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ABSTRACT

Precise Point Positioning Inertial Navigation Integration for Kinematic

Airborne Applications

Ryan Watson

UAVs have the potential for autonomous airborne remote sensing applications that require rapid
response to natural hazards (e.g. volcano eruptions, earthquakes). As these applications require very
accurate positioning, tightly coupled Global Positioning System (GPS) Precise Point Positioning
(PPP) Inertial Navigation Systems (INS) are an attractive method to perform real-time aircraft
positioning. In particular, PPP can achieve a level of positioning accuracy that is similar to Real-
Time Kinematic (RTK) GPS, without the need of a relatively close GPS reference station. However,
the PPP method is known to converge to accurate positioning estimate more slowly when compared
to RTK, a drawback of PPP that is amplified whenever the receiver platform is faced with GPS
challenged environments, such as poor satellite visibility and frequent phase breaks.

This thesis presents the use of a simulation environment that characterizes the position estima-
tion performance sensitivity of PPP/INS through a Monte Carlo analysis that is considered under
various conditions: such as, the intensity of multipath errors, the number of phase breaks, the
satellite geometry, the atmospheric conditions, the noise characteristics of the inertial sensor, and
the accuracy of GPS orbit products. After the PPP/INS formulation was verified in a simulation
environment, the INS formulation was incorporated into NASA JPL’s Real-Time GIPSY-x. This
software was then verified using eight recorded flight data sets provided by the National Geodetic
Survey (NGS), National Oceanic and Atmospheric Administration (NOAA) program called Gravity
for the Redefinition of the American Vertical Datum (GRAV-D).
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Chapter 1

Introduction

The Precise Point Positioning (PPP) approach uses dual-frequency undifferenced GPS observables in
conjunction with precise orbit and clock bias products and measurement models to achieve decime-
ter to centimeter level positioning with a single receiver [1]. Real-time PPP is enabled by orbit and
clock products being broadcast to end user. These global correctors have been integrated into the
L-band by commercial entities[2], can be obtained over the internet or through an Iridium modem
link from NASA’s Global Differential GPS System[3], and have recently been made freely available
on the internet by the International GNSS Service [4]. The similar level of accuracy of real-time PPP
compared to traditional Differential GPS (DGPS) (i.e. Real Time Kinematic) without the need for a
nearby static GPS reference station, is particularly attractive for airborne scientific instrument plat-
forms that require this level of accuracy, global coverage and rapid response capability. For instance,
real-time PPP is used for NASA’s airborne Synthetic Aperture Radar (SAR) platforms that are used
for repeat pass interferometry in response to natural hazards such as volcano eruptions, tsunamis,
and large earthquakes [5]. The benefits of coupling GPS with Inertial Navigation Systems (INS)
have long been well understood|[6], and recent studies have investigated and demonstrated combined
PPP/INS architectures for kinematic applications on ground vehicles[7], [8], [9], [10], and airborne
platforms[10]. In these previous works, both loosely-coupled and tightly-coupled architectures have
been investigated, and when provided clear open sky-access and on vehicles with docile dynamics,
both approaches have shown to exhibit similar estimation performance[9], [10]. However, when con-
fronted with challenging GPS environments, such as poor visibility (e.g. urban canyon), frequent
phase breaks, and high-multipath, tightly-coupled formulations inherently have the advantage [9],
[10].



1.1 Objective

This thesis has 2 objectives. The first objective is to develop and characterize the sensitivity of
PPP/INS for kinematic airborne applications within a simulation environment. For this to be
realized, first, a simulation environment is developed within MATLAB. Next, a tightly-coupled
PPP/INS error-state Kalman filter is developed. This tighly-coupled PPP/INS error-state Kalman
filter was considered under various conditions: the number of phase breaks, the satellite geometry,
the atmospheric conditions, the noise characteristics of the inertial sensor, and the accuracy of GPS
orbit products.

The validated INS formulation was then incorporated into NASA JPL’s Real-Time GIPSY-x
(RTGx) software [11]. This leads to the second objective, the validation of the formulation using
recorded flight data sets provided by the National Geodetic Survey (NGS), National Oceanic and
Atmospheric Administration (NOAA) program called Gravity for the Redefinition of the American
Vertical Datum (GRAV-D) [12] [13]. A reference solution for the eight data sets is generated using an
iterative processing strategy with GIPSY-OASIS II [14]. Using these reference solutions, a sensitivity
analysis of RT'Gx is conducted. The purpose of this sensitivity study is to see when INS truly with

positioning estimation for kinematic PPP/INS applications.

1.2 Thesis Outline

The second chapter of this thesis provides an overview of the GPS navigation system and the PPP
approach. First, a broad overview of the GPS system is provided. Then the GPS observables
are discussed. Finally, a brief discussion of GPS positioning is provided, which includes the PPP
observation model. Chapter Three of this thesis covers Inertial navigation. This chapter starts with
an overview of inertial measurement devices. Then a detailed discussion of INS mechanization in the
Earth Cenerted Inertia (ECI) frame is provided. Lastly, the INS error model formulation is discussed.
The fourth chapter covers GPS/INS integration methods. This section provides an overview of the
two integration methods commonly used for aerospace applications. Then, a brief overview of the
Extend Kalman Filter algorithm is provided. And finally, the integration method utilized in this
research. With the preliminary information provided in the previous chapters, chapter five covers
the use of a simulation environment to characterize the K-PPP/INS integration algorithm. First,
a discussion of the simulation environment is discussed. Then the simulation results obtained are

provided. Chapter six provides the processing of eight real data sets using RTGx. Within this



chapter is an overview of the RTGx software. Then, using eight flight collected data sets, the
sensitivity of RT'Gx is evaluated under several conditions. Finally, chapter seven provides some

concluding remarks and plans for future work.



Chapter 2

GPS

Although GPS can be used for several other application ( e.g. the detection of underground nuclear
explosions [15], the early detection of tsunamis [16], precise timing [17], and the detection of snow
depth [18] ), this thesis is concerned with the use of GPS as a positioning sensor. The ability to
use GPS for positioning is based up trilateration: a method of determining position that utilizes
time of flight measurements ( i.e. pseudorange observables ) from at least four satellites [19]. This is
because the first 3 satellites are used to narrow the location of the receiver down to two locations. The
forth satellite is used to select the right location and calculate timing and location corrections. For
accurate positioning the receiver must compensate for common GPS error sources. This chapter will
cover a brief overview of the GPS System which will include a discussion of the GPS observables, the

common GPS error sources, and the observation model that is used to calculate the GPS observables.

2.1 GPS System Overview

The GPS system can be broken into four distinct sections: the space segment, the control segment,

the user segment, and the ground segment. This section will detail each of those segments in detail.

2.1.1 Space Segment
Orbit Design

As stated previously, GPS point positioning requires there to be at least four satellites in view. With
this is mind, the GPS orbit was designed. There are nominally twenty four GPS satellites in orbit.

These twenty four satellites are distributed evenly over six orbital planes where each plane is at an



inclination angle of 55° at an almost circular orbit with a radius of 20,200 kilometers [19]. As a
consequence of the GPS orbit design, each GPS satellite makes two full revolutions around the earth
in 23 hours and 58 minutes ( i.e. one sidereal day ). This means that each satellite appears over the
same location every every sidereal day, which is more commonly called ”repeating ground-tracks”

[20].

Signal Structure

Every GPS satellite transmits on at least two L-band radio frequencies: the Link 1 ( L; ) frequency
and the Link 2 ( Lo ) frequency, which are centered about 1.575 GHz ( corresponds to a wave length
of 19 cm ), and 1.227 GHz ( corresponds to a wave length of 24.4 cm ), respectively [19]. Modulated
on the L; frequency is the Coarse-Acquisition Code (C/A-code), which has a frequency of 1.023
MHz. In addition to the C/A-code, a navigation message is also modulated onto the L; carrier.
This navigation messages provides the user with information about the satellites health status,
ephemeris, and clock bias. Modulated on L; and Ls is the Precise Code (P-code), which has a
frequency of 10.23 M Hz. From the information provided ( the carrier, the PRN, and the navigation
message ), the user can extract three observables: the pseudorange observable, the carrier-phase

observable, and the doppler observable [20].

2.1.2 Control Segment

The GPS control segment is composed of a network of seventeen monitoring stations operated by
the Air Forec and the National Geospatial-Intelligence Agency (NGA). These stations constantly
monitor the satellites and report back to the Master Control Station, located at Schriever Air force
Base in Colorado Springs. The data processed at the Master Control Station is used to generate the

orbit and clock errors and is uplinked to the GPS satellites on a 1.783 GH z signal [20].

2.1.3 User Segment

The user segment consists of various GPS receiver equipment, which receive the signals from the
GPS satellites and use the received information to calculate the users position and the GPS system

time.



2.1.4 Ground Segment

The ground segment is composed of civilian tracking networks that provide the user segment with
precise ephemeris information. This precise ephemerids information is what enables PPP. Addition-
ally, these global correctors have been integrated into the L-band by commercial entities [2], can be
obtained over the internet or through an Iridium modem link from NASA’s Global Differential GPS
System [3], and have recently been made freely available on the internet by the International GNSS

Service [4].

2.2 GPS Observables

There are three GPS observables: the pseudorange, the carrier-phase, and the doppler observable.

These three measurements will be described in greater detail in this section.

2.2.1 Pseudorange

The first observable that will be discussed is the pseudorange. This observable is essentially a
measure of the propagation time of the signal scaled by the speed that the wave is propagated.
Where the propagation time is obtained through correlating the PRN that is propagated by the
satellite to the PRN generated on the receiver. In addition, there will be a clock bias because it is
cost prohibitive for users to have a more precise clock. This clock bias is where the term pseudorange
comes from. The term pseudorange signifies that the observable is the true range distorted by the
clock bias and additional error sources.

The equation to calculate the pseudorange can be found in Eq. 2.1: where ¢, is the time the
signal was received, t, is the time that the satellite propogated the signal, ¢ is the speed of light,
b is a composite clock bias composed of both satellite and a receiver clock bias, and e contains all

additional error sources. These additional error sources are described in the next section.

=ty —t)e+ b + (2.1)

2.2.2 Carrier Phase

The carrier-phase observable can be though of as a very similar measurement to the pseudorange
observable. However, there are two large caveats: the first being, that the carrier-phase observable

is orders of magnitude more precise than the pseudorange observable, and the second being that



the carrier-phase observable contains an ambiguous number of wave lengths that must be resolved
before the precision of the observable can be utilized.

A simplified carrier-phase observation model can be seen in Eq. 2.2: where, A is the wave length
associated with the propagation frequency, R is the geometric distance between the satellite and the
receiver, N is the ambiguity term associated with the carrier-phase data, b is a composite clock bias
composed of both a receiver and a satellite component, and e contains all additional un-modelled

€rror sources.

O =R 4 AN+ + ¢ (2.2)

2.2.3 Doppler

The doppler shift or relative motion of a satellite with respect to a receiver results in a change in the
observed frequency. If the satellites velocity is known, then this observable can be used to estimate
the receivers velocity [19].

The doppler shift can be calculated using Eq. 2.3. This equation is the same as Eq. 2.1 with the

exception that the time derivative of each component is taken.

pi = Ri+bi + ¢l (2.3)

2.3 GPS Positioning

2.3.1 GPS Error Sources

The common GPS error sources can be broken in three catagories. The first error source is con-
tributed to the control segment. These errors are either associated with the estimated location of
the satellite or the satellite clock bias solution. The next group of GPS errors are associated with
the propagation medium. This group of errors are either due to the ionosphere or the troposphere.
The final group of errors are contributed to the measurement errors and are generally the hardest

to mitigate.

Space/Control Segment

The control segment is composed of several monitoring stations that collect data from the satellites

and send the satellites updated clock and ephemeris information. This updated navigation infor-



mation is estimated using a Kalman filter at the master control station. This corrected ephemeris

information is broadcast to the user and is what enables PPP.

Ephemeris One error that is associated with the control segment is the ephemeris error. The
ephemeris error is the amount of error associated with the satellites estimated position. This error
is associated with several factors, such as, solar radiation pressure, yaw-bias, and aerodynamic drag
[21]. This error is generally decomposed into a radial, in-track and cross-track component. Of these
tree components, the radial component is generally the smallest but has the largest impact on the

user’s positioning estimate [22].

Clock Another error associated with the control segment is the satellite clock error. Even though
the clocks on the GPS satellites are highly stable there can still be a large error associated with the
accumulated satellite clock error. Because of this, the control segment monitors the satellite clocks
with respect to GPS standard time. This error is generally decomposed into three components: the
satellite clock bias, the satellite clock drift, and the satellite clock drift. To correct this error the

control segment broadcasts clock corrects with the navigation message.

Phase Wind-up Due to the nature of the signal being propagated from the GPS satellite (i.e.
right circularyly polarized [19]), the carrier-phase observable is dependant upon the orientation of
the receiver and satellite antennas. This affect can account for up to one wavelength of error, and

is commonly known as phase wind-up [23].

Propogation Medium

Due to the altitude or the GPS orbit, roughly 20,200 km, there are two propagation medium errors:

the ionosphere and the troposphere.

Ionosphere The error associated with the ionosphere is attributed to the total electron content
along the path of the propagated signal [19]. Fortunately, the ionosphere is a dispersive medium,
which means that the amount that the ionosphere affects a signal propagated though it is dependent
upon the frequency of the signal. So to mitigate the ionospheric delay, the dispersive nature of the
medium is leveraged, and a linear combination of the GPS L; and Lo frequencies (1575.42 MHz
and 1227.60 MHz, respectively) is formed to produce ionospheric-free (IF') pseudorange and carrier

phase measurements[19]. The IF combination for psuedorange and carrier-phase can be seen in Eq.



2.4 and Eq. 2.5, respectively.

. . f2 . f2 . .
e =t | 21| - b | 2| = 25000, - 15100, (24)
1 2 1 2

, , 2 , 2 , ,
e =0 | | - #la | it | = 2400], — 1.5400], (25)

In Eq. 2.4 and Eq. 2.5 the f; and f5 are the Ly and Ly frequencies, pr1 and pro are the pseudorange
measurements on the Ly and Ly frequencies, ¢pp1 and ¢ are the carrier-phase measurements on
the Ly and Lo frequencies. The superscript j in Eq. 2.4 and Eq. 2.5 is used to designate the

measurement between the platform and satellite j.

Troposphere Unfortunately, troposphere is not a dispersive medium for the L, or Ly carriers, so
it cannot be eliminated by simply constructing a combination of the Ly, Lo observables. Additionally
the troposphere is highly temporal as it is a function of temperature, pressure, and humidity. So,
the troposphere is generally modeled as two separate components: the dry component and the wet
component. These components are estimated in the zenith direction using a troposphere model
and mapped to the specific satellite using the elevation angle between the receiver and the satellite.
This concept is show in Eq. 2.6: where my and m,, are elevation angle dependent troposphere error
scalings for the dry and wet components, respectively; T, q is the zenith troposphere delay associated

with the dry component; T, ,, is the zenith troposphere delay associated with the wet component.

TI = md(elj)Tz,d + mw(elj)T@w (2.6)

There are several models used to estimate the troposphere delay. These models can be decom-
posed into two classes: empirical (i.e. GMF), or based upon data generated with numerical weather
models (i.e. VMF1). The next few paragraphs will be used to describe the troposphere models used
in this thesis.

As an example, two simple troposphere models are shown. The first model is a solely dependent
upon the height of the platform, and is only used to estimate the hydrostatic (i.e. dry) component
of the delay associated with the troposphere. This model can be seen in Eq. 2.7: where h is the

height above the ellipsoid in meters.

T..q=1.013%2.27 x ¢—0-000116% 27



The next example nominal troposphere estimation model was developed by Saastamoinen [24]. This
model is used to generate both the wet and dry delay. The dry delay can be calculated using Eq.
2.8: where ¢ is the platforms latitude, h is the platforms height above the ellipsoid in meters, and
P, is the total pressure in millibars. The wet delay can be calculated using Eq. 2.9. In Eq. 2.9, T,

is the temperature in kelvin, and e, is the partial pressure due to the water vapor in millibars.

T. 4 = 0.002277(1 + 0.0026c0s2¢ + 0.00028%) P, (2.8)
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]

T, » = 0.002277(

+0.05)e, (2.9)

In addition to these two models, three additional models were used in this research. The first
model is the Hopfield model [25]. This is the model that was used within the simulation. The next
two models are used within Real-Time GIPSY-x (RT'Gx), and unlike the previous models, are derived
from numerical weather models. The first model is the Global Pressure and Temperature Model
(GPT2) [26]. The final troposphere model used is this research is the Vienna Mapping Function
(VMF1) [27].

With the zenith troposphere delay estimated, there is the need to scale the delay as a function
of the satellites position with respect to the receiver. There are several mapping functions which
perform this task. The three that are used within this thesis are : the Niell mapping function [28],
the GMF [29], and the VMF1 [27]. Where it should be noted that each of these mapping functions

assume azimuthal symmetry (i.e. they are solely dependent upon the elevation angle of the satellite).

Measurement Errors

This group of GPS errors are receiver/antenna design, and code structure. This is unlike all of the

previous error sources, which were the same for both the pseudorange and carrier-phase.

Multipath Multipath is an error induced upon the receiver by reflected GPS signals reaching
the receivers antenna [30]. The reflected signal is always delayed and generally significantly weaker
than the direct line-of-sight signal. These reflected signals sum with the original signal to form a
noisy observable. This noise affects the pseudorange and the carrier-phase; however, the affect is

significantly smaller for the carrier-phase observable than the pseudorange observable [31].
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Receiver Thermal noise The most fundamental kind of noise created within electrical circuitry
is caused by the random motion of electrons [32]. This type of noise is generally called thermal
noise. And because there is no correlation two receivers, this is one of the few GPS error sources

that is not mitigated through data differencing [19].

Phase Center Variations The location where the GPS signal is received, known as the phase
center, in general is not the geometric center of the antenna. Not only is this value not the geometric
center of the antenna but also varies dependent upon the orientation of the satellite with respect to

the receiver and the frequency of the signal propagated [33].

2.3.2 PPP Observation Model

The PPP approach utilizes dual-frequency undifferenced GPS observables. Because undifferenced
data is being used, methods for mitigating GPS error sources (e.g., ionospheric delay, tropospheric
delay, and receiver clock delay), which are canceled through data differencing with traditional Differ-
ential GPS (DGPS), must be incorporated in the measurement models. Using the IF combination,
the pseudorange and carrier-phase measurements are modeled as shown in Eq. 2.10 and Eq. 2.11,
respectively: where dt,, is the receiver’s clock bias, T, is the tropospheric delay in the zenith direc-
tion, m(el’) is a user to satellite elevation angle dependent mapping function, A\;r is the wavelength

corresponding to the IF combination, and N;g is phase ambiguity. The geometric range between the

platform and the satellite is denoted as R7, and given as 7 =+/(27 — x,,)2 + (y7 — y,)% + (27 — 2,2,
where the subscript u represents the platforms position, and the superscript j represents the satellite,

both in the same Cartesian reference frame.

prp =R+ cot, + Tom(el?) + € (2.10)

i =R+ cot, + T,m(el!) + A\ pNip + €, (2.11)

In Egs. 2.10 and 2.11 the remaining un-modeled error sources are indicated with e. In addition,
the tropospheric delay T, in Eqs. 2.10 and 2.11 is composed of both a wet and dry components. In
practice, the dry delay makes up the majority of the total zenith path tropospheric delay (i.e. ~
2.5 meters) and can be well modeled. The wet delay is on the order to 10% the dry delay and is

typically estimated.
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Chapter 3

Inertial Navigation

Parts of this chapter are reproduced from conference papers “Performance Character-
1zation of Tightly-Coupled GNSS Precise Point Positioning Inertial Navigation within
a Simulation Environment” [34], “Integration of Inertial Navigation into Real-Time

GIPSY-z (RTGz)” [35]

Sometimes the acronyms IMU and INS are used interchangeably; however, in this thesis, an IMU
is used to denote a set of of three orthogonal accelerometers and three orthogonal gyroscopes while
INS is the processing of IMU data on a navigation computer. The rest of this chapter is organized as
follows: first, a brief overview of inertial measurement devices will be provided; then, common errors
to inertial devices will be discussed; next, the mechanization of the IMU data is covered; finally, the

error state INS formulation will be provided in the inertial frame.

3.1 Inertial Measurement Devices Overview

As stated above, the IMU is composed of three accelerometers and three gyroscopes organized in a
triad. For this thesis, it is assumed that the IMU is rigidly mounted to the body of the platform.
This IMU configuration is commonly called a strapdown system. With a strapdown INS system,
the accelerometers are used to measure the specific force in the body-frame, which is also the non-
gravitational acceleration of the platform. This concept is depicted in Eq. 3.1: where f is the
measured specific force, a is the body’s acceleration, and g is the gravitational acceleration. The

IMU cannot measure gravity so the gravitational term can easily be corrected for by using a gravity

12



model.

f=a-yg (3.1)

Because the specific force is measured in the body-frame, the accelerometer measurements cannot
simply be integrated twice to estimate the platforms position. Instead, the gyroscopes measured
angular information must be utilized to rotate the accelerometers measurements into the desired
frame where the position and velocity can then be estimated. This processed is generally called the

mechanization of an IMU and is described in greater detail later in this chapter.

3.2 Inertial Measurement Device Common Error Sources

3.2.1 Scale Factor

A scale factor error can be thought of as a linear scaling of the input. In a sensor absent of a scale
factor error, the ratio formed by the input and output signal would equal one; however, that is
generally not the case. In reality the output of the sensor is generally proportional to the input but

scaled by some constant factor.

3.2.2 Non-orthogonality

As stated above, an IMU is composed of three accelerometers and three gyroscopes mounted or-
thogonally. However, due to manufacturing limitations, the sensors are never perfectly mounted
orthogonally. This non-orthogonality of the sensor set leads to a correlations in the measurements.

Luckily, this error can usually be dramatically reduced through a careful calibration.

3.2.3 Bias

The easiest way to conceptualize bias is to consider an IMU firmly placed on a level surface. In this
configuration, the accelerometer with its sensitivity axis in the vertical direction will measure the
gravitational acceleration. That is, the accelerometer should measure 9.81 m/s; however, if there
is a bias present, the reported output will be the summation of the real output and the bias term,
which can be seen in Eq. 3.2.

z=Sf(x)+b (3.2)

In Eq. 3.2, S is a scale factor and b is the bias term.
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3.2.4 Random Walk

The random walk model is used quite frequently in state estimation. This model assumes that at
each time step the variable takes a random step away from its previous value, and the steps are
independent [36]. In this section, two random walk processies will be discussed and how they apply

to the Kalman filters process noise will be described.

Angular Random Walk It is known that the output of a MEMS gyroscope is altered by thermal
noise which fluctuates at a much higher rate that the sampling rate of the sensor [37]. This high rate
thermal noise causes the sampled data to be perturbated by white noise. The integration of a white
noise process causes a random walk process [36]. The integration of the output of the gyroscope
to calculate attitude produces a random walk error, commonly denoted as angular random walk
(ARW).

The ARW term is applied to the process noise of the Kalman filter as the amount of uncertienty

in the gyroscope bias term.

Velocity Random Walk As stated above, the output from a MEMS accelerometer is altered by
a white noise sequence. The output of the accelerometer must be integrated to calculate velocity,
so the white noise on the output of an accelerometer creates a velocity random walk (VRW).

The VRW term is applied to the process noise of the Kalman filter as the amount of uncertienty

in the accelerometer bias term.

3.3 INS Mechanization

The mechanization of the IMU data is composed of four steps: the attitude update, the specific force
transformation, the velocity update, and the position update. The section details the mechanization

in the Earth-Centered Inertial Frame (ECI).

Attitude Update

To perform the attitude update, a third order Runge-Kutta method for quaternion integration,
provided by Jekeli[38], is used in order to limit the algorithmic integration errors to the fourth
order. The quaternion is updated using Eq. 3.3: where [ is a 4x4 identity matrix, 8 is a matrix

composed of the delta angles measured with the gyroscopes and can be seen in Eq. 3.4, the subscript
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t signifies the discrete samples (e.g. t — 2 is using data from two time steps previous) .

1. . 1 1. - 1. . 1.
G =+ E(Bt +4B; 1 + B;_5) + E(I + Zﬂt)ﬂt—lﬁt—Q + Eﬂt(ﬁt—l - 5515—2)]@&—2 (3.3)

In Eq. 3.4 n takes an integer value of 1, 2, or 3.

0 (3(801) 41— =(801) ;) (3(805) ;41— =(602); 1) (3(803) 441 —(603), 1)

B _ (—3(591)t+1—n+(5‘91)t—n) 0 (3(5‘93)t+1—n_(593)t—n) (_3(592)t+1—n+(602)t—n)
tHl=n ™ | (=8(002) 41 pnH(802); ) (—3(803) 11 _n+(603), ) 0 (3(661) ¢ 417 —(801); )
(73(603)t+1—n+(593)t—n) (3(692)t+1—n7(692)t—n) (73(601)t+1—n+(601)t—n) 0 ( )

3.4

The platform’s body to inertial direction cosine matrix (DCM) is related to the updated quaternion
of the form ¢, = [a,b,c, d}T using Eq. 3.5. It should be noted that the quaternion needs to be

normalized in order to maintian the orthonormal characteristic of the DCM.

a?+b%—c?—d? 2(bc + ad) 2(bd — ac)
Ci=1| 2(bc—ad) 29242 — 2 2(cd + ab) (3.5)
2(bd + ac) 2(cd — ab) a? = -+ d?

Specific Force Transformation

After the attitude has been updated, the next step in the INS mechanization is the transformation
of the accelerometer measured specific force, or equivalently, incremental changes to the body-axis
velocity Avy, into the inertial frame. This must be done because the accelerometers measures specific
force along the body-axis; however, for the velocity update step the specific force must be in the
inertial frame. The transformed Av, can be found using Eq. 3.6 where Cj is the body to inertial

DCM of the INS updated quaternion from Eq. 3.5.
Av' = Ci AW (3.6)

Velocity Update

With the transformed specific force, the updated velocity is calculated using Eq. 3.7. Where the
updated velocity is the summation of the previous velocity value (k — 1|k — 1), the IMU measured
change in velocity, Av?, and the acceleration due to gravity in the inertial frame, *, integrated over
the sampling interval 7 .

U}i|k71 = ”271\1@71 + Avt + 47 (3.7)
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Position Update

The final step in the INS mechanization is to calculate the updated position. The updated position
estimate is a function of the previous position estimate and the average of the previous and updated
velocity estimates integrated over the sampling interval.

i i i i T
Thik—1 = Tho1jk—1 T (Vkjp—1 + Uk71|k71)§ (3-8)

Attitude Transformation

In most aerospace applications, it is useful to represent the platform attitude with respect to a
locally-level NED navigation frame. However, in the presented INS mechanization, a quaternion is
used to represent the platform’s attitude with respect to the Earth Centered Inertial (ECI) frame.
To calculate the body-to-navigation Euler angles, the DCM must be transformed into the navigation
frame. This is done using Eq. 3.9, where the Earth-Centered-Earth-Fixed (ECEF) to locally-level
NED navigation ,C”, and ECEF to inertial, C?, transformations are defined in Eq. 3.10 and Eq.

3.11, respectively, which can be found in numerous texts [39, 38].

Cpr=Creic; (3.9)

-sin(Lat)cos(Lon) -sin(Lon) -cos(Lat)cos(Lon)

C¢ = |-sin(Lat)sin(Lon) cos(Lon) -cos(Lat)sin(Lon) (3.10)
cos(Lat) 0 -sin(Lat)
cos(wie(t —tg) —sin(wie(t—to) 0
Cl = |sin(wie(t —to)  cos(wie(t —to) 0 (3.11)
0 0 1

In Eq. 3.11, the Earth’s rotation rate with respect to an ECI frame is represented by w;. and ¢, is
the reference epoch at which the ECI and ECEF frame are co-incident (e.g. J2000 is a typical ECI
realization). After transforming the body-to-inertial (i.e. ECI) DCM into the body-to-navigation
(i.e. locally-level NED) DCM, the platform’s traditional aircraft Euler angles are extracted using Eq.

3.12, Eq. 3.13, and Eq 3.14: where C}' is the body to navigation DCM, and the number subscript
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corresponds to the row and column location within the DCM [40].

¢ = atan2(Cy' 51, Cy' 55) (3.12)
0 = acos(Cy'5) (3.13)
Y = —atan2(Cy' 15, Cy'og) (3.14)

3.4 INS Error Model

To calculate INS error-state system matrix, F', the derivative of each error-state model equation
with respect to each error state must be taken, where the INS states can be seen in Eq. 3.15. This
derivation closely follows that outlined in Groves [39]. In this section, the time derivative of the
attitude, velocity, and position are described. After defining the time derivatives of the error state
equations, the total system matrix and the state transition matrix (STM) is defined. The time
derivative of the attitude error can be seen in Eq. 3.16: where é’g is the estimated body to inertial

transition matrix, and b, is the estimated bias on the gyroscope.

ov
ov
Xins — 57‘ (315)

§W = Cib, (3.16)

Because the velocity error is a function of the accelerometer bias, gyroscope bias, and the gravity
model that is employed, it is slightly more complicated than the attitude error. The time derivative
of the velocity error, 6V, can be seen in Eq. 3.17. In Eq. 3.17 é’g is the body to inertial frame
transformation matrix, fl is the IMU accelerometer measure specific force in the inertial frame dv/7,
§U" is the estimated attitude error, g is the estimated gravity vector for the platforms position, r¢,

is the geocentric radius at the platform position, ri is the INS estimated position vector, dr is the
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estimated position error, and b, is the estimated accelerometer sensor biases.

. A .92 booaT .
Vi = —(Cif)ow + 2L Tib i gy Ci,

Tes |7~::b |

(3.17)

With INS mechanized in an inertial frame, the time-derivative of position is simply velocity. This
means that the time-derivative of the position error in the inertial frame is the velocity error.
5t = sV (3.18)

Using the time derivative of each error state equation, the system matrix is defined in Eq. 3.19.

03 03 03 03 CA’;
Ni i 29 ri ZT i
Gy 0 Bt G,
Fi=1 o0, 1L 05 05 Oy (3.19)
03 03 03 03 03
03 03 03 03 03

The discrete System Transformation Matrix (STM) is then calculated using the system matrix and
Eq. 3.20: where F? is the system matrix, and 7 is the discretization interval. For this study, a
third-order approximation of the STM was used as shown by the expansion in Eq. 3.21, as provided
by Groves[39)].

O =cl' (3.20)

Iy

P! =

(Fi7 + §F3s Fi )
(%inﬂz)

03

03

O3
(I3 + 3 F357°)
(I + §F357°)
03
03

O3

O3

i
Cir

i i 2 i i i i i
(Fiam+ §Fiz 1) (Cir + §F43Cim3)  (5F45,Cir?)

(I3 + 3F437?) (3CiT?) (5F5,Cir?)
0, I 0,
04 04 I3 i
(3.21)
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Chapter 4

GPS INS Integration

Parts of this chapter are reproduced from conference paper “Performance Character-
1zation of Tightly-Coupled GNSS Precise Point Positioning Inertial Navigation within

a Simulation Environment” [34]

The integration of GPS and INS data is a well studied field and discussion of its integration can
be trcked back quite far [41]. The reason the fusion of these two data sources is so prevalent, in
navigation applications, tracks back to the complementary nature of the data itself. These implies
that the two error sources are completely different. The INS is stable over short time intervals
but the error grows unbounded if left unaided. On the other hand, the GPS errors are essentially
time invariant. For GPS/INS integration there are three strategies that have been well studied;
however, for aerospace applications only the first two are commonly used, so our discussion will be
limited to those. The first, and simplistic to implement, is the loosely coupled method [42]. This
method essentially has two distinct systems where to data is fused after the INS and GPS systems
have separately calculated their respective state estimate. The tightly coupled method utilizes that
raw pseudorange and carrier-phase data from the GPS receiver to estimate a single state estimate
with the INS. For applications where an aircraft is either experiencing high dynamics or a GPS
challenging environment, the tightly-coupled architecture has been shown to have an advantage [9],

[10].
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4.1 Integration Methods

This section will provide a detailed discussion of the two GPS/INS integration strategies commonly

used for aerospace applications.

4.1.1 Loosely Coupled

The loosely coupled architecture is an integration method that utilizes three distinct sub-systems,
which can be seen in Fig. 4.1. This method is also commonly called decentralized in literature.

The first sub-system is the GPS block. In this block there is a GPS receiver that collects raw
pseudorange and carrier-phase data. These observables are then used to estimate the platforms
position using a GPS only state estimator. If an estimate of the platforms velocity is desired that
the doppler observable can also be processed within the GPS module.

The next sub-system contains the INS. This block is composed of an IMU and a navigation
processor. Within the navigation processor are the algorithms to mechanize the IMU data, which
can be found in section 3.3.

Finally, there is a GPS/INS kalman filter that is used to estimate the platforms total state. This.
Additionally, it should be noted that the loosely-coupled system can also operate in a closed-loop

manner where the INS estimated errors are fed-back to the IMU at every GPS update.

GPS Only State

B CPs oty Estimate

State
Estimator

GPS
Receiver

GPS/INS
Filter
INS Only State
Estimate C ;

Position,
Velocity,
Attitude,
Estimate

Figure 4.1: Loosely-Coupled GPS/INS
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4.1.2 Tightly Coupled

Now, the tightly-coupled, or centralized, integration architecture can be discussed. A schematic
of the integration method can be seen in 4.2. From this diagram it should be noted that there
are no longer three distinct sub-systems. Instead, difference between the GPS observables and the
INS predicted observables are used as the input to the Kalman filter. Where the INS predicted
measurements are calculated using the known satellite position and user position and velocity from

the INS

INS States State Estimate

Error States

Figure 4.2: Tightly-Coupled GPS/INS

4.1.3 Deeply Coupled

In addition to the loosely-coupled and tightly-coupled integration stragities, there is also a deeply
copuled integration stragety first introduced by Soloviev [43]. In this integration stragety, the inertial
data and measurement residuals used to control the signal correlation process inside the GPS receiver
[44]. This method of integration has the benefit of being able to track and reqaquire GPS observables

that are much weak than nominal signal power [44].

4.1.4 Comparison of Integration Methods

Now that the two integration methods commonly used for aerospace navigation applications have
been discussed, it is beneficial to compare the two methods. The only true difference between the
integration strategies is the type of information shared between the two systems. In the loosely-
coupled system, the GPS computed solution is combined with the INS computed solution. On the
other hand, with the tightly-coupled system the raw GPS observables are combined with the INS
predicted GPS observables. With that difference in mind, it should be noted that both integration

strategies will provide the platform with the ability to estimate the same states ( e.g. attitude,
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velocity, position, carrier-phase bias ). The advantages of the loosely-coupled systems come from
the independence of the two measurement systems. This separation of the two filters means that
each filter can be less complex, which implies less computational complexity and faster processing.
Additionally, the separation of the GPS and INS makes the system robust to sensor failures. The
true advantage of the tighly-coupled system becomes apparent when considering kinematic airborne
applications. For these applications it is common to have abrupt attitude changes that induce poor
GPS satellite geometry. With the tightly-coupled system architecture it is possible to update the

filter with GPS data even if there are less than four satellites in view [39].

4.2 Extended Kalman Filter

Within the navigation community the Kalman filter [45] is the algorithm of choice to optimally
combining multiple data sources. The Kalman filter is a recursive state space estimator that contains
two broad steps: propagation and update. In this work a derivation of the Kalman filter will not
shown, as it is widely available in literature [46]; however a schematic depicting the Kalman filter
can be seen in Fig. 4.3 and a detailed discussion will be provided in this section.

As stated above, the Kalman filter is an optimal state estimator (optimal with respect to mean
square error of the estimated states); however, the linear Kalman filter, introduced in 1960, is only
optimal for linear dynamics and measurement models. One of the most common ways to extend
this idea to non-linear dynamics is called the Extended Kalman Filter (EKF) [46]. The EKF uses
that same data processing technique as the Kalman filter except the system is linearized about some
nominal point (in our case around the output of the INS). In addition to the EKF, there is another
commonly used non-linear state estimation technique known as the unscented Kalman filter (UKF)
[47]. This techniuqge utilizes the unscented transformation to propagate mean and covariance. The
UKEF is beneficial when the system is very non-linear on the time scale of the measuremtn update;
however, it has been noted in literature that this is not the case for GPS/INS integration [48].
Because of this, the EKF was selected as the filtering technique for this research.

With that in mind, Fig. 4.3 can now be described. As shown in the figure, there are two major
steps associated with the Kalman filter: the prediction and the update of the estimates after the

measurements.
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Figure 4.3: Kalman Filtering Algorithm Schematic

4.2.1 Prediction

The prediction step is used to propagate the state estimate, &, and associated covariance matrix,
P, using the system dynamics. The equation to propagate the state estimate can be seen in Eq.
4.1: where the "is used to signify an estimated parameter, ® is the state transition matrix (STM),
the subscript k& or k — 1 is used to represent the time step, and the superscript — signifies that the

prediction is before the measurement update.

&y = Pte, t—1)2) (4.1)
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The equation to propagate the covariance matrix can be seen in Eq. 4.2: where Qj is the process

noise covariance or the amount of uncertainty in our ability to propagate the state.
- T
Pk' = (I)(tk,tk_l)P]:__l(I)(tk,tk_l) +Qk (42)

4.2.2 Measurement Update

Before the state estimate and covariance can updated with the new measurements, the Kalman gain
must be calculated. This is because the Kalman gain is a metric to inform the filter of the relative
weight that should be applied to the state estimate and the measurements. The Kalman gain can
be calculated using Eq. 4.3. The R in Eq. 4.3 is the measurement covariance matrix and H is the

measurement sensitivity matrix.
-1
Ky = Py H (Hy P, HF + R) (4.3)

After the Kalman gain has been calculated, both the state estimate and the associated covariance
can be updated with the new measurements. The equations to propagate both the state estimate
and the covariance can be seen in Eq. 4.4 and 4.5, respectively. In Eq. 4.4, Hj, is a matrix that is

used to map the estimated states to the measurements, and g is the measurement vector.

B =&y + Ki(gr — Hiy, (4.4)

Pt = (I — KyHy) P, (I — KiHy)" + KRy K[ (4.5)
And because the Kalman filter is a recursive algorithm, this whole process starts over again with

new measurements.

4.2.3 Assigning Process and Measurement Noise

The Kalman filter has tree tuning matricies that must be specified for the specific application. Since
the Kalman filter is known to be sensitive to tuning parameters [46], this section will detail the

specific tuning for this application.
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State Covariance Matrix — P

The initial state covariance matrix, P, is used to define the amount of uncertienty that is assumed
in the initial states. In this application, Py, Pyer, and Ppos, are the amount of uncertienty in the
attitude, velocity, and position states, respectively. These values were found emperically through
several simulation trials. The elements P,.. and Py, are the amount of uncertienty that is assumed
in the accelerometer and gyroscope bias states, respectively. Those values are provided my the IMU

manufacturer and are generally denoted as the velocity and angular random walk.

Patt
Pvel
Py = Ppos (46)

Pacc

ngTO

In addition to the INS states, the amount of uncertienty in the GPS states (the carrier-phase
bias for each satellite in view), is also constructed as a diagonal matrix with 25 meters in every

diagonal term. The construction of the total inital state covariance matrix is shown in Eq. 4.10.

P, = (4.7)

Measurement Noise Covariance Matrix — R

The measurement noise covariance matrix, R, is used to account for several unaccounted for GPS
errors (i.e. multipaht, thermal noise, variations in the atmosphere, and satelltie clock noise). This
matrix is usually diagonal unless the pseudorange measurements are carrier-smoothed [39]. In this
research the R matrix is a function of the elveation angle of the satellite. This can be seen in Eq.
4.8: where el’ is used to denote the elevation anlge between the receiver and the j*h satellite.

Ry (4, ) = Ri-1(4,7) (4.8)

sin(eld)
Process Noise Covariance Matrix — Q

The process noise covariance matrix, @, is used to describes how much the state is expected to vary
over the interval of one time step due to the effect of the process noise [36].In this case, Qgps is

matrix composed of zeros where the size is dependant upon the number of satellites in view. Q;ns
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is a matrix composed of the uncertinty in the INS states, and can be found by looking at the IMU
error specifications.

Qart and Qe are related to the angular random ralk (ARW) and velocity random walk (VRW)
associated with the IMU used, respectively. Additionally, the Qqcc and Qgyro are related to the

gyroscope in-run bias and the accelerometer in-run bias associated with the IMU used, respectively.

Qatt

Quel
Qins = Qpos (4.9)
Qace

ngro

Q _ Qins 0 (4 10)
0 Qgps

4.3 Tightly Coupled Error State Extended Kalman Filter

With the information provided in the last three chapters, the data fusion architecture selected for
this research can be discussed. Due to the dynamic nature of the platform that is being used, a
tightly-coupled error-state extended Kalman filter is adopted from Groves[39]. A schematic of the
tightly coupled PPP/INS integration architecture can be seen in Figure 4.2. Using the difference
between the GPS observables and the INS predicted observables, the Extended-Kalman filter is
used to estimate the INS solution errors with the state vector as shown in Eq. 4.11: where 6V is
the estimated attitude error, dv is the estimated velocity error, ér is the estimated position error,
b, is the estimated accelerometer sensor biases, b, is the estimated gyroscope sensor biases, 6t is

the estimated receiver clock bias, T, is the estimated residual tropospheric delay along the zenith
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direction, and NV is the estimated phase bias for each satellite in view.

ow
v
or

x=|" (4.11)

N;

It can also be seen in Figure 4.2 that the estimated sensor biases are fed-back to correct the raw IMU
measurements. Feedback is done at every time that a GPS update data is collected in a closed-loop
manner. For the position and velocity estimated error states dv and dr are used to correct INS by

subtracting them off of the INS estimated position and velocity.

4.4 PPP Measurement Sensitivity Matrix

The measurement sensitiviy matrix, H, is used to map the estimated states to the measured values.
Becuause of this, the H matrix must be defined specifically for each application. This section will
detail the measurement sensitivity matrix for a PPP/INS filter.

The H matrix can be decomosed into two sections: the pseudorange section and the carrier-phase
section. The measurement sensitivity matrix for the pseudorange measurements is seen in Eq. 4.12:
where u; is the unit vector between the " satellite and the receiver, and m; is the elevation angle

dependant mapping for the troposphere scalling.

O1z6 ui Oze 1 my Orzn
Hpseudorange = n—2 (412)

O1z6 ui O1z6 1 m; Ozp

The measurement sensitivity matrix for the carrier-phase data is show in Eq. 4.13: where where

w; is the unit vector between the i*" satellite and the receiver, m; is the elevation angle dependant
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mapping for the troposphere scalling, and e; is the i*"* row of an idenity matrix.

Oz u; Oz 1 my e
Hcarrierphase = n—2 (413)
O1z6 u; Oize 1 my; g

The total H matrix can be constructed as shown in Eq. 4.14: where the total dimensions of the
matrix are 2nxN +n. Where n is the number of satellites in view at the epoch and N is the number

of non-bias parameters (i.e. attitude, velocity, position).

Hpseudorange

Htotal = (414)

Hcarrier—phase

4.5 IMU to GPS Lever Arm

The above INS mechanization provides estimates of the position and velocity located at the center
of the IMU. In order to combine with GNSS measurements, the INS solution must be transposed
to the GNSS antenna location. This can be done using the estimated platform attitude C’g and
knowledge of the lever arm from the IMU to the GNSS antenna, L, represented in the platforms
North, East, Down (NED) body-axis.

1 A
r;ﬁjf_’ Sant. ,Q",CMf +CiLy (4.15)

Likewise the velocity can be transposed further taking into consideration the rotation of the

body-frame.

1,GPSAn zIMU
Viier = ot + GG L (4.16)

where QY is the skew-symmetric matrix of the IMU measured angular rate that has been cali-
brated by the estimated gyroscope biases. The operation is performed upon each GNSS measurement
update, and reversed after closed-loop feedback correction has been applied, in order to resume INS

integration about the location of the IMU.
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4.6 GNSS/IMU Measurement Time-Alignment

Most commercially available high-accuracy GNSS/IMU systems provide IMU measurements pre-
cisely stamped to the GPS time- scale, however, the IMU measurements are typically not scheduled
to be precisely aligned with the GPS measurement epochs. To ensure time-alignment in the RTGx
implementation, the IMU data was used to predict the navigation state to an epoch just past the
GNSS observation epoch. This prediction was then used to linearly interpolate the navigation states
back to the time of the GNSS measurements. Likewise, upon each GNSS update, an error-state
transformation matrix, that provides the mapping of the INS error-states between the INS time-
step (that is just past the GNSS measurement epoch), and the exact GNSS measurement epoch was
derived. Prior to the GNSS update, the inverse of this transformation was used to down-date the
predicted INS error-states to the GNSS measurement epochs. After the update was completed, this

transformation was used to keep the INS error states consistent with the INS time-tags.
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Chapter 5

Simulation Results

Parts of this chapter are reproduced from conference paper “Performance Character-
1zation of Tightly-Coupled GNSS Precise Point Positioning Inertial Navigation within

a Simulation Environment” [34]

5.1 Simulation Overview

Using the models described in the previous chapters and a commercially available GPS constellation
simulation toolbox, SatNav-3.04 Toolbox[49], a simulation environment was developed to generate
raw IMU and GPS data. The simulation environment architecture can be seen in Figure 5.1. This
section will provide an overview of the simulation environment. First, we will discuss the inputs to
the simulation, next we will provide an overview of the GPS data generation, and finally we will

discuss the generation of the IMU data.

5.1.1 Simulation Inputs

Before the generation of GPS and IMU data, several user-defined inputs are selected. One such
input is the defined flight path. For this study, four flight paths of varying dynamics were designed
to replicate typical data collection flights for NASA’s UAVSAR airborne radar platform. As an
example, two of the flight paths are shown in Figure 5.2 and Figure 5.3. Other inputs that must
be defined are the origin (e.g Lat., Lon., Height) of the flight and the time that the flight occurs.
These parameters are randomized for every simulation run so that the generated data will have
differing satellite geometry and atmospheric effects. In addition, the magnitude of the GPS error

sources were selected before each simulation trial (e.g., multipath intensity, troposphere, and thermal
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noise). Finally, one of the four IMUs that were modeled for this study is selected for each run.

5.1.2 GPS Data Generation

Using the SatNav-3.04 Toolbox, dual-frequency pseudorange and carrier-phase observables are gen-
erated at 10 Hz over the specified flight path. For this study, modifications were made that are
pertinent to common aircraft positioning error-sources. For example, the GPS simulator was modi-
fied to include attitude dependent satellite visibility masking and carrier-phase breaks. Figures 5.4
and 5.5 are included to depict the attitude dependent satellite masking. That is, when a satellite is
obscured or nearly obscured due to a change in platform attitude, it is masked from view and the
the potential of a carrier-phase breaks is increased. Figure 5.6 and Figure 5.7 are included to depict
an example of carrier-phase breaks being added into the GPS data.

This simulation also includes an orbit and clock error model. The modeled errors were determined

by differing JPL’s International GNSS Service (IGS) submission with European Center for Orbit
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Figure 5.6: Phase Breaks for an Example Flight Figure 5.7: Roll for an Example Flight

Determination (CODE) submission. The error between the satellite ephemeris products are resolved
in the radial, in-track, and cross-track (RIC) components. After transforming the error into RIC
components, it is fit using a multi-sinusodial model. This process was completed for each satellite.

The modeled satellite clock bias can be seen in Fig. 5.8.

5.1.3 IMU Data Generation

To generate IMU data, a commercially available, tactical grade IMU was selected to model. The
IMU was modeled with a turn-on bias, a random walk component, and white noise. The modeled
IMU was scaled, with respect to Table 1, to simulated four IMUs of varying quality. The allan
deviation of the four accelerometers and four gyroscopes along the x-axis for twelve hour of data

can be seen in Figure 5.9.

5.1.4 Simulation Simplifications

It should be noted that the simulation environment makes several simplifying assumptions. These

include perfect knowledge of ECI to ECEF transformation, neglect relativistic effects (i.e. from the
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GPS broadcast correction), neglect of receiver and satellite antenna phase center variation, neglect

of carrier-phase wind-up, and neglect of lever arm of GPS transmiting antenna.
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5.2 Monte Carlo Design

To generate the results shown in the next section, a Monte Carlo style design was implemented.
Each simulation trail was initialized at random across the distributions specified in Table 1. One
hundred sets of data were generated. GPS and IMU data were generated for every flight at ten and
two hundred hertz, respectively. The one hundred data sets were run through a PPP only filter and

a tightly-coupled PPP/INS filter to characterize the performance increase by including INS.

Table 5.1: Simulation Parameters

’ Error-Sources \ Model Parameters \ Notes

Accelerometer In-run Bias ¢ = 1lmg , VRW = | Scaled Honeywell HG1700AG72
m _ 11 1
02\/}{*, SF = (17 507 200° m)
Gyroscope In-run Bias ¢ = 9.66_6% , | Scaled Honeywell HG1700AG72
e — 1 1 1

linear scale factor randomly se-
lected between [0,1]

Thermal Noise o, = 0.32m o4 = 0.16A

Multipath

1.0 intensity: o = 0.4m, T = 15sec

linear scale factor randomly se-
lected between [0,2]

Tropospheric Delay

Percent of error assumed handled
by broadcast correction

Modified Hopfield with linear
scale factor randomly selected be-
tween [0,1.5]

Ionospheric Delay

First order ionospheric effects mit-
igated with dual-frequency

linear scale factor randomly se-
lected between [0.7,1]

Receiver Clock Bias

Initial Bias o = 30ns, 67, = 100ns

Tuneable

Phase Ambiguity

Random initialization and phase
breaks correlated with UAV atti-
tude

likelihood varied from [0.008,0.02]

Orbits

Orbits o = 5em

Description provided in section
111.B

5.3 Results

5.3.1 Absolute Positioning Performance

To quantify the potential benefits of INS inclusion for UAV navigation in scenarios that typically
degrade GPS performance, a sensitivity analysis of positioning performance was conducted under
varying conditions. The metric used to quantify the error for the first nine figures in this section is

Root Mean Square (RMS). The equation to calculate RMS can be seen in Eq. 5.1: where n is the
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East | North | Vertical
(em) | (em) | (em)
Min 4.08 4.89 16.20
Max 198.07 | 259.77 407.50
Mean 62.85 65.25 146.52
Median | 50.49 55.07 137.39
Std 44.71 46.76 78.23

Table 5.2: PPP Only Statistics (Simulation)

number of data points, X is the actual value of the data, and X is the estimated value of the data.

n

Xns =y | 3 7 (X20) - X2) 6.1)

The median of the RMS positioning error for the one hundred flight can be seen in Fig. 5.10. From
Fig. 5.10 it should be noted that the PPP/INS filter outperformed PPP only filter in east, north and
vertical directions, with the most notable improvement being in the vertical direction. The statistics

for the one hundred flights can be seen in Table 2, Table 3 and Table 4.  The next eight figures
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Figure 5.10: Median of Per Flight RMS Error

in this section depict the reduction in RMS error through the inclusion of INS. The reduction in
error was calculated by taking the difference of the positioning output for the PPP only filter and

the PPP/INS filter. Figure 5.11 shows the median of the per flight RMS error reduction due to the
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East | North | Vertical
(em) | (em) | (em)
Min 5.65 2.94 17.15
Max 137.36 | 121.80 310.95
Mean 37.88 25.30 70.55
Median | 34.90 20.99 53.82
Std 24.23 19.38 55.81

Table 5.3: PPP/INS Statistics (Simulation)

East | North | Vertical
(ecm) | (cm) (cm)
Min -55.42 | -64.12 -206.92
Max 158.02 | 221.40 343.94
Mean 24.96 39.93 75.97
Median | 16.94 31.76 69.62
Std 32.65 38.75 85.31

Table 5.4: (PPP - PPP/INS) Statistics (Simulation)

inclusion of INS. From Fig. 5.11 it can be seen that the error reduction in the East, 17 centimeters,
and North, 32 centimeters, directions are similar. The error reduction is the vertical direction is the
most notable at 70 centimeters. Figure 5.12 depicts the RMS error reduction distribution in the
east, north and vertical directions for the 100 trials. This was done by calculating the cumulative
distribution function (CDF) of the RMS positioning error reduction for all of the simulated flight
due to INS. From 5.12 it should be noted that the median error is as shown in Fig. 5.11; however,
there are situations where the inclusion of INS can reduce the vertical positioning error by as much
as 200 centimeters. However, there are times where the CDF is negative, meaning that the PPP-only
filter outperformed the PPP/INS filter. For the cases in which PPP-only outperformance PPP/INS
it is expected that that multiple satellite loss of lock or phase breaks may have occurred early in the
filter run, before the phase biases, positioning, residual troposphere delay, and IMU sensor biases
converged, leaving the PPP/INS solution to ”hold on” to a poor solution for a longer period than
the PPP-only filter; however these flights need further review. Now that the median RMS error
reduction has been discussed, it is of interest to discuss the reduction of the RMS error due to INS
with respect to the input parameters (e.g., flight path, IMU selection and GPS error sources). Figure
5.13 shows the median RMS error reduction in the east, north and vertical directions with respect to
the flight path selected. The four flight paths were designed to have increasing dynamics (i.e., flight
path one is the most docile and flight path four has the highest dynamics). Figure 5.13 does not
show a definitive trend in positioning improvement as path dynamics increase. The likely reason for

this lack of trend is that the dynamics did not vary enough between paths. Figure 5.14 shows the
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median RMS error reduction in the east, north and vertical directions with respect to the number
of phase breaks during a flight. From Fig. 5.14 it should be noted that there is a clear correlation

between the number of phase breaks and the RMS positioning error reduction due to INS.
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Figure 5.13: Median of Per Flight RMS Error Reduction from INS by Flight Path
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Figure 5.15 shows that median of the per flight RMS error reduction from INS by IMU type.
As all of the IMUs for this study were modeled based upon error characteristics for commercially

available tactical grade IMUs with similar error characteristics (e.g., all IMUs were scaled from
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IMU 1), there is not a definitive trend in positioning improvement. Figure 5.16 depicts the RMS
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Figure 5.15: Median of Per Flight RMS Error Reduction from INS by IMU

positioning error reduction due to INS with respect to the magnitude of the troposphere. Where the
troposphere is modeled using the Modified Hopfield model and scaled at random, for each simulation
trial, with respect to Table 1. From Fig. 5.16 a clear trend is shown, which is that the magnitude
of the RMS error reduction is dependent upon the magnitude of the troposphere. The dependence
of the RMS positioning error reduction due to INS as a function of multipath can be seen in Figure
5.17. Multipath is modeled as a Gauss-Markov process with a standard deviation of 0.4 meters and
a time constant of 15 seconds, as described in Table 1. This error source is linearly scaled for each

simulation trial.

5.3.2 Sensitivity to PPP Product Quality

Figure 5.18 depicts the benefit of including INS as the quality of the PPP products is reduced.
That is, for this analysis, the GPS data was regenerated in the same manner as previously describe;
however, the magnitude of the satellite error was randomly selected from four magnitude (e.g.,

Product 1 = 0.5 cm, Product 2 = 10 cm, Product 3 = 20 cm, and Product 4 = 30 cm).
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Figure 5.16: Median of Per Flight RMS Error Reduction from INS by Magnitude of Troposphere
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Figure 5.17: Median of Per Flight RMS Error Reduction from INS by Magnitude of Multipath

5.3.3 Attitude Estimation Performance

An implicit benefit of PPP/INS over single antenna PPP-only is that platform attitude is estimated

in the filter. Figure 5.19 shows the typical attitude estimation performance of a single simulation
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Figure 5.18: Median of Per Flight RMS Error Reduction from INS by PPP Product

trial. As shown in Fig. 5.19 roll, pitch and yaw are all estimated at sub-0.1 degree accuracy. A

5 Example of Typical Attitude Estimation Performance for 1 Flight
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Figure 5.19: Example Attitude Estimation Error over a Single Flight

cumulative distribution of the attitude estimation performance of the 100 trials is shown in Fig.

5.20. As illustrated in Fig. 5.20 the median attitude estimation error is a few hundredths of a
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Figure 5.20: Cumulative Attitude Estimation Performance over 100 Flights

degree for roll and pitch, and an order of magnitude worse for the yaw angle. Poor yaw estimation
is expected for flight profiles that are predominately steady-level flight. Just as in positioning, there

are a handful of PPP/INS flights that have poor attitude estimation performance.

5.3.4 Solution Convergence

As mentioned in the literature review, PPP convergence is often cited as a downside to the PPP
approach. Figure 5.21 was created by averaging the absolute phase bias estimate from the true
simulated phases biases, epoch wise, for all 100 trials. As shown in Figures 5.21, the PPP/INS solu-
tion converges quicker than the PPP-only solution, which is important for reaching the performance

similar to that of RTK.

5.3.5 Smoothness of Positioning Solution

In general, the PPP/INS improvement is attributed to the smoother positioning performance. This
claim can be substantiated by conducting a frequency analysis of the positioning error time-series.
For example, Fig. 5.22 shows a periodogram of the amplitude of the position error in the vertical-
axis for a typical flight trial. The periodogram can be evaluated up to 5Hz since the positioning

residuals are available at 10Hz (i.e. the GPS update rate). As shown in Fig. 5.22; at the low
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Figure 5.22: Periodogram of Vertical Position Error for Single Flight

frequencies the positioning performance is the same, and there is no noticeable difference in the
absolute positioning performance, however, at the higher frequencies the PPP/INS error amplitude

is reduced when compared to PPP. This analysis suggests smoother positioning from PPP/INS,
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which is critical for feedback control systems.
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Chapter 6

Flight Data Results

Parts of this chapter are reproduced from conference paper “Integration of Inertial
Navigation into Real-Time GIPSY-x (RTGz)” [35], and journal paper “Flight Test

Evaluation of Kinematic Precise Point Positioning of Small UAVs” [50]

6.1 GIPSY-OASIS Overview

GNSS-Inferred Positioning System and Orbit Analysis Simulation Software package (GIPSY-OASIS)
has been in development at NASA JPL since the mine 1980’s. GIPSY has been the primary geodetic
and positioning software for NASA’s TOPEX /Poseidon [51], JASON [52] and GRACE [53] low
Earth orbiting spacecraft, and is operationally used to generate JPL’s precise GPS orbits and clock
products to the IGS [54]. GIPSY is licensed for free by Caltech to institutions for academic research

purposes.

6.2 RTGx Overview

RTGx [11] is NASA JPL’s revamped GNSS processing software, a rewrite of GIPSY in C*7, that can
be configured for real-time or post-processed constellation orbit and clock determination, Low-Earth
Orbiter (LEO) Precise Orbit Determination, or Precise Point Positioning (PPP). RTGx underlies
the navigation software for the Air Force’s next generation GPS operational control segment (OCX)
[55]. In conjunction with JPL’s GDGPS System, where RTGx generates the real-time GNSS orbit
and clocks products, and is also the point-positioning engine, RTGx routinely and operationally

produces sub-decimeter real-time kinematic positioning for a large number of GNSS tracking sites,
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globally [www.gdgps.net].

Different from its predecessor, RTGx now supports a multi-constellation GNSS processing capa-
bility, thus, an additional natural evolution of the RT'Gx software is to support an INS capability for
kinematic applications that have demanding requirements. While tight GNSS/INS integration is by
no means a new concept, integration of INS within RT'Gx inherits features that are already unique
to JPL’s RTGx processing strategy, such as single-receiver integer ambiguity resolution [14] as well
as flexible and easily extendable parameter and model configuration. Incorporation of INS in RTGx
will further enable research in more advanced INS/GNSS models, such as solving for deviations
of the local gravity error, processing platforms with multiple antennas, leveraging atomic clocks,
ingesting pressure sensor data for troposphere modeling, solving for unknown IMU lever arms, and
processing kinematic platforms as part of a network solution, all of which which can contribute to

increased accuracy required by various science applications.

6.3 Data Sets

Eight data sets were provided by a NGS,NOAA program called Gravity for the Redefinition of the
American Vertical Datum (GRAV-D). These are multiple hour long flight collected data sets, where

each data set contains
e 200 Hz raw IMU measurements,
e 1 Hz raw GPS observables (pseudorange and carrier-phase),

e lever arm between the platform’s instrument and GPS Antenna, and between the instrument

and the IMU
e and the commercial GPS/INS smoothed attitude estimate.

The location, date, and duration of each of the flights is summarized in Table 6.1.

Table 6.1: Flight Collected Data Set Durations

| Location | Date | Duration
Alaska 29-May-2015 3 hr 54 min
Alaska 9-June-2015 4 hr 46 min
Louisiana | 23-Oct-2008 2 hr 27 min
Louisiana | 19-Nov-2008 3 hr 19 min

New York | 10-Aug-2011 4 hr 4 min
New York | 18-Aug-2011 3 hr 43 min
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These eight data sets come from six flights. Where two flights contain an Applanix system, two
flights contain a Novatel system, and the final two flights fly both the Applanix and Novatel systems.
These last two data sets are valuable because they allow for the direct comparison of two IMUs for

the same flight. Table 6.2 summarizes the GPS/INS system and lever arm used for each flight.

Table 6.2: GPS/INS System for Flight Collected Data

| Location | GPS/INS System | Lever Arm (m) ‘
Alaska Novatel =~ SPAN (navigation | x=-0.132, y=0.095, z=0.463
grade)
Alaska Novatel ~ SPAN  (navigation | x=-0.132, y=0.095, z=0.463
grade)
Louisiana | Applanix = POS-AV  (tatical | x=2.72, y=-0.05, z=-0.5
grade)
Louisiana | Applanix POS-AV  (tatical | x=2.72, y=-0.05, z=-0.5
grade)
New York | Novatel and Applanix System Novatel — x=-1.5, y=0.02, z=0.56
Applanix — x=-1.7, y=0.2, z=-0.56
New York | Novatel and Applanix System Novatel — x=-1.5, y=0.02, z=0.56
Applanix — x=-1.7, y=0.2, z=-0.56

An example of the flight data can be seen below in Fig. 6.1 and Fig. 6.2. The rapid accent and

decent in Fig.6.1 makes the data sets particularly challenging for handling the tropospheric delay.
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Figure 6.1: Altitude profile of the d297,y2008 GRAV-D data-set.
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Figure 6.2: Lat/Lon profile of d297,y2008 GRAV-D data-set.
6.4 Processing Strageties

6.4.1 GIPSY-OASIS Reference Solution Processing Stragety

The reference solution for this analysis uses Caltech JPL’s GIPSY-OASIS 6.2 software [56], which
is licensed for free by Caltech for academic research purposes. This software package has been used
extensively for geodetic and positioning applications on NASA missions: TOPEX/Poseidon [51],
JASON [52] and GRACE [53] low Earth orbiting spacecraft. GIPSY is also used to generate JPL’s
precise GPS orbits and clock products to the IGS [54]. GIPSY uses a square root information filter
[57] to estimate parameters of interest.

Because the data sets are kinematic, the reference processing strategy is to iterate over the
position solution while varying the GIPSY configuration parameters to eliminate data outliers. A
block diagram of the processing strategy is shown in Figure 6.3, which requires defining some GIPSY

terms:

GNSS Data to Positioning (GD2P): GIPSY’s main user interface script for PPP.

e PseudoRange Data to Positioning (PR2P): GIPSY’s script for pseudorange only point

positioning.

Time Dependent Parameter (TDP): GIPSY’s output format for positioning solutions and

other solved for parameters (e.g. clock biases, troposphere, phase biases).

QM File GIPSY’s native binary GNSS measurement format.

As can be seen in Fig. 6.3, before the first iteration, the Receiver Independent Exchange Format
(RINEX) file is converted to a GIPY binary QM file. During this process, a GNSS data editor

is used to flag carrier-phase breaks and remove gross data outliers [58]. With the generated QM
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Defined Inputs QM File
Initial TDP File

Filter
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Figure 6.3: Kinematic PPP Strategy with GIPSY OASIS. A wrapper software is used to interactively
process the position solution.

file, the first iteration position estimation is generated using only the pseudorange observable with
GIPSY’s PR2P. For the remaining iterations, a subset of GIPSY processing options are varied while
iterating over the previous position solution (TDP file) as the a priori position solution. Within

Figure 6.3, the configuration options that are varied for each run are as follows:

e Data Weights: Relative scaling of the measurement noise between the pseudorange and
carrier-phase measurements. For this application, the weighting started at one-to-one and

ended at one-hundred-to-one.

e Postfit Residual Window: Within each GIPSY processing run, multiple passes of a Kalman
filter and smoother are conducted. Between each pass, postfit data residuals are evaluated and
data are marked outlier based on defined thresholds and excluded from the next pass. At each
pass, the residuals of all data, inlier and outlier, are evaluated and either added back in order
excluded from the run. This process is repeated until all data meet the postfit window criteria

or a maximum number of iterations are exceeded.
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e Stochastic Models: The position and wet troposphere delay estimates can be modeled using
either white noise about the nominal solution or random walk process noise. Additionally, the

a priori o and magnitude and rate of process noise updates can be set.

e Minimum Slip: After each filter iteration, jumps in the post-fit phase residuals are used
to identify the possibility of a carrier-phase break that was missed by the data editor. New

breaks are flagged for the next iteration

In addition to the configuration parameters listed above that are varied for each iteration, several
other GIPSY options were selected and held fixed in this study. In particular, the VMF1 [27] model
was used as the troposphere mapping function and nominal estimation. For the several remaining
available GD2P options (e.g. elevation cutoff, tide models, etc.), the defaults provided by JPL were

used.

6.4.2 RTGx Base Processing Stragety

Within this section, the RTGx processing stragety adopted is described. In this analysis, two
solutions are compared to the reference position solutions, namely K-PPP with INS and K-PPP
without INS. The analysis considers the performance of the forward-filter only solutions, as this is
most applicable to the real-time needs of the target application.

For both filter-only K-PPP strategies, prior to processing with RTGx, the RINEX data were
pre-processed by GIPSY’s GPS data editor in order to remove gross-outliers and flag carrier-phase
breaks [58]. In addition a simple troposphere estimation strategy that solves for a residual wet
zenith delay as a random walk parameter was adopted. This value was empirically tuned to provide
smooth estimation performance when at altitude and selected to be 5e-5 % Furthermore, for both
cases, with and without INS, the GPS receiver clock was modeled as a random walk process with
1000.0 % Finally, all solutions used JPL’s final orbit/clock submissions to the International GNSS
Service [54].

For designing the INS stochastic models, typically the sensor specs of the individual IMU sensors
(e.g. Angular Random Walk, Velocity Random Walk, bias-instabilities) would be used to drive these
models [59]. However, for the Applanix PosAV GPS/IMU system used in the Kinematic Challenge
data set, these IMU sensor parameters were unknown. Therefore, these parameters were initially
selected assuming an intermediate grade IMU and then empirically tuned.

Finally, in order to provide better comparison and aid in the convergence of the GPS-only K-PPP

strategy, a dual-frequency pseudorange-only solution was ingested as the a priori nominal position
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solution with the filter-only runs. The carrier-phase based K-PPP positions were then solved as for

assuming 5 meters of uncertainty in the nominal solution at each data epoch.

6.5 Results

The key statistics with respect to positioning accuracy and attitude estimation are summarized in

this section. For positioning, the metrics selected include:

Root Sum Square (RSS)

Root Mean Square (RMS)

Median ()

Standard Deviation (o)

Average Bias (b)

Max absolute error (Maz(]b]))

For this analysis, all errors are reported with respect to the reference solutions. Additionally,
these metrics are reported for the data sets both before and after the initial solution convergence
until the end of the data sets. The convergence period was excluded because the most crucial period
during airborne science campaigns is after ascending to the final altitude. In this analysis, this was

done by simply by evaluating errors over only the last 1/2 of each flight.

6.5.1 Base Run

The CDF of the positioning error for the eight data sets using the base run parameter configuration
can be seen in Fig. 6.4. This plot shows both the full statistics, and the statistics after the carrier-
phase biases have converged (i.e. the last half of the flight). From this plot it should be noted that
the PPP only filter outperforms the PPP/INS filter with respect to the full statistics; however, after
the solution convergence the PPP/INS filter provides a smaller positioning error.

In addition to the CDF for the base run parameter configuration, the full statistics for the eight
data sets can be seen in Table 6.3. From this table it should be noted that PPP/INS filter provides
a substantially smaller maximum error. This is an important characteristic for feed-back systems as
larger positioning errors cause erronous acceleration estimates. Additionally, the statistics for the

base run parameter after the convergience of the carrier-phase biases can be seen in table 6.4.
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Figure 6.4: CDF of RSS Positioning Error for Base Configuration

Table 6.3: Statistics of positioning performance for full baserun configuration (flight data)

After Convergence

——PPP
—PPP-INS

10

Error Magnitude (cm )

Filter-Only K-PPP | K-PPP/INS
Median (cm) 12.10 14.67

S.D o (cm) 63.94 77.65

Bias b (cm) 32.33 43.23
Max (|b]) (cm) | 1105.21 507.18

Table 6.4: Statistics of positioning performance after convergence for baserun configuration (flight

data)

Filter-Only K-PPP | K-PPP/INS
Median (cm) 9.37 8.34

S.D o (cm) 10.58 11.29

Bias b (cm) 13.67 12.40
Max (]b]) (cm) | 109.32 108.28

6.5.2 Linearize About Previous State Estimate

As noted above, the PPP only solution is provided with an input time series of position estimates.
This time series was generated with PR2P which used only the pseudorange measurements.

For this comparision, the PPP only filter is not provided an input time series of position estimates.
Instead, both the PPP and the PPP/INS filters use their previous state estimate as their linearization
nominal. This sections consideres two different configurations: using pseudorange and carrier-phase

data while both filters linearize about the previous state estimate, and using only pseudoragne while

52




both filters linearize about the previous stae estimate.

In Fig. 6.5, the CDF of the RSS positioning error for the eight data sets when both filters
using both carrier-phase and psuedorange observables while using the previous state estimate as
a linearization nominal can be seen. From Fig. 6.5 it should be noted that the PPP/INS filter
outperforms the PPP only filter with respect to positioning error both before and after the solution
convergence. The statistics for both the PPP only and the PPP/INS filters can be seen in Table 6.5

and Table 6.6 for the full flight statistics and the statistics after convergence, respectively.
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Figure 6.5: CDF of RSS positioning error without input position time-series using PC-LC observables

Table 6.5: Statistics of positioning performance for full PC-LC previous epoch linearization config-
uration (flight data)

Filter-Only K-PPP | K-PPP/INS
Median (cm) 24.15 14.67

SDo (cm) | 16545 7765

Bias b (cm) 88.26 43.23
Max (]b]) (cm) | 1188.42 507.18

Table 6.6: Statistics of positioning performance after convergence for previous epoch linearization
configuration (flight data)

Filter-Only K-PPP | K-PPP/INS
Median (cm) 13.56 8.34

S.D o (cm) 18.72 11.29

Bias b (cm) 20.17 12.40
Max (]b]) (cm) | 129.26 108.28
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The next figure, Fig. 6.6, shows the CDF of the RSS positioning error for both the PPP only
and the PPP/INS when only using the pseudorange obserable and the previous state estimate as
the linearization nominal. With this configuration it should be noted that there is a substancial
benefit to PPP/INS filter. This can be seen by the large median error positioning error reduction
both before and after solution convergence, as shown in Table 6.7 and Table 6.8, respectively. In
addition to the median error, it should be noted the standard deviation, bias, and maximum error

are all substancially smaller for the PPP/INS filter as shown in Table 6.7 and Table 6.8.

Entire Flight ; After Convergence
09t . 09t
——PPP
0.8 ——PPP-INS
0.7} 0.7t

2
=]
T
2
=2

Fraction of Data
2
(%3]
Fraction of Data
=
on

041 04+
03} 0.3
021 0.2
01 0.1
0 ; 0 ;
10 102 10° 10 10 10°
Error Magnitude (cm) Error Magnitude (cm)

Figure 6.6: CDF of RSS positioning error without input position time-series using only PC observ-
ables

Table 6.7: Statistics of positioning performance for full PC-only previous epoch linearization config-
uration (flight data)

Filter-Only K-PPP | K-PPP/INS
Median (m) 20.98 2.88

S.D o (m) 47.77 2.75

Bias b (m) 30.22 3.68
Max (|b]) (m) 84.08 32.43
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Table 6.8: Statistics of positioning performance for last-half of previous epoch linearization config-
uration (flight data)

Filter-Only K-PPP | K-PPP/INS
Median (cm) 18.68 2.70

S.D ¢ (cm) 47.31 2.56

Bias b (cm) 28.35 3.43
Max (|b]) (cm) 84.08 32.43

6.5.3 Troposphere Model

As stated above, the troposphere is a hard to mitigate GPS error source with several models and
mapping functions. Because of this, it is useful to see the effect that different troposphere models
have on the ability to estimate position. For this anaylsis, four troposphere models are used: no
nominal with a Niell mapping function, static height nominal with a Niell mapping function, GPT2
nominal with a GMF mapping function, and a VMF1 nominal with a VMF1 mapping.

The maximum RSS positioning error with respect to the tropopshere model used can be seen
in Fig. 6.7. From this figure it can be seen that the PPP/INS filter has a smaller maximum RSS
positioning error for the all of the troposphere models used with the exception being the runs where
no nominal troposphere is provided. This can also be seen in Table 6.9 which provides the full run

statistics with respect to the troposphere model used.
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Figure 6.7: Max positioning as a function of troposphere model

The median of the RSS positioning error with respect to the troposphere model used can be seen

in Fig. 6.8. With respect to the median, the PPP/INS filter only out performs the PPP filter in the

55



case where no nominal troposphere is provided. This implies the high fedility the GPS models are,

the less INS is needed for position estimation.
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Figure 6.8: Median of positioning error as a function of troposphere model

Table 6.9: Statistics of positioning performance for different troposphere models (flight data)

Filter-Only K-PPP | K-PPP/INS
Median No Nominal (cm) 42.61 39.48
Median Static Height (cm) 11.77 13.74

Median GPT2 (cm) 9.90 12.51
Median VMF1 (cm) 11.21 12.67
S.D No Nominal ¢ (cm) 41.12 36.33
S.D Static Height o (cm) 10.12 11.34
S.D GPT2 o (cm) 8.38 10.15

S.D VMF1 o (cm) 10.21 10.59
Bias No Nominal b (cm) 44.12 42.76
Bias Static Height b (cm) 32.33 43.23
Bias GPT2 b (cm) 31.23 42.15
Bias VMF1 b (cm) 31.07 44.34
Max No Nominal (|b]) (cm) | 1814.21 2277.25
Max Static Height (|b]) (cm) | 1100.23 886.46
Max GPT2 ([b]) (cm) 1111.12 839.61
Max VMF1 (|b|) (cm) 1091.14 836.67

6.5.4 Positioning Smoothness

As stated above, the PPP/INS improvement is attributed to the smoother positioning performance

as the INS is essential interpolating between GPS updates. Again, this claim is substantiated
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by conducting a frequency analysis of the RSS positioning error time-series. Figure 6.9 shows a
periodogram of the amplitude of the RSS position error with respect to the nominal value that is
predicted with the RTGx models for all eight flights. This periodogram can be evaluated up to
0.5Hz since the GPS observables were collected at at 1 Hz interval.

As shown in Fig. 6.9, at both the low and high frequencies the PPP/INS error amplitude is
reduced when compared to PPP. This analysis suggests smoother positioning from PPP/INS, which
is critical for feedback control systems. Additionally, by looking at the error with respect to the
nominal, it can be seen that the PPP/INS filter more closely matches what the high fidelity models

are predicting.
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Figure 6.9: Periodogram of Vertical Position Error for Single Flight

6.5.5 Attitude Estimation

As another method to validate the implementation of INS into RTGx the estimated attitude is
compared to the smoothed commercial solution. This attitude comparision for all data sets can
be see in 6.10. Additionally, Table 6.10 shows very good agreement with respect to the attitude
provided by the commercial solution. It should be noted that for flights that are primarily flying

straight and level that it is well known that the IMU yaw-bias is most difficult to observe.
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Figure 6.10: CDF of total attitude statistics. Includes data from the full duration of all eight data
sets.

Table 6.10: Statistics of attitude performance for all flight data with baserun configuration (flight
data)

Filter-Only K-PPP/INS
Median Roll (deg) 0.014
Median Pitch (deg) 0.010
Median Yaw(deg) 0.012

S.D Roll ¢ (deg) 0.110
S.D Pitch o (deg) 0.108
S.D Yaw o (deg) 2.196
Bias Roll b (deg) 0.004
Bias Pitch b (deg) 0.002
Bias Yaw b (deg) 0.182
Max Roll (|b]) (deg) 1.352
Max Pitch(]b]) (deg) 4.655
Max Yaw (|b]) (deg) 4.522

As stated above, for the eight data sets, two different INS were flown. The first systems is the
Novatel SPAN package with a navigation grade IMU. The second system is the Applanix Pos-AV
package with a tatical grade IMU. Now, we will look at the attitude estimate with respect to the
grade of the IMU. The CDF of the RMS attitude error for the navigation grade and tatical grade
IMUs can be seen in Fig. 6.11 and Fig. 6.12, respectively. The total statsitcs can be seen in Table
6.11 and Table 6.12 for the two systems. From Table 6.11 and Table 6.12 it should be noted that
while both shows very good agreement with the smoothed attitude solution, the tatical grade IMU

performs better, specifically with respect to yaw estimation.
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Figure 6.11: Navigation Grade IMU Attitude Statistics for Base Run Configuration

Table 6.11: Statistics of attitude performance for navigation grade IMU for all fligth data with
baserun configuration (flight data)

Filter-Only K-PPP/INS
Median Roll (deg) 0.019
Median Pitch (deg) 0.019
Median Yaw(deg) 1.180

S.D Roll o (deg) 0.118
S.D Pitch o (deg) 0.181
S.D Yaw o (deg) 1.544
Bias Roll b (deg) 0.009
Bias Pitch b (deg) 0.016
Bias Yaw b (deg) 1.300
Max Roll (|b]) (deg) 0.895
Max Pitch(|b|) (deg) 1.986
Max Yaw (|b]) (deg) 4.522
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Figure 6.12: Tatical Grade IMU Attitude Statistics for Base Run Configuration

Table 6.12: Statistics of attitude performance for tatical grade IMU for all flight data with base run
configuration (flight data)

Filter-Only K-PPP/INS
Median Roll (deg) 0.012
Median Pitch (deg) 0.024
Median Yaw(deg) 0.395

S.D Roll o (deg) 0.096
S.D Pitch o (deg) 0.216
S.D Yaw o (deg) 2.027
Bias Roll b (deg) 0.002
Bias Pitch b (deg) 0.029
Bias Yaw b (deg) 1.348
Max Roll (|b]) (deg) 1.352
Max Pitch(|b|) (deg) 4.655
Max Yaw (|b]) (deg) 0.583
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Chapter 7

Conclusion

The previous chapters have discussed the development of a simulation environment and a tightly-
coupled PPP/INS error-state extended Kalman filter within MATLAB, the integration of the INS
formulation into RTGx, and the evaluation of RTGx with flight collected data sets. This chapter
summarizes the work and presents some future work.

A simulation environment was developed within MATLAB that allowed a Monte Carlo analysis
of the sensitivity of PPP/INS to various conditions: such as, the intensity of multipath errors, the
number of phase breaks, the satellite geometry, the atmospheric conditions, the noise characteristics
of the inertial sensor, and the accuracy of GPS orbit products. The benefit of incorporating INS
when confronted with scenarios that typically degrade GPS performance including poor satellite
geometry and an increase level of phase breaks was characterized. The inclusion of INS is shown
to offer a smoother solution leading to better absolute positioning performance in an RMS and
median sense over the 100 trials. PPP/INS also exhibited the ability to initially converge quicker,
which is critical for PPP. In addition, the performance increase sensitivity for including tactical
grade INS when confronted with poor PPP orbit product quality and increased path dynamics was
demonstrated.

After the PPP/INS formulation was verified within simulation, the INS formulation was adopted
by NASA JPL’s real-time positioning software RTGx. The INS formulation was then verified using
flight collected data sets provided by NGA, NOAA. With the data sets, a sensitivity study was
performed to see when the inclusion of INS is beneficial for position estimation. Again, it was found
that INS helps significiantly when the platform is confronted with a GPS challenged environment,

or poor GPS models (i.e. low fidelity troposphere model, pseudorange only solution).
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