Barton’s version of the proof. It should highlight the contrast between the two
approaches. See [Bar04] for the original proof in a more general setting.

Theorem 5.3.1 (Stromquist [Str93]). Let S be a layered permutation. Then for
every n, extremal value of p(S, n) is achieved by a layered permutation. Moreover,
if S has no layer of size 1, every maximiser of p(S, n) is layered.

Below, we prove the first part of the theorem – there exists a layered maximiser.
The rest of the proof (unique maximiser when no layer has size 1) is not particularly
enlightening and we omit it.

Proof. Recall that #(S, P) is the number of copies of S in P . Let P be any maxi-
mizer of length n for S. We present two transformations, θ and φ, that take P as an
argument and return permutations θ(P) and φ(P) such that #(S, P) ≤ #(S, θ(P))

and #(S, P) ≤ #(S, φ(P)), respectively. The key to these transformations is that
they, after repeated application to P , eventually transform P to a layered permu-
tation, thus showing that there indeed is a layered maximizer of S.

Consider two points x, y of P such that x is immediately to the left of y (they
have consecutive positions — indices) and suppose that x is above y. The action
of θ results in shifting y vertically upwards to the position immediately below x.
Therefore, if in P we have x = (i, P (i)) and y = (i + 1, P (i + 1)), then in θ(P),
x stays in its original position and y gets lifted to the position (i + 1, P (i) − 1).

111

Similarly, under φ, point x in P is moved downward to immediately above y.
Consult Figure 5.4 for a pictorial representation of the actions of θ and φ.

x

y

(a) Maximizer P .

x

y

(b) Pattern θ(P).

x
y

(c) Pattern φ(P).

Figure 5.4: Producing layers in a maximizer without losing copies of the layered pattern
that we are packing. Red arrows indicate the shift of x and y. Green arrows indicate
the shift of the affected points. Notice that the positions of black points relative to each
other do not change under θ or φ.

It remains to prove that θ and φ do not decrease the number of copies of S
when passing from P to θ(P) and φ(P), respectively. Before we proceed, we need
to introduce four quantities. Let #(S, P, x) denote the number of copies of S in P
such that each copy contains x (a point of P). Conversely, let #(S, P, x) denote the
number of copies of S in P such that each copy avoids x. This extends naturally
to #(S, P, x1, . . . , xn), where each xi either must be contained in each copy of S in
P (which is counted towards #(S, P, x1, . . . , xn)) or, if it is negated, i.e. xi, must
not be contained in any copy of S in P . Observe the following identity.

#(S, P) = #(S, P, x, y) + #(S, P, x, y) + #(S, P, x, y) + #(S, P, x, y) (5.7)

Consider θ(P) first. Clearly, #(S, θ(P), x, y) = #(S, P, x, y) because the positions
of points other than y remain unaffected relative to each other under the action
of θ. The same argument implies that #(S, θ(P), x, y) = #(S, P, x, y). Also, no-
tice that y in θ(P) occurs in the exact same copies of S as x does in θ(P), and
those are the exact same copies that x occurs in P . Therefore, #(S, θ(P), x, y) =

#(S, θ(P), x, y) = #(S, P, x, y). Finally, we show that #(S, θ(P), x, y) ≥ #(S, P, x, y).
Consider an occurrence of S in P that contains both x and y. Call it S0. Since
x, y occupy two consecutive positions in P , they must occupy the consecutive po-
sitions in S0. Therefore, they are two consecutive points in the same layer of S0 —

112

because S0 is layered and x is above y, they cannot be in different layers. In other
words, no point of P with value between x and y belongs to S0. Thus shifting y
upwards to just below x did not lose us any copy of S. We obtain the following
inequality.

#(S, θ(P)) ≥ #(S, P, x, y) + #(S, P, x, y)+

+ #(S, P, x, y) + #(S, P, x, y)
(5.8)

By arguments analogous to those about θ, we obtain the inequality below for φ.

#(S, φ(P)) ≥ #(S, P, x, y) + #(S, P, x, y)+

+ #(S, P, x, y) + #(S, P, x, y)
(5.9)

Now observe that if both inequalities (5.8) and (5.9) hold, then they both must be
equalities. Indeed:

#(S, θ(P)) + #(S, φ(P)) ≥ 2#(S, P, x, y) + 2#(S, P, x, y)+

+ 2#(S, P, x, y) + 2#(S, P, x, y)

= 2#(S, P)

(5.10)

However, P was chosen to be a maximizer for S and therefore the strict inequality
cannot happen. This proves that θ and φ return maximizers. That, in turn, implies
the first half of the statement in the theorem.

Most of the results in this section rely on Permpack or Flagmatic. In both
cases, solutions are witnessed by certificates and can be reproduced by re-running
the scripts that we provide. The scripts can be found at

https://github.com/jsliacan/permpack/tree/master/scripts.

The certificates in support of the upper bounds in this section can be found at the
address below. With each result, we provide the name of the certificate file that
witnesses it, e.g. cert1324.js witnesses the upper bound for p(1324).

https://github.com/jsliacan/permpack/tree/master/certificates.

113

https://github.com/jsliacan/permpack/tree/master/scripts
https://github.com/jsliacan/permpack/tree/master/certificates

5.3.1 Packing 1324

Layered permutations have been studied in depth by Price in [Pri97]. He came
up with an approximation algorithm that, at m-th iteration, assumes that the
extremal construction has m layers (see Theorem 5.3.1) and optimises over their
sizes. The algorithm then proceeds to increasem and halts when increasingm does
not improve the estimate. In that case, an optimal construction has been found
(up to numerical noise from the optimization, if any). In reality, the procedure
is stopped manually when approximation is fine enough or the problem becomes
too large. Therefore, for every m, the value that Price’s algorithm gives is a
lower-bound for the packing density in question.

It is known that the extremal construction for the packing density of 1324 is
layered with an infinite number of layers. See, for instance, Albert et al. [AAH+02]
and Price [Pri97]. The main theorem of this section is the following:

Theorem 5.3.2.

0.244054321 < p(1324) < 0.244054549

Proof. Consider the construction Γ from Figure 5.5, where Γ is a permuton. Let
C denote the middle layer of Γ (the largest layer), B denote the layer above (and
B′ the layer below) C, and A denotes the group of the remaining layers above B
(and A′ denotes the group of layers below B′). So Γ = A′ ⊕ B′ ⊕ C ⊕ B ⊕ A,
where A⊕ B means that the layer A is entirely below and to the left of the layer
B. Let c = |C|, b = |B| = |B′|, and a = |A| = |A′|. We assume that A (and A′) is
isomorphic to a maximiser for the packing of 132-pattern (213-pattern). The aim
is to optimise over a and b. Ideally, the tails of Γ would also be optimised over,
but that is infeasible. So we assume the tails are 132 (213) maximisers. It turns
out that the first two steps give a good lower bound. We now compute the density
of 1324 patterns in Γ. There are four distinct (i.e. up to symmetry) positions that
a copy of 1324 can assume in Γ. Let xyzw be the four points in Γ that form a
copy of 1324 in that order.

114

1. y, z ∈ C, x ∈ A′ ∪B′, w ∈ A ∪B, there are N1 such copies

2. y, z ∈ B, x ∈ A′ ∪B′ ∪ C, w ∈ A, there are N2 such copies

3. y, z, w ∈ A, x ∈ A′ ∪B′ ∪ C ∪B, there are N3 such copies

4. x, y, z, w ∈ A, , there are N4 such copies

Let us now determine quantities N1, . . . , N4.

1. N1 = c2/2 + (a+ b)2

2. N2 = b2/2 + a(a+ b+ c)

3. N3 = (2
√

3− 3)a
3

6
· (a+ 2b+ c)

4. N4 =
∑∞

k=0

√
3·(2
√

3−3)

6·(
√

3+1)4k+4 · a4.

Finally, we get the density of 1324 pattern in Γ. Let b = 1− c− 2a. Then

p(1324,Γ) = max
0<c≤1/2

0<a<≤1/4

24 · (N1 + 2N2 + 2N3 + 2N4)

> 0.244054321.

This proves the lower bound in Theorem 5.3.2, because 0.244054321 < p(1324,Γ) ≤
p(1324).

We use Flagmatic to prove the upper bound even though Permpack can be used
to do this (and it gives a negligibly better bound). However, Flagmatic has been
available for a long time and we would like to show how it could have been used to
prove this result. Since 1324 is layered, there is a 1324-maximiser that is layered as
well. Therefore, we can limit the search space to the layered permutations. Since
Flagmatic does not work with permutations, we transformed the problem to an
equivalent problem in directed graphs – which Flagmatic can handle.

115

0 a b c b a 1

Figure 5.5: Permuton Γ provides a lower bound for p(1324). The triangles at the ends
represent permutons that are maximisers for the packing of 132 and 213 (L to R).

Lemma 5.3.3. Let F = { , , } be the set of forbidden digraphs. The packing
density of 1324 equals the Turán -density of F . In other words,

p(1324) = p(,F).

Proof of Lemma 5.3.3. There is a unique way to encode a layered permutation P
as a directed graph D. If and only if two points x, y ∈ P form a 12 pattern,
then xy is an arc x → y in D. Forbidding , , and in D forces it to be
a union of independent sets with arcs between them so that if x, y are vertices in
one independent set and u, v are vertices in another independent set of D, then
if xu is an arc in D, so are xv, yu, and yv. In other words, all arcs between
two independent sets are present, and all go in the same direction. Moreover, the
direction is transitive (is forbidden). Together with the first rule about the
direction of arcs between independent sets, this fully characterizes the digraph D
from the permutation P . Clearly, the process is reversible.

Given Lemma 5.3.3, we use the flag algebra method on directed graphs to
compute an upper bound for the packing density of (an equivalent of 1324

116

in digraphs) over { , , }-free digraphs. The resulting bound is the one in
Theorem 5.3.2.

• Certificate: cert1324flagmatic.js

• Script: pack1324flagmatic.sage

Note that this is a Flagmatic certificate and can be verified using verification script
inspect_certificate.py that comes with Flagmatic.

A slightly better bound can be achieved by Permpack. In particular, we can
show that p(1324) < 0.244054540.

• Certificate: cert1324permpack.js

• Script: pack1324permpack.sage

We have stated this before: despite Permpack being able to prove a (tiny bit)
superior bound, we used Flagmatic in the proof above to emphasise that this
result had been available before Permpack was written.

5.3.2 Packing 1342

The previous lower bound for the packing density of 1342 was approximately
0.1965796. The result of Batkeyev [Bat] can be found in [AAH+02].

Let λ = 2
√

3 − 3 be the packing density of 231 and κ the ratio between
the top layer and the rest of the 1432-maximiser, see [Pri97] (κ is the root of
3x4 − 4x+ 1). Batkeyev suggested to replace each layer in the maximiser of 1432
by a 231-maximiser while preserving the size ratio κ. The density of 1342 in

117

Figure 5.6: On the left is Batkeyev’s construction for the lower bound on p(1342) as
product of packing densities of 132 and 1432. On the right is the schematic drawing of
it. The triangle stands for a 231-maximiser and the square stands for the part inside
which the entire construction is iterated.

Batkeyev’s construction (see Figure 5.6) is

p(1342, B) = (8
√

3− 12) ·
∞∑
n=0

(1− κ)3κ4n+1

= p(132)p(1432)

= 2
(

2
√

3− 3
)(

3
3

√√
2− 1− 3

3
√√

2− 1
+ 2

)
≈ 0.1965796 . . .

This lower bound was widely regarded as possibly optimal. Our contribution to
this problem is finding a vastly better lower bound construction. However, if
we restrict the space of admissible permutations to those that avoid 2431, then
Batkeyev’s construction is likely optimal. We are able to prove the following
theorem on N = 6 admissible graphs to keep the SDP small (if N = 7 was chosen,
the bound would likely be slightly better).

Theorem 5.3.4.
p(1342, {2431}) < 0.19658177.

Proof. The materials to verify the theorem are

118

• Certificate: cert1342_forb2431.js

• Script: pack1342_forb2431.sage.

The following result addresses the actual packing density of 1342 without any
forbidden patterns.

Theorem 5.3.5.

0.198836597 < p(1342) < 0.198837287.

Proof. The new lower bound is given by the construction Π in Figure 5.7. The
weights we used for the parts are given in cert1342lb.txt, located with other
certificates.

Figure 5.7: New lower bound construction Π for the packing density of 1342. The part
sizes, left to right, are approximatelly 0.2174, 0.0170, 0.0516, 0.4341, 0.1480, 0.0764,
0.0554. The square part represents the part inside which the whole construction is
iterated. The triangle part is the extremal construction for 231-packing.

119

a1 = 0.2174127723536347308692444843

a2 = 0.0170598057899242722740620549

a3 = 0.0516101402487892270230230972

a4 = 0.4340722809873864994312953007

a5 = 0.1479895625950390496250611829

a6 = 0.0764457255805656971383351365

a7 = 0.0554097124446605236389787433

(5.11)

Label the 7 parts of Π from left to right as a1, . . . , a7. We assign the weights to
them roughly as in (5.11). Then a straightforward calculation of the 1342 density
in Π implies the desired lower bound. The sage script that does this is called
lb1342.sage, located with other scripts. For the upper bound, we have

• Certificate cert1342.js

• Script is pack1342.sage.

The upper bound obtained without flag algebras stands at 2/9, see Albert et
al. [AAH+02]. The upper bound above was obtained via the flag algebras method
and confirms the claimed bound from Balogh et al. [BHL+15]. We used N = 7 for
our computations. While it is possible that N = 8 would yield a slightly better
bound, the computations would be much more expensive. Without a candidate for
an exact lower bound, we were satisfied with the bound we obtained with N = 7.

5.3.3 Packing 2413

The case packing 2413 patterns is fairly complicated as can be seen from the
lower bound construction by Presutti and Stromquist [PS10]. The previous upper
bound obtained without flag algebras was 2/9 by Albert et al. [AAH+02]. The

120

bound below was obtained via flag algebras and is in the same range as the bound
in [BHL+15].

Theorem 5.3.6.

p(2413) < 0.10478046354353523761779.

Proof. The materials to verify the theorem are

• Certificate: cert2413.js

• Script: pack2413.sage.

We used admissible permutations of length N = 7. Again, larger N could yield
a slightly better upper bound, but without an exact lower bound, this effort would
not be justified.

5.4 Packing other small permutations

The flag algebras method will yield upper bounds for many problems. In some
cases these bounds are particularly interesting because they are close to their
corresponding lower bounds. In this section we list a selection of upper and lower
bounds that are potentially sharp since their values appear to be close to each
other.

In the list below we choose to represent the permutations by their drawings
in the grid. This is more transparent as the permutations became larger. The
extremal constructions (permutons) on the left-hand side of the Table 5.2 are
represented by their drawings as well. The lower bounds are given on the left-
hand side of the table and upper bounds on the right-hand side of the table. This
is a sample of the results obtained with Permpack via flag algebras.

121

σ bounds

1. 23154 0.16039 . . . ∼ p

(
,

)
≤ p

()
≤ 0.16039 . . .

2. 14523 0.153649 . . . ∼ p

(
,

)
≤ p

()
≤ 0.153649 . . .

3. 21354 0.16515 . . . ∼ p

(
,

)
≤ p

()
≤ 0.16515 . . .

4. 231654 0.145031 . . . ∼ p

(
,

)
≤ p

()
≤ 0.145031 . . .

5. 231564 0.0673094 . . . ∼ p

(
,

)
≤ p

()
≤ 0.0673094

6. 231645 0.0673094 . . . ∼ p

(
,

)
≤ p

()
≤ 0.0673094

7. 215634 0.123456 . . . ∼ p

(
,

)
≤ p

()
≤ 0.123456 . . .

Table 5.2: Exact values are known for all densities on the left-hand side and are stated
explicitly in the text of Section 5.4 to save space in this table.

We now give the descriptions of the lower bound constructions.

1. For 23154 = , the exact value of the lower bound is 5! (2/5)2

2!
(3/5)3

3!
(2
√

3−3).
The construction is a sum of two parts in ratio 2 : 3 top to bottom. The
bottom part is a 231-maximiser while the top part is a simple decreasing
segment.

• Certificate: cert23154.js

• Script: pack23154.sage

2. For 14523 = , the construction is designed as follows. Let α be the
maximiser of 5(1 − x)4/(1 − x5) such that α ∈ [0, 1]. The topmost sum-

122

indecomposable part of the -maximiser has length α and the remainder
of the maximiser has length (1− α). The construction is iterated inside the
part of length (1− α). The part of length α is a skew-sum of two balanced
increasing segments.

• Certificate: cert14523.js

• Script: pack14523.sage

3. For 21354 = , the construction is a 4-layered permuton with layers of
lengths β, 1/2 − β, 1/2 − β, β, top to bottom. Here, β is the real root of
40x3 − 32x2 + 9x − 1 = 0. Again, we only write the approximate value on
the left-hand side in Table 5.2 for space reasons.

• Certificate: cert21354.js

• Script: pack21354.sage

4. For 231654 = , the exact value of the lower bound is 6! (1/2)6

3!2
(2
√

3 − 3).
The construction is identical in structure to the construction for , except
the ratios of the two parts in the sum are 1 : 1.

• Certificate: cert231654.js

• Script: pack231654.sage

5. For 231564 = , the exact value of the lower bound is (2
√

3− 3)2 6!
482

. The
construction is the sum of two 231-maximisers of equal size.

• Certificate: cert231564.js

• Script: pack231564.js

6. For 231645 = , the exact value of the lower bound is the same as the
lower bound for 231564: (2

√
3− 3)2 6!

482
. The construction resembles that of

231564 except the top 231-maximiser is flipped accordingly.

• cert231645.js

• Scripts pack231645.js

123

7. For 215634 = , the exact value of the lower bound is 6!
9323

. The construc-
tion has three segments of equal length arranged as portrayed in Table 5.2.

• Certificate: cert215634.js

• Script: pack215634.sage

5.5 Conclusion

While we now know the packing densities of all 4-point permutations with accuracy
of 0.01%, finding candidates for optimal constructions for the cases of 1324 and
1342 remains a challenge. In the case of 1324, a new idea for the part ratios will be
needed to come up with a possible extremal construction. As for the 1342 pattern,
the extremal construction might use a different layer formation than our Π. Even
if Π has the right structure, the part ratios remain to be determined precisely. The
latest status of 4-point packing densities is depicted in Table 5.3.

S lower bound ref LB upper bound ref UB
1234 1 trivial 1 trivial
1432 β [Pri97] β [Pri97]
2143 3/8 trivial 3/8 [Pri97]
1243 3/8 trivial 3/8 [AAH+02]
1324 0.244054321∗ – 0.244054549∗ –
1342 0.198836597∗ – 0.198837286342∗ –
2413 ≈ 0.104724 [PS10] 0.104780463544∗ –

Table 5.3: Overview of packing densities for 4-point permutations given the information
in this chapter. The values with an asterisk have been updated.

After 4-point permutations, there are many packing densities of small permuta-
tions of length 5, 6, The values of lower bounds and upper bounds in Table 5.2
should be made to match. In some cases this will be easier than in others. In
particular, the packing density of 21354 has been mentioned in both Albert et
al. [AAH+02] and Hästö [Häs02].

There are analogous questions to be asked about packing densities when certain

124

patterns are forbidden. As an example, we mentioned p(1342, {2431}) in relation
to p(1342).

Next, an interesting line of enquiry was made precise as Conjecture 2.9 in Albert
et al. [AAH+02]. For a packing of pattern S, is there an extremal construction with
an infinite number of layers? Are all extremal constructions of that form? More
precisely, let an S-maximiser be an n-permutation P such that p(S, n) = p(S, P).
If Ln is the number of layers in a layered maximiser of length n, what can we say
about Ln as n → ∞? For example, we know that the number of layers in every
1324-maximiser is unbounded as n → ∞. We also know that a 2143-maximiser
has only two layers, regardless of n.

125

Chapter 6

Permpack

Despite this chapter being about Permpack, let us start by stating that Flag-
matic 2.0 was written by Emil R. Vaughan and until our work was the only gen-
eral implementation of Razborov’s flag algebra framework. Flagmatic is freely
available to use and modify, see Flagmatic [Vau13] for more information. In
short, Flagmatic is a software package automating flag algebras computations
for graphs, 3-graphs, multi-graphs, and directed graphs. The project is hosted
at http://github.com/jsliacan/flagmatic-2.0 and contains a version of orig-
inal Flagmatic with minimal modifications (by me) to be compatible with current
version of Sage. Unfortunately, Flagmatic does not support permutations (unless
we are able to encode permutations problem in terms of graphs/digraphs/hyper-
graphs/etc.). For this reason, we wrote Permpack [Sli16], a lightweight implemen-
tation of flag algebras on top of SageMath’s Sage 7.4 (see SageMath [Dev17]).
It does not have all the functionality of Flagmatic but it is sufficient for ba-
sic tasks. For more information, code, and installation instructions, see https:

//github.com/jsliacan/permpack.

Throughout this chapter, we assume that the reader is familiar with flag alge-
bras at least to the extent presented in Chapter 5. Especially illustrative is Exam-
ple 5.2.2. For the general yet minimalistic introduction to flag algebras (only the
part that we need), see Section 5.2.1. For further references and reading material,

126

http://github.com/jsliacan/flagmatic-2.0
https://github.com/jsliacan/permpack
https://github.com/jsliacan/permpack

refer to Section 5.1 and the beginning of Section 5.2.1.

6.1 Set-up

To use Permpack, you will need a UNIX machine (a flavour of Linux or a Mac) with
a recent (7.5+) Sage installed on it (note that Sage has its own list of dependencies).
Additionally, one also needs a semidefinite solver to which Permpack passes the
constructed semidefinite problem, see Section 6.1.1.

Installing Sage from source is recommended if speed is an issue, which it is
in most interesting cases. This can take up to a day on a regular consumer
laptop. Instructions can be found here: http://doc.sagemath.org/html/en/

installation/source.html. It is useful to specify the number of jobs to run in
parallel when making Sage. This can be done with the following command:
$ MAKE=‘make -jNUM’ make, where NUM is the number of jobs you can afford simulta-
neously. Once Sage is up and running, you will need to place the solver’s binary
file in the $PATH, so that Sage can find it when needed. Usually /user/local/bin

works. At this point, the set-up should be complete.

6.1.1 Solvers

There are two semidefinite solvers that are currently supported by Permpack:
CSDP [Bor99] and SDPA-DD [YFF+12]. It is advisable to install CSDP from
source (including LAPACK/BLAS libraries) in order to make the best use of the
resources on the computer that you are using. See the instructions in the IN-
STALL file included with the source distribution on Github: https://github.

com/coin-or/Csdp.

Among other available solvers are SeDuMi, SDPT3, DSDP, and CVXOPT.
These are all based on the interior-point method. First order method is at the
core of SCS solver. In practice, CSDP and various precisions of SDPA solver

127

http://doc.sagemath.org/html/en/installation/source.html
http://doc.sagemath.org/html/en/installation/source.html
https://github.com/coin-or/Csdp
https://github.com/coin-or/Csdp

(SDPA-DD, SDPA-QD) perform reasonably well both in terms of accuracy and
speed. Permpack supports CSDP (csdp) and SDPA-DD (sdpa_dd) options for the
solver argument.

Note. When using SDPA double precision solver, the numerical solution matrices
that the solver returns are not always positive semidefinite. There may be eigen-
values which are negligibly negative, say −10−20. This needs to be treated before
further processing because we use numpy’s Cholesky decomposition in the next
step. Hence, Permpack cannot currently deal with negative eigenvalues, however
small.

6.2 Usage

It is ideal to start Permpack from /path/to/permpack/pkg/ directory. Once
there, type sage. This should start Sage and you should see something similar to
Listing 6.1.

Listing 6.1: Starting Sage.

| Sage Version 8.0, Release Date: 2017 -07 -21 |
| Type "notebook ()" for the browser -based notebook interface. |
Type "help()" for help.
sage:

Before using any of the module, it is necessary to load it. This is done by the
command in Sage interpreter given in Listing 6.2.

Listing 6.2: Loading permpack module.
1 sage: from permpack.all import *

You can test that things were loaded and that Sage can see your SDP solver
by running a small example as in Listing 6.3.

Listing 6.3: Floating point upper bound on the packing density of 132.
1 sage: from permpack.all import *

128

2 sage: p = PermProblem (3, density_pattern="132")
3 sage: p.solve_sdp(solver="csdp")

The output should resemble the one in Listing 6.4, with the bound being reported
as -4.6410162e-01 (the minus sign is due to the internal representation of the
SDP problem in CSDP as maximization versus minimization). Clearly, the result
is the floating point representation of 2

√
3− 3, the packing density of 132.

Listing 6.4: Output from Permpack after commands from Listing 6.3.
1 Generating admissible permutations ... OK.
2 Generating types ... OK.
3 Generating flags ... OK.
4 Expressing density pattern as a linear combination of permutations ... OK.
5 --
6 Generated:
7 6 admissible permutations.
8 1 types of order 1, with [4] flags.
9 --

10 /path/to/Github/permpack/pkg /../ store/FP-N3.txt
11 Loading flag_products from file ... OK.
12 Writing SDP input file ... OK.
13 Solving SDP problem ...
14 Iter: 0 Ap: 0.00e+00 Pobj: -1.200000e+02 Ad: 0.00e+00 Dobj: 0.000000e+00
15 Iter: 1 Ap: 9.68e-01 Pobj: -2.014663e+02 Ad: 9.36e-01 Dobj: 9.579035e+00
16 Iter: 2 Ap: 1.00e+00 Pobj: -1.569510e+02 Ad: 1.00e+00 Dobj: 9.009622e+00
17 Iter: 3 Ap: 9.92e-01 Pobj: -8.120415e+00 Ad: 1.00e+00 Dobj: 5.149692e-01
18 Iter: 4 Ap: 9.98e-01 Pobj: -1.207828e+00 Ad: 1.00e+00 Dobj: -3.893852e-02
19 Iter: 5 Ap: 1.00e+00 Pobj: -9.312314e-01 Ad: 7.51e-01 Dobj: -3.164694e-01
20 Iter: 6 Ap: 9.92e-01 Pobj: -5.212294e-01 Ad: 1.00e+00 Dobj: -4.256196e-01
21 Iter: 7 Ap: 1.00e+00 Pobj: -4.689616e-01 Ad: 1.00e+00 Dobj: -4.609830e-01
22 Iter: 8 Ap: 9.99e-01 Pobj: -4.643160e-01 Ad: 1.00e+00 Dobj: -4.639517e-01
23 Iter: 9 Ap: 9.99e-01 Pobj: -4.641108e-01 Ad: 1.00e+00 Dobj: -4.640964e-01
24 Iter: 10 Ap: 1.00e+00 Pobj: -4.641020e-01 Ad: 1.00e+00 Dobj: -4.641023e-01
25 Iter: 11 Ap: 1.00e+00 Pobj: -4.641016e-01 Ad: 1.00e+00 Dobj: -4.641016e-01
26 Iter: 12 Ap: 9.56e-01 Pobj: -4.641016e-01 Ad: 9.60e-01 Dobj: -4.641016e-01
27 Success: SDP solved
28 Primal objective value: -4.6410162e-01
29 Dual objective value: -4.6410162e-01
30 Relative primal infeasibility: 4.65e-14
31 Relative dual infeasibility: 1.67e-10
32 Real Relative Gap: 3.68e-10
33 XZ Relative Gap: 6.14e-10
34 DIMACS error measures: 4.65e-14 0.0e+00 3.10e-10 0.0e+00 3.68e-10 6.14e-10
35 Finished. OK.

129

6.2.1 Entering the problem into Permpack

Assuming that the permpack module is loaded, the user is concerned with only
one class: PermProblem. Everything is done in terms of solving this permutation
problem. It is easily created (and assigned to a variable through which it is accessed
later) as in Listing 6.5.

Listing 6.5: Creating a permutation problem to solve.
1 sage: from permpack.all import *
2 sage: p = PermProblem ()

The constructor for the PermProblem class takes at most three arguments (de-
scribed in Table 6.1), none of which is mandatory. The __init__() method of
PermProblem assumes that the length of admissible permutations is zero, the den-
sity pattern is 21, and the set of forbidden permutations is empty. In other words,
the default PermProblem object is just a dummy permutation problem. Therefore,
one usually wants to specify at least the length of admissible permutations N and
the density pattern.

Argument Description
N length of each admissible permutation

forbid list of forbidden permutations
density_pattern linear combination of permutations whose density we maximize

Table 6.1: Arguments to the PermProblem constructor.

For example, when solving the packing problem for 132, it is sufficient to con-
sider N = 3 (see example in Section 5.2.2). Notice that N < 3 would not be useful
as the density of 132 in any permutation of length less than 3 is zero, hence the
density behaviour of 132 would not be captured in, say, admissible permutations
of length two: P2 = {12, 21}. Usually, higher N yields more precise results (unless
the problem is intrinsically hard for flag algebras method, as could be the case
when the bound is attained by more than one extremal construction). To keep the
section self-contained, we give an example of how to solve the packing problem for
132 via Permpack. See Listing 6.6.

Listing 6.6: Setting up packing problem for the 132 pattern.

130

1 sage: from permpack.all import *
2 sage: p = PermProblem (3, forbid =[], density_pattern="132")

The response from Permpack should resemble the output in Listing 6.7.

Listing 6.7: Response from Permpack when setting up the packing problem for 132.
1 Generating admissible permutations ... OK.
2 Generating types ... OK.
3 Generating flags ... OK.
4 Expressing density pattern as a linear combination of permutations ... OK.
5 --
6 Generated:
7 6 admissible permutations.
8 1 types of order 1, with [4] flags.
9 --

10 /path/to/Github/permpack/pkg /../ store/FP-N3.txt
11 Loading flag_products from file ... OK.

Notice, in particular, the lines 10-11:
/path/to/Github/permpack/pkg /../ store/FP-N3.txt
Loading flag_products from file ... OK.

Permpack does not recompute flag products if the problem (requiring the same
flag products) was already encountered before. This is to save time. We briefly
mention this in Section 6.3.

Let us now comment on the format of the input to the PermProblem construc-
tor.

• N: Permpack only accepts integers. When N gets too large (say 9), the com-
putations become very slow already when computing flag products. It is very
likely that even if you manage to wait long enough to compute these, the
SDP problem will be so large that you will run out of memory (for instance).

• forbid: Permpack accepts a list of permutations. Do make sure that each of
them has length at most N. Otherwise it is impossible to exclude them from
the computations.

• density_pattern: Permpack accepts a few different inputs. Firstly, a solo
permutation either as a list of integers, [1,3,2], or as a string,"132", is

131

fine. However, it is possible to want to maximize the density of, say, 1/2 ·
p(132, P) + 1/2 · p(231, P) over all admissible P . This can also be done.
Permpack takes such input as a list of tuples, each tuple of length two with
the first entry a permutation (either as a list of integers or as a string) and
the second entry a coefficient (as a fraction or a floating point number). For
example, the following inputs are all equivalent (although the last one is
scaled differently – the problem has the same maximizer(s), just different
packing density of the density_pattern):

? density_pattern=[([1,3,2],1/2),([2,1,3],1/2)]

? density_pattern=[("132",0.5),("213",0.5)]

? density_pattern=[("132",1),("213",1)]

6.2.2 Solving SDP

The next method one needs to call on the PermProblem is solve_sdp(). As
usual, it is possible to call this method without any arguments. In such case, the
solver defaults to CSDP. If one wants a double precision solver SDPA-DD, ar-
gument needs to be passed with that option: solve_sdp(solver="sdpa_dd").
First, the method solve_sdp() writes an input file to the SDP solver. The
default input filename is sdp.dat-s. If you wish for a different name pass an
additional argument to the solve_sdp() method specifying the filename, e.g.
input_file="myfile.dat-s". Make sure that the filename ends with .dat-s

suffix to be recognized as a sparse data file by the solver. The solve_sdp()

method then passes the information to the SDP solver together with the output
filename, where the solution to the semidefinite problem will be stored. The de-
fault output filename is sdp.out. If you wish this file to be named differently,
you need to pass an additional argument to the solve_sdp() method specifying
your preferred filename: output_file="myfile.out", where the .out extension
is just a convention. All these files are stored in the current working directory
to be easily accessible if one wants to peruse them manually. Once the method
passes everything to the solver, it can take a long time before a solution is found

132

by the solver. You will see the progress on your screen as the output from the
solver is not suppressed. Once the solver finished, you’ll be able to see the floating
point bound that was found. The next step is rounding the floating point solution
matrices to have exact entries such that they stay positive semidefinite and the
new exact bound is as good as possible. An example call to solve_sdp() is in
Listing 6.8.

Listing 6.8: Packing 132. Code up to calling the SDP solver. You should see
myfile.dat-s and myfile.out in your current working directory after executing the
following code.

1 sage: from permpack.all import *
2 sage: p = PermProblem (3, density_pattern="132")
3 sage: p.solve_sdp(solver="csdp",
4 input_file="myfile.dat -s",
5 output_file="myfile.out")

6.2.3 Assumptions

A feature of Permpack that is worth mentioning, albeit briefly, are assumptions.
Imagine one wants to add additional density assumptions on various pattern den-
sities. There are various natural examples, but a small and easily checkable one is
the following. Imagine that you want to find the packing density of 12 in 123-free
permutations. However, you insist that the density of 312 is at least 1/5 (no-
tice that its density would be 0 in the maximiser of 12 in 123-free permutations).
Therefore, you are essentially forcing the problem away from the usual optimum.
It is not immediately obvious what the answer is, and the number that Permpack
gives will probably not make you wiser. It was an arbitrarily chosen problem to
illustrate a feature. However, you can certainly see that the value Permpack gives
you is smaller than 1/2, which would be the packing density of 12 in 123-free
permutations. See the code snippet in Listing 6.9 that asks Permpack to compute
this example for us. The structure of the command is the following. Use the
add_assumption method of the PermProblem class. It takes two arguments: a list
of pairs (σ, cσ) and a bound b. The idea is to bound a linear combination of per-
mutation densities, such as c123p(123, P) + c321p(321, P) ≥ b, where the inequality

133

holds for every admissible P . Clearly, this can be encoded as a vector of pairs
(σ, cσ) and an additional bound b. In our example, σ = 312, c312 = 1, and b = 1/5.

Listing 6.9: Forbid 123, maximise 12 under the constraint that p(312) ≥ 1/5.
1 sage: from permpack.all import *
2 sage: p = PermProblem (3, forbid =["123"], density_pattern="12")
3 sage: p.add_assumption ([("312" ,1)], 1/5)
4 sage: p.solve_sdp ()

The critical excerpt from the output is provided below, in Listing 6.10.

Listing 6.10: The interesing part of Permpack’s output for the problem in Listing 6.9.
1 Success: SDP solved
2 Primal objective value: -3.4261685e-01
3 Dual objective value: -3.4261686e-01
4 Relative primal infeasibility: 9.25e-15
5 Relative dual infeasibility: 6.65e-09
6 Real Relative Gap: -1.16e-08
7 XZ Relative Gap: 7.77e-09
8 DIMACS error msrs: 9.25e-15 0.00e+00 1.39e-08 0.00e+00 -1.16e-08 7.77e-09
9 Finished. OK.

6.2.4 Rounding

The next aspect to discuss is the rounding procedure. As is obvious from above,
an SDP solver returns matrices whose entries are floating point values. They
are inexact and do not prove anything. Therefore, we need to convert these ma-
trices to other (e.g. rational) matrices, preserving positive semi-definiteness and
ideally staying as close to the desired bound on our problem as possible. See
Example 5.2.2 for an example of converting a floating-point matrix to an “exact”
matrix. We call the procedure of converting floating-point matrices to exact matri-
ces, rounding and it is done by PermProblem’s method exactify() in Permpack.
It is quite basic as currently implemented. We only worry about preserving the
positive-semidefiniteness and hope that if the rounded matrix is entry-wise close
to the original one, then the bound will not be off by too much. In practice,
this works reasonably well unless the goal is to prove a tight bound for a pack-
ing density. The method exactify takes several optional arguments which can
fine-tune the “precision” with which the rounding is done, e.g. eigenvalues close

134

to zero are rounded to zero if they are close enough — this is controlled by the
parameter recognition_precision. Another parameter is rounding_precision
and it specifies the denominator when rounding the entries of floating-point PSD
Q′ matrices. We give a shared example for rounding and issuing certificates in
Subsection 6.2.5, see Listing 6.11 and 6.12 for input and output, respectively.

Positive semidefinite matrices are well-behaved. For instance, they admit a
Cholesky decomposition as a product of a lower and an upper triangular matrices
with non-negative entries on the diagonals. Moreover, the lower triangular matrix
is a transpose of the upper triangular matrix. In particular, let Q be a positive
semidefinite matrix. Then Q = LLT , where L is a lower-triangular matrix (entries
above the diagonal are zeros) with non-negative entries on the diagonal. Clearly,
if we perturb the entries of L slightly in such a way that the diagonal entries
stay non-negative, LLT will remain positive semidefinite. Therefore, if Q′ is a
floating-point matrix returned by a SDP solver, we convert it to an exact matrix
by rounding the entries of L′ from the decomposition Q′ = L′L′T to produce an
exact matrix L. This guarantees that Q := LLT is positive semidefinite. With
a bit of luck, using Q matrices instead of Q′ matrices does not change the upper
bound by too much.

Notice that rounding entries of Q′ directly would not necessarily produce a
positive semidefinite matrix. Hence our choice of Cholesky decomposition for
rounding.

6.2.5 Certificates

The last critical part of Permpack that the user should be aware of are certificates.
These are human readable files that store information necessary to verify the results
obtained by Permpack. The key idea being that it is significantly easier to check
if given matrices solve an SDP problem than it is to find those matrices in the
first place. Therefore, the class PermProblem has a method write_certificate

which takes the filename you want your certificate to have. It will be written
into the current directory (so make sure you have writing permissions there). The

135

certificate is a JSON file and is easy to read in and process. It contains the following
information:

1. admissible permutations

2. flags

3. types

4. matrices L

5. bound (rational)

Notice that as things currently stand, rounding (recall exactify() method)
is done via Cholesky decomposition of the SDP Q matrices. Therefore, every
floating-point Q′ = L′L′T is stored as the rounded version L of L′. From L, a
rounded version Q of Q′ can be recovered. The example below shows how to
round the SDP matrices and how to issue a certificate for your problem.

Listing 6.11: We want eigenvalues smaller than 10−6 to be rounded to 0 and the denom-
inator for rounding to be 1010.

1 sage: from permpack.all import *
2 sage: p = PermProblem (3, forbid =["123"], density_pattern="12")
3 sage: p.solve_sdp ()
4 sage: p.exactify(recognition_precision =10e-6, rounding_precision =10e10)
5 sage: p.write_certificate("babyproblem.js")

Listing 6.12: The interesing part of Permpack’s output for the problem in Listing 6.11.
1 ...
2 Success: SDP solved
3 Primal objective value: -5.0000001e-01
4 Dual objective value: -5.0000001e-01
5 Relative primal infeasibility: 9.44e-16
6 Relative dual infeasibility: 6.32e-09
7 Real Relative Gap: -9.94e-10
8 XZ Relative Gap: 6.94e-09
9 DIMACS error msrs: 9.44e-16 0.00e+00 1.19e-08 0.00e+00 -9.94e-10 6.94e-09

10 ...
11 Transforming floating -point matrices to rational matrices ...
12 Reading output of the CSDP solver ... OK.
13 Rounding Q matrices ... OK.
14 Computing exact bound ...

136

15 [OK] Done. Exact bound is roughly 0.5000000043. Access it from
16 self._exact_bound.
17 Writing certificate into file ...
18 [OK] Certificate written successfully to babyproblem.js.

6.3 Miscellaneous

Here are a couple of remarks about Permpack to help you understand mysterious
looking output or behaviour of the package.

First, Permpack stores your computations if they are new. Indeed, when you
clone the repository, it comes with some clumsily big files containing flag products
for particular problems. Flag products are expensive to compute and at some
point it becomes useful to store them and next time only load them from file. We
intentionally did not choose any database storage in order for the files to be human
readable. They are plain text files.

Second, Permpack does make small use of multiprocessing when computing
flag products. Maybe it would be better to use multiple threads instead, but this
is something to consider at a later point in time if Permpack ever gets rewritten.
The parallelization offers a modest speed-up if the machine has several cores. No
miracles.

6.4 Conclusion

There are several hidden features of Permpack that would require longer discus-
sion of the underlying Flag Algebras method. For instance, one can access slack
variables of an SDP problem and, provided the bound is tight, obtain informa-
tion about which admissible permutations do not asymptotically appear in any
extremal construction for the problem. Additionally, there are hidden variables
starting with an underscore (_) that give the user access to intermediate compu-

137

tations and auxiliary variables. These can be useful in certain circumstances. The
Flag Algebras method offers various insights into the problem through the compu-
tations that are performed on the way to obtaining a sharp bound. For discussion
about these, follow the references in Section 5.2.1.

Permpack’s functionality could be extended in many directions. From more
general assumptions (I have implemented theses in Flagmatic for hypergraphs),
through supply of extremal constructions that help with rounding (see the original
Flagmatic [Vau13]), to a more complete rounding procedure. Also, it is quite
possible that, as in case of graphs, there are automated ways to determine various
levels of stability of extremal constructions — see a recent preprint [PST17].

Finally, I would like to invite programmers to take a look at Permpack. There
are areas which require no knowledge of Flag Algebras. For instance, at the end,
solutions need to be rounded – by this we mean converted from floating-point
matrices to either matrices with rational entries or entries from some particular
extension of rationals. These computations are not at all trivial, but do not depend
on the idea of Flag Algebras. One only needs to understand the format of the SDP
(see Section 5.2.1, towards the end). Given an efficient rounding procedure, many
problems would be automated from the input line all the way to the certificate
stage. A good example of a worthy contribution is by Eric Zhang who simply
wrote a more efficient normalize function which is used inside loops in critical
computations. There must be many such inefficiencies and removing them often
requires no knowledge of Flag Algebras.

138

Bibliography

[AA05] M. H. Albert and M. D. Atkinson. Simple permutations and pattern
restricted permutations. Discrete Mathematics, 300(1):1–15, 2005. [
Cited on pages 14 and 44.]

[AAB11] M. H. Albert, M. D. Atkinson, and R. Brignall. The enumeration of
permutations avoiding 2143 and 4231. Pure Mathematics and Appli-
cations, 22:87–98, 2011. [Cited on pages 19 and 20.]

[AAB12] M. H. Albert, M. D. Atkinson, and R. Brignall. The enumeration of
three pattern classes using monotone grid classes. Electronic Journal
of Combinatorics, 19, 06 2012. [Cited on page 19.]

[AAB+13] M. H. Albert, M. D. Atkinson, M. Bouvel, N. Ruškuc, and V. Vatter.
Geometric grid classes of permutations. Transactions of the American
Mathematical Society, 365(11):5859–5881, 2013. [Cited on pages 20,
21, and 22.]

[AAH+02] M. H. Albert, M. D. Atkinson, C. C. Handley, D. A. Holton, and
W. Stromquist. On packing densities of permutations. Electronic
Journal of Combinatorics, 9(1), 2002. [Cited on pages 13, 100, 111,
114, 117, 120, 124, and 125.]

[AAV14] M. H. Albert, M. D. Atkinson, and V. Vatter. Inflations of geometric
grid classes: three case studies. Australasian Journal of Combina-
torics, 58(1):27–47, 2014. [Cited on pages 19, 26, 37, and 42.]

139

[AB14] M. H. Albert and R. Brignall. Enumerating indices of Schubert vari-
eties defined by inclusions. Journal of Combinatorial Theory, Series
A, 123(1):154–168, 2014. [Cited on page 20.]

[AB16] M. H. Albert and R. Brignall. 2 × 2 monotone grid classes are
finitely based. Discrete Mathematics and Theoretical Computer Sci-
ence, 18(2), Permutation Patterns 2015, 2016. [Cited on page 20.]

[ABRV16] M. H. Albert, R. Brignall, N. Ruškuc, and V. Vatter. Ra-
tionality for subclasses of 321-avoiding permutations. preprint,
arXiv:1602.00672, 2016. [Cited on page 27.]

[AER+06] M. H. Albert, M. Elder, A. Rechnitzer, P. Westcott, and M. Zabrocki.
On the Stanley–Wilf limit of 4231-avoiding permutations and a con-
jecture of Arratia. Advances in Applied Mathematics, 36(2):96 –105,
2006. Special Issue on Pattern Avoiding Permutations. [Cited on
pages 16 and 17.]

[Alb10] M. H. Albert. An introduction to structural methods in permutation
patterns. In Linton S., Ruškuc N., and Vatter V., editors, Permu-
tation Patterns, London Mathematical Society Lecture Note Series,
pages 41–66. Cambridge University Press, 2010. [Cited on page 13.]

[Alb12] M. H. Albert. PermLab: Software for permutation patterns. http:

//www.cs.otago.ac.nz/PermLab, 2012. [Cited on pages 7 and 25.]

[Arr99] R. Arratia. On the Stanley-Wilf conjecture for the number of per-
mutations avoiding a given pattern. Electronic Journal of Combina-
torics, 6(1), 1999. [Cited on page 16.]

[Atk98] M. D. Atkinson. Permutations which are the union of an increasing
and a decreasing subsequence. Electronic Journal of Combinatorics,
5, 02 1998. [Cited on page 19.]

[Atk99] M. D. Atkinson. Restricted permutations. Discrete Mathematics,
195(1):27–38, 1999. [Cited on pages 19, 20, 23, and 25.]

140

https://arxiv.org/abs/1610.01908
http://www.cs.otago.ac.nz/PermLab
http://www.cs.otago.ac.nz/PermLab

[Bar04] R. W. Barton. Packing densities of patterns. Journal of Combina-
torics, 11(3):R80, 2004. [Cited on pages 13 and 111.]

[Bat] B. Batkeyev. Extremal construction for 1342-packing. unpublished.
[Cited on pages 100 and 117.]

[BBP+17] F. Bassino, M. Bouvel, A. Pierrot, C. Pivoteau, and D. Rossin.
An algorithm computing combinatorial specifications of permutation
classes. Discrete Applied Mathematics, 224:16–44, 2017. [Cited on
page 93.]

[Bev15a] D. I. Bevan. Growth rates of permutation grid classes, tours on
graphs, and the spectral radius. Transactions of the American Math-
ematical Society, 367(8):5863–5889, 2015. [Cited on pages 20 and 21.]

[Bev15b] D. I. Bevan. On the growth of permutation classes. PhD thesis, The
Open University, 2015. [Cited on pages 7, 19, 20, 22, 44, 88, and 93.]

[Bev15c] D. I. Bevan. Permutation patterns: basic definitions and notation.
preprint, arXiv:1506.06673, 2015. [Cited on page 25.]

[Bev17] D. I. Bevan. The permutation class Av(4213,2143). Discrete Mathe-
matics and Theoretical Computer Science, 18(2), 4 2017. [Cited on
pages 20, 25, 31, and 32.]

[BHL+15] J. Balogh, P. Hu, B. Lidický, O. Pikhurko, B. Udvari, and J. Volec.
Minimum number of monotone subsequences of length 4 in permu-
tations. Combinatorics, Probability and Computing, 24(04):658–679,
2015. [Cited on pages 100, 101, 104, 120, and 121.]

[BHV08a] R. Brignall, S. Huczynska, and V. Vatter. Simple permutations and
algebraic generating functions. Journal of Combinatorial Theory,
Series A, 115(3):423–441, 2008. [Cited on page 44.]

[BHV08b] R. Brignall, S. Huczynska, and V. Vatter. Simple permutations and
algebraic generating functions. Journal of Combinatorial Theory,
Series A, 115(3):423–441, 2008. [Cited on page 93.]

141

http://arxiv.org/abs/1506.06673

[Bon97] J. A. Bondy. Counting subgraphs a new approach to the Caccetta-
Häggkvist conjecture. Discrete Mathematics, 165:71–80, 1997. [Cited
on page 105.]

[Bor99] E. B. Borchers. CSDP package. https://projects.coin-or.org/

Csdp/, 1999. [Cited on page 127.]

[Bri10] R. Brignall. A survey of simple permutations. In Linton S., Ruškuc
N., and Vatter V., editors, Permutation Patterns, London Mathemat-
ical Society Lecture Note Series, pages 41–66. Cambridge University
Press, 2010. [Cited on page 13.]

[Bri12] R. Brignall. Grid classes and partial well order. Journal of Combi-
natorial Theory. Series A, 119(1):99–116, 2012. [Cited on page 20.]

[BS17] R. Brignall and J. Sliačan. Juxtaposing catalan permutation classes
with monotone ones. Electronic Journal of Combinatorics, 24(2)(2),
2017. [Cited on page 7.]

[BT11] R. Baber and J. Talbot. Hypergraphs do jump. Combinatorics,
Probability and Computing, 20(2):161–171, 2011. [Cited on page 104.]

[Bó05] M. Bóna. The limit of a stanley–wilf sequence is not always rational,
and layered patterns beat monotone patterns. Journal of Combina-
torial Theory, Series A, 110(2):223–235, 2005. [Cited on page 17.]

[CGW88] F. R. K. Chung, R. L. Graham, and R. M. Wilson. Quasirandom
graphs. Proceedings of the National Academy of Sciences of the
United States of America, 85(4):969–970, 1988. [Cited on page 105.]

[Dev17] The Sage Developers. SageMath, the Sage Mathematics Software
System (Version 7.4), 2017. http://www.sagemath.org. [Cited on
pages 7, 101, and 126.]

[Fox13] J. Fox. Stanley-Wilf limits are typically exponential. preprint,
arXiv:1310.8378, 2013. [Cited on page 17.]

142

https://projects.coin-or.org/Csdp/
https://projects.coin-or.org/Csdp/
http://www.sagemath.org
https://arxiv.org/abs/1310.8378

[FRMPV15] V. Falgas-Ravry, E. Marchant, O. Pikhurko, and E. R. Vaughan. The
codegree threshold for 3-graphs with independent neighborhoods.
SIAM Journal on Discrete Mathematics, 29(3):1504–1539, 2015. [
Cited on page 104.]

[FRV12] V. Falgas-Ravry and E. R. Vaughan. Turán H-densities for 3-graphs.
The Electronic Journal of Combinatorics, 19(3):P40–, 2012. [Cited
on page 104.]

[FRV13] V. Falgas-Ravry and E. R. Vaughan. Applications of the semi-definite
method to the Turán density problem for 3-graphs. Combinatorics,
Probability and Computing, 22(01):21–54, 2013. [Cited on pages 101
and 104.]

[FS09] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge
University Press, 2009. [Cited on pages 13 and 45.]

[Häs02] P. A. Hästö. The packing density of other layered permutations.
Electronic Journal of Combinatorics, 9(2), 2002. [Cited on page 124.]

[HKM+13] C. Hoppen, Y. Kohayakawa, C. G. Moreira, B. Ráth, and Sampaio M.
R. Limits of permutation sequences. Journal of Combinatorial The-
ory. Series B, 103(1):93–113, 2013. [Cited on page 104.]

[HMU01] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to au-
tomata theory, languages, and computation. Addison-Wesley Pub-
lishing Co., Reading, Mass., 2nd edition, 2001. [Cited on page 28.]

[Hua14] H. Huang. On the maximum induced density of directed stars and
related problems. SIAM Journal on Discrete Mathematics, 28(1):92–
98, 2014. [Cited on page 101.]

[Inca] The OEIS Foundation Inc. The On-Line Encyclopedia of Integer
Sequences. http://oeis.org. [Cited on pages 32, 35, 81, 88, and 92.]

[Incb] Wolfram Research, Inc. Mathematica, Version 10.4. Champaign, IL,
2016. [Cited on pages 7, 80, and 92.]

143

http://oeis.org

[KNS64] G. Katona, T. Nemetz, and M. Simonovits. On a problem of Turán
in the theory of graphs. Matematikai Lapok, 15:228–238, 1964. [
Cited on pages 100 and 103.]

[KP13] D. Král’ and O. Pikhurko. Quasirandom permutations are char-
acterized by 4-point densities. Geometric and Functional Analysis,
23(2):570–579, 2013. [Cited on page 104.]

[Lov12] L. Lovász. Large networks and graph limits, volume 60. American
Mathematical Society, 2012. [Cited on page 105.]

[LRV10] S. Linton, N. Ruškuc, and V. Vatter. Permutation Patterns. Cam-
bridge University Press, New York, NY, USA, 2010. [Cited on
page 13.]

[M.10] Klazar M. Some general results in combinatorial enumeration. In
Linton S., Ruškuc N., and Vatter V., editors, Permutation Patterns,
London Mathematical Society Lecture Note Series, pages 41–66. Cam-
bridge University Press, 2010. [Cited on page 13.]

[Min16] S. Miner. Enumeration of several two-by-four classes. preprint,
arXiv:1610.01908, 2016. [Cited on pages 25 and 32.]

[MT04] A. Marcus and G. Tardos. Excluded permutation matrices and the
Stanley-Wilf conjecture. Journal of Combinatorial Theory. Series A,
107(1):153–160, 2004. [Cited on page 16.]

[MV03] M. M. Murphy and V. Vatter. Profile classes and partial well-order
for permutations. Electronic Journal of Combinatorics, 9(2), 2003. [
Cited on page 20.]

[Pan17] J. Pantone. The enumeration of permutations avoiding 3124 and
4312. Annals of Combinatorics, 21(2):293–315, 2017. [Cited on
page 19.]

[Pri97] A. L. Price. Packing densities of layered* patterns. PhD thesis,
University of Pennsylvania, 1997. [Cited on pages 100, 101, 114,
117, and 124.]

144

https://arxiv.org/abs/1610.01908

[PS10] C. B. Presutti and W. Stromquist. Packing rates of measures and
a conjecture for the packing density of 2413. Permutation patterns,
376:287–316, 2010. [Cited on pages 13, 100, 104, 120, and 124.]

[PST17] O. Pikhurko, J. Sliačan, and K. Tyros. Strong forms of stability from
flag algebra calculations. preprint, arXiv:1706.02612, 06 2017. [
Cited on page 138.]

[PV16] J. Pantone and V. Vatter. Growth rates of permutation classes:
categorization up to the uncountability threshold. preprint,
arXiv:1605.04289, 05 2016. [Cited on page 20.]

[Raz07] A. A. Razborov. Flag algebras. The Journal of Symbolic Logic,
72(04):1239–1282, 2007. [Cited on pages 101, 104, and 107.]

[Raz13] A. A. Razborov. Flag algebras: an interim report. In The Mathe-
matics of Paul Erdős II, pages 207–232. Springer, 2013. [Cited on
page 104.]

[Sli16] J. Sliačan. Permpack. http://jsliacan.github.io/permpack,
2016. [Cited on pages 7, 101, and 126.]

[Spe12] K. Sperfeld. Semidefinite programming in extremal graph theory. PhD
thesis, Universität Rostock, 2012. [Cited on page 104.]

[SS18] J. Sliačan and W. Stromquist. Improving bounds on packing densities
of 4-point permutations. Discrete Mathematics & Theoretical Com-
puter Science, Vol. 19 no. 2, Permutation Patterns 2016, February
2018. [Cited on page 7.]

[Ste12] E. Steingrímsson. Some open problems on permutation patterns.
London Mathematical Society Lecture Note Series, 409, 10 2012. [
Cited on page 13.]

[Str93] W. Stromquist. Packing layered posets into posets. unpublished,
1993. [Cited on page 111.]

145

https://arxiv.org/abs/1706.02612
https://arxiv.org/abs/1605.04289
http://jsliacan.github.io/permpack

[V.15] Vatter V. Permutation classes. In Bóna M., editor, Handbook of
Enumerative Combinatorics, pages 753–834. Chapman & Hall/CRC,
2015. [Cited on page 13.]

[Vat11] V. Vatter. Small permutation classes. Proceedings of the London
Mathematical Society (3), 103:879–921, 2011. [Cited on page 20.]

[Vat16] V. Vatter. Growth rates of permutation classes: from countable to
uncountable. preprint, arXiv:1605.04297, 2016. [Cited on page 20.]

[Vau13] E. R. Vaughan. Flagmatic 2.0. http://jsliacan.github.io/

flagmatic, 2013. [Cited on pages 7, 101, 126, and 138.]

[Vol14] J. Volec. Analytic methods in combinatorics. PhD thesis, University
of Warwick, Université Paris-Diderot, 2014. [Cited on page 104.]

[VW11] V. Vatter and S. Waton. On partial well-order for monotone grid
classes of permutations. Order, 28:193–199, 2011. [Cited on page 20.]

[Wat07] S. Waton. On permutation classes defined by token passing networks,
gridding matrices and pictures: Three flavours of involvement. PhD
thesis, University of St Andrews, 2007. [Cited on page 20.]

[YFF+12] M. Yamashita, K. Fujisawa, M. Fukuda, K. Kobayashi, K. Nakata,
and M. Nakata. Latest Developments in the SDPA Family for Solving
Large-Scale SDPs, pages 687–713. Springer US, Boston, MA, 2012. [
Cited on page 127.]

146

https://arxiv.org/abs/1605.04297
http://jsliacan.github.io/flagmatic
http://jsliacan.github.io/flagmatic

	Abstract
	Acknowledgements
	Declarations
	General Introduction
	Concepts and definitions
	Special permutations
	Permutation classes

	I Enumeration
	Introduction to Enumeration
	Simple juxtapositions
	Introduction
	Definitions and overview
	Enumeration
	Class A = Av(231|12)
	Class B = Av(321|21)
	Class C = Av(312|21)

	Bijections
	Conclusion

	Iterated juxtapositions
	Introduction, definitions, prerequisites
	Main results
	Extension to decreasing classes and both sides

	Applications to exact enumeration
	Example: Av(321|21)
	Example: Av(21|21|21)
	Example: Separable next to monotone

	Conclusion

	II Packing
	Packing small permutations
	Introduction
	Definitions and concepts
	Flag Algebras
	Example

	Results
	Packing 1324
	Packing 1342
	Packing 2413

	Packing other small permutations
	Conclusion

	Permpack
	Set-up
	Solvers

	Usage
	Entering the problem into Permpack
	Solving SDP
	Assumptions
	Rounding
	Certificates

	Miscellaneous
	Conclusion

	Bibliography

