1,637 research outputs found

    A Decentralized Processing Schema for Efficient and Robust Real-time Multi-GNSS Satellite Clock Estimation

    Get PDF
    Real-time multi-GNSS precise point positioning (PPP) requires the support of high-rate satellite clock corrections. Due to the large number of ambiguity parameters, it is difficult to update clocks at high frequency in real-time for a large reference network. With the increasing number of satellites of multi-GNSS constellations and the number of stations, real-time high-rate clock estimation becomes a big challenge. In this contribution, we propose a decentralized clock estimation (DECE) strategy, in which both undifferenced (UD) and epoch-differenced (ED) mode are implemented but run separately in different computers, and their output clocks are combined in another process to generate a unique product. While redundant UD and/or ED processing lines can be run in offsite computers to improve the robustness, processing lines for different networks can also be included to improve the clock quality. The new strategy is realized based on the Position and Navigation Data Analyst (PANDA) software package and is experimentally validated with about 110 real-time stations for clock estimation by comparison of the estimated clocks and the PPP performance applying estimated clocks. The results of the real-time PPP experiment using 12 global stations show that with the greatly improved computational efficiency, 3.14 cm in horizontal and 5.51 cm in vertical can be achieved using the estimated DECE clock

    Advanced tracking systems design and analysis

    Get PDF
    The results of an assessment of several types of high-accuracy tracking systems proposed to track the spacecraft in the National Aeronautics and Space Administration (NASA) Advanced Tracking and Data Relay Satellite System (ATDRSS) are summarized. Tracking systems based on the use of interferometry and ranging are investigated. For each system, the top-level system design and operations concept are provided. A comparative system assessment is presented in terms of orbit determination performance, ATDRSS impacts, life-cycle cost, and technological risk

    Precise Point Positioning Inertial Navigation Integration for Kinematic Airborne Applications

    Get PDF
    UAVs have the potential for autonomous airborne remote sensing applications that require rapid response to natural hazards (e.g. volcano eruptions, earthquakes). As these applications require very accurate positioning, tightly coupled Global Positioning System (GPS) Precise Point Positioning (PPP) Inertial Navigation Systems (INS) are an attractive method to perform real-time aircraft positioning. In particular, PPP can achieve a level of positioning accuracy that is similar to Real-Time Kinematic (RTK) GPS, without the need of a relatively close GPS reference station. However, the PPP method is known to converge to accurate positioning estimate more slowly when compared to RTK, a drawback of PPP that is amplified whenever the receiver platform is faced with GPS challenged environments, such as poor satellite visibility and frequent phase breaks.;This thesis presents the use of a simulation environment that characterizes the position estimation performance sensitivity of PPP/INS through a Monte Carlo analysis that is considered under various conditions: such as, the intensity of multipath errors, the number of phase breaks, the satellite geometry, the atmospheric conditions, the noise characteristics of the inertial sensor, and the accuracy of GPS orbit products. After the PPP/INS formulation was verified in a simulation environment, the INS formulation was incorporated into NASA JPL\u27s Real-Time GIPSY-x. This software was then verified using eight recorded flight data sets provided by the National Geodetic Survey (NGS), National Oceanic and Atmospheric Administration (NOAA) program called Gravity for the Redefinition of the American Vertical Datum (GRAV-D)

    Effects of Parent and Peer Behaviors on Adolescent Sexual Behavior: Are Positive and Negative Peer Behaviors Moderators?

    Get PDF
    Adolescents and young adults account for a significantly high proportion of unintended pregnancy and sexually transmitted infection cases in the United States. According to Jessor\u27s Problem Behavior Theory, combined protective factors, such as exposure to positive parenting and peer behaviors, create an environment that is supportive of conventional behaviors and discouraging of problem behaviors. There is an extensive amount of literature on parent and peer influences on adolescent sexual behavior but few studies address the interactive influence of both parent and peer behaviors on adolescent sexual risk-taking. The purpose of this study was to examine the relationship between maternal supportiveness and strictness on adolescent sexual risk-taking, as well as the moderating influence of peer involvement in positive or negative activities. A sample of 14-16 year old adolescents was drawn from the National Longitudinal Survey of Youth-1997 (NLSY-97; N = 4,008, 50.5% male, 59.4% White, 26.5% Black, and 13.3% other). Higher levels of maternal supportiveness, maternal strictness, and positive peer behaviors were each associated with lower levels of sexual risk-taking two years later. High levels of negative peer behaviors were related to high sexual-risk taking two years later. No interaction terms were significant. Important implications for positive peer relationships were also found. Future research should focus on the comparison of parental warmth and control variables as moderators for the relationship between peer influence and adolescent sexual risk-taking

    The Navstar GPS master control station's Kalman filter experience

    Get PDF
    The Navstar Global Positioning System (GPS) is a highly accurate space based navigation system providing all weather, 24 hour a day service to both military and civilian users. The system provides a Gaussian position solution with four satellites, each providing its ephemeris and clock offset with respect to GPS time. The GPS Master Clock Station (MCS) is charged with tracking each Navstar spacecraft and precisely defining the ephemeris and clock parameters for upload into the vehicle's navigation message. Briefly described here are the Navstar system and the Kalman filter estimation process used by MCS to determine, predict, and ensure quality control for each of the satellite's ephemeris and clock states. Routine performance is shown. Kalman filter reaction and response is discussed for anomalous clock behavior and trajectory perturbations. Particular attention is given to MCS efforts to improve orbital adjust modeling. The satellite out of service time due to orbital maneuvering has been reduced in the past year from four days to under twelve hours. The planning, reference trajectory model, and Kalman filter management improvements are explained

    Solving the latency problem in real-time GNSS precise point positioning using open source software

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial TechnologiesReal-time Precise Point Positioning (PPP) can provide the Global Navigation Satellites Systems (GNSS) users with the ability to determine their position accurately using only one GNSS receiver. The PPP solution does not rely on a base receiver or local GNSS network. However, for establishing a real-time PPP solution, the GNSS users are required to receive the Real-Time Service (RTS) message over the Network Transported of RTCM via Internet Protocol (NTRIP). The RTS message includes orbital, code biases, and clock corrections. The GNSS users receive those corrections produced by the analysis center with some latency, which degraded the quality of coordinates obtained through PPP. In this research, we investigate the Support Vector Machine (SVR) and RandomForest (RF) as machine learning tools to overcome the latency for clock corrections in the CLK11 and IGS03 products. A BREST International GNSS Services permanent station in France selected as a case study. BNC software implemented in real-time PPP for around three days. Our results showed that the RF method could solve the latency problem for both IGS03 and CLK11. While SVR performed better on the IGS03 than CLK11; thus, it did not solve the latency on CLK11. This research contributes to establishing a simulation of real-time GNSS user who can store and predict clock corrections accordingly to their current observed latency. The self-assessment of the reproducibility level of this study has a rank one out of the range scale from zero to three according to the criteria and classifications are done by (NĂŒst et al., 2018)

    Using GPS as a Reference System to Hit a Moving Target

    Get PDF
    The Affordable Moving Surface Target Engagement (AMSTE) project attempts to develop affordable solutions to the precise moving target surface target engagement problem. Up to this point, most of the error analysis performed for the AMSTE project has been at the error variance level, generating root-sum-square (RSS) total errors from error budgets consisting of constant error variances. In reality, the level of error for both Global Positioning System (GPS) positioning and radar targeting systems is highly dependent upon the given situation (such as the distance between sensor and target, the altitude differences, etc.) This research generates a more comprehensive model of the UPS errors based upon the underlying physics of the situation. It focuses on differential tropospheric errors and multipath, as these are the primary error source in a differential GPS targeting system. In addition to the error model development, a code-based differential GPS and differential ranging approach is implemented in simulation using a Kalman filter. This approach uses GPS measurements collected by each of the sensors and the weapon, and it uses ranging measurements from the sensors to the bomb and the target. Multiple cases are run varying 1) the number of UPS satellite measurements tracked by each receiver, 2) whether or not the common UPS errors are estimated, and 3) whether or not the bomb is tracked with the same radar sensors that are tracking the target. The horizontal DRMS position error during the terminal phase of the bomb trajectory drops from about 6 meters to about 3.5 meters

    Establishment of GPS Reference Network in Ghana

    Get PDF
    The quest for the use of GNSS in developing countries is on the rise following the realization of its numerous advantages over the conventional methods of positioning, navigation and timing. Africa's attempt to harness this technology has made it imperative to investigate the regional problems associated with its implementation by its member states, which constitute the AFREF. This study goes beyond the establishment of a GNSS reference network in Ghana by investigating and finding solutions to some of the regional problems associated with its implementation. The problem of turbulent atmospheric conditions which includes the severe ionospheric fluctuations and the erratic tropospheric conditions coupled with the sparsely populated base stations has led to the development of a new concept of correction, the Corridor Correction, which is able to correct the atmospheric effect comparable with the established concepts like the Virtual Reference Station, VRS, Flaechen-Korrektur-Parameter, FKP and Master Auxiliary Concept, MAC. In spite of the ionospheric problems in the equatorial region, the number of single frequency receivers in use for precise positioning is on the increase as compared with the relatively few multiple frequency receivers. This has necessitated the investigation of the code-plus-carrier processing approach which uses the idea of opposite signs of the propagation delay of the ionosphere in the code and carrier signals to eliminate the ionospheric delay, which normally requires dual frequency receivers to do same. This improved processing technique has led to the achievement of an accuracy of 5 cm with single frequency over a distance of 194 km. Sub-decimeter is generally achieved after 12 hours and 18 hours of observation for a distance of 200 km and 1200 km respectively with this technique as shown in this study. In addition to the improved processing techniques, the ambiguity that characterizes the use of mean-sea-level for the definition of vertical references as a result of either the sea level change or movement of the earth crust can be resolved with the use of GNSS which is independent of these two phenomena. This is achieved by collocating a GPS base station at the reference tide gauge located at Takoradi. The orthometric height derived from the tide gauge and the corresponding ellipsoidal height at the collocated GNSS base station is used to determine the local quasi-geoid. This is compared with the global geoid derived from EGM96, the global model from NGA, to obtain a difference that can be applied as a correction factor to obtain orthometric heights. The release of EGM2008 which has undergone remarkable improvement over EGM96 in terms of resolution makes it important to investigate into how it can be used to improve the orthometric height determination using ellipsoidal heights from GNSS observation. This can be achieved by following up what has been derived with EGM96 at the Takoradi tide gauge with this newly released EGM2008. To be able to move through a smooth transition from the existing geodetic reference system based on the War Office Ellipsoid to the newly established system based on the geocentric ITRF05, a set of seven parameter transformation has been derived for the project area, the Golden Triangle of Ghana.Das Bestreben GNSS in EntwicklungslĂ€ndern zu nutzen nimmt stetig zu, da man die zahlreichen Vorteile gegenĂŒber herkömmlichen Verfahren der Positionierung, Navigation und ZeitĂŒbertragung erkannt hat. Afrikas Versuch, diese Technologie zu nutzen, gebietet es, die regionalen Probleme im Zusammenhang mit der Umsetzung durch die AFREF Mitgliedsstaaten zu untersuchen. Diese Abhandlung geht ĂŒber die Errichtung eines GNSS Referenznetzwerks in Ghana hinaus, indem sie Lösungen zu einigen regionalen Problemen in der Umsetzung aufzeigt und untersucht. Das Problem der turbulenten AtmosphĂ€re, die schweren ionospĂ€rische Fluktuationen und sprunghafte troposphĂ€rische Bedingungen verbunden mit den sehr spĂ€rlich gestreuten Referenzstationen, hat zu der Entwicklung eines neuen Konzeptes von Korrekturverfahren, der Corridor Correction, gefĂŒhrt, die es ermöglicht, atmosphĂ€rische EinflĂŒsse Ă€hnlich wie etablierte Verfahren wie Virtual Reference Station, VRS, Flaechen-Korrektur-Paramter, FKP and Master Auxiliary Concept, MAC, zu korrigieren. Trotz der Probleme mit der IonosphĂ€re in der Äquatorregion, ĂŒbersteigt die Anzahl der Ein-Frequenz-EmpfĂ€nger fĂŒr die prĂ€zise Positionierung die der relativ wenigen MehrfrequenzempfĂ€nger. Dies machte die Untersuchung des Code-plus-Carrier Prozessierungsansatzes notwendig. Dieser nutzt den Effekt von unterschiedlichen Vorzeichen bei der Änderung der Ausbreitungsgeschwindigkeit von Code- und TrĂ€gersignalen durch die IonosphĂ€re um den ionosphĂ€rischen Effekt zu eliminieren, was in der herkömmlichen Prozessierung ZweifrequenzempfĂ€nger benötigt. Diese verbesserte Prozessierungstechnik hat zur Erzielung von Genauigkeiten von 5 cm mit EinfrequenzempfĂ€ngern ĂŒber eine BasislinienlĂ€nge von 194 km gefĂŒhrt. Damit werden im Allgemeinen Sub-Dezimeter Genauigkeiten nach 12 Stunden Beobachtungsdauer fĂŒr BasislinienlĂ€ngen von 200 km bzw. 18 Stunden fĂŒr Basislinien von 1200 km erreicht, wie diese Abhandlung zeigt. ZusĂ€tzlich zu den oben genannten Verbesserungen in der Prozessierung, wird eine Methode aufgezeigt, die die Unsicherheit durch MeeresspiegelĂ€nderungen oder Bewegungen der Erdkruste, die der Gebrauch des mittleren Meeresspiegels als Definition des vertikalen Datums in sich birgt, durch den Gebrauch von GNSS, das von diesen beiden PhĂ€nomenen unberĂŒhrt ist. Dies wird dadurch erreicht, dass GPS Basisstationen an Orten mit einer Pegelstation eingerichtet werden. Die orthometrische Höhe des Referenzpegels und die ellipsoidische Höhe der Basisstation werden dann zur Bestimmung eines lokalen Geoids verwendet. Das in dieser Abhandlung verwendete lokale Geoid ist an das globale Geoid angeschlossen worden, das aus dem EGM96, dem Modell der NGA, abgeleitet ist. Die Veröffentlichung des EGM2008, das gegenĂŒber dem EGM96 im Hinblick auf die Auflösung erfahren hat bedeutende Verbesserungen, erfordert es, zu untersuchen, wie es Ghana zur Bestimmung von orthometrischen Höhen durch GNSS Beobachtungen nutzen kann. Das kann durch eine Weiterentwicklung des Ansatzes erreicht werden, der in dieser Studie schon mit dem EGM96 fĂŒr Ghana bei Takoradi begonnen wurde. Das hierbei aufgebaute GNSS Referenznetzwerk wurde an den Pegel von Takoradi angeschlossen, einem der Ă€ltesten Level auf dem afrikanischen Kontinent. Um einen glatten Übergang vom vorhandenen Referenzsystem, das auf dem War Office Ellipsoid basiert, zum neuen, auf dem ITRF05 basierendem System zu ermöglichen, wurde ein Satz von sieben Transformationsparametern abgeleitet, die auf den Messungen im Projektgebiet „Goldenes Dreieck“ in Ghana basieren

    GNSS Error Sources

    Get PDF
    This chapter discusses the most serious sources of error affecting global navigation satellite systems (GNSS) signals, classifying these in a new way, according to their nature and/or effects. For instance, errors due to clock bias or drift are grouped together. Errors related to the signal propagation medium, too, are treated in the same way. GNSS errors need to be corrected to achieve accepted positioning and navigational accuracy. We provide a theoretical description for each source, supporting these with diagrams and analytical figures where possible. Some common metrics to measure the magnitude of GNSS errors, including the user equivalent range error (UERE) and the dilution of precision (DOP), are also presented. The chapter concludes with remarks on the significance of the sources of error
    • 

    corecore