
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Articles

2022-05-20

Scaling and Placing Distributed Services on Vehicle Clusters in Scaling and Placing Distributed Services on Vehicle Clusters in

Urban Environments Urban Environments

Kanika Sharma
South East Technological University

Bernard Butler
South East Technological University, bernard.butler@setu.ie

Brendan Jennings
Technological University Dublin, brendan.jennings@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/creaart

 Part of the Digital Communications and Networking Commons

Recommended Citation Recommended Citation
K. Sharma, B. Butler and B. Jennings, "Scaling and Placing Distributed Services on Vehicle Clusters in
Urban Environments," in IEEE Transactions on Services Computing, doi: 10.1109/TSC.2022.3173917.

This Article is brought to you for free and open access by
ARROW@TU Dublin. It has been accepted for inclusion in
Articles by an authorized administrator of ARROW@TU
Dublin. For more information, please contact
arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie,
gerard.connolly@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 4.0 License
Funder: Science Foundation Ireland

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/creaart
https://arrow.tudublin.ie/creaart?utm_source=arrow.tudublin.ie%2Fcreaart%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=arrow.tudublin.ie%2Fcreaart%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

1

Scaling and Placing Distributed Services on
Vehicle Clusters in Urban Environments

Kanika Sharma (Member, IEEE), Bernard Butler (Member, IEEE), and Brendan Jennings (Member, IEEE)

Abstract—Many vehicles spend a significant amount of time in urban traffic congestion. Due to the evolution of autonomous vehicles,
driver assistance systems, and in-vehicle entertainment, these vehicles have plentiful computational and communication capacity. How
can we deploy data collection and processing tasks on these (slowly) moving vehicles to productively use any spare resources? To
answer this question, we study the efficient placement of distributed services on a moving vehicle cluster. We present a macroscopic
flow model for an intersection in Dublin, Ireland, using real vehicle density data. We show that such aggregate flows are highly
predictable (even though the paths of individual vehicles are not known in advance), making it viable to deploy services harnessing
vehicles’ sensing capabilities. After studying the feasibility of using these vehicle clusters as infrastructure, we introduce a detailed
mathematical specification for a task-based, distributed service placement model. The distributed service scales according to the
resource requirements and is robust to the changes caused by the mobility of the cluster. We formulate this as a constrained
optimization problem, with the objective of minimizing overall processing and communication costs. Our results show that jointly scaling
tasks and finding a mobility-aware, optimal placement results in reduced processing and communication costs compared to the two
schemes in the literature. We compare our approach to an autonomous vehicular edge computing-based naive solution and a
clustering-based solution.

Index Terms—Vehicular Cloud Computing, Vehicular Fog Computing, Flexible service models, Service Placement, Resource
Allocation.

✦

1 INTRODUCTION

Vehicles will be one of the most important agents in the
emerging Internet of Things (IoT) ecosystem, owing to
their embedded sensors and built-in cameras. These moving
vehicles can be used to capture contextual data for object
detection and surveillance [1]. Since each vehicle generates
an average of 30 Tb of data per day, it is infeasible to
send all the generated data to the Cloud using the con-
trolled and limited cellular bandwidth [2]. The increasing
number of Smart vehicles and overall vehicular traffic has
inspired the concept of Vehicular Fog Computing (VFC)
[3], [4], where vehicles are utilised as Fog nodes and play
the role of service providers. This new data generation and
communication paradigms is motivated by Fog Computing
[1] and Mobile Edge computing based models. These newer
computing paradigms [5], [6] provide ubiquitous connec-
tivity and location-aware network responses at the edge of
the network, complemented with cloud computing in the
network core.

The closely-spaced, moving vehicles, are proposed to
collect video that can be used to estimate usage patterns
of highways for urban planning, reducing the need for
installing dedicated infrastructure for surveillance. Slowly
moving vehicles can also be used to collect 3D roadmap
data, to increase the perception range of intelligent vehi-
cles, reducing the need for sending high definition data
to the Cloud [7], [8]. The VFC-based data collection and
processing applications can be swiftly deployed to monitor

• K. Sharma and B. Butler are with the Walton Institute, Waterford
Institute of Technology, Ireland. B. Jennings is with TU Dublin.
E-mail: kanika.sharma@waltoninstitute.ie,{bbutler,bjennings}@ieee.org

the compliance of both vehicles and pedestrians to lock-
down restrictions introduced in response to the COVID-19
pandemic, by capturing data from essential service vehicles.
All these use cases require rich computation and commu-
nication resources so that this data can be used for insights
and decision-making. The otherwise under-utilized sensing
and processing resources in VFC systems can meet both the
data generation and processing requirements without the
need for deploying additional infrastructure. Most of the
existing work on VFC either consider buses [9] and taxis
[10] as potential fog nodes which are not representative of
the mobility patterns of all vehicles in an urban city center or
consider very simplistic mobility models [11]. Many of the
service placement/allocation schemes in VFC consider static
services that are not adapted according to the dynamics of
the network or consider stationary/parked vehicles as Fog
nodes.

In this paper, we first study the predictability of ve-
hicular flows using real vehicular density data and com-
pare our model to competing schemes. We also study the
overall feasibility of using vehicles as infrastructure by
computing their aggregate communication and computing
capacity. We propose that vehicles lease their otherwise
unused processing, communication, and storage resources
to collaboratively host data analytics services that can pre-
process and filter the data they collect. Thus, a dense group
(or cluster) of moving vehicles can cooperatively execute
distributed services that comprise: (i) delay-sensitive tasks
that have a short sense-actuate cycle and require real-time
decision making, and/or (ii) data collection and analytics
tasks that are location- and context-specific. These services
can be flexibly deployed on the vehicle cluster based on the
mobility pattern of the vehicles.

2

Vehicles are distinguished through their mobility (in par-
ticular, vehicles join and leave a cluster in a stochastic
manner), so the resource allocation task becomes time-
dependent. Mobility affects both network connectivity and
computation capacity, and hence the Quality-of-Service
(QoS). Our work aims to utilize the aggregate mobility
behavior of vehicles to select reliable vehicle nodes, i.e.,
those that have a higher probability of staying with a given
cluster of vehicles, in order to avoid service failure and
reduce the need for service reconfiguration. As depicted
in Fig. 1, one vehicle, or Roadside Unit (RSU), acts as a
managing entity to collect and update both the resource
and mobility states of the cluster and enable flexible service
scaling.

We take the specific case of using in-built cameras in
vehicles that are willing to lease their resources, to pro-
vide streaming data on request. This data is processed by
streaming it to linear chains of tasks, where each task has
different processing functionality. One linear chain of tasks
form a service that satisfies a service request. We employ a
component-oriented distributed service model, where each
task can be realised via a collection of multiple task instances
(TIs). In this manner each task can be scaled out according
to the demand and the available infrastructure resources.
For example, using multiple camera instances increases the
spatio-temporal coverage of the data collection, thereby
increasing the scope for more accurate and efficient data
analysis, especially in applications like building 3D road
maps for self-driving vehicles. Moreover, having replicas
of computing tasks enables the utilization of distributed
resources and reduces the impact of nodes leaving the
vehicle cluster. Node and link failure in this service model
requires only the replication of a problematic TI onto a more
suitable vehicle so the service chain still works, instead
of re-configuring the entire service. As the tasks are data-
dependent, even if the cluster is computationally rich, it
needs to be split into smaller TIs if the link capacity be-
tween host nodes is not enough. The task placement also
needs to avoid placing TIs on those resource-rich nodes that
have a high probability of leaving the cluster. Thus, service
deployments can be adapted at run-time according to both
the known resource availability and the predicted mobility
state of the cluster.

This paper builds upon our previous work [12], where
we introduced the problem of the placement of distributed
data collection services on a moving vehicle cluster. In this
paper the following novel contributions are made:

• Instead of using a simple mobility model, the paper
uses real vehicle density data to make a flow model for
intersections. We use Multivariate Linear Regression to
predict the traffic flows at the intersections and achieve
an R2 score of 0.93-0.99. The performance of the flow
model is compared to competing models like random
forest regression and ARIMA model for time-series
forecasting.

• The feasibility of using clusters is analyzed by studying
the aggregate communication and computation capac-
ity of these moving vehicle clusters.

• We then formulate the service placement problem
mathematically in two parts: 1) a flexible and dis-
tributed service model with data-dependent tasks in-

(a) Vehicle cluster at state t1

(b) Vehicle cluster at state t2

Fig. 1: Vehicle Clusters form, but membership changes over
time. Clusters accept service placement requests from RSUs
and perform scaling and placement of the accepted service.
Fig (a) and (b) depict the state of the cluster over time t1 and
t2. The mobility of the vehicles requires cluster re-initiation.

stead of static service templates; and 2) a mobility-
aware infrastructure model. This is an important con-
tribution towards utilising the distributed and dynamic
vehicular network for service provisioning.

• We compare our approach to the autonomous vehicular
edge computing based-naı̈ve solution, presented in [13]
and a clustering-based solution introduced in [14]. The
experimental results demonstrate that the proposed
scheme outperforms baseline approaches in terms of
efficient resource utilization.

The paper is organized as follows: §2 describes related
research in the field of service placement and task offload-
ing schemes in vehicular networks. In §3, we describe the
motivation behind using vehicles as infrastructure, esti-
mate vehicular cluster capacity, and validate vehicle traffic
predictability with Multivariate Linear Regression. In §4,
we define the system model and the network topology
and in §5, we define the constraints and the mathematical
formulation of the placement problem. In §6, we introduce
our service scaling and placement plan. In §7, we describe
application types and run an experiment for an application

3

scenario on a Fog simulator. We then discuss solving the
optimization problem, simulation setup and our results. We
also discuss the performance of our model in comparison to
other schemes. Finally, in §7 we conclude the work and give
an outline of our future work.

2 RELATED WORK

Gerla et al. [15] was the first to introduce the term Vehic-
ular Cloud Computing (VCC) as a distributed computing
platform, wherein vehicles form a micro cloud in an ad hoc
manner. They identified many important applications for
VCC, including urban sensing by uploading videos of con-
gestion and pavement conditions that other vehicles could
access. Hou et al. [4] were the first to introduce the concept
of Vehicular Fog Computing (VFC) as an architecture that
can be used to enable multiple end-user or edge devices to
collaborate to carry computation and communication tasks.
They considered both slow-moving and parked vehicles and
analyzed the quantitative capacity of such a Vehicular Fog.
Ma et al. [16] introduced a Platoon-assisted Vehicular Edge
Computing system based on the stability of the platoon
in vehicular networks. They were the first to introduce a
Reinforcement Learning (RL)-based optimization scheme to
obtain optimal price strategy of task flows. Lee et al. [3]
also modified an RL-based algorithm to make efficient re-
source allocation decisions leveraging vehicles’ movement
and parking status to minimise service latency.

Zhao et al. [17] jointly optimize the computation offload-
ing decision and computation resource allocation in vehicu-
lar networks. They designed a collaborative optimization
scheme where offloading decisions are made through a
game-theoretic approach and resource allocation is achieved
using the Lagrange multiplier method. The feasibility of
using vehicles as Fog nodes for video crowd-sourcing and
real-time analytics has been studied by Zhu et al. [18]. They
evaluated the availability of client nodes that generate data
in proportion to the vehicle Fog nodes that process the data,
using processing capacity on on-board units. However, they
focus solely on the data transmission problem in the model.
Xiao et al. [19] also evaluated the achievable performance of
a vehicular cloud and analyze the total computation capac-
ity for the same. They also model vehicle mobility patterns
using parameters like staying time and the incoming and
outgoing flow rate of vehicles. This capacity analysis is a
crucial requirement for enabling a VFC model but they do
not focus on an adaptable service model and applications
to be deployed. In Kong et al. [20], the traditional mobility
models for vehicles are replaced by methods based on so-
cial patterns, community interest group check-ins on social
media data etc.

The mobility of vehicle nodes makes the task allocation
problem more challenging in VFC. Zhu et al. [21] intro-
duced an event-driven dynamic task allocation framework
designed to reduce average service latency and overall qual-
ity loss. Both multi-source data acquisition and distributed
computing in Fog-computing-based intelligent vehicular
network are studied by Zhang et al. [22]. They introduce
a hierarchical, QoS-aware resource management architec-
ture, but consider the Fog servers as static. Vehicular micro
cloud has been studied as virtual edge servers for efficient

connection between vehicles and back-end infrastructure in
Hagenauer et al. [23]. They use map-based clustering at
intersections, as intersections have line of sight in multi-
ple directions which result in better connectivity between
the Cluster Heads (CHs) and other cluster members. Even
though they primarily focus on cluster creation and cluster
head selection, they evaluate a data collection application,
with varying data aggregation rates at the CH.

Goudarzi et al. [24] introduced an application placement
technique for concurrent IoT applications in Edge and Fog
computing environments. They propose a a batch applica-
tion placement technique based on the Memetic Algorithm
to efficiently place tasks of different workflows on appropri-
ate IoT devices, fog servers, or cloud servers.Vehicles have
also been studied for efficient content distribution to meet
the challenges of limited communication resources. Luo et
al. [25], proposed a content distribution scheme to maximize
the system utility for content distribution.

A lot of work has been done in the literature for leverag-
ing vehicles as infrastructure, however many of the existing
works on VFC either consider a very simplistic mobility
model or consider vehicles to be stationary. We also intro-
duce the placement of distributed and flexible services that
are adaptable according to the dynamics of the vehicular
network. We then jointly optimize both link and processing
costs for the efficient placement of the distributed services
on the vehicle cluster. In addition, we study the feasibility
of using opportunistic vehicle clusters as infrastructure.

3 MOTIVATION

Our work is motivated by the increasing number of smart
vehicles with embedded sensors that can connect to other
vehicles, and the unresolved issue of vehicle congestion—
especially in urban areas. Before introducing our service
scaling and placement scheme we first provide justification
that placing services on a vehicle cluster in order to pro-
vide time and/or location sensitive sensing functionality
is a viable proposition. There are two important aspects:
1) whether traffic flows in an urban setting are likely to
be predictable over the course of a day, and 2) whether
a slow moving cluster will accommodate sufficient com-
munications capacity between vehicles to facilitate service
operation.

3.1 Predictability of vehicle flows
We find that vehicular flow in urban traffic zones is pre-
dictable throughout the day. We also show that the vehicular
density pattern at an intersection follows a similar pattern
of peak and off-peak flow through different weeks. We use
macroscopic vehicle density data to create a generalised
flow model for an intersection. This helps in classifying
traffic flow into six different driving profiles. The vehicle
clusters can then be initiated at the predicted peak traffic
times, on any of the traffic flows with an assured density
flow.

We first focus on a road network near Dublin Airport,
using the vehicle flow data captured by the Transport In-
frastructure Ireland Traffic Data website 1. A vehicular flow

1. https://trafficdata.tii.ie/publicmultinodemap.asp, available:
6/02/22.

4

A A'

B

B'

C C'

Fig. 2: Flow model at the selected intersection in Dublin with
six different traffic flows from A to B, A to C, C’ to A’, C’ to
B, B’ to C and B’ to A

is defined as the number of detected vehicles passing a point
in a period of time. The idea is to use the stochastic traffic
flows at an intersection to predict the trajectory of a vehicle
cluster. As depicted in (Fig. 2), we consider northbound flow
from A to B and A to C, southbound flow from C’ to A’ and
C’ to B, eastbound traffic from B’ to C and B’ to A. We then
employ a multivariate linear regression (MVLR) model to
predict the traffic flow from one segment to the other, for
all the six flows at the intersection. To understand the pre-
dictability of the traffic flows, we use the vehicle flow data,
collected in the interval of 5, 10 and 15 minutes (based on the
estimated travel time between any of the six points at peak
and off-peak traffic time of the day) for a period of 24 hours.
This data is used to model a generalized traffic flow model
for an intersection. We predict the vehicle density at point B
taking into consideration the vehicle density at point A, by
first using a simple linear regression model, then consider
traffic flow from consecutive days to use a MVLR model. To
compare the performance of the MVLR model with compet-
ing schemes we use random forest-based regression model
and an ARIMA model for traffic forecasting. We plot the
actual and predicted incoming vehicle density at point B, for
an interval of 5 minutes (Fig. 3a) and 10 minutes (Fig. 3b).
The R2 score for the Linear Regression model is 0.915 for a
period of 5 minutes and 0.945 for 10 minutes respectively.
This way, vehicles can be clustered in six different driving
profiles for service execution, corresponding to the above-
mentioned six flows. Table 1 depicts the r-value, p-value
and the standard error for all the six flows.

We then use the vehicle flow data for the last 7 consecu-
tive Mondays to predict a single flow, from A to B, using
MVLR for data collected at an interval of 5 (Fig. 3c), 10
(Fig. 3d) and 15 (Fig. 3e) minutes. The same days in the week
were studied to have similar patterns of mobility, within
a range of a month to two, hence data for 7 consecutive
Mondays was used. The predicted and actual vehicle flow
at point B is depicted in Fig. 3c, 3d and 3e. The R2 score
of the prediction was 0.937, 0.948 and 0.992 for 5, 10 and
15 minutes respectively. We also considered the vehicle flow
data during the period of COVID-19 lock-down, from 1st
to 8th April 2020, to analyze the pattern of flow during the
Coronavirus restrictions in Ireland. The restrictions resulted
in much less traffic density at the intersection. Fig. 3g and
Fig. 3f depict predicted vehicle flow using MVLR, consider-
ing seven consecutive days during the lock-down, with an

TABLE 1: r-value, p-value and standard error for pre-
dictability of the six flows at the intersection

Slope Intercept r value p value Standard error
A ->B 0.28 75.14 0.81 4.45 0.02
B’ ->C 2.30 -86.36 0.85 4.00 0.12
C’ ->A’ 1.03 100.14 0.97 2.45 0.02
B’ ->A’ 0.01 64.38 0.75 2.83 0.15
C’ ->B 0.38 85.02 0.87 1.38 0.02
A ->C 1.49 -27.35 0.96 1.01 0.04

TABLE 2: Traffic prediction using three different compara-
tive models using real vehicle density data at the intersec-
tion in Dublin

Technique used RMSE R-squared MAE

Multivariate Linear Regression 11.70 0.97 8.1
Random Forrest 3.80 0.99 2.96
ARIMA time series forecasting 18.57 0.69 18.07

R2 score of 0.98 and 0.987.
We also compare the prediction of MVLR with random

forest regression, as depicted in Fig. 3g and Fig. 3f, which
results in comparable prediction with an R2 score of 0.979
and 0.997. We also compared the MVLR and random forest
regression model to an ARIMA model for time-series fore-
casting. All the models are evaluated using the root mean
squared error (RMSE), R-squared error, and mean absolute
error (MAE) that are summarised for each model in Table 2.
The random forest performs marginally better than MVLR.
MVLR is a simple, linear model that predicts vehicular flows
accurately whereas random forest is an ensemble learning
model, which is more complex but generally a more accu-
rate model. We use MVLR for traffic prediction, however,
both models can be used interchangeably for traffic pre-
diction. The ARIMA model, which is a standard model for
time-series forecasting performs the worst out of the three
schemes and has an R2 score of 0.695. The logic of using the
comparative schemes and other mobility models introduced
in the literature is detailed in the supplemental pages. We
also plot the overall vehicular flow data for four consecutive
Mondays, recorded in an interval of 10 minutes (Fig. 3h) and
30 minutes (Fig. 3i). The figures depict the consistent and
predictable vehicle density data for both northbound and
southbound traffic for all four weeks.

3.2 Aggregate Communications and Computation Ca-
pacity Estimation
Due to the novelty of using moving vehicles as infrastruc-
ture, we estimate the communication capacity of a vehicular
network. Estimating the capacity of a vehicular network is
a challenging problem to solve as it depends on several
factors including the average number of simultaneous trans-
missions, link capacities, the density of vehicles, mobility in
the network, the distance between vehicles, and the trans-
mission range of the vehicles. Our previous analysis shows
that the problem of less vehicular density causing a delay in
communication is not prevalent in urban centers, and even
freeway traffic flow in some cases. We also demonstrated
that most traffic flow prediction can be done effectively.
The estimation of the capacity of the vehicular network has

5

0 5 10 15 20 25
Time (hours)

0

100

200

300

400

500
Flo

w
(v

eh
/5

m
in

s)

Actual
Predicted

(a) LR model for traffic predic-
tion every 5 minutes

0 5 10 15 20 25
Time (hours)

0

200

400

600

800

Flo
w

(v
eh

/1
0m

in
s)

Actual
Predicted

(b) Linear regression model
for traffic prediction every 10
minutes

0 5 10 15 20 25
Time (hours)

0

100

200

300

400

500

Flo
w

(v
eh

/5
m

in
s)

Actual
Predicted

(c) Multivariate linear regres-
sion model for traffic predic-
tion every 5 minutes

0 5 10 15 20 25
Time (hours)

0

200

400

600

800
Flo

w
(v

eh
/1

0m
in

s)

Actual
Predicted

(d) Multivariate linear regres-
sion model for traffic predic-
tion every 10 minutes

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time (hours)

0

200

400

600

800

1000

1200

1400

Flo
w

(v
eh

/1
5m

in
s)

Actual
Predicted

(e) Multivariate linear regres-
sion model for traffic predic-
tion every 15 minutes

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time (hours)

50

100

150

200

250

300

Flo
w

(v
eh

/1
5m

in
s)

Actual
MVLR
Random forest

(f) Multivariate linear regres-
sion model for traffic predic-
tion every 15 minutes, April
2020

0 5 10 15 20 25
Time (hours)

50

100

150

200

250

Flo
w

(v
eh

/1
0m

in
s)

Actual
MVLR
Random forest

(g) Comparison of MVLR
with random forest for traffic
prediction every 10 minutes,
April 2020

0 100 200 300 400 500 600 700
Time (minutes)

102

103

Ve
hi

cle
 D

en
sit

y

Northbound Traffic: 11thFeb2019
Northbound Traffic: 18thFeb2019
Northbound Traffic: 25thFeb2019
Northbound Traffic: 4thMarch2019

(h) Vehicle density recorded
every 10 minutes

0 50 100 150 200
Time (minutes)

102

103

Ve
hi

cle
 D

en
sit

y

Northbound Traffic: 11thFeb2019
Northbound Traffic: 18thFeb2019
Northbound Traffic: 25thFeb2019
Northbound Traffic: 4thMarch2019

(i) Vehicle density recorded
every 30 minutes

Fig. 3: Traffic Prediction using real vehicle density data;
these data depict the consistent and predictable vehicle den-
sities at the intersection for all of the four weeks analyzed.

been done in great detail via customized theoretical studies
[26]–[28]. We calculate the effective capacity of the vehicular

network obtained using a cooperative scheme from Chen et
al. [28].

Theoretical Capacity: We consider the closed-form ex-
pression of effective available capacity specified by Chen
et al. [28], which uses a cooperative scheme to derive the
communication capacity for a vehicular network. The co-
operative strategy uses both Vehicle-to-Vehicle (V2V) and
Vehicle-to-Infrastructure (V2I) communication to increase
the capacity of vehicular networks. They built an analytical
framework to model the data dissemination process and
derive a closed form expression of the achievable capacity,
given as:

theoretical cap =
L

d
min{WI(1− exp−2ρrI),

WI(1− exp−pρ2rI)

+
WV .c2(d− 2rI)

c2.RC + p− p exp−2pro
+ exp−pρ2ro}

(1)

where c2 = (1 − p)pρ(1 − exp−ρ2ro). In this expression
L is the length of the highway segment, d is the distance
between RSUs, WI and WV are the data rate for V2I and
V2V communication respectively, ρ is the density of vehicles
per meter, p is the proportion of vehicles with download
requests in the range [0,1], rI is the range of infrastructure
points and ro is the radio range of vehicles. RC is the sensing
range for the medium access control protocol. We calculate
the available capacity for this case, taking the value for L
as 100 km, d as 5, 10 or 15 km, WI as 20 Mb/s, WV as 2
MB/s, ρ as 0.03, 0.04, or 0.05. We take the radio ranges as
typical values for Dedicated Short-Range Communication
(DSRC) such that rI is 400 m and ro is 200 m. The value of
RC is taken as 300-400 m. For these values, the effective
available capacity lies in the range of 5-20 Mb/s with
different proportions of vehicles participating in the scheme.
The density of vehicles, the use of cooperation schemes and
the number of participating vehicles have a direct impact on
this effective available capacity.

The potential computation capacity of a vehicle cluster
is dependent on how dense the cluster is, in terms of the
number of vehicles that are optimal for placement of a
particular service request. The computation capacity is also
based on how slow the vehicle cluster is, which can be
predicted by the occupancy of a road segment, calculated
as how much time vehicles take to pass over a detector.
This time can also be derived as the sojourn time of vehicles
with the RSU. According to the study conducted by Xiao
et al. [10], predicted computation capacity is higher than
650 Gflops with a probability of 60% when the range of
vehicle clusters is set to be 5m, and throughout the day
the computation capacity is above this value. When the
range is 10m, the predicted capacity is 1800 Gflops. With
the increasing number of smart vehicles, the number of
sensors, video cameras, and computation capacity should
increase significantly in the next decade. This means that
the infrastructure will exist to collect data, process it on the
resource pool of a vehicular cluster and send it to the cloud
for further processing. However, this infrastructure cannot
be exploited unless services can be placed on it in such a
way that the overall service objectives are met.

6

Processed data

RSU CN Vehicle
ClusterClient

Resource
update

Service
Request

CN
selection

Type graph,
 min & max

#TIs

Processed data

Resource
request

Actor

[if placement
is successful]

Processed data
& unplaced TIs

Processed data
& unplaced TIs[if placement

is unsuccessful]

Cluster
Selection

Type graph, min & max
#TIs

Resource
update

Fig. 4: System Model depicting the management between
the RSU, CN and the vehicle cluster

3.3 Summary
Through the motivation section, we have highlighted the
predictability of vehicular flows using a linear regression-
based model that predicts flows accurately and compared
the model to other competing schemes. We also made
aggregate communications and computation estimates for
such vehicle clusters, initiated at urban intersections. We
demonstrated the feasibility of using vehicles as infrastruc-
ture using real vehicular data. The next part of the paper
focuses on how to utilize this moving pool of vehicular
resources by introducing distributed service models and an
optimization scheme to jointly optimize communication and
computation resources to efficiently place services on the
moving vehicles.

4 SYSTEM MODEL

In this section we first describe the terminology of the
system model; then we present the network topology and
the distributed service model.

4.1 Terminology
• Vehicle Clusters: We consider vehicle clusters as mi-

cro cloud-like entities [29], whose members (vehicles)
provide resources used to execute tasks that form a
distributed service.

• Control Node (CN): The CN is a vehicle in the cluster
that acts as a gateway between the cluster and RSUs; is
elected based on its connectivity to the RSU and other
cluster nodes (this election process is outside the scope
of this paper). It collects status information about the
cluster, including available resources at nodes, link ca-
pacities and it also receives service placement requests
from the RSU/client.

• RSUs: The vehicle nodes in a cluster are supported by
resource-rich RSUs, which connect the cluster to the

1
S13

2
S22

2
S21

spj : Task instance
 id j of type p

Task 1
 Task instance = 3

Task 1
Task instance = 1

Np: Set of task
instance count of type p

F(1,2)

F(1,2)

Task 1
 Task instance = 2

1
S12

1
S11

1
S1

2
S2

3
S3

4
SCN

3
S32

3
S31

2
S23

4
SCN

Type Graph

Instance Graph
Scaling

Fig. 5: Service model depicting tasks and their inter-
dependencies. The Type graph is scaled to the Instance
Graph based on the resource state of the vehicle cluster.

Internet. The management of services between the RSU,
CN, and the vehicle cluster is depicted in Fig. 4. The
RSU knows the system state of the cluster, which is
communicated to it by the CN.

• Task: Tasks are data collection or processing functions
that can be scaled out as multiple task instances (TIs) to
realise a distributed service. For example, a distributed
service to realise pedestrian counting may in its spec-
ification request as many vehicle cameras as possible
for monitoring a given stretch of road. The TIs are the
smallest unit that a task can be split into and that can
be mapped to a vehicle node.

• Service: We consider distributed services with unidi-
rectional, acyclic control, and data-flows. These services
are specified as hierarchies of different task types, each
with different functionality. Each task is typically de-
ployed as several TIs, which can be dynamically and
flexibly scaled (in terms of size per TI (up) and number
of TIs per task (out)) according to resource availability
and stability of the vehicle cluster at a given instant.
We assume a linear chain of data-dependent tasks rep-
resented as a Type graph, in Fig. 5. This Type graph is sent
as an input to the service placement function. Based on
the Type Graph, an Instance graph is created, where each
task of Type p (represented as sp in Fig. 5) can have
multiple TIs of Type p and count j (represented as spj).
Other works that leverage parked vehicles (PVs) also
deploy similar service models, where a task with a large
workload is split into several sub-tasks and assigned to
multiple PVs for cooperative execution [30].

• Service Placement: The process of placing the scaled
Instance graph (in Fig. 5) on a vehicle cluster is called
the service placement problem.

Our approach is to first find an optimal Instance graph,
considering both service and infrastructure constraints, as
this decision cannot be taken independently of the infras-
tructure state. This is optimized based on minimizing the
total number of hops in the path between each Type 1 TI and
the CN. This step reduces the bandwidth usage and selects a
dense service spread, which also reduces delay in service ex-
ecution. We then map the optimized Instance graph onto the
physical vehicle nodes. We jointly consider both TI mapping
as well as the route/flow mapping, between the placed TIs.

7

We also take into account the predictable mobility pattern
of these vehicles.

4.2 Network Topology
We assume that I nodes participate in the formation of
the vehicle cluster. We represent the cluster as a directed,
connected graph, G = (V,E). The node i ∈ V repre-
sents the vehicle nodes, each with K resource types, where
k ∈ {1...K} and i ∈ {1...I} denote resource type k on node
i. The processing capacity of each vehicle node i in respect
of resource type k is represented as Ck(i). The directed
edge, (i1, i2) ∈ E, of the graph represents the link between
any two vehicle nodes i1 and i2. The link capacity limit is
depicted as {B(i1, i2)} Kb/s between any two nodes i1 and
i2. If there is no direct connectivity, due to excessive range,
line of sight difficulties and/or incompatible protocols then
B(i1, i2) ≡ 0.

The mobility in the network is represented by the
cluster cohesion probability (CCP) of each vehicle node
(P(t1,t2)(i1)), which represents the probability of a vehicle
to be in a certain segment of the road, in a particular
period of time [t1, t2]. We also consider the joint probability
(P(t1,t2)(i1, i2)) of two nodes i1 and i2 to stay together on
a given road segment over the time interval [t1, t2], due
to the inherent data dependency between two interacting
task nodes, as specified in the service model. This makes
it important to consider the combined probability of two
nodes with data-dependent TIs to stay together until the
completion of both TI tasks. We assume that this informa-
tion regarding the mobility pattern, in terms of CCP of the
nodes, is available at each road intersection.

4.3 Service Model: Task and Task Instances
The service model is composed of tasks, denoted as sp,
each with different functionality, to be deployed on different
nodes of the cluster. The functions include video streaming,
data compression/processing as well as application control,
for the flexible management of infrastructure links and
nodes. Each task can have any number of TIs, represented as
spj , to be mapped in an optimal configuration onto vehicle
nodes. The number of TIs for a task sp is represented as
Nsp . Each TI spj requires a minimum demanded amount
of Dpjk units of each resource of type k. Furthermore, the
flow demand between task sp1

and task sp2
is provided as

F (sp1
, sp2

). Note that such flows might be point-to-point
(between adjacent nodes) or might need to be routed via
other nodes according to flow tables maintained by the CN.
Both the per resource type k demand for TI spj , labeled by
{Dpjk}, and the inter-task demand {F (sp1

, sp2
), sp1

̸= sp2
}

need to be specified as input to the model.
Each TI can support a maximum flow rate, which is

derived from the processing requirement of the incoming
flow, given as C(F (sp1j , sp2j)), i.e., the processing require-
ment for flow from TI sp1j to sp2j . We check that the target
TI has enough processing capacity to process an incoming
flow and also ensure that this leaving flow, after being
streamed or processed at an TI, is directed to a single
corresponding TI. Recall that each processing TI can have
multiple incoming flows. We follow this rule to promote
the collocation of processing nodes, whenever vehicle nodes

have available resource capacity. This promotes a balanced
service placement rather than over-provisioning the avail-
able infrastructure.

We aim to minimize the cost of service execution, by
favoring nodes with a higher probability of staying with
the vehicle cluster and promoting a “narrower” service
placement (just enough nodes for reliability in the presence
of node mobility) to reduce resource bandwidth usage. The
model can be used to optimize other resources like the
increasing number of accepted requests on vehicle clusters,
the number of nodes used or other performance metrics
like latency or service bandwidth demand, based on the
requirements of the application.

5 CONSTRAINTS AND PROBLEM FORMULATION

The placement problem first scales the service type graph to
an instance graph and then maps the service onto the vehicle
cluster.

5.1 Infrastructure Constraints

5.1.1 Node Resource Constraints
Each resource type of a vehicle node is denoted as k, where
k = 1 is CPU capacity, k = 2 is Memory capacity and
k = 3 is sensing resource capacity. The minimum resource
requirement (of type k) to host TI spj on node i is given
as Dpjk. This constraint 2 checks if the TI is mapped to
node i which is denoted by the binary mapping variable
M(p, j, i). The resource required by the placed TI must not
exceed the availability of resource type k on the selected
node. Since we are interested in using only spare resources
for placing services on vehicular clusters, a minimum set
of system resources must also be reserved for the operations
required for the vehicles. Thus, the net available capacity for
hosting collaborative services at every node i is represented
as Ck(i), which is the capacity of the node for such additional
services. The resource constraint is formally presented as: .

∀i ∈ {1, . . . , I}, k ∈ {1, . . . ,K},
∑
∀p,j

M(p, j, i).Dpjk ≤ Ck(i) (2)

where the decision variable M(p, j, i) ∈ {0, 1} is set to 1 to
indicate that TI spj is placed on node i or 0 otherwise. The
use of this indicator variable ensures that TI spj requires
resources from node i, if and only if it is placed on that node.

5.1.2 Bandwidth Constraint
The bandwidth requirement between two task sp1

and
sp2

, where the latter requires data from the former, is
represented by F (sp1

, sp2
) Kb/s. We consider only one-

directional traffic, from task sp1
to sp2

. However, the model
can easily be extended to consider duplex communication
needs by adding extra constraints of the form 3.

∀i1 ∈ {1, . . . , I}; i2 ∈ {1, . . . , I}; i1 ̸= i2∑
∀p1,j1;p2,j2;p1 ̸=p2

M(p1, j1, i1)F (sp1 , sp2)M(p2, j2, i2) ≤ B(i1, i2)

(3)
where i1 ̸= i2 and B(i1, i2) ̸= 0. Constraint 3 ensures that,
for each node pair labeled by i1 and i2, the total bandwidth
requirement, for all TI pairs sp1j and sp2j placed on nodes

8

i1 and i2 respectively, is F (sp1
, sp2

), which does not exceed
the bandwidth limit B(i1, i2) between the two nodes.

In our model, two tasks that are mapped to two different
vehicle nodes i1 and i2, where i1 ̸= i2 might not be linked
directly to each other, but are connected over multiple hops.
In the following bandwidth constraint, we consider the re-
source capacity of each link over the full path between tasks
sp1

and sp2
. We consider another binary valued mapping

variable m(p1, p2, j, i) which takes the value 1 for each
node i that is mapped to forward the flow between TIs of
type sp1j and sp2j and is part of the path between the two
data dependent TIs. Thus, nodes can act as both processing
nodes or forwarding nodes. The constraint 4 ensures that
the bandwidth used for forwarding the flow between any
connected pair of forwarding nodes should be less than
the available bandwidth capacity between those two nodes.
This constraint is formally presented as:

∀i1 ∈ {1, . . . , I′}; i2 ∈ {1, . . . , I′}; i1 ̸= i2∑
∀p1,j1;p2,j2;p1 ̸=p2

m(p1, p2, j1, i1)F (sp1 , sp2)m(p1, p2, j1, i2)

≤ B(i1, i2)

(4)

where i1 and i2 belong to I′(p1j)(p2j), which is the set of
all nodes on the path between TIs sp1j and sp2j .

5.2 Service Model Constraints
We now formulate the constraints for placing distributed TIs
and the corresponding service data flow between these TIs.
We ensure that the data flow is processed before reaching
the CN and the order of TIs is maintained according to the
service chain or service description.

5.2.1 Flow Rate Constraint
As we propose a distributed service model, it is crucial to
ensure that the TIs have enough processing capacity for the
incoming flow. The constraint 5 ensures that the flow rate
entering a TI should not exceed the processing capacity of
that TI. The processing capacity of TI sp2j is represented
as C(F (sp1j , sp2j)), which is the function of incoming flow
from sp1j to sp2j . This constraint is given as:

∀i1 ∈ {1, . . . , I}; i2 ∈ {1, . . . , I}; i1 ̸= i2∑
∀p1,j1;p2,j2;p1 ̸=p2

m(p1, p2, j1, i1)C(F ′(sp1j , sp2j)) ≤ C(sp2j)

(5)
where C(sp2j) represents the processing capacity of TI sp2j .
This TI is placed on the node that receives the incoming flow
to be processed, from TI sp1j . Here F ′(sp1j , sp2,j) represents
the flow that has been processed at TI sp1j or is forwarded
from sp1j specifically for processing (not forwarding).

5.2.2 Flow Conservation Constraint
Constraint 6 ensures that the incoming to outgoing flow
rate ratio, at a node, is governed by the data processing fac-
tor of the TI. αpj represents the data reduction/processing
factor for a task with Type p resource. The constraint is
presented as:

∀i1 ∈ {1, . . . , I}; i2 ∈ {1, . . . , I}; i1 ̸= i2∑
∀p1,j1;p2,j2;p1 ̸=p2

F (sp1j , sp2j)αp2j ≤ F ′(sp1j , sp2j)
(6)

where 0 ≤ αpj1 ≤ 1 and F (sp1j , sp2j) represents the
incoming flow to be processed at TI sp2j . F ′(sp1j , sp2j)
represents the outgoing flow, that has been processed at
the TI sp2j . This constraint ensures that all the necessary
pre-processing is performed on the flow, at each TI before
the flow reaches the CN. Since nodes in our model can
be forwarding nodes, or processing nodes, or have both
processing and forwarding role, the data processing factor
can lie in the range from [0,1].

5.2.3 Task Order Constraints
Constraint 7 ensure that the flow traverses the task instance
graph in the order specified by the service model, we
require that once the flow is processed at one node, it is
directed to the “next” node with at least one “subsequent”
TI (according to the Type Graph), i.e.,

∀i1 ∈ {1, . . . , I}; i2 ∈ {1, . . . , I}; i1 ̸= i2∑
∀p,j;p+1,j2;p ̸=p+1

M(p, j, i1)F
′(sp1j , sp2j) ≥ M(p+ 1, j, i2) (7)

where the decision variable M(p, j, i1) represents the TI
mapped to node i1, F ′(sp1j , sp2j) is the flow processed at
the node i1. The right hand side of the equation employs
mapping instance M(p+ 1, j, i2) to show that a subsequent
TI of type s(p+1)j is mapped on the node i2, which has
enough resource capacity.

As forwarding nodes are introduced in constraint 3 to
facilitate these multi-hop flows, it is crucial to preserve the
order of tasks at the service level. To ensure that the flow
is directed towards a subsequent TI, in case there is no
direct path between two placed TIs, we also ensure that the
forwarding node is on the path joining nodes (i1, i2) with
TIs spj and s(p+1)j mapped on them. This is represented as
constraint 8:

∀i1 ∈ {1, . . . , I}; i2 ∈ {1, . . . , I′}; i1 ̸= i2∑
∀p,j;p+1,j2;p̸=p+1

m(p, p+ 1, j, i1)F
′(sp1j , sp2j)

≥ m(p, p+ 1, j, i2)

(8)

where m(p, p + 1, j, i1) and m(p, p + 1, j, i2) are map-
ping variables with 0 or 1 value. Here m(p, p + 1, j, i1)
represents node i1 as a forwarding node for processed
data flow F ′(sp1j , sp2j), between TIs spj and s(p+1)j , and
m(p, p+1, j, i2) represents the next forwarding node for the
same flow.

5.3 Cluster cohesion probability
In order to use the mobility of slow moving vehicles in our
favor, it is crucial to incorporate mobility awareness in the
infrastructure model. There are many ways to predict the
mobility patterns of a group of vehicles. Here we consider
all nodes that have a higher probability to chose a simi-
lar road segment (Si), based on their historical mobility
patterns, to be candidates for the cluster. We assume that
each RSU maintains a table of known vehicle nodes, with
their probability of taking a particular road segment (say
S1) at the next intersection. Vehicles that do not have entry
in the table, but are willing to offer their resources, can be
added to the table. However, they would be assigned the
average road exit probabilities of known vehicles, with a low

9

Fig. 6: The SUMO simulation for the intersection in Dublin,
Ireland

confidence score. As the history of a given vehicle builds up
with time, its road exit probabilities are updated and their
confidence score increases.

We have calibrated the microscopic car-following model,
using the macroscopic vehicle flow data from the Dublin in-
tersection based on the flow model in §3.1. For simulations,
we extract the Dublin intersection road network, as depicted
in Fig. 6, using Open Street Map (OSM) and calibrate the
simulation using the real-world Dublin traffic dataset. We
generate the calibrated traffic in the Simulation for Urban
Mobility (SUMO) simulator.

A =

S1 S2 S3 S4


P(t1,t2)(car1) car 1

0.5 0.4 0.1 0 car 2

0.4 0.6 0 0.1 car 3

0 0 0.9 0.1 car 4

0.5 0.5 0 0 car 5

0.6 0.4 0.2 0 car 6

The transition matrix stores the mobility behavior of
every candidate vehicle, for a particular time period. This
table can be updated over time to increase the accuracy of
mobility awareness. Each RSU thus has many tables stored
for different time stamps during the day. We model the
mobility of vehicles as a Markov Model, where each road
segment is a state. As mentioned in [31], the vehicle node
that moves from one road segment to the other represents a
transition in the Markov process. But instead of considering
the detailed trajectory of a single vehicle, the matrix stores
all possible probabilities for a vehicle to stay at the segment
or take another road segment with a certain probability.
Thus, every intersection in the service zone maintains the
probability of a vehicle that follows Markov memory-less
property, wherein the node transitions from state i to i+1 and
is independent of state i-1. Based on the mobility patterns,
different vehicle clusters can be formed for the service
execution. In this paper, we only consider the nodes with
a high probability of going from road segment A to C (in
Fig. 2), as continuing to belong to the cluster. Therefore, the
CCP of a given vehicle node is the probability of that node
going straight ahead at the next intersection.

5.4 Service Placement Cost
To incorporate the mobility of hosting nodes, we scale the
resource capacity of each node in the vehicle cluster with a

weighting factor, i.e., the probability of a node to stay with
the cluster for the duration of service execution, i.e., from
time t1 to t2, which is given as P(t1,t2)(i). This is because a
node with enough resource capacity might not have a high
probability of staying with the vehicle cluster, so this needs
to be considered when placing TIs on that node. Placing
TIs on such nodes can waste computation and bandwidth
resources if the node leaves the cluster prematurely, and
can also cause the service to fail. Thus, we scale the vehicle
node capacity with its CCP, such that the higher the CCP
(probability of staying with the cluster), the lower the costs
of TI execution on that node. The Node Cost is given as:

NodeCost(i1) =
∑

∀i1,i2;i1 ̸=i2

(1− P(t1,t2)(i1)).(Dpj,k/Ck(i)).M(p, j, i)

(9)

where M(p, j, i) is the mapping function of TI spj to node i,
with node resource capacity of Ck(i). To add the costs, we
consider the ratio of required node capacity (Dpjk) with the
available node capacity (Ci(k)).

Similarly we scale the link capacity of any two nodes
with data-dependent TIs, with the joint probability of the
two nodes to stay together for the duration of service
execution (t1 to t2), given as P(t1,t2)(i1, i2). The total link
cost for service execution is given as:

LinkCost(i1, i2) =
∑

∀i1,i2;i1 ̸=i2

(1− P(t1,t2)(i1, i2)).

(F (p1, p2)/B(i1, i2))
(
m(p, p+ 1, j1, i1).m(p, p+ 1, j2, i2)

+M(p, j1, i1).M(p, j2, i2)
) (10)

where m(p, p + 1, j1, i1).m(p, p + 1, j2, i2) ∈ {0, 1} is
an indicator that two nodes that form part of the path
joining two TIs of task sp1j and s(p+1)j type. Similarly
M(p1, j, i1).M(p2, j, i2) indicates that two nodes, one host-
ing TI sp1j at node i1 and the other TI sp2j at node i2,
have a direct link between them. For adding up the link
cost and the operating cost on each node, we use the ratio
of required bandwidth resource (F (sp1j , sp2j)) with the
available bandwidth (B(i1, i2)) at each link that forms part
of the service placement.

5.5 Objective Function
The problem is formulated as a bi-objective optimization.
We hierarchically solve the optimization with the first objec-
tive as:

5.5.1 Adjacency TI placement
When placing tasks on nodes, it is more efficient to ensure
that the placement plan takes account of both task depen-
dencies and of inter-node network distances. For example,
if sp2

depends on sp1
, it is advisable to ensure that each

is placed either on the same node or on nodes that are
one hop away from each other. However, this requirement
could make it difficult to find a feasible placement. Hence,
we seek to ensure that the network distance between any
two selected nodes with data dependency is minimized
for efficient service placement. The hop count between two
placed TIs is minimized when:

∀i1 ∈ {1, . . . , I′(p1j)(p2j)}; i2 ∈ {1, . . . , I′(p1j)(p2j)}; i1 ̸= i2

H(i1, i2) =
∑

∀p1,p2

m(p1, p2, j, i),min H(i1, i2)), (11)

10

0.090.10.20.30.40.5 0.80.9
Lambda1 (1): Resource poor cluster

0

100

200

300

400

500

600

700

To
tal

 Co
st

0.090.10.20.30.40.5 0.80.9
Resource rich cluster

0

100

200

300

400

500

600

700

Fig. 7: Sensitivity analysis for resource-rich and resource
poor cluster, we get total cost values in a similar range for
almost every weight. We chose both λ1 and λ2 = 0.5, as
it gives lower cost in both cases and other values do not
significantly affect cost.

where H(i1, i2) is the hop count between two nodes i1
and i2 for the flow F (sp1j , sp2j) between tasks sp1 and sp2 .
In the model, mapping variable m(p1, p2, j, i) applies to a
forwarding node i along the path between TIs j of type p1
and p2, in cases where there is no direct link between the
nodes hosting these TIs.

5.5.2 Total Cost of Service Placement
We then solve the model for the next objective function,
which minimizes the Total Cost spent on service execution:

min
∑

∀i1,i2;i1 ̸=i2

λ1LinkCost(i1, i2) + λ2NodeCost(i1) (12)

where λi are non-negative and sum to 1. When evaluating
our model, we set λ1 = λ2 = 0.5, i.e., we give equal weight
to node and link cost for simplicity. To come to this decision,
we carry out a sensitivity analysis and generate random
values for λ1 (λ2 = 1 - λ1), and plot total cost for the same
resource-poor and resource-rich clusters. In the event of low
node capacity or low link capacity, the optimization takes
care of the number of TIs deployed, with the objective of
minimizing total cost. Thus, as depicted in Fig. 7, we get
total cost values in a similar range for almost every weight.
We chose both λ1 and λ2 = 0.5, as it gives lower cost in
both cases and other values do not significantly affect cost.
Also, in hierarchical optimization, the first objective function
effectively gets a higher priority than the next. We give an
explanation of this choice in Section 7.2. Thus, minimizing
the hop counts is the first priority of the optimization and
then equal priorities are given to both node and link cost.

6 SERVICE SCALING AND PLACEMENT PLAN

In this section, we explain our procedure for service scaling
and placement. As presented in Algorithm 1, the placement
procedure first take the mobility parameter of vehicles as the
CCP (Pi(t1, t2)), the available capacity for hosting service
at every node i (Ck(i))and bandwidth limit between the
two nodes (B(i1, i2)). The linear service chain or the Type
graph is also given as an input to the procedure. The Type
graph is composed of several tasks that are scaled to TIs
according to the demand of the service. The minimum

resource requirement to host a TI of Dpjk units and the
flow demand between two tasks F (sp1

, sp2
) is also given

as an input to the service placement procedure. The service
is placed by placing each TI in the order specified by the
Type graph.

Algorithm 1 Service Scaling and Placement
Input: Mobility and resource state of vehicles: Pi(t1, t2),
Ck(i), B(i1, i2), Linear service chain: Dpjk,
C(F (sp1j , sp2j)), F (sp1

, sp2
), C(sp2j)

Output: Service placement plan with minimized hop
count and service placement cost

1: procedure SERVICE SCALING
2: Place Type 1 TIs on vehicles with data collection

capability
3: for each vehicle pair i1,i2 in cluster do
4: for each TI Type n to Type m in Task order do
5: if Type n is placed then ▷

Call service placement procedure to check capacity and
service-level constraints

6: H(i1, i2), Cost = Service Placement()
7: else if Unplaced then
8: Scale new TI of Type n
9: H(i1, i2), Cost = Service Placement()

10: if Type n is placed then
11: total hop += H(i1, i2)
12: total cost += Cost
13: if Type n to Type m placed then
14: if H(i1, i2) ≤ min hop && Total Cost ≤

min cost then
15: min cost = total cost
16: min hop = total hop
17: return New service placement plan
18: else
19: Continue to find placement until all nodes

of the cluster are explored
20: procedure SERVICE PLACEMENT(Pi(t1, t2), Ck(i),

B(i1, i2), Dpjk, C(F (sp1j , sp2j)), F (sp1
, sp2

), C(sp2j))
21: if node and link capacity constraints are met then
22: if service level constraints are met then
23: Place Type n on node i2
24: Calculate H(i1, i2)
25: Calculate Cost = λ1 Link Cost(i1, i2) +
26: λ2 NodeCost(i1)
27: return Cost,H(i1, i2)

28: else
29: return Unplaced TI

The service scaling procedure first checks if a TI of a
certain task type is already placed on the vehicle cluster
(line 5). If a TI is placed then the service placement proce-
dure is called to check the infrastructure and service-level
constraints (in lines 20-29) on the TI and the node hosting it.
If a TI is not already placed or the constraints are not met
on the placed TI, a new TI is scaled on line 8 and the service
placement procedure is called on line 9. As each TI is placed,
the total hop count and the cost are added in lines 10-12. If
all TIs of Type n to m is placed, the total hop count and
the total cost are compared to the minimum hop count and

11

On Camera
Capturing/
Processing

(CP)

Data
Cleaning/

Redundancy
elimination

Data Fusion

Type 2 Type 3 Type 4Type 1

Facial and
Body

Localization/
Pedestrian
Counting

Fig. 8: Sample application for Pedestrian Detection

minimum total cost of an existing service placement plan to
find the placement with the lowest objective value in lines
13 to 19.

7 RESULTS

7.1 Application Types

We highlight two different application types that are suit-
able for the model described in this paper. The type-based
service for distributed video analytics is given as an input to
the service placement problem. The service is described as
a linear chain, with one task of Type 1 type, that is mapped
to a vehicle with a dash camera or smart camera installed
on it and the user is willing to lease their vehicle resources
in exchange for some incentive. This data is streamed to
a nearby vehicle that hosts a task of Type 2, followed by
another vehicle hosting a task of Type 3. Such tasks execute
lightweight video pre-processing like data compression or
sub-sampling that reduces the size of the video data, based
on the application requirement. Some examples include:

• Modality based pre-processing [32]: multimedia data
may have more than one modality, e.g., video data with
image and speech. This requires data separation.

• Data cleaning: only frames that have the required data
can be separated from other redundant frames, espe-
cially in the case of more than one source of video data.
This is relevant for a Fog computing scenario, where
the computation and storage capacity is limited.

• Data Reliability: Other application like detecting video
from unreliable data sources which are not subscribed
to the service can also be detected and filtered at this
stage.

Once the processing is complete at the cluster, this data
is then sent to the CN which forwards the data to the
edge/cloud for further high computational processing, like
vision-based processing for video crowd-sourcing appli-
cations and traffic density estimation using convolutional
neural networks, etc. We specify two different applications,
with different resource requirements, that we place together
on the vehicle cluster:

7.1.1 Application I: High-processing video streaming appli-
cations

The first application is a pedestrian detection application that
can be used to study the popularity of a coffee shop or a
gas station, based on the number of pedestrians detected in
the stream of video data. This data is collected by vehicles
standing at a traffic light or an intersection, close to the
coffee shop, say. This data has local relevance/scope and
hence, most of this data should be processed locally, based
on the available resources on the vehicle cluster. For this

3 6
Number of Type 1 instances

0

10

20

30

40

50

60

70

80

Av
er

ag
e

no
de

 u
til

iza
tio

n

Cloud placement
Edge/RSU placement
Mobile node/vehicle placement(unreplicated tasks)
Mobile node/vehicle placement(replicated tasks)

Fig. 9: Comparing different placement techniques using the
average node utilization in the case of: cloud placement,
edge/RSU placement, mobile node/vehicle placement
(without replicating task instances), mobile node/vehicle
placement (with replicated task instances: our case) for
Application I

application, 1 to 6 camera or Type 1 TIs are used in the Eval-
uation section (7.2), because more camera instances increase
the richness of contextual data. The Type 2 TIs aggregate
and process this video stream from different Type 1 TIs as
depicted in the Concept Diagram of the application in Fig. 8.
This TI can aggregate the data from different sources based
on content or location similarity. The functionality of Type
3 and Type 4 TIs is application-specific. In the compute-
intensive application, lightweight video processing is per-
formed on the video stream to transform it into other
forms, e.g., capturing specific frames with license plates, or
highlighting pedestrians or other objects of interest in each
scene. We assume that the data is reduced to 40-50% of its
size, by Type 2 instances and to 20% of its original size after
processing by Type 3 TIs. This pre-processed data is then
sent to the CN, which forwards it to the RSU.

To validate the service model, we implement this ap-
plications on an existing simulator called Yet Another Fog
Simulator (YAFS) [33]. It is a python-based discrete-event
simulator that supports resource allocation and network
design in Cloud, Fog or Edge Computing systems. We
chose the simulator because it supports mobility of entities,
which can act as both sources of data, called workloads or
processing nodes. The simulator also provides a Distributed
Data Flow based application model that allows task replicas
and dynamic placement of tasks. The applications are repre-
sented as directed acyclic graphs (DAGs), where nodes rep-
resent service modules and links represent data dependency
between modules. The simulator also incorporates strategies
for dynamic service selection, placement and routing.

In Fig. 9, we consider the average node utilization in
the placement of service described as Application I. As
suggested by the authors in [33], we calculate the node uti-
lization as the sum of the service times at each node divided
by the total simulation time. We compare the average node
utilization between:

• Cloud placement: all task placed in Cloud
• Edge/RSU placement: all tasks placed on edge/RSU
• Mobile node/vehicle placement (unreplicated tasks):

12

all tasks placed on mobile nodes/vehicles (without
replicated TIs)

• Mobile node/vehicle placement (replicated tasks) (our
approach): all tasks placed as multiple TIs on mobile
nodes/vehicle

In Fig. 9, for variable workloads that are generated using
custom temporal distributions, we compare placement for
three and six video collection TIs of Type 1. For three Type
1 TIs, only mobile node placement with unreplicated tasks
result in better node utilization, compared to our approach.
For six Type 1 TIs, our approach of replicating processing
TIs of Type 2 and Type 3 on different mobile nodes, results
in lesser average node utilization compared to all the other
approaches. This validates that our service model of repli-
cating tasks is efficient from node utilization point-of-view,
as compared to other placement approaches.

7.1.2 Application II: Low-processing video streaming appli-
cation
Application II uses vehicles as moving sensors for video
collection. Applications of this category includes measuring
the traffic density at an intersection in real-time, or
surveying road conditions for road traffic mapping.
Generally, the focus is on passive video collection; most
processing does not happen in the cluster. Such applications
perform minor pre-processing tasks on data in the vehicle
cluster. Such pre-processing includes data sampling,
segmentation or encoding and is carried out on Type 2
and Type 3 instances. Thus, the data is reduced to 80%
of its original size before being sent to the cloud for
executing compute-intensive tasks, possibly applying
complex machine learning to the data.

7.2 Evaluation
We solve the constrained optimization problem using the
Gurobi Optimizer, which is a powerful mathematical sover,
on an Intel i7-6500U dual-core processor running at 2.50
GHz. The solver uses a Linear Programming (LP) based
branch and bound algorithm to solve the Mixed Integer
Programming (MIP) problem.

We place Applications I and II together on a vehicle clus-
ter with 10 nodes, since more nodes in a cluster increases the
time and space complexity of the problem. The cluster is a
directed, connected graph, where each node has either video
capturing or data processing functionality. We consider two
types of resource states of the cluster, based on the mix of
vehicles with one of three resource profiles: 1) Large node
type: 5 CPUs, 500Mb disk, 6MB/s bandwidth; 2) Medium
node type: 3 CPUs, 250Mb disk, 4MB/s bandwidth; and 3)
Small node type: 2 CPUs, 100Mb disk, 2MB/s bandwidth. A
resource-rich cluster has 50% large, 25% medium and 25%
small resource vehicle nodes. A resource-poor cluster has
25% large, 50% medium and 25% small vehicle nodes. We
consider a service chain with 2 processing instances, which
makes the chain length = 3, including Type 1 instances and
the CN. We ran the optimization for the longer chain length,
which takes a much longer time to find a solution, specially
for a higher number of video generating instances, with
higher data rate. The worst case scenario was for a service

chain of length 6 with 5 Type 1 instances, which took more
than 5 hours to find a solution.

The ’type graph’ is scaled as an ’instance graph’, with
data dependency and resource requirements. We use a
service chain description similar to [34], without making
it bidirectional. We impose multi-tenancy in the model, as
it is beneficial to share TIs between applications, especially
when more than one task replica is placed on the vehicle
cluster.

For this paper, we consider that all nodes stop at an
intersection and the RSU first selects a CN, which is one
hop away from the RSU and is well connected to more
than 70-80% of the nodes in the cluster. This CN needs to
have ample communication and computation resources to
manage the resource and cluster state. We also assume that
the mobility behavior, in terms of the CCP is based on the
mobility pattern of each vehicle, collected over its previous
trips in this area. We derive the CCP by running the cali-
brated SUMO simulator, using the real vehicle density data
from Dublin traffic, as explained in §5.3. We have broadly
classified cluster states as stable and unstable. The stable
clusters are formed when many vehicles follow a single
trajectory, along with the CN. We consider two cluster states:
stable with a CCP in the range [0.4,0.8] and unstable with a
probability distribution between [0.2,0.6].

We consider three use cases for solving the optimization.
For Case A, we take a resource-constrained cluster with
low data rates of streaming video, and compare the node
processing cost for stable and unstable cluster probabilities.
We vary the number of Type 1 instances from 2 to 6, to study
the effect of the amount of data on service placement and
resource usage. When we use lower video data rates, we see
that the stable cluster uses less resources than the unstable
cluster. For Case B, resource-rich case (Fig. 10b) with lower
data rates, the node cost is significantly less, compared to
Case A (Fig. 10a), as it is easier to place more than one TI on
nodes having more processing resources, for both stable and
unstable cluster, resulting in better resource utilization. But
in this case, the stable cluster still used less resource than the
unstable cluster. The solution time is also significantly less
for a resource-rich cluster: to find the optimal placement
for Case B takes an average of 86s, versus a resource-
constrained cluster (Case A: 300.7s). We also observed that
weighting both objectives (adjacency TI placement and total
cost of service placement) equally solves the problem faster
than hierarchical solving, but the resulting placement uses
more network resources.

For link cost, the resource-constrained cluster (Case
A) has significantly higher resource usage (Fig. 10d). The
nearby nodes might not have enough processing capacity, so
dependent TIs need to be placed on farther nodes, leading
to more link utilization. The link capacity is also less in
the resource-constrained cluster which adds to the cost. The
Link Cost in the resource-rich cluster (Case B) (Fig. 10e) is
significantly less and, in both cases, stable clusters outper-
form unstable clusters. The variability in link cost is more
in this case, as the amount of video data processing in both
applications is significantly different. Application I reduces
the data to approx. 20% whereas Application II reduces the
data to 80%. Hence, the link cost varies based on the number
of Type 1 TIs in each application. But as we double the data

13

2 3 4 5 6
Number of Type 1 instances

0
50

100
150
200
250
300
350
400
450

No
de

 C
os

t
Unstable Cluster
Stable Cluster (a)

(a) Case A:Node cost for resource-
constrained cluster and low data rate

2 3 4 5 6
Number of Type 1 instances

0
50

100
150
200
250
300
350
400
450

No
de

 C
os

t

Stable Cluster
Unstable Cluster

(b)

(b) Case B:Node cost for resource-rich
cluster and low data rate

1 2 3 4 5 6
Number of Type 1 instances

0

100

200

300

400

500

No
de

 C
os

t

Stable Cluster
Unstable Cluster

(c)

(c) Case C:Node cost for resource-rich
cluster and high data rate

1 2 3 4 5 6
Number of Type 1 instances

0

50

100

150

200

250

300

350

Li
nk

 C
os

t

Stable Cluster
Unstable Cluster

(d)

(d) Case A:Link cost for resource-
constrained cluster and low data rate

2 3 4 5 6
Number of Type 1 instances

0

50

100

150

200

250

300

350

Li
nk

 C
os

t

Stable Cluster
Unstable Cluster

(e)

(e) Case B:Link cost for resource-rich
cluster and low data rate

1 2 3 4 5 6
Number of Type 1 instances

0
50

100
150
200
250
300
350
400
450

Li
nk

 C
os

t

Stable Cluster
Unstable Cluster

(f)

(f) Case C:Link cost for resource-rich
cluster and high data rate

Fig. 10: Node and Link Cost for Case A,B & C

rate of the video data in a resource-rich cluster (Case C), the
unstable cluster utilizes much more computation resource
(Fig. 10c). The difference between stable and unstable cluster
node cost increases significantly as the Type 1 instances
increase from 1 to 6. The unstable cluster uses slightly more
resources, compared to the stable cluster in the low data
rate case (Case B: Fig. 10b). For the link cost in this case
(Fig. 10f), for fewer Type 1 TIs, stable and unstable cluster
incur almost the same cost. The variability increases as the
number of video instances increases.

7.3 Comparison of MIP with baseline approaches
We compare the optimal solution of our model to an au-
tonomous vehicular edge computing-based naive solution
introduced in [13] and a clustering-based solution intro-
duced in [14]. The work in [13] is very similar to our
concept of using the highly dynamic vehicular environment
for deploying services. The solution selects combinations of
nodes with the intention of minimizing latency, i.e., they
have the lowest processing time and transmission time. As
we focus on data collection services, we do not focus on the
time needed to send results to the requesting node (typically
the CN). As described in [21], they preferentially select
nodes with the highest available link and node capacities.

The clustering-based approach in [14] uses graph-based
services, similar to our service model, and generates Herds
or clusters using the K-means clustering algorithm. To make
the approach comparable, we use parameters like available
resources (Ci(k) in our model), CCP, and vehicular speed to
form clusters. The mobility and resource state of the cluster
are collected from all participating vehicle nodes. The first

centroid is selected randomly, the remaining k-1 centroids
are selected based on the maximum squared distance from
the nearest centroid. The classical k-means clustering is
used to form k clusters. The intra-cluster squared distance
(ICD) is calculated for each cluster and the cluster with the
smallest ICD is selected for service placement. As a baseline,
the nodes are randomly selected from the generated cluster
to offload and process the tasks. However, this approach
introduced in [14] only considers the processing cost, and
hence, we only use the node cost to compare their clustering
approach to other approaches.

As seen in Fig. 11, the node cost for the naive approach
increases significantly as the number of Type 1 instances
increases. Similarly, the node cost for the clustering ap-
proach increases linearly as the number of TIs of Type 1
increases. We get a similar result for link cost in Fig. 12
where the cost doubles for the naive approach for 5 and 6
Type 1 TIs, in comparison to the optimal solution. The naive
approach results in less latency compared to the optimal
approach but do not take account of node mobility, so is
more likely to fail. By contrast, our objective reduces the
cost of service execution and selects more reliable nodes
that reduce the need for service reconfiguration. Of course,
the delay is a crucial parameter for safety-related services
like lane changing, accident prevention, and autonomous
driving. However, delay can also be reduced by adding
more resources and using them judiciously: by shortening
service chains and placing many processing TIs of the same
type in parallel.

14

1 2 3 4 5 6
Number of Type 1 instances

0

50

100

150

200

250

300

No
de

 C
os

t

Optimized
Naive(highest data rate)
K-means cluster:random

Fig. 11: Comparison of node cost in optimal, naive scheme
and a clustering scheme for Case A:resource constrained
cluster and low data rate

2 3 4 5 6
Number of Type 1 instances

0

50

100

150

200

250

300

Lin
k

Co
st

Optimized
Naive(highest data rate)

Fig. 12: Comparison of link cost in optimal v/s naive scheme
for Case A:resource constrained cluster and low data rate

8 CONCLUSION AND FUTURE WORK

This paper focuses on the concept of scaling and placement
of distributed services on vehicle clusters, harnessing the
knowledge of mobility patterns. The novelty of the work is
in considering the mobility pattern of urban road traffic and
utilizing moving vehicles as a potential site for deploying
services. The services are made adaptable for the dynamic
vehicular environment and can be scaled dynamically, based
on the resource and mobility state of the multi-hop cluster.
We have introduced a flow model for the traffic, depicted
predictability in vehicular flow, and estimated communi-
cation capacity using real vehicular traffic data. We also
introduced a detailed mathematical model for the mobility-
aware scaling of distributed services based on resource-rich
and resource-poor as well as stable and unstable cluster
states. We solved the constrained bi-objective optimization
problem, introduced data collection and data pre-processing
applications, and validated our model for different resource
and mobility states. Our approach outperforms the naive so-
lution introduced in [13] and the clustering-based approach
introduced in [14] significantly.

As part of the future work, a decentralized, mobility-
aware task offloading algorithm will be introduced that
solves the optimization problem in real-time. To make the
service model more practical, we will introduce a dis-
tributed service reconfiguration scheme to send collected
data or service states back to the vehicle cluster. We aim
to use hyper-parameter optimization techniques to decide
the number of TIs to be deployed in real-time, for satisfying
the service placement requirements. We will focus on the
replacement of concurrent, data-dependent tasks as part of

the failure recovery scheme.

REFERENCES

[1] Z. Ning, J. Huang, and X. Wang, “Vehicular fog computing: En-
abling real-time traffic management for smart cities,” IEEE Wireless
Communications, vol. 26, no. 1, pp. 87–93, February 2019.

[2] C. Huang, R. Lu, and K. R. Choo, “Vehicular fog computing:
Architecture, use case, and security and forensic challenges,” IEEE
Communications Magazine, vol. 55, no. 11, pp. 105–111, 2017.

[3] S.-S. Lee and S. Lee, “Resource allocation for vehicular fog
computing using reinforcement learning combined with heuristic
information,” IEEE Internet of Things Journal, vol. 7, no. 10, pp.
10 450–10 464, 2020.

[4] X. Hou et al., “Vehicular fog computing: A viewpoint of vehicles
as the infrastructures,” IEEE Transactions on Vehicular Technology,
vol. 65, no. 6, pp. 3860–3873, 2016.

[5] X. Li, X. Huang, C. Li, R. Yu, and L. Shu, “Edgecare: Leveraging
edge computing for collaborative data management in mobile
healthcare systems,” IEEE Access, vol. 7, pp. 22 011–22 025, 2019.

[6] Z. Ning, J. Huang, X. Wang, J. J. P. C. Rodrigues, and L. Guo,
“Mobile edge computing-enabled internet of vehicles: Toward
energy-efficient scheduling,” IEEE Network, pp. 1–8, 2019.

[7] I. W. Ho, S. C. Chau, E. R. Magsino, and K. Jia, “Efficient 3d
road map data exchange for intelligent vehicles in vehicular fog
networks,” IEEE Transactions on Vehicular Technology, vol. 69, no. 3,
pp. 3151–3165, 2020.

[8] H. Du, S. Leng, F. Wu, X. Chen, and S. Mao, “A new vehicular
fog computing architecture for cooperative sensing of autonomous
driving,” IEEE Access, vol. 8, pp. 10 997–11 006, 2020.

[9] D. Ye, M. Wu, S. Tang, and R. Yu, “Scalable fog computing with
service offloading in bus networks,” in 2016 IEEE 3rd International
Conference on Cyber Security and Cloud Computing (CSCloud), 2016,
pp. 247–251.

[10] X. Xiao, X. Hou, X. Chen, C. Liu, and Y. Li, “Quantitative analysis
for capabilities of vehicular fog computing,” Information Sciences,
vol. 501, pp. 742 – 760, 2019.

[11] Z. Zhou, H. Liao, X. Wang, S. Mumtaz, and J. Rodriguez, “When
vehicular fog computing meets autonomous driving: Computa-
tional resource management and task offloading,” IEEE Network,
vol. 34, no. 6, pp. 70–76, 2020.

[12] K. Sharma, B. Butler, B. Jennings, J. Kennedy, and R. Loomba,
“Optimizing the placement of data collection services on vehicle
clusters,” in 2018 IEEE 29th Annual International Symposium on
Personal, Indoor and Mobile Radio Communications (PIMRC), 2018,
pp. 1800–1806.

[13] J. Feng, Z. Liu, C. Wu, and Y. Ji, “Ave: Autonomous vehicular
edge computing framework with aco-based scheduling,” IEEE
Transactions on Vehicular Technology, vol. 66, no. 12, pp. 10 660–
10 675, Dec 2017.

[14] S. Hu, G. Li, and W. Shi, “Lars: A latency-aware and real-time
scheduling framework for edge-enabled internet of vehicles,”
IEEE Transactions on Services Computing, pp. 1–1, 2021.

[15] M. Gerla, “Vehicular cloud computing,” in 2012 The 11th Annual
Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), June
2012, pp. 152–155.

[16] X. Ma, J. Zhao, Q. Li, and Y. Gong, “Reinforcement learning based
task offloading and take-back in vehicle platoon networks,” in
2019 IEEE International Conference on Communications Workshops
(ICC Workshops), May 2019, pp. 1–6.

[17] J. Zhao, Q. Li, Y. Gong, and K. Zhang, “Computation offloading
and resource allocation for cloud assisted mobile edge computing
in vehicular networks,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 8, pp. 7944–7956, Aug 2019.

[18] C. Zhu, G. Pastor, Y. Xiao, and A. Ylajaaski, “Vehicular fog
computing for video crowdsourcing: Applications, feasibility, and
challenges,” IEEE Communications Magazine, vol. 56, no. 10, pp.
58–63, 2018.

[19] X. Xiao, X. Hou, C. Wang, Y. Li, P. Hui, and S. Chen, “Jamcloud:
Turning traffic jams into computation opportunities – whose time
has come,” IEEE Access, pp. 1–1, 2019.

[20] X. Kong, F. Xia, Z. Ning, A. Rahim, Y. Cai, Z. Gao, and J. Ma,
“Mobility dataset generation for vehicular social networks based
on floating car data,” IEEE Transactions on Vehicular Technology,
vol. 67, no. 5, pp. 3874–3886, May 2018.

15

[21] C. Zhu et al., “Folo: Latency and quality optimized task allocation
in vehicular fog computing,” IEEE Internet of Things Journal, pp.
1–1, 2019.

[22] W. Zhang, Z. Zhang, and H. Chao, “Cooperative fog computing
for dealing with big data in the internet of vehicles: Architec-
ture and hierarchical resource management,” IEEE Communications
Magazine, vol. 55, no. 12, pp. 60–67, 2017.

[23] F. Hagenauer et al., “Vehicular micro clouds as virtual edge
servers for efficient data collection,” in Proceedings of the
2Nd ACM International Workshop on Smart, Autonomous, and
Connected Vehicular Systems and Services, ser. CarSys ’17. New
York, NY, USA: ACM, 2017, pp. 31–35. [Online]. Available:
http://doi.acm.org/10.1145/3131944.3133937

[24] M. Goudarzi, H. Wu, M. S. Palaniswami, and R. Buyya, “An
application placement technique for concurrent iot applications
in edge and fog computing environments,” IEEE Transactions on
Mobile Computing, pp. 1–1, 2020.

[25] Q. Luo, C. Li, T. H. Luan, and W. Shi, “Edgevcd: Intelligent
algorithm-inspired content distribution in vehicular edge comput-
ing network,” IEEE Internet of Things Journal, vol. 7, no. 6, pp.
5562–5579, 2020.

[26] M. Grossglauser and D. Tse, “Mobility increases the capacity of
ad-hoc wireless networks,” in Proceedings IEEE INFOCOM 2001.
Conference on Computer Communications. Twentieth Annual Joint
Conference of the IEEE Computer and Communications Society (Cat.
No.01CH37213), vol. 3, 2001, pp. 1360–1369 vol.3.

[27] G. Mao, Z. Lin, X. Ge, and Y. Yang, “Towards a simple relationship
to estimate the capacity of static and mobile wireless networks,”
IEEE Transactions on Wireless Communications, vol. 12, 06 2013.

[28] J. Chen, G. Mao, C. Li, W. Liang, and D. Zhang, “Capacity
of cooperative vehicular networks with infrastructure support:
Multiuser case,” IEEE Transactions on Vehicular Technology, vol. 67,
no. 2, pp. 1546–1560, 2018.

[29] T. Higuchi, F. Dressler, and O. Altintas, “How to keep a vehicular
micro cloud intact,” in 2018 IEEE 87th Vehicular Technology Confer-
ence (VTC Spring), 2018, pp. 1–5.

[30] J. Zhang, X. Huang, and R. Yu, “Optimal task assignment with
delay constraint for parked vehicle assisted edge computing: A
stackelberg game approach,” IEEE Communications Letters, pp. 1–
1, 2019.

[31] L. A. Maglaras and D. Katsaros, “Social clustering of vehicles
based on semi-markov processes,” IEEE Transactions on Vehicular
Technology, vol. 65, no. 1, pp. 318–332, Jan 2016.

[32] L. Ang, K. P. Seng, G. K. Ijemaru, and A. M. Zungeru, “De-
ployment of iov for smart cities: Applications, architecture, and
challenges,” IEEE Access, vol. 7, pp. 6473–6492, 2019.

[33] I. Lera, C. Guerrero, and C. Juiz, “Yafs: A simulator for iot
scenarios in fog computing,” IEEE Access, vol. 7, pp. 91 745–91 758,
2019.

[34] S. Dräxler, S. Schneider, and H. Karl, “Scaling and placing bidi-
rectional services with stateful virtual and physical network func-
tions,” in 2018 4th IEEE Conference on Network Softwarization and
Workshops (NetSoft), June 2018, pp. 123–131.

KANIKA SHARMA [S’16] is a Ph.D. researcher
at the Walton Institute, Waterford Institute of
Technology, Ireland. Her research is funded by
Science Foundation Ireland (SFI) funded CON-
NECT Research Center. She was selected as an
NGI Explorer to extend her work with the Univer-
sity of Tennessee at Chattanooga. Her research
is focused on building Fog Computing models for
Intelligent Transport Systems.

BERNARD BUTLER [S’10, M’16] received his
PhD degree from Waterford Institute of Technol-
ogy (WIT), Ireland. He lectures in machine learn-
ing and security and is a postdoctoral researcher
in the Walton Institute, WIT, where his research
interests include the management of distributed
computing and sensing systems, applied to fu-
ture networking, smart cities and agriculture.

BRENDAN JENNINGS [(M’05)] received the
BEng. and PhD degrees from Dublin City Uni-
versity, Dublin, Ireland, in 1993 and 2001, re-
spectively. He is currently Vice President for Re-
search and Innovation at TU Dublin, Ireland’s
first Technological University. He is a Principal
Investigator in CONNECT, the Science Founda-
tion Ireland (SFI) Research Centre for Future
Networks and Communications. Brendan served
on the SFI Expert Advisory Board for Contact
Tracing and has provided expert commentary to

RTÉ (the Irish national broadcaster), the BBC, and the Irish Times, on
contact tracing apps. He was Executive Chair for IEEE ICC 2020, a flag-
ship international conference in communications networking. Previously,
Brendan has worked as Dean of Graduate Studies for Waterford Institute
of Technology, and has spent periods as a Visiting Research with KTH
Royal Institute of Technology in Sweden, and with EMC2 Research
Europe in Ireland. His research interests include network management,
vehicular networks, and molecular communications.

	Scaling and Placing Distributed Services on Vehicle Clusters in Urban Environments
	Recommended Citation

	tmp.1653063785.pdf.0G5F7

