1,557 research outputs found

    Robust, Resilient and Reliable Architecture for V2X Communication

    Get PDF
    The new developments in mobile edge computing (MEC) and vehicle-to-everything (V2X) communications has positioned 5G and beyond in a strong position to answer the market need towards future emerging intelligent transportation systems and smart city applications. The major attractive features of V2X communication is the inherent ability to adapt to any type of network, device, or data, and to ensure robustness, resilience and reliability of the network, which is challenging to realize. In this work, we propose to drive these further these features by proposing a novel robust, resilient and reliable architecture for V2X communication based on harnessing MEC and blockchain technology. A three stage computing service is proposed. Firstly, a hierarchcial computing architecture is deployed spanning over the vehicular network that constitutes cloud computing (CC), edge computing (EC), fog computing (FC) nodes. The resources and data bases can migrate from the high capacity cloud services (furthest away from the individual node of the network) to the edge (medium) and low level fog node, according to computing service requirements. Secondly, the resource allocation filters the data according to its significance, and rank the nodes according to their usability, and selects the network technology according to their physical channel characteristics. Thirdly, we propose a blockchain-based transaction service that ensures reliability. We discussed two use cases for experimental analysis, plug- in electric vehicles in smart grid scenarios, and massive IoT data services for autonomous cars. The results show that car connectivity prediction is accurate 98% of the times, where 92% more data blocks are added using micro-blockchain solution compared to the public blockchain, where it is able to reduce the time to sign and compute the proof-of-work (PoW), and deliver a low-overhead Proof-of-Stake (PoS) consensus mechanism. This approach can be considered a strong candidate architecture for future V2X, and with more general application for everything- to-everything (X2X) communications

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Edge Intelligence : Empowering Intelligence to the Edge of Network

    Get PDF
    Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis proximity to where data are captured based on artificial intelligence. Edge intelligence aims at enhancing data processing and protects the privacy and security of the data and users. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this article, we present a thorough and comprehensive survey of the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, i.e., edge caching, edge training, edge inference, and edge offloading based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare, and analyze the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, and so on. This article provides a comprehensive survey of edge intelligence and its application areas. In addition, we summarize the development of the emerging research fields and the current state of the art and discuss the important open issues and possible theoretical and technical directions.Peer reviewe

    Scaling and Placing Distributed Services on Vehicle Clusters in Urban Environments

    Get PDF
    Many vehicles spend a significant amount of time in urban traffic congestion. Due to the evolution of autonomous vehicles, driver assistance systems, and in-vehicle entertainment, these vehicles have plentiful computational and communication capacity. How can we deploy data collection and processing tasks on these (slowly) moving vehicles to productively use any spare resources? To answer this question, we study the efficient placement of distributed services on a moving vehicle cluster. We present a macroscopic flow model for an intersection in Dublin, Ireland, using real vehicle density data. We show that such aggregate flows are highly predictable (even though the paths of individual vehicles are not known in advance), making it viable to deploy services harnessing vehicles’ sensing capabilities. After studying the feasibility of using these vehicle clusters as infrastructure, we introduce a detailed mathematical specification for a task-based, distributed service placement model. The distributed service scales according to the resource requirements and is robust to the changes caused by the mobility of the cluster. We formulate this as a constrained optimization problem, with the objective of minimizing overall processing and communication costs. Our results show that jointly scaling tasks and finding a mobility-aware, optimal placement results in reduced processing and communication costs compared to the two schemes in the literature. We compare our approach to an autonomous vehicular edge computing-based naive solution and a clustering-based solution

    Edge Intelligence : Empowering Intelligence to the Edge of Network

    Get PDF
    Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis proximity to where data are captured based on artificial intelligence. Edge intelligence aims at enhancing data processing and protects the privacy and security of the data and users. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this article, we present a thorough and comprehensive survey of the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, i.e., edge caching, edge training, edge inference, and edge offloading based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare, and analyze the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, and so on. This article provides a comprehensive survey of edge intelligence and its application areas. In addition, we summarize the development of the emerging research fields and the current state of the art and discuss the important open issues and possible theoretical and technical directions.Peer reviewe

    The Internet of Things Will Thrive by 2025

    Get PDF
    This report is the latest research report in a sustained effort throughout 2014 by the Pew Research Center Internet Project to mark the 25th anniversary of the creation of the World Wide Web by Sir Tim Berners-LeeThis current report is an analysis of opinions about the likely expansion of the Internet of Things (sometimes called the Cloud of Things), a catchall phrase for the array of devices, appliances, vehicles, wearable material, and sensor-laden parts of the environment that connect to each other and feed data back and forth. It covers the over 1,600 responses that were offered specifically about our question about where the Internet of Things would stand by the year 2025. The report is the next in a series of eight Pew Research and Elon University analyses to be issued this year in which experts will share their expectations about the future of such things as privacy, cybersecurity, and net neutrality. It includes some of the best and most provocative of the predictions survey respondents made when specifically asked to share their views about the evolution of embedded and wearable computing and the Internet of Things

    A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions

    Get PDF
    Security has become the primary concern in many telecommunications industries today as risks can have high consequences. Especially, as the core and enable technologies will be associated with 5G network, the confidential information will move at all layers in future wireless systems. Several incidents revealed that the hazard encountered by an infected wireless network, not only affects the security and privacy concerns, but also impedes the complex dynamics of the communications ecosystem. Consequently, the complexity and strength of security attacks have increased in the recent past making the detection or prevention of sabotage a global challenge. From the security and privacy perspectives, this paper presents a comprehensive detail on the core and enabling technologies, which are used to build the 5G security model; network softwarization security, PHY (Physical) layer security and 5G privacy concerns, among others. Additionally, the paper includes discussion on security monitoring and management of 5G networks. This paper also evaluates the related security measures and standards of core 5G technologies by resorting to different standardization bodies and provide a brief overview of 5G standardization security forces. Furthermore, the key projects of international significance, in line with the security concerns of 5G and beyond are also presented. Finally, a future directions and open challenges section has included to encourage future research.European CommissionNational Research Tomsk Polytechnic UniversityUpdate citation details during checkdate report - A
    corecore