
Graduate Theses, Dissertations, and Problem Reports 

2017 

Precise Point Positioning Inertial Navigation Integration for Precise Point Positioning Inertial Navigation Integration for 

Kinematic Airborne Applications Kinematic Airborne Applications 

Ryan Watson 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Watson, Ryan, "Precise Point Positioning Inertial Navigation Integration for Kinematic Airborne 
Applications" (2017). Graduate Theses, Dissertations, and Problem Reports. 6925. 
https://researchrepository.wvu.edu/etd/6925 

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F6925&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/6925?utm_source=researchrepository.wvu.edu%2Fetd%2F6925&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


PRECISE POINT POSITIONING
INERTIAL NAVIGATION

INTEGRATION FOR KINEMATIC
AIRBORNE APPLICATIONS

Ryan Watson

Thesis submitted to the
Benjamin M. Statler College of Engineering and Mineral Resources

at West Virginia University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Aerospace Engineering

Jason N. Gross, Chair Ph.D.
John A. Christian, Ph.D.

Yu Gu, Ph.D.

Department of Mechanical and Aerospace Engineering

Morgantown, West Virginia
2016

Keywords: Precise Point Positioning, Inertial Navigation, GPS Integration,
Real-Time GIPSY-x

Copyright c© 2016 Ryan Watson



ABSTRACT

Precise Point Positioning Inertial Navigation Integration for Kinematic

Airborne Applications

Ryan Watson

UAVs have the potential for autonomous airborne remote sensing applications that require rapid
response to natural hazards (e.g. volcano eruptions, earthquakes). As these applications require very
accurate positioning, tightly coupled Global Positioning System (GPS) Precise Point Positioning
(PPP) Inertial Navigation Systems (INS) are an attractive method to perform real-time aircraft
positioning. In particular, PPP can achieve a level of positioning accuracy that is similar to Real-
Time Kinematic (RTK) GPS, without the need of a relatively close GPS reference station. However,
the PPP method is known to converge to accurate positioning estimate more slowly when compared
to RTK, a drawback of PPP that is amplified whenever the receiver platform is faced with GPS
challenged environments, such as poor satellite visibility and frequent phase breaks.

This thesis presents the use of a simulation environment that characterizes the position estima-
tion performance sensitivity of PPP/INS through a Monte Carlo analysis that is considered under
various conditions: such as, the intensity of multipath errors, the number of phase breaks, the
satellite geometry, the atmospheric conditions, the noise characteristics of the inertial sensor, and
the accuracy of GPS orbit products. After the PPP/INS formulation was verified in a simulation
environment, the INS formulation was incorporated into NASA JPL’s Real-Time GIPSY-x. This
software was then verified using eight recorded flight data sets provided by the National Geodetic
Survey (NGS), National Oceanic and Atmospheric Administration (NOAA) program called Gravity
for the Redefinition of the American Vertical Datum (GRAV-D).
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Chapter 1

Introduction

The Precise Point Positioning (PPP) approach uses dual-frequency undifferenced GPS observables in

conjunction with precise orbit and clock bias products and measurement models to achieve decime-

ter to centimeter level positioning with a single receiver [1]. Real-time PPP is enabled by orbit and

clock products being broadcast to end user. These global correctors have been integrated into the

L-band by commercial entities[2], can be obtained over the internet or through an Iridium modem

link from NASA’s Global Differential GPS System[3], and have recently been made freely available

on the internet by the International GNSS Service [4]. The similar level of accuracy of real-time PPP

compared to traditional Differential GPS (DGPS) (i.e. Real Time Kinematic) without the need for a

nearby static GPS reference station, is particularly attractive for airborne scientific instrument plat-

forms that require this level of accuracy, global coverage and rapid response capability. For instance,

real-time PPP is used for NASA’s airborne Synthetic Aperture Radar (SAR) platforms that are used

for repeat pass interferometry in response to natural hazards such as volcano eruptions, tsunamis,

and large earthquakes [5]. The benefits of coupling GPS with Inertial Navigation Systems (INS)

have long been well understood[6], and recent studies have investigated and demonstrated combined

PPP/INS architectures for kinematic applications on ground vehicles[7], [8], [9], [10], and airborne

platforms[10]. In these previous works, both loosely-coupled and tightly-coupled architectures have

been investigated, and when provided clear open sky-access and on vehicles with docile dynamics,

both approaches have shown to exhibit similar estimation performance[9], [10]. However, when con-

fronted with challenging GPS environments, such as poor visibility (e.g. urban canyon), frequent

phase breaks, and high-multipath, tightly-coupled formulations inherently have the advantage [9],

[10].
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1.1 Objective

This thesis has 2 objectives. The first objective is to develop and characterize the sensitivity of

PPP/INS for kinematic airborne applications within a simulation environment. For this to be

realized, first, a simulation environment is developed within MATLAB. Next, a tightly-coupled

PPP/INS error-state Kalman filter is developed. This tighly-coupled PPP/INS error-state Kalman

filter was considered under various conditions: the number of phase breaks, the satellite geometry,

the atmospheric conditions, the noise characteristics of the inertial sensor, and the accuracy of GPS

orbit products.

The validated INS formulation was then incorporated into NASA JPL’s Real-Time GIPSY-x

(RTGx) software [11]. This leads to the second objective, the validation of the formulation using

recorded flight data sets provided by the National Geodetic Survey (NGS), National Oceanic and

Atmospheric Administration (NOAA) program called Gravity for the Redefinition of the American

Vertical Datum (GRAV-D) [12] [13]. A reference solution for the eight data sets is generated using an

iterative processing strategy with GIPSY-OASIS II [14]. Using these reference solutions, a sensitivity

analysis of RTGx is conducted. The purpose of this sensitivity study is to see when INS truly with

positioning estimation for kinematic PPP/INS applications.

1.2 Thesis Outline

The second chapter of this thesis provides an overview of the GPS navigation system and the PPP

approach. First, a broad overview of the GPS system is provided. Then the GPS observables

are discussed. Finally, a brief discussion of GPS positioning is provided, which includes the PPP

observation model. Chapter Three of this thesis covers Inertial navigation. This chapter starts with

an overview of inertial measurement devices. Then a detailed discussion of INS mechanization in the

Earth Cenerted Inertia (ECI) frame is provided. Lastly, the INS error model formulation is discussed.

The fourth chapter covers GPS/INS integration methods. This section provides an overview of the

two integration methods commonly used for aerospace applications. Then, a brief overview of the

Extend Kalman Filter algorithm is provided. And finally, the integration method utilized in this

research. With the preliminary information provided in the previous chapters, chapter five covers

the use of a simulation environment to characterize the K-PPP/INS integration algorithm. First,

a discussion of the simulation environment is discussed. Then the simulation results obtained are

provided. Chapter six provides the processing of eight real data sets using RTGx. Within this

2



chapter is an overview of the RTGx software. Then, using eight flight collected data sets, the

sensitivity of RTGx is evaluated under several conditions. Finally, chapter seven provides some

concluding remarks and plans for future work.
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Chapter 2

GPS

Although GPS can be used for several other application ( e.g. the detection of underground nuclear

explosions [15], the early detection of tsunamis [16], precise timing [17], and the detection of snow

depth [18] ), this thesis is concerned with the use of GPS as a positioning sensor. The ability to

use GPS for positioning is based up trilateration: a method of determining position that utilizes

time of flight measurements ( i.e. pseudorange observables ) from at least four satellites [19]. This is

because the first 3 satellites are used to narrow the location of the receiver down to two locations. The

forth satellite is used to select the right location and calculate timing and location corrections. For

accurate positioning the receiver must compensate for common GPS error sources. This chapter will

cover a brief overview of the GPS System which will include a discussion of the GPS observables, the

common GPS error sources, and the observation model that is used to calculate the GPS observables.

2.1 GPS System Overview

The GPS system can be broken into four distinct sections: the space segment, the control segment,

the user segment, and the ground segment. This section will detail each of those segments in detail.

2.1.1 Space Segment

Orbit Design

As stated previously, GPS point positioning requires there to be at least four satellites in view. With

this is mind, the GPS orbit was designed. There are nominally twenty four GPS satellites in orbit.

These twenty four satellites are distributed evenly over six orbital planes where each plane is at an
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inclination angle of 55◦ at an almost circular orbit with a radius of 20,200 kilometers [19]. As a

consequence of the GPS orbit design, each GPS satellite makes two full revolutions around the earth

in 23 hours and 58 minutes ( i.e. one sidereal day ). This means that each satellite appears over the

same location every every sidereal day, which is more commonly called ”repeating ground-tracks”

[20].

Signal Structure

Every GPS satellite transmits on at least two L-band radio frequencies: the Link 1 ( L1 ) frequency

and the Link 2 ( L2 ) frequency, which are centered about 1.575 GHz ( corresponds to a wave length

of 19 cm ), and 1.227 GHz ( corresponds to a wave length of 24.4 cm ), respectively [19]. Modulated

on the L1 frequency is the Coarse-Acquisition Code (C/A-code), which has a frequency of 1.023

MHz. In addition to the C/A-code, a navigation message is also modulated onto the L1 carrier.

This navigation messages provides the user with information about the satellites health status,

ephemeris, and clock bias. Modulated on L1 and L2 is the Precise Code (P-code), which has a

frequency of 10.23 MHz. From the information provided ( the carrier, the PRN, and the navigation

message ), the user can extract three observables: the pseudorange observable, the carrier-phase

observable, and the doppler observable [20].

2.1.2 Control Segment

The GPS control segment is composed of a network of seventeen monitoring stations operated by

the Air Forec and the National Geospatial-Intelligence Agency (NGA). These stations constantly

monitor the satellites and report back to the Master Control Station, located at Schriever Air force

Base in Colorado Springs. The data processed at the Master Control Station is used to generate the

orbit and clock errors and is uplinked to the GPS satellites on a 1.783 GHz signal [20].

2.1.3 User Segment

The user segment consists of various GPS receiver equipment, which receive the signals from the

GPS satellites and use the received information to calculate the users position and the GPS system

time.
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2.1.4 Ground Segment

The ground segment is composed of civilian tracking networks that provide the user segment with

precise ephemeris information. This precise ephemerids information is what enables PPP. Addition-

ally, these global correctors have been integrated into the L-band by commercial entities [2], can be

obtained over the internet or through an Iridium modem link from NASA’s Global Differential GPS

System [3], and have recently been made freely available on the internet by the International GNSS

Service [4].

2.2 GPS Observables

There are three GPS observables: the pseudorange, the carrier-phase, and the doppler observable.

These three measurements will be described in greater detail in this section.

2.2.1 Pseudorange

The first observable that will be discussed is the pseudorange. This observable is essentially a

measure of the propagation time of the signal scaled by the speed that the wave is propagated.

Where the propagation time is obtained through correlating the PRN that is propagated by the

satellite to the PRN generated on the receiver. In addition, there will be a clock bias because it is

cost prohibitive for users to have a more precise clock. This clock bias is where the term pseudorange

comes from. The term pseudorange signifies that the observable is the true range distorted by the

clock bias and additional error sources.

The equation to calculate the pseudorange can be found in Eq. 2.1: where tr is the time the

signal was received, ts is the time that the satellite propogated the signal, c is the speed of light,

b is a composite clock bias composed of both satellite and a receiver clock bias, and ε contains all

additional error sources. These additional error sources are described in the next section.

ρj = (tr − tjs)c+ bj + εj (2.1)

2.2.2 Carrier Phase

The carrier-phase observable can be though of as a very similar measurement to the pseudorange

observable. However, there are two large caveats: the first being, that the carrier-phase observable

is orders of magnitude more precise than the pseudorange observable, and the second being that
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the carrier-phase observable contains an ambiguous number of wave lengths that must be resolved

before the precision of the observable can be utilized.

A simplified carrier-phase observation model can be seen in Eq. 2.2: where, λ is the wave length

associated with the propagation frequency, R is the geometric distance between the satellite and the

receiver, N is the ambiguity term associated with the carrier-phase data, b is a composite clock bias

composed of both a receiver and a satellite component, and ε contains all additional un-modelled

error sources.

Φj = Rj + λN j + bj + εj (2.2)

2.2.3 Doppler

The doppler shift or relative motion of a satellite with respect to a receiver results in a change in the

observed frequency. If the satellites velocity is known, then this observable can be used to estimate

the receivers velocity [19].

The doppler shift can be calculated using Eq. 2.3. This equation is the same as Eq. 2.1 with the

exception that the time derivative of each component is taken.

ρ̇j = Ṙj + ḃj + ε̇j (2.3)

2.3 GPS Positioning

2.3.1 GPS Error Sources

The common GPS error sources can be broken in three catagories. The first error source is con-

tributed to the control segment. These errors are either associated with the estimated location of

the satellite or the satellite clock bias solution. The next group of GPS errors are associated with

the propagation medium. This group of errors are either due to the ionosphere or the troposphere.

The final group of errors are contributed to the measurement errors and are generally the hardest

to mitigate.

Space/Control Segment

The control segment is composed of several monitoring stations that collect data from the satellites

and send the satellites updated clock and ephemeris information. This updated navigation infor-
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mation is estimated using a Kalman filter at the master control station. This corrected ephemeris

information is broadcast to the user and is what enables PPP.

Ephemeris One error that is associated with the control segment is the ephemeris error. The

ephemeris error is the amount of error associated with the satellites estimated position. This error

is associated with several factors, such as, solar radiation pressure, yaw-bias, and aerodynamic drag

[21]. This error is generally decomposed into a radial, in-track and cross-track component. Of these

tree components, the radial component is generally the smallest but has the largest impact on the

user’s positioning estimate [22].

Clock Another error associated with the control segment is the satellite clock error. Even though

the clocks on the GPS satellites are highly stable there can still be a large error associated with the

accumulated satellite clock error. Because of this, the control segment monitors the satellite clocks

with respect to GPS standard time. This error is generally decomposed into three components: the

satellite clock bias, the satellite clock drift, and the satellite clock drift. To correct this error the

control segment broadcasts clock corrects with the navigation message.

Phase Wind-up Due to the nature of the signal being propagated from the GPS satellite (i.e.

right circularyly polarized [19]), the carrier-phase observable is dependant upon the orientation of

the receiver and satellite antennas. This affect can account for up to one wavelength of error, and

is commonly known as phase wind-up [23].

Propogation Medium

Due to the altitude or the GPS orbit, roughly 20,200 km, there are two propagation medium errors:

the ionosphere and the troposphere.

Ionosphere The error associated with the ionosphere is attributed to the total electron content

along the path of the propagated signal [19]. Fortunately, the ionosphere is a dispersive medium,

which means that the amount that the ionosphere affects a signal propagated though it is dependent

upon the frequency of the signal. So to mitigate the ionospheric delay, the dispersive nature of the

medium is leveraged, and a linear combination of the GPS L1 and L2 frequencies (1575.42 MHz

and 1227.60 MHz, respectively) is formed to produce ionospheric-free (IF) pseudorange and carrier

phase measurements[19]. The IF combination for psuedorange and carrier-phase can be seen in Eq.
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2.4 and Eq. 2.5, respectively.

ρjIF = ρjL1

[
f21

f21 − f22

]
− ρjL2

[
f22

f21 − f22

]
= 2.546ρjL1 − 1.546ρjL2 (2.4)

φjIF = φjL1

[
f21

f21 − f22

]
− φjL2

[
f22

f21 − f22

]
= 2.546φjL1 − 1.546φjL2 (2.5)

In Eq. 2.4 and Eq. 2.5 the f1 and f2 are the L1 and L2 frequencies, ρL1 and ρL2 are the pseudorange

measurements on the L1 and L2 frequencies, φL1 and φL2 are the carrier-phase measurements on

the L1 and L2 frequencies. The superscript j in Eq. 2.4 and Eq. 2.5 is used to designate the

measurement between the platform and satellite j.

Troposphere Unfortunately, troposphere is not a dispersive medium for the L1 or L2 carriers, so

it cannot be eliminated by simply constructing a combination of the L1, L2 observables. Additionally

the troposphere is highly temporal as it is a function of temperature, pressure, and humidity. So,

the troposphere is generally modeled as two separate components: the dry component and the wet

component. These components are estimated in the zenith direction using a troposphere model

and mapped to the specific satellite using the elevation angle between the receiver and the satellite.

This concept is show in Eq. 2.6: where md and mw are elevation angle dependent troposphere error

scalings for the dry and wet components, respectively; Tz,d is the zenith troposphere delay associated

with the dry component; Tz,w is the zenith troposphere delay associated with the wet component.

T j = md(el
j)Tz,d +mw(elj)Tz,w (2.6)

There are several models used to estimate the troposphere delay. These models can be decom-

posed into two classes: empirical (i.e. GMF), or based upon data generated with numerical weather

models (i.e. VMF1). The next few paragraphs will be used to describe the troposphere models used

in this thesis.

As an example, two simple troposphere models are shown. The first model is a solely dependent

upon the height of the platform, and is only used to estimate the hydrostatic (i.e. dry) component

of the delay associated with the troposphere. This model can be seen in Eq. 2.7: where h is the

height above the ellipsoid in meters.

Tz,d = 1.013 ∗ 2.27 ∗ e−0.000116h (2.7)
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The next example nominal troposphere estimation model was developed by Saastamoinen [24]. This

model is used to generate both the wet and dry delay. The dry delay can be calculated using Eq.

2.8: where φ is the platforms latitude, h is the platforms height above the ellipsoid in meters, and

Po is the total pressure in millibars. The wet delay can be calculated using Eq. 2.9. In Eq. 2.9, To

is the temperature in kelvin, and eo is the partial pressure due to the water vapor in millibars.

Tz,d = 0.002277(1 + 0.0026cos2φ+ 0.00028h)Po (2.8)

Tz,w = 0.002277(
1255

To
+ 0.05)eo (2.9)

In addition to these two models, three additional models were used in this research. The first

model is the Hopfield model [25]. This is the model that was used within the simulation. The next

two models are used within Real-Time GIPSY-x (RTGx), and unlike the previous models, are derived

from numerical weather models. The first model is the Global Pressure and Temperature Model

(GPT2) [26]. The final troposphere model used is this research is the Vienna Mapping Function

(VMF1) [27].

With the zenith troposphere delay estimated, there is the need to scale the delay as a function

of the satellites position with respect to the receiver. There are several mapping functions which

perform this task. The three that are used within this thesis are : the Niell mapping function [28],

the GMF [29], and the VMF1 [27]. Where it should be noted that each of these mapping functions

assume azimuthal symmetry (i.e. they are solely dependent upon the elevation angle of the satellite).

Measurement Errors

This group of GPS errors are receiver/antenna design, and code structure. This is unlike all of the

previous error sources, which were the same for both the pseudorange and carrier-phase.

Multipath Multipath is an error induced upon the receiver by reflected GPS signals reaching

the receivers antenna [30]. The reflected signal is always delayed and generally significantly weaker

than the direct line-of-sight signal. These reflected signals sum with the original signal to form a

noisy observable. This noise affects the pseudorange and the carrier-phase; however, the affect is

significantly smaller for the carrier-phase observable than the pseudorange observable [31].
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Receiver Thermal noise The most fundamental kind of noise created within electrical circuitry

is caused by the random motion of electrons [32]. This type of noise is generally called thermal

noise. And because there is no correlation two receivers, this is one of the few GPS error sources

that is not mitigated through data differencing [19].

Phase Center Variations The location where the GPS signal is received, known as the phase

center, in general is not the geometric center of the antenna. Not only is this value not the geometric

center of the antenna but also varies dependent upon the orientation of the satellite with respect to

the receiver and the frequency of the signal propagated [33].

2.3.2 PPP Observation Model

The PPP approach utilizes dual-frequency undifferenced GPS observables. Because undifferenced

data is being used, methods for mitigating GPS error sources (e.g., ionospheric delay, tropospheric

delay, and receiver clock delay), which are canceled through data differencing with traditional Differ-

ential GPS (DGPS), must be incorporated in the measurement models. Using the IF combination,

the pseudorange and carrier-phase measurements are modeled as shown in Eq. 2.10 and Eq. 2.11,

respectively: where δtu is the receiver’s clock bias, Tz is the tropospheric delay in the zenith direc-

tion, m(elj) is a user to satellite elevation angle dependent mapping function, λIF is the wavelength

corresponding to the IF combination, and NIF is phase ambiguity. The geometric range between the

platform and the satellite is denoted as Rj , and given as Rj =
√

(xj − xu)2 + (yj − yu)2 + (zj − zu)2,

where the subscript u represents the platforms position, and the superscript j represents the satellite,

both in the same Cartesian reference frame.

ρjIF = Rj + cδtu + Tzm(el.j) + εjρ (2.10)

φjIF = Rj + cδtu + Tzm(elj) + λIFN
j
IF + εjφ (2.11)

In Eqs. 2.10 and 2.11 the remaining un-modeled error sources are indicated with ε. In addition,

the tropospheric delay Tz in Eqs. 2.10 and 2.11 is composed of both a wet and dry components. In

practice, the dry delay makes up the majority of the total zenith path tropospheric delay (i.e. ≈

2.5 meters) and can be well modeled. The wet delay is on the order to 10% the dry delay and is

typically estimated.
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Chapter 3

Inertial Navigation

Parts of this chapter are reproduced from conference papers “Performance Character-

ization of Tightly-Coupled GNSS Precise Point Positioning Inertial Navigation within

a Simulation Environment” [34], “Integration of Inertial Navigation into Real-Time

GIPSY-x (RTGx)” [35]

Sometimes the acronyms IMU and INS are used interchangeably; however, in this thesis, an IMU

is used to denote a set of of three orthogonal accelerometers and three orthogonal gyroscopes while

INS is the processing of IMU data on a navigation computer. The rest of this chapter is organized as

follows: first, a brief overview of inertial measurement devices will be provided; then, common errors

to inertial devices will be discussed; next, the mechanization of the IMU data is covered; finally, the

error state INS formulation will be provided in the inertial frame.

3.1 Inertial Measurement Devices Overview

As stated above, the IMU is composed of three accelerometers and three gyroscopes organized in a

triad. For this thesis, it is assumed that the IMU is rigidly mounted to the body of the platform.

This IMU configuration is commonly called a strapdown system. With a strapdown INS system,

the accelerometers are used to measure the specific force in the body-frame, which is also the non-

gravitational acceleration of the platform. This concept is depicted in Eq. 3.1: where f is the

measured specific force, a is the body’s acceleration, and g is the gravitational acceleration. The

IMU cannot measure gravity so the gravitational term can easily be corrected for by using a gravity
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model.

f = a− g (3.1)

Because the specific force is measured in the body-frame, the accelerometer measurements cannot

simply be integrated twice to estimate the platforms position. Instead, the gyroscopes measured

angular information must be utilized to rotate the accelerometers measurements into the desired

frame where the position and velocity can then be estimated. This processed is generally called the

mechanization of an IMU and is described in greater detail later in this chapter.

3.2 Inertial Measurement Device Common Error Sources

3.2.1 Scale Factor

A scale factor error can be thought of as a linear scaling of the input. In a sensor absent of a scale

factor error, the ratio formed by the input and output signal would equal one; however, that is

generally not the case. In reality the output of the sensor is generally proportional to the input but

scaled by some constant factor.

3.2.2 Non-orthogonality

As stated above, an IMU is composed of three accelerometers and three gyroscopes mounted or-

thogonally. However, due to manufacturing limitations, the sensors are never perfectly mounted

orthogonally. This non-orthogonality of the sensor set leads to a correlations in the measurements.

Luckily, this error can usually be dramatically reduced through a careful calibration.

3.2.3 Bias

The easiest way to conceptualize bias is to consider an IMU firmly placed on a level surface. In this

configuration, the accelerometer with its sensitivity axis in the vertical direction will measure the

gravitational acceleration. That is, the accelerometer should measure 9.81 m/s; however, if there

is a bias present, the reported output will be the summation of the real output and the bias term,

which can be seen in Eq. 3.2.

x = Sf(x) + b (3.2)

In Eq. 3.2, S is a scale factor and b is the bias term.
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3.2.4 Random Walk

The random walk model is used quite frequently in state estimation. This model assumes that at

each time step the variable takes a random step away from its previous value, and the steps are

independent [36]. In this section, two random walk processies will be discussed and how they apply

to the Kalman filters process noise will be described.

Angular Random Walk It is known that the output of a MEMS gyroscope is altered by thermal

noise which fluctuates at a much higher rate that the sampling rate of the sensor [37]. This high rate

thermal noise causes the sampled data to be perturbated by white noise. The integration of a white

noise process causes a random walk process [36]. The integration of the output of the gyroscope

to calculate attitude produces a random walk error, commonly denoted as angular random walk

(ARW).

The ARW term is applied to the process noise of the Kalman filter as the amount of uncertienty

in the gyroscope bias term.

Velocity Random Walk As stated above, the output from a MEMS accelerometer is altered by

a white noise sequence. The output of the accelerometer must be integrated to calculate velocity,

so the white noise on the output of an accelerometer creates a velocity random walk (VRW).

The VRW term is applied to the process noise of the Kalman filter as the amount of uncertienty

in the accelerometer bias term.

3.3 INS Mechanization

The mechanization of the IMU data is composed of four steps: the attitude update, the specific force

transformation, the velocity update, and the position update. The section details the mechanization

in the Earth-Centered Inertial Frame (ECI).

Attitude Update

To perform the attitude update, a third order Runge-Kutta method for quaternion integration,

provided by Jekeli[38], is used in order to limit the algorithmic integration errors to the fourth

order. The quaternion is updated using Eq. 3.3: where I is a 4x4 identity matrix, β is a matrix

composed of the delta angles measured with the gyroscopes and can be seen in Eq. 3.4, the subscript
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t signifies the discrete samples (e.g. t− 2 is using data from two time steps previous) .

q̂t = [I +
1

12
(B̂t + 4B̂t−1 + B̂t−2) +

1

12
(I +

1

4
β̂t)β̂t−1β̂t−2 +

1

12
β̂t(β̂t−1 −

1

2
β̂t−2)]q̂t−2 (3.3)

In Eq. 3.4 n takes an integer value of 1, 2, or 3.

β̂t+1−n =

 0 (3(δθ1)t+1−n−(δθ1)t−n) (3(δθ2)t+1−n−(δθ2)t−n) (3(δθ3)t+1−n−(δθ3)t−n)

(−3(δθ1)t+1−n+(δθ1)t−n) 0 (3(δθ3)t+1−n−(δθ3)t−n) (−3(δθ2)t+1−n+(δθ2)t−n)

(−3(δθ2)t+1−n+(δθ2)t−n) (−3(δθ3)t+1−n+(δθ3)t−n) 0 (3(δθ1)t+1−n−(δθ1)t−n)

(−3(δθ3)t+1−n+(δθ3)t−n) (3(δθ2)t+1−n−(δθ2)t−n) (−3(δθ1)t+1−n+(δθ1)t−n) 0


(3.4)

The platform’s body to inertial direction cosine matrix (DCM) is related to the updated quaternion

of the form q̂t = [a, b, c, d]
T

using Eq. 3.5. It should be noted that the quaternion needs to be

normalized in order to maintian the orthonormal characteristic of the DCM.

Cib =


a2 + b2 − c2 − d2 2(bc+ ad) 2(bd− ac)

2(bc− ad) 2 − b2 + c2 − d2 2(cd+ ab)

2(bd+ ac) 2(cd− ab) a2 − b2 − c2 + d2

 (3.5)

Specific Force Transformation

After the attitude has been updated, the next step in the INS mechanization is the transformation

of the accelerometer measured specific force, or equivalently, incremental changes to the body-axis

velocity ∆vb into the inertial frame. This must be done because the accelerometers measures specific

force along the body-axis; however, for the velocity update step the specific force must be in the

inertial frame. The transformed ∆vb can be found using Eq. 3.6 where Cib is the body to inertial

DCM of the INS updated quaternion from Eq. 3.5.

∆vi = Cib∆v
b (3.6)

Velocity Update

With the transformed specific force, the updated velocity is calculated using Eq. 3.7. Where the

updated velocity is the summation of the previous velocity value (k − 1|k − 1), the IMU measured

change in velocity, ∆vi, and the acceleration due to gravity in the inertial frame, γi, integrated over

the sampling interval τ .

vik|k−1 = vik−1|k−1 + ∆vi + γiτ (3.7)
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Position Update

The final step in the INS mechanization is to calculate the updated position. The updated position

estimate is a function of the previous position estimate and the average of the previous and updated

velocity estimates integrated over the sampling interval.

rik|k−1 = rik−1|k−1 + (vik|k−1 + vik−1|k−1)
τ

2
(3.8)

Attitude Transformation

In most aerospace applications, it is useful to represent the platform attitude with respect to a

locally-level NED navigation frame. However, in the presented INS mechanization, a quaternion is

used to represent the platform’s attitude with respect to the Earth Centered Inertial (ECI) frame.

To calculate the body-to-navigation Euler angles, the DCM must be transformed into the navigation

frame. This is done using Eq. 3.9, where the Earth-Centered-Earth-Fixed (ECEF) to locally-level

NED navigation ,Cne , and ECEF to inertial, Cie, transformations are defined in Eq. 3.10 and Eq.

3.11, respectively, which can be found in numerous texts [39, 38].

Cnb = Cne C
i
eC

i
b (3.9)

Cne =


-sin(Lat)cos(Lon) -sin(Lon) -cos(Lat)cos(Lon)

-sin(Lat)sin(Lon) cos(Lon) -cos(Lat)sin(Lon)

cos(Lat) 0 -sin(Lat)

 (3.10)

Cie =


cos(ωie(t− t0) −sin(ωie(t− t0) 0

sin(ωie(t− t0) cos(ωie(t− t0) 0

0 0 1

 (3.11)

In Eq. 3.11, the Earth’s rotation rate with respect to an ECI frame is represented by ωie and to is

the reference epoch at which the ECI and ECEF frame are co-incident (e.g. J2000 is a typical ECI

realization). After transforming the body-to-inertial (i.e. ECI) DCM into the body-to-navigation

(i.e. locally-level NED) DCM, the platform’s traditional aircraft Euler angles are extracted using Eq.

3.12, Eq. 3.13, and Eq 3.14: where Cnb is the body to navigation DCM, and the number subscript
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corresponds to the row and column location within the DCM [40].

φ = atan2(Cnb 31, C
n
b 32) (3.12)

θ = acos(Cnb 33) (3.13)

ψ = −atan2(Cnb 13, C
n
b 23) (3.14)

3.4 INS Error Model

To calculate INS error-state system matrix, F , the derivative of each error-state model equation

with respect to each error state must be taken, where the INS states can be seen in Eq. 3.15. This

derivation closely follows that outlined in Groves [39]. In this section, the time derivative of the

attitude, velocity, and position are described. After defining the time derivatives of the error state

equations, the total system matrix and the state transition matrix (STM) is defined. The time

derivative of the attitude error can be seen in Eq. 3.16: where Ĉib is the estimated body to inertial

transition matrix, and bg is the estimated bias on the gyroscope.

xins =



δΨ

δv

δr

ba

bg


(3.15)

δΨ̇i = Ĉibbg (3.16)

Because the velocity error is a function of the accelerometer bias, gyroscope bias, and the gravity

model that is employed, it is slightly more complicated than the attitude error. The time derivative

of the velocity error, δV̇ i, can be seen in Eq. 3.17. In Eq. 3.17 Ĉib is the body to inertial frame

transformation matrix, f̂ i is the IMU accelerometer measure specific force in the inertial frame δv/τ ,

δΨi is the estimated attitude error, g is the estimated gravity vector for the platforms position, rees

is the geocentric radius at the platform position, r̂i is the INS estimated position vector, δri is the
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estimated position error, and ba is the estimated accelerometer sensor biases.

δV̇ i = −(Ĉibf̂
i)δΨi +

2g

rees

r̂iib

|r̂iib
2
|
r̂i
T
δri + Ĉibba (3.17)

With INS mechanized in an inertial frame, the time-derivative of position is simply velocity. This

means that the time-derivative of the position error in the inertial frame is the velocity error.

δṙi = δV i (3.18)

Using the time derivative of each error state equation, the system matrix is defined in Eq. 3.19.

F i =



03 03 03 03 Ĉib

−(Ĉibf̂
i) 03

2g
rees

r̂i

|r̂i2|
r̂i
T

Ĉib 03

03 I3 03 03 03

03 03 03 03 03

03 03 03 03 03


(3.19)

The discrete System Transformation Matrix (STM) is then calculated using the system matrix and

Eq. 3.20: where F i is the system matrix, and τ is the discretization interval. For this study, a

third-order approximation of the STM was used as shown by the expansion in Eq. 3.21, as provided

by Groves[39].

Φ = eF
iτ (3.20)

Φi =



I3 O3 O3 O3 Ĉibτ

(F i21τ + 1
6F

i
23F

i
21τ

2) (I3 + 1
2F

i
23τ

2) (F i23τ + 1
6F

i
23

2
τ3) (Ĉibτ + 1

6F
i
23Ĉ

i
bτ

3) ( 1
2F

i
21Ĉ

i
bτ

2)

( 1
2F

i
21τ

2) (I3τ + 1
6F

i
23τ

3) (I3 + 1
2F

i
23τ

2) (1
2 Ĉ

i
bτ

2) ( 1
6F

i
21Ĉ

i
bτ

3)

03 03 03 I3 03

03 03 03 03 I3


(3.21)
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Chapter 4

GPS INS Integration

Parts of this chapter are reproduced from conference paper “Performance Character-

ization of Tightly-Coupled GNSS Precise Point Positioning Inertial Navigation within

a Simulation Environment” [34]

The integration of GPS and INS data is a well studied field and discussion of its integration can

be trcked back quite far [41]. The reason the fusion of these two data sources is so prevalent, in

navigation applications, tracks back to the complementary nature of the data itself. These implies

that the two error sources are completely different. The INS is stable over short time intervals

but the error grows unbounded if left unaided. On the other hand, the GPS errors are essentially

time invariant. For GPS/INS integration there are three strategies that have been well studied;

however, for aerospace applications only the first two are commonly used, so our discussion will be

limited to those. The first, and simplistic to implement, is the loosely coupled method [42]. This

method essentially has two distinct systems where to data is fused after the INS and GPS systems

have separately calculated their respective state estimate. The tightly coupled method utilizes that

raw pseudorange and carrier-phase data from the GPS receiver to estimate a single state estimate

with the INS. For applications where an aircraft is either experiencing high dynamics or a GPS

challenging environment, the tightly-coupled architecture has been shown to have an advantage [9],

[10].
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4.1 Integration Methods

This section will provide a detailed discussion of the two GPS/INS integration strategies commonly

used for aerospace applications.

4.1.1 Loosely Coupled

The loosely coupled architecture is an integration method that utilizes three distinct sub-systems,

which can be seen in Fig. 4.1. This method is also commonly called decentralized in literature.

The first sub-system is the GPS block. In this block there is a GPS receiver that collects raw

pseudorange and carrier-phase data. These observables are then used to estimate the platforms

position using a GPS only state estimator. If an estimate of the platforms velocity is desired that

the doppler observable can also be processed within the GPS module.

The next sub-system contains the INS. This block is composed of an IMU and a navigation

processor. Within the navigation processor are the algorithms to mechanize the IMU data, which

can be found in section 3.3.

Finally, there is a GPS/INS kalman filter that is used to estimate the platforms total state. This.

Additionally, it should be noted that the loosely-coupled system can also operate in a closed-loop

manner where the INS estimated errors are fed-back to the IMU at every GPS update.

Figure 4.1: Loosely-Coupled GPS/INS
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4.1.2 Tightly Coupled

Now, the tightly-coupled, or centralized, integration architecture can be discussed. A schematic

of the integration method can be seen in 4.2. From this diagram it should be noted that there

are no longer three distinct sub-systems. Instead, difference between the GPS observables and the

INS predicted observables are used as the input to the Kalman filter. Where the INS predicted

measurements are calculated using the known satellite position and user position and velocity from

the INS

Figure 4.2: Tightly-Coupled GPS/INS

4.1.3 Deeply Coupled

In addition to the loosely-coupled and tightly-coupled integration stragities, there is also a deeply

copuled integration stragety first introduced by Soloviev [43]. In this integration stragety, the inertial

data and measurement residuals used to control the signal correlation process inside the GPS receiver

[44]. This method of integration has the benefit of being able to track and reqaquire GPS observables

that are much weak than nominal signal power [44].

4.1.4 Comparison of Integration Methods

Now that the two integration methods commonly used for aerospace navigation applications have

been discussed, it is beneficial to compare the two methods. The only true difference between the

integration strategies is the type of information shared between the two systems. In the loosely-

coupled system, the GPS computed solution is combined with the INS computed solution. On the

other hand, with the tightly-coupled system the raw GPS observables are combined with the INS

predicted GPS observables. With that difference in mind, it should be noted that both integration

strategies will provide the platform with the ability to estimate the same states ( e.g. attitude,
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velocity, position, carrier-phase bias ). The advantages of the loosely-coupled systems come from

the independence of the two measurement systems. This separation of the two filters means that

each filter can be less complex, which implies less computational complexity and faster processing.

Additionally, the separation of the GPS and INS makes the system robust to sensor failures. The

true advantage of the tighly-coupled system becomes apparent when considering kinematic airborne

applications. For these applications it is common to have abrupt attitude changes that induce poor

GPS satellite geometry. With the tightly-coupled system architecture it is possible to update the

filter with GPS data even if there are less than four satellites in view [39].

4.2 Extended Kalman Filter

Within the navigation community the Kalman filter [45] is the algorithm of choice to optimally

combining multiple data sources. The Kalman filter is a recursive state space estimator that contains

two broad steps: propagation and update. In this work a derivation of the Kalman filter will not

shown, as it is widely available in literature [46]; however a schematic depicting the Kalman filter

can be seen in Fig. 4.3 and a detailed discussion will be provided in this section.

As stated above, the Kalman filter is an optimal state estimator (optimal with respect to mean

square error of the estimated states); however, the linear Kalman filter, introduced in 1960, is only

optimal for linear dynamics and measurement models. One of the most common ways to extend

this idea to non-linear dynamics is called the Extended Kalman Filter (EKF) [46]. The EKF uses

that same data processing technique as the Kalman filter except the system is linearized about some

nominal point (in our case around the output of the INS). In addition to the EKF, there is another

commonly used non-linear state estimation technique known as the unscented Kalman filter (UKF)

[47]. This techniuqe utilizes the unscented transformation to propagate mean and covariance. The

UKF is beneficial when the system is very non-linear on the time scale of the measuremtn update;

however, it has been noted in literature that this is not the case for GPS/INS integration [48].

Because of this, the EKF was selected as the filtering technique for this research.

With that in mind, Fig. 4.3 can now be described. As shown in the figure, there are two major

steps associated with the Kalman filter: the prediction and the update of the estimates after the

measurements.
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Figure 4.3: Kalman Filtering Algorithm Schematic

4.2.1 Prediction

The prediction step is used to propagate the state estimate, x̂, and associated covariance matrix,

P , using the system dynamics. The equation to propagate the state estimate can be seen in Eq.

4.1: where theˆis used to signify an estimated parameter, Φ is the state transition matrix (STM),

the subscript k or k − 1 is used to represent the time step, and the superscript − signifies that the

prediction is before the measurement update.

x̂−k = Φ(tk, tk−1)x̂+k−1 (4.1)
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The equation to propagate the covariance matrix can be seen in Eq. 4.2: where Qk is the process

noise covariance or the amount of uncertainty in our ability to propagate the state.

P−k = Φ(tk, tk−1)P+
k−1Φ(tk, tk−1)

T
+Qk (4.2)

4.2.2 Measurement Update

Before the state estimate and covariance can updated with the new measurements, the Kalman gain

must be calculated. This is because the Kalman gain is a metric to inform the filter of the relative

weight that should be applied to the state estimate and the measurements. The Kalman gain can

be calculated using Eq. 4.3. The R in Eq. 4.3 is the measurement covariance matrix and H is the

measurement sensitivity matrix.

Kk = P−k H
T
k (HkP

−
k H

T
k +R)

−1
(4.3)

After the Kalman gain has been calculated, both the state estimate and the associated covariance

can be updated with the new measurements. The equations to propagate both the state estimate

and the covariance can be seen in Eq. 4.4 and 4.5, respectively. In Eq. 4.4, Hk is a matrix that is

used to map the estimated states to the measurements, and ỹ is the measurement vector.

x̂+k = x̂−k +Kk(ỹk −Hkx
−
k (4.4)

P+
k = (I −KkHk)P−k (I −KkHk)

T
+KkRkK

T
k (4.5)

And because the Kalman filter is a recursive algorithm, this whole process starts over again with

new measurements.

4.2.3 Assigning Process and Measurement Noise

The Kalman filter has tree tuning matricies that must be specified for the specific application. Since

the Kalman filter is known to be sensitive to tuning parameters [46], this section will detail the

specific tuning for this application.
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State Covariance Matrix – P

The initial state covariance matrix, Po is used to define the amount of uncertienty that is assumed

in the initial states. In this application, Patt, Pvel, and Ppos, are the amount of uncertienty in the

attitude, velocity, and position states, respectively. These values were found emperically through

several simulation trials. The elements Pacc and Pgyro are the amount of uncertienty that is assumed

in the accelerometer and gyroscope bias states, respectively. Those values are provided my the IMU

manufacturer and are generally denoted as the velocity and angular random walk.

Pins =



Patt

Pvel

Ppos

Pacc

Pgyro


(4.6)

In addition to the INS states, the amount of uncertienty in the GPS states (the carrier-phase

bias for each satellite in view), is also constructed as a diagonal matrix with 25 meters in every

diagonal term. The construction of the total inital state covariance matrix is shown in Eq. 4.10.

Po =

Pins 0

0 Pgps

 (4.7)

Measurement Noise Covariance Matrix – R

The measurement noise covariance matrix, R, is used to account for several unaccounted for GPS

errors (i.e. multipaht, thermal noise, variations in the atmosphere, and satelltie clock noise). This

matrix is usually diagonal unless the pseudorange measurements are carrier-smoothed [39]. In this

research the R matrix is a function of the elveation angle of the satellite. This can be seen in Eq.

4.8: where elj is used to denote the elevation anlge between the receiver and the jth satellite.

Rk(j, j) =
1

sin(elj)
Rk−1(j, j) (4.8)

Process Noise Covariance Matrix – Q

The process noise covariance matrix, Q, is used to describes how much the state is expected to vary

over the interval of one time step due to the effect of the process noise [36].In this case, Qgps is

matrix composed of zeros where the size is dependant upon the number of satellites in view. Qins
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is a matrix composed of the uncertinty in the INS states, and can be found by looking at the IMU

error specifications.

Qatt and Qvel are related to the angular random ralk (ARW) and velocity random walk (VRW)

associated with the IMU used, respectively. Additionally, the Qacc and Qgyro are related to the

gyroscope in-run bias and the accelerometer in-run bias associated with the IMU used, respectively.

Qins =



Qatt

Qvel

Qpos

Qacc

Qgyro


(4.9)

Q =

Qins 0

0 Qgps

 (4.10)

4.3 Tightly Coupled Error State Extended Kalman Filter

With the information provided in the last three chapters, the data fusion architecture selected for

this research can be discussed. Due to the dynamic nature of the platform that is being used, a

tightly-coupled error-state extended Kalman filter is adopted from Groves[39]. A schematic of the

tightly coupled PPP/INS integration architecture can be seen in Figure 4.2. Using the difference

between the GPS observables and the INS predicted observables, the Extended-Kalman filter is

used to estimate the INS solution errors with the state vector as shown in Eq. 4.11: where δΨ is

the estimated attitude error, δv is the estimated velocity error, δr is the estimated position error,

ba is the estimated accelerometer sensor biases, bg is the estimated gyroscope sensor biases, δtu is

the estimated receiver clock bias, Tw is the estimated residual tropospheric delay along the zenith
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direction, and N is the estimated phase bias for each satellite in view.

x =



δΨ

δv

δr

ba

bg

δtu

Tw

N1

...

Nj



(4.11)

It can also be seen in Figure 4.2 that the estimated sensor biases are fed-back to correct the raw IMU

measurements. Feedback is done at every time that a GPS update data is collected in a closed-loop

manner. For the position and velocity estimated error states δv and δr are used to correct INS by

subtracting them off of the INS estimated position and velocity.

4.4 PPP Measurement Sensitivity Matrix

The measurement sensitiviy matrix, H, is used to map the estimated states to the measured values.

Becuause of this, the H matrix must be defined specifically for each application. This section will

detail the measurement sensitivity matrix for a PPP/INS filter.

The H matrix can be decomosed into two sections: the pseudorange section and the carrier-phase

section. The measurement sensitivity matrix for the pseudorange measurements is seen in Eq. 4.12:

where ui is the unit vector between the ith satellite and the receiver, and mi is the elevation angle

dependant mapping for the troposphere scalling.

Hpseudorange =


01x6 ui 01x6 1 mi 01xn

... n− 2
...

01x6 ui 01x6 1 mi 01xn

 (4.12)

The measurement sensitivity matrix for the carrier-phase data is show in Eq. 4.13: where where

ui is the unit vector between the ith satellite and the receiver, mi is the elevation angle dependant
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mapping for the troposphere scalling, and ei is the ith row of an idenity matrix.

Hcarrierphase =


01x6 ui 01x6 1 mi ei

... n− 2
...

01x6 ui 01x6 1 mi ei

 (4.13)

The total H matrix can be constructed as shown in Eq. 4.14: where the total dimensions of the

matrix are 2nxN +n. Where n is the number of satellites in view at the epoch and N is the number

of non-bias parameters (i.e. attitude, velocity, position).

Htotal =

 Hpseudorange

Hcarrier−phase

 (4.14)

4.5 IMU to GPS Lever Arm

The above INS mechanization provides estimates of the position and velocity located at the center

of the IMU. In order to combine with GNSS measurements, the INS solution must be transposed

to the GNSS antenna location. This can be done using the estimated platform attitude Ĉib and

knowledge of the lever arm from the IMU to the GNSS antenna, Lb, represented in the platforms

North, East, Down (NED) body-axis.

ri,GPSAnt.k|k−1 = ri,IMU
k|k−1 + ĈibLb (4.15)

Likewise the velocity can be transposed further taking into consideration the rotation of the

body-frame.

vi,GPSAnt.k|k−1 = vi,IMU
k|k−1 + ĈibΩ

b
ibLb (4.16)

where Ωbib is the skew-symmetric matrix of the IMU measured angular rate that has been cali-

brated by the estimated gyroscope biases. The operation is performed upon each GNSS measurement

update, and reversed after closed-loop feedback correction has been applied, in order to resume INS

integration about the location of the IMU.
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4.6 GNSS/IMU Measurement Time-Alignment

Most commercially available high-accuracy GNSS/IMU systems provide IMU measurements pre-

cisely stamped to the GPS time- scale, however, the IMU measurements are typically not scheduled

to be precisely aligned with the GPS measurement epochs. To ensure time-alignment in the RTGx

implementation, the IMU data was used to predict the navigation state to an epoch just past the

GNSS observation epoch. This prediction was then used to linearly interpolate the navigation states

back to the time of the GNSS measurements. Likewise, upon each GNSS update, an error-state

transformation matrix, that provides the mapping of the INS error-states between the INS time-

step (that is just past the GNSS measurement epoch), and the exact GNSS measurement epoch was

derived. Prior to the GNSS update, the inverse of this transformation was used to down-date the

predicted INS error-states to the GNSS measurement epochs. After the update was completed, this

transformation was used to keep the INS error states consistent with the INS time-tags.
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Chapter 5

Simulation Results

Parts of this chapter are reproduced from conference paper “Performance Character-

ization of Tightly-Coupled GNSS Precise Point Positioning Inertial Navigation within

a Simulation Environment” [34]

5.1 Simulation Overview

Using the models described in the previous chapters and a commercially available GPS constellation

simulation toolbox, SatNav-3.04 Toolbox[49], a simulation environment was developed to generate

raw IMU and GPS data. The simulation environment architecture can be seen in Figure 5.1. This

section will provide an overview of the simulation environment. First, we will discuss the inputs to

the simulation, next we will provide an overview of the GPS data generation, and finally we will

discuss the generation of the IMU data.

5.1.1 Simulation Inputs

Before the generation of GPS and IMU data, several user-defined inputs are selected. One such

input is the defined flight path. For this study, four flight paths of varying dynamics were designed

to replicate typical data collection flights for NASA’s UAVSAR airborne radar platform. As an

example, two of the flight paths are shown in Figure 5.2 and Figure 5.3. Other inputs that must

be defined are the origin (e.g Lat., Lon., Height) of the flight and the time that the flight occurs.

These parameters are randomized for every simulation run so that the generated data will have

differing satellite geometry and atmospheric effects. In addition, the magnitude of the GPS error

sources were selected before each simulation trial (e.g., multipath intensity, troposphere, and thermal
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Figure 5.1: Flowchart Depicting the Simulation Environment
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Figure 5.2: Flight Path 2
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Figure 5.3: Flight Path 3

noise). Finally, one of the four IMUs that were modeled for this study is selected for each run.

5.1.2 GPS Data Generation

Using the SatNav-3.04 Toolbox, dual-frequency pseudorange and carrier-phase observables are gen-

erated at 10 Hz over the specified flight path. For this study, modifications were made that are

pertinent to common aircraft positioning error-sources. For example, the GPS simulator was modi-

fied to include attitude dependent satellite visibility masking and carrier-phase breaks. Figures 5.4

and 5.5 are included to depict the attitude dependent satellite masking. That is, when a satellite is

obscured or nearly obscured due to a change in platform attitude, it is masked from view and the

the potential of a carrier-phase breaks is increased. Figure 5.6 and Figure 5.7 are included to depict

an example of carrier-phase breaks being added into the GPS data.

This simulation also includes an orbit and clock error model. The modeled errors were determined

by differing JPL’s International GNSS Service (IGS) submission with European Center for Orbit
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Figure 5.4: Attitude Dependent Satellite Mask-
ing

Figure 5.5: Number of Satellites in View for
Flight

Figure 5.6: Phase Breaks for an Example Flight Figure 5.7: Roll for an Example Flight

Determination (CODE) submission. The error between the satellite ephemeris products are resolved

in the radial, in-track, and cross-track (RIC) components. After transforming the error into RIC

components, it is fit using a multi-sinusodial model. This process was completed for each satellite.

The modeled satellite clock bias can be seen in Fig. 5.8.

5.1.3 IMU Data Generation

To generate IMU data, a commercially available, tactical grade IMU was selected to model. The

IMU was modeled with a turn-on bias, a random walk component, and white noise. The modeled

IMU was scaled, with respect to Table 1, to simulated four IMUs of varying quality. The allan

deviation of the four accelerometers and four gyroscopes along the x-axis for twelve hour of data

can be seen in Figure 5.9.

5.1.4 Simulation Simplifications

It should be noted that the simulation environment makes several simplifying assumptions. These

include perfect knowledge of ECI to ECEF transformation, neglect relativistic effects (i.e. from the
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Figure 5.8: Error Between Broadcast Products of IGS and CODE Products
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Figure 5.9: Allan Deviation for Accelerometer and Gyroscope

GPS broadcast correction), neglect of receiver and satellite antenna phase center variation, neglect

of carrier-phase wind-up, and neglect of lever arm of GPS transmiting antenna.
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5.2 Monte Carlo Design

To generate the results shown in the next section, a Monte Carlo style design was implemented.

Each simulation trail was initialized at random across the distributions specified in Table 1. One

hundred sets of data were generated. GPS and IMU data were generated for every flight at ten and

two hundred hertz, respectively. The one hundred data sets were run through a PPP only filter and

a tightly-coupled PPP/INS filter to characterize the performance increase by including INS.

Table 5.1: Simulation Parameters

Error-Sources Model Parameters Notes

Accelerometer In-run Bias σ = 1mg , V RW =

0.2m/s√
hr

Scaled Honeywell HG1700AG72
SF = (1, 1

50 , 1
200 , 1

400 )

Gyroscope In-run Bias σ = 9.6e−6 radsec ,

ARW = 0.2 deg√
hr

Scaled Honeywell HG1700AG72
SF = (1, 1

50 , 1
200 , 1

400 )

Thermal Noise σρ = 0.32m , σφ = 0.16λ linear scale factor randomly se-
lected between [0,1]

Multipath 1.0 intensity: σ = 0.4m, τ = 15sec linear scale factor randomly se-
lected between [0,2]

Tropospheric Delay Percent of error assumed handled
by broadcast correction

Modified Hopfield with linear
scale factor randomly selected be-
tween [0,1.5]

Ionospheric Delay First order ionospheric effects mit-
igated with dual-frequency

linear scale factor randomly se-
lected between [0.7,1]

Receiver Clock Bias Initial Bias σ = 30ns, δτb = 100ns Tuneable
Phase Ambiguity Random initialization and phase

breaks correlated with UAV atti-
tude

likelihood varied from [0.008,0.02]

Orbits Orbits σ = 5cm Description provided in section
III.B

5.3 Results

5.3.1 Absolute Positioning Performance

To quantify the potential benefits of INS inclusion for UAV navigation in scenarios that typically

degrade GPS performance, a sensitivity analysis of positioning performance was conducted under

varying conditions. The metric used to quantify the error for the first nine figures in this section is

Root Mean Square (RMS). The equation to calculate RMS can be seen in Eq. 5.1: where n is the
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East
( cm )

North
( cm )

Vertical
( cm )

Min 4.08 4.89 16.20
Max 198.07 259.77 407.50
Mean 62.85 65.25 146.52

Median 50.49 55.07 137.39
Std 44.71 46.76 78.23

Table 5.2: PPP Only Statistics (Simulation)

number of data points, X is the actual value of the data, and X̂ is the estimated value of the data.

XRMS =

√√√√ n∑
i=1

1

n
(X2(i)− X̂2(i)) (5.1)

The median of the RMS positioning error for the one hundred flight can be seen in Fig. 5.10. From

Fig. 5.10 it should be noted that the PPP/INS filter outperformed PPP only filter in east, north and

vertical directions, with the most notable improvement being in the vertical direction. The statistics

for the one hundred flights can be seen in Table 2, Table 3 and Table 4. The next eight figures
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Figure 5.10: Median of Per Flight RMS Error

in this section depict the reduction in RMS error through the inclusion of INS. The reduction in

error was calculated by taking the difference of the positioning output for the PPP only filter and

the PPP/INS filter. Figure 5.11 shows the median of the per flight RMS error reduction due to the

35



East
( cm )

North
( cm )

Vertical
( cm )

Min 5.65 2.94 17.15
Max 137.36 121.80 310.95
Mean 37.88 25.30 70.55

Median 34.90 20.99 53.82
Std 24.23 19.38 55.81

Table 5.3: PPP/INS Statistics (Simulation)

East
( cm )

North
( cm )

Vertical
( cm )

Min -55.42 -64.12 -206.92
Max 158.02 221.40 343.94
Mean 24.96 39.93 75.97

Median 16.94 31.76 69.62
Std 32.65 38.75 85.31

Table 5.4: (PPP - PPP/INS) Statistics (Simulation)

inclusion of INS. From Fig. 5.11 it can be seen that the error reduction in the East, 17 centimeters,

and North, 32 centimeters, directions are similar. The error reduction is the vertical direction is the

most notable at 70 centimeters. Figure 5.12 depicts the RMS error reduction distribution in the

east, north and vertical directions for the 100 trials. This was done by calculating the cumulative

distribution function (CDF) of the RMS positioning error reduction for all of the simulated flight

due to INS. From 5.12 it should be noted that the median error is as shown in Fig. 5.11; however,

there are situations where the inclusion of INS can reduce the vertical positioning error by as much

as 200 centimeters. However, there are times where the CDF is negative, meaning that the PPP-only

filter outperformed the PPP/INS filter. For the cases in which PPP-only outperformance PPP/INS

it is expected that that multiple satellite loss of lock or phase breaks may have occurred early in the

filter run, before the phase biases, positioning, residual troposphere delay, and IMU sensor biases

converged, leaving the PPP/INS solution to ”hold on” to a poor solution for a longer period than

the PPP-only filter; however these flights need further review. Now that the median RMS error

reduction has been discussed, it is of interest to discuss the reduction of the RMS error due to INS

with respect to the input parameters (e.g., flight path, IMU selection and GPS error sources). Figure

5.13 shows the median RMS error reduction in the east, north and vertical directions with respect to

the flight path selected. The four flight paths were designed to have increasing dynamics (i.e., flight

path one is the most docile and flight path four has the highest dynamics). Figure 5.13 does not

show a definitive trend in positioning improvement as path dynamics increase. The likely reason for

this lack of trend is that the dynamics did not vary enough between paths. Figure 5.14 shows the
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Figure 5.11: Median of Per Flight RMS Error Reduction from INS
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Figure 5.12: CDF of RMS Positioning Error Reduction form INS

median RMS error reduction in the east, north and vertical directions with respect to the number

of phase breaks during a flight. From Fig. 5.14 it should be noted that there is a clear correlation

between the number of phase breaks and the RMS positioning error reduction due to INS.
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Figure 5.13: Median of Per Flight RMS Error Reduction from INS by Flight Path
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Figure 5.14: Median of Per Flight RMS Error Reduction from INS by Number of Phase Breaks

Figure 5.15 shows that median of the per flight RMS error reduction from INS by IMU type.

As all of the IMUs for this study were modeled based upon error characteristics for commercially

available tactical grade IMUs with similar error characteristics (e.g., all IMUs were scaled from
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IMU 1), there is not a definitive trend in positioning improvement. Figure 5.16 depicts the RMS
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Figure 5.15: Median of Per Flight RMS Error Reduction from INS by IMU

positioning error reduction due to INS with respect to the magnitude of the troposphere. Where the

troposphere is modeled using the Modified Hopfield model and scaled at random, for each simulation

trial, with respect to Table 1. From Fig. 5.16 a clear trend is shown, which is that the magnitude

of the RMS error reduction is dependent upon the magnitude of the troposphere. The dependence

of the RMS positioning error reduction due to INS as a function of multipath can be seen in Figure

5.17. Multipath is modeled as a Gauss-Markov process with a standard deviation of 0.4 meters and

a time constant of 15 seconds, as described in Table 1. This error source is linearly scaled for each

simulation trial.

5.3.2 Sensitivity to PPP Product Quality

Figure 5.18 depicts the benefit of including INS as the quality of the PPP products is reduced.

That is, for this analysis, the GPS data was regenerated in the same manner as previously describe;

however, the magnitude of the satellite error was randomly selected from four magnitude (e.g.,

Product 1 = 0.5 cm, Product 2 = 10 cm, Product 3 = 20 cm, and Product 4 = 30 cm).
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Figure 5.16: Median of Per Flight RMS Error Reduction from INS by Magnitude of Troposphere
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Figure 5.17: Median of Per Flight RMS Error Reduction from INS by Magnitude of Multipath

5.3.3 Attitude Estimation Performance

An implicit benefit of PPP/INS over single antenna PPP-only is that platform attitude is estimated

in the filter. Figure 5.19 shows the typical attitude estimation performance of a single simulation
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Figure 5.18: Median of Per Flight RMS Error Reduction from INS by PPP Product

trial. As shown in Fig. 5.19 roll, pitch and yaw are all estimated at sub-0.1 degree accuracy. A
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Figure 5.19: Example Attitude Estimation Error over a Single Flight

cumulative distribution of the attitude estimation performance of the 100 trials is shown in Fig.

5.20. As illustrated in Fig. 5.20 the median attitude estimation error is a few hundredths of a

41



Degrees
10

-2
10

-1
10

0
10

1
10

2

 F
ra

ct
io

n 
of

 T
ria

ls

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 CDF of RMS Attitude Error over 100 Trials

Roll Median = 0.026 deg.
Pitch Median = 0.030 deg.
Yaw Median = 0.387 deg.

Figure 5.20: Cumulative Attitude Estimation Performance over 100 Flights

degree for roll and pitch, and an order of magnitude worse for the yaw angle. Poor yaw estimation

is expected for flight profiles that are predominately steady-level flight. Just as in positioning, there

are a handful of PPP/INS flights that have poor attitude estimation performance.

5.3.4 Solution Convergence

As mentioned in the literature review, PPP convergence is often cited as a downside to the PPP

approach. Figure 5.21 was created by averaging the absolute phase bias estimate from the true

simulated phases biases, epoch wise, for all 100 trials. As shown in Figures 5.21, the PPP/INS solu-

tion converges quicker than the PPP-only solution, which is important for reaching the performance

similar to that of RTK.

5.3.5 Smoothness of Positioning Solution

In general, the PPP/INS improvement is attributed to the smoother positioning performance. This

claim can be substantiated by conducting a frequency analysis of the positioning error time-series.

For example, Fig. 5.22 shows a periodogram of the amplitude of the position error in the vertical-

axis for a typical flight trial. The periodogram can be evaluated up to 5Hz since the positioning

residuals are available at 10Hz (i.e. the GPS update rate). As shown in Fig. 5.22, at the low

42



Time from Filter Start (seconds)

0 10 29 30 40 50

P
h

a
s
e
 B

ia
s
 E

r
r
o

r
 (

m
e
te

r
)

0

0.1

0.2

0.3

0.4

0.5

0.6
Average Absolute Phase Bias Estimation Error For All Arc of 100 Simulations

PPP

PPP\INS

Figure 5.21: Average Absolute Phase Bias Estimation Error

Figure 5.22: Periodogram of Vertical Position Error for Single Flight

frequencies the positioning performance is the same, and there is no noticeable difference in the

absolute positioning performance, however, at the higher frequencies the PPP/INS error amplitude

is reduced when compared to PPP. This analysis suggests smoother positioning from PPP/INS,
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which is critical for feedback control systems.
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Chapter 6

Flight Data Results

Parts of this chapter are reproduced from conference paper “Integration of Inertial

Navigation into Real-Time GIPSY-x (RTGx)” [35], and journal paper “Flight Test

Evaluation of Kinematic Precise Point Positioning of Small UAVs” [50]

6.1 GIPSY-OASIS Overview

GNSS-Inferred Positioning System and Orbit Analysis Simulation Software package (GIPSY-OASIS)

has been in development at NASA JPL since the mine 1980’s. GIPSY has been the primary geodetic

and positioning software for NASA’s TOPEX/Poseidon [51], JASON [52] and GRACE [53] low

Earth orbiting spacecraft, and is operationally used to generate JPL’s precise GPS orbits and clock

products to the IGS [54]. GIPSY is licensed for free by Caltech to institutions for academic research

purposes.

6.2 RTGx Overview

RTGx [11] is NASA JPL’s revamped GNSS processing software, a rewrite of GIPSY in C++, that can

be configured for real-time or post-processed constellation orbit and clock determination, Low-Earth

Orbiter (LEO) Precise Orbit Determination, or Precise Point Positioning (PPP). RTGx underlies

the navigation software for the Air Force’s next generation GPS operational control segment (OCX)

[55]. In conjunction with JPL’s GDGPS System, where RTGx generates the real-time GNSS orbit

and clocks products, and is also the point-positioning engine, RTGx routinely and operationally

produces sub-decimeter real-time kinematic positioning for a large number of GNSS tracking sites,
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globally [www.gdgps.net].

Different from its predecessor, RTGx now supports a multi-constellation GNSS processing capa-

bility, thus, an additional natural evolution of the RTGx software is to support an INS capability for

kinematic applications that have demanding requirements. While tight GNSS/INS integration is by

no means a new concept, integration of INS within RTGx inherits features that are already unique

to JPL’s RTGx processing strategy, such as single-receiver integer ambiguity resolution [14] as well

as flexible and easily extendable parameter and model configuration. Incorporation of INS in RTGx

will further enable research in more advanced INS/GNSS models, such as solving for deviations

of the local gravity error, processing platforms with multiple antennas, leveraging atomic clocks,

ingesting pressure sensor data for troposphere modeling, solving for unknown IMU lever arms, and

processing kinematic platforms as part of a network solution, all of which which can contribute to

increased accuracy required by various science applications.

6.3 Data Sets

Eight data sets were provided by a NGS,NOAA program called Gravity for the Redefinition of the

American Vertical Datum (GRAV-D). These are multiple hour long flight collected data sets, where

each data set contains

• 200 Hz raw IMU measurements,

• 1 Hz raw GPS observables (pseudorange and carrier-phase),

• lever arm between the platform’s instrument and GPS Antenna, and between the instrument

and the IMU

• and the commercial GPS/INS smoothed attitude estimate.

The location, date, and duration of each of the flights is summarized in Table 6.1.

Table 6.1: Flight Collected Data Set Durations

Location Date Duration

Alaska 29-May-2015 3 hr 54 min
Alaska 9-June-2015 4 hr 46 min

Louisiana 23-Oct-2008 2 hr 27 min
Louisiana 19-Nov-2008 3 hr 19 min
New York 10-Aug-2011 4 hr 4 min
New York 18-Aug-2011 3 hr 43 min
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These eight data sets come from six flights. Where two flights contain an Applanix system, two

flights contain a Novatel system, and the final two flights fly both the Applanix and Novatel systems.

These last two data sets are valuable because they allow for the direct comparison of two IMUs for

the same flight. Table 6.2 summarizes the GPS/INS system and lever arm used for each flight.

Table 6.2: GPS/INS System for Flight Collected Data

Location GPS/INS System Lever Arm (m)

Alaska Novatel SPAN (navigation
grade)

x=-0.132, y=0.095, z=0.463

Alaska Novatel SPAN (navigation
grade)

x=-0.132, y=0.095, z=0.463

Louisiana Applanix POS-AV (tatical
grade)

x=2.72, y=-0.05, z=-0.5

Louisiana Applanix POS-AV (tatical
grade)

x=2.72, y=-0.05, z=-0.5

New York Novatel and Applanix System Novatel – x=-1.5, y=0.02, z=0.56

Applanix – x=-1.7, y=0.2, z=-0.56

New York Novatel and Applanix System Novatel – x=-1.5, y=0.02, z=0.56

Applanix – x=-1.7, y=0.2, z=-0.56

An example of the flight data can be seen below in Fig. 6.1 and Fig. 6.2. The rapid accent and

decent in Fig.6.1 makes the data sets particularly challenging for handling the tropospheric delay.
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Figure 6.1: Altitude profile of the d297,y2008 GRAV-D data-set.
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Figure 6.2: Lat/Lon profile of d297,y2008 GRAV-D data-set.

6.4 Processing Strageties

6.4.1 GIPSY-OASIS Reference Solution Processing Stragety

The reference solution for this analysis uses Caltech JPL’s GIPSY-OASIS 6.2 software [56], which

is licensed for free by Caltech for academic research purposes. This software package has been used

extensively for geodetic and positioning applications on NASA missions: TOPEX/Poseidon [51],

JASON [52] and GRACE [53] low Earth orbiting spacecraft. GIPSY is also used to generate JPL’s

precise GPS orbits and clock products to the IGS [54]. GIPSY uses a square root information filter

[57] to estimate parameters of interest.

Because the data sets are kinematic, the reference processing strategy is to iterate over the

position solution while varying the GIPSY configuration parameters to eliminate data outliers. A

block diagram of the processing strategy is shown in Figure 6.3, which requires defining some GIPSY

terms:

• GNSS Data to Positioning (GD2P): GIPSY’s main user interface script for PPP.

• PseudoRange Data to Positioning (PR2P): GIPSY’s script for pseudorange only point

positioning.

• Time Dependent Parameter (TDP): GIPSY’s output format for positioning solutions and

other solved for parameters (e.g. clock biases, troposphere, phase biases).

• QM File GIPSY’s native binary GNSS measurement format.

As can be seen in Fig. 6.3, before the first iteration, the Receiver Independent Exchange Format

(RINEX) file is converted to a GIPY binary QM file. During this process, a GNSS data editor

is used to flag carrier-phase breaks and remove gross data outliers [58]. With the generated QM
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Figure 6.3: Kinematic PPP Strategy with GIPSY OASIS. A wrapper software is used to interactively
process the position solution.

file, the first iteration position estimation is generated using only the pseudorange observable with

GIPSY’s PR2P. For the remaining iterations, a subset of GIPSY processing options are varied while

iterating over the previous position solution (TDP file) as the a priori position solution. Within

Figure 6.3, the configuration options that are varied for each run are as follows:

• Data Weights: Relative scaling of the measurement noise between the pseudorange and

carrier-phase measurements. For this application, the weighting started at one-to-one and

ended at one-hundred-to-one.

• Postfit Residual Window: Within each GIPSY processing run, multiple passes of a Kalman

filter and smoother are conducted. Between each pass, postfit data residuals are evaluated and

data are marked outlier based on defined thresholds and excluded from the next pass. At each

pass, the residuals of all data, inlier and outlier, are evaluated and either added back in order

excluded from the run. This process is repeated until all data meet the postfit window criteria

or a maximum number of iterations are exceeded.
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• Stochastic Models: The position and wet troposphere delay estimates can be modeled using

either white noise about the nominal solution or random walk process noise. Additionally, the

a priori σ and magnitude and rate of process noise updates can be set.

• Minimum Slip: After each filter iteration, jumps in the post-fit phase residuals are used

to identify the possibility of a carrier-phase break that was missed by the data editor. New

breaks are flagged for the next iteration

In addition to the configuration parameters listed above that are varied for each iteration, several

other GIPSY options were selected and held fixed in this study. In particular, the VMF1 [27] model

was used as the troposphere mapping function and nominal estimation. For the several remaining

available GD2P options (e.g. elevation cutoff, tide models, etc.), the defaults provided by JPL were

used.

6.4.2 RTGx Base Processing Stragety

Within this section, the RTGx processing stragety adopted is described. In this analysis, two

solutions are compared to the reference position solutions, namely K-PPP with INS and K-PPP

without INS. The analysis considers the performance of the forward-filter only solutions, as this is

most applicable to the real-time needs of the target application.

For both filter-only K-PPP strategies, prior to processing with RTGx, the RINEX data were

pre-processed by GIPSY’s GPS data editor in order to remove gross-outliers and flag carrier-phase

breaks [58]. In addition a simple troposphere estimation strategy that solves for a residual wet

zenith delay as a random walk parameter was adopted. This value was empirically tuned to provide

smooth estimation performance when at altitude and selected to be 5e-5 m√
s
. Furthermore, for both

cases, with and without INS, the GPS receiver clock was modeled as a random walk process with

1000.0 m√
s
. Finally, all solutions used JPL’s final orbit/clock submissions to the International GNSS

Service [54].

For designing the INS stochastic models, typically the sensor specs of the individual IMU sensors

(e.g. Angular Random Walk, Velocity Random Walk, bias-instabilities) would be used to drive these

models [59]. However, for the Applanix PosAV GPS/IMU system used in the Kinematic Challenge

data set, these IMU sensor parameters were unknown. Therefore, these parameters were initially

selected assuming an intermediate grade IMU and then empirically tuned.

Finally, in order to provide better comparison and aid in the convergence of the GPS-only K-PPP

strategy, a dual-frequency pseudorange-only solution was ingested as the a priori nominal position
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solution with the filter-only runs. The carrier-phase based K-PPP positions were then solved as for

assuming 5 meters of uncertainty in the nominal solution at each data epoch.

6.5 Results

The key statistics with respect to positioning accuracy and attitude estimation are summarized in

this section. For positioning, the metrics selected include:

• Root Sum Square (RSS)

• Root Mean Square (RMS)

• Median (x̃)

• Standard Deviation (σ)

• Average Bias (b)

• Max absolute error (Max(|b|))

For this analysis, all errors are reported with respect to the reference solutions. Additionally,

these metrics are reported for the data sets both before and after the initial solution convergence

until the end of the data sets. The convergence period was excluded because the most crucial period

during airborne science campaigns is after ascending to the final altitude. In this analysis, this was

done by simply by evaluating errors over only the last 1/2 of each flight.

6.5.1 Base Run

The CDF of the positioning error for the eight data sets using the base run parameter configuration

can be seen in Fig. 6.4. This plot shows both the full statistics, and the statistics after the carrier-

phase biases have converged (i.e. the last half of the flight). From this plot it should be noted that

the PPP only filter outperforms the PPP/INS filter with respect to the full statistics; however, after

the solution convergence the PPP/INS filter provides a smaller positioning error.

In addition to the CDF for the base run parameter configuration, the full statistics for the eight

data sets can be seen in Table 6.3. From this table it should be noted that PPP/INS filter provides

a substantially smaller maximum error. This is an important characteristic for feed-back systems as

larger positioning errors cause erronous acceleration estimates. Additionally, the statistics for the

base run parameter after the convergience of the carrier-phase biases can be seen in table 6.4.
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Figure 6.4: CDF of RSS Positioning Error for Base Configuration

Table 6.3: Statistics of positioning performance for full baserun configuration (flight data)

Filter-Only K-PPP K-PPP/INS
Median (cm) 12.10 14.67
S.D σ (cm) 63.94 77.65
Bias b (cm) 32.33 43.23

Max (|b|) (cm) 1105.21 507.18

Table 6.4: Statistics of positioning performance after convergence for baserun configuration (flight
data)

Filter-Only K-PPP K-PPP/INS
Median (cm) 9.37 8.34
S.D σ (cm) 10.58 11.29
Bias b (cm) 13.67 12.40

Max (|b|) (cm) 109.32 108.28

6.5.2 Linearize About Previous State Estimate

As noted above, the PPP only solution is provided with an input time series of position estimates.

This time series was generated with PR2P which used only the pseudorange measurements.

For this comparision, the PPP only filter is not provided an input time series of position estimates.

Instead, both the PPP and the PPP/INS filters use their previous state estimate as their linearization

nominal. This sections consideres two different configurations: using pseudorange and carrier-phase

data while both filters linearize about the previous state estimate, and using only pseudoragne while
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both filters linearize about the previous stae estimate.

In Fig. 6.5, the CDF of the RSS positioning error for the eight data sets when both filters

using both carrier-phase and psuedorange observables while using the previous state estimate as

a linearization nominal can be seen. From Fig. 6.5 it should be noted that the PPP/INS filter

outperforms the PPP only filter with respect to positioning error both before and after the solution

convergence. The statistics for both the PPP only and the PPP/INS filters can be seen in Table 6.5

and Table 6.6 for the full flight statistics and the statistics after convergence, respectively.

Figure 6.5: CDF of RSS positioning error without input position time-series using PC-LC observables

Table 6.5: Statistics of positioning performance for full PC-LC previous epoch linearization config-
uration (flight data)

Filter-Only K-PPP K-PPP/INS
Median (cm) 24.15 14.67
S.D σ (cm) 165.45 77.65
Bias b (cm) 88.26 43.23

Max (|b|) (cm) 1188.42 507.18

Table 6.6: Statistics of positioning performance after convergence for previous epoch linearization
configuration (flight data)

Filter-Only K-PPP K-PPP/INS
Median (cm) 13.56 8.34
S.D σ (cm) 18.72 11.29
Bias b (cm) 20.17 12.40

Max (|b|) (cm) 129.26 108.28
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The next figure, Fig. 6.6, shows the CDF of the RSS positioning error for both the PPP only

and the PPP/INS when only using the pseudorange obserable and the previous state estimate as

the linearization nominal. With this configuration it should be noted that there is a substancial

benefit to PPP/INS filter. This can be seen by the large median error positioning error reduction

both before and after solution convergence, as shown in Table 6.7 and Table 6.8, respectively. In

addition to the median error, it should be noted the standard deviation, bias, and maximum error

are all substancially smaller for the PPP/INS filter as shown in Table 6.7 and Table 6.8.

Figure 6.6: CDF of RSS positioning error without input position time-series using only PC observ-
ables

Table 6.7: Statistics of positioning performance for full PC-only previous epoch linearization config-
uration (flight data)

Filter-Only K-PPP K-PPP/INS
Median (m) 20.98 2.88
S.D σ (m) 47.77 2.75
Bias b (m) 30.22 3.68

Max (|b|) (m) 84.08 32.43
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Table 6.8: Statistics of positioning performance for last-half of previous epoch linearization config-
uration (flight data)

Filter-Only K-PPP K-PPP/INS
Median (cm) 18.68 2.70
S.D σ (cm) 47.31 2.56
Bias b (cm) 28.35 3.43

Max (|b|) (cm) 84.08 32.43

6.5.3 Troposphere Model

As stated above, the troposphere is a hard to mitigate GPS error source with several models and

mapping functions. Because of this, it is useful to see the effect that different troposphere models

have on the ability to estimate position. For this anaylsis, four troposphere models are used: no

nominal with a Niell mapping function, static height nominal with a Niell mapping function, GPT2

nominal with a GMF mapping function, and a VMF1 nominal with a VMF1 mapping.

The maximum RSS positioning error with respect to the tropopshere model used can be seen

in Fig. 6.7. From this figure it can be seen that the PPP/INS filter has a smaller maximum RSS

positioning error for the all of the troposphere models used with the exception being the runs where

no nominal troposphere is provided. This can also be seen in Table 6.9 which provides the full run

statistics with respect to the troposphere model used.

Figure 6.7: Max positioning as a function of troposphere model

The median of the RSS positioning error with respect to the troposphere model used can be seen

in Fig. 6.8. With respect to the median, the PPP/INS filter only out performs the PPP filter in the
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case where no nominal troposphere is provided. This implies the high fedility the GPS models are,

the less INS is needed for position estimation.

Figure 6.8: Median of positioning error as a function of troposphere model

Table 6.9: Statistics of positioning performance for different troposphere models (flight data)

Filter-Only K-PPP K-PPP/INS
Median No Nominal (cm) 42.61 39.48
Median Static Height (cm) 11.77 13.74

Median GPT2 (cm) 9.90 12.51
Median VMF1 (cm) 11.21 12.67

S.D No Nominal σ (cm) 41.12 36.33
S.D Static Height σ (cm) 10.12 11.34

S.D GPT2 σ (cm) 8.38 10.15
S.D VMF1 σ (cm) 10.21 10.59

Bias No Nominal b (cm) 44.12 42.76
Bias Static Height b (cm) 32.33 43.23

Bias GPT2 b (cm) 31.23 42.15
Bias VMF1 b (cm) 31.07 44.34

Max No Nominal (|b|) (cm) 1814.21 2277.25
Max Static Height (|b|) (cm) 1100.23 886.46

Max GPT2 (|b|) (cm) 1111.12 839.61
Max VMF1 (|b|) (cm) 1091.14 836.67

6.5.4 Positioning Smoothness

As stated above, the PPP/INS improvement is attributed to the smoother positioning performance

as the INS is essential interpolating between GPS updates. Again, this claim is substantiated
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by conducting a frequency analysis of the RSS positioning error time-series. Figure 6.9 shows a

periodogram of the amplitude of the RSS position error with respect to the nominal value that is

predicted with the RTGx models for all eight flights. This periodogram can be evaluated up to

0.5Hz since the GPS observables were collected at at 1 Hz interval.

As shown in Fig. 6.9, at both the low and high frequencies the PPP/INS error amplitude is

reduced when compared to PPP. This analysis suggests smoother positioning from PPP/INS, which

is critical for feedback control systems. Additionally, by looking at the error with respect to the

nominal, it can be seen that the PPP/INS filter more closely matches what the high fidelity models

are predicting.

Figure 6.9: Periodogram of Vertical Position Error for Single Flight

6.5.5 Attitude Estimation

As another method to validate the implementation of INS into RTGx the estimated attitude is

compared to the smoothed commercial solution. This attitude comparision for all data sets can

be see in 6.10. Additionally, Table 6.10 shows very good agreement with respect to the attitude

provided by the commercial solution. It should be noted that for flights that are primarily flying

straight and level that it is well known that the IMU yaw-bias is most difficult to observe.
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Figure 6.10: CDF of total attitude statistics. Includes data from the full duration of all eight data
sets.

Table 6.10: Statistics of attitude performance for all flight data with baserun configuration (flight
data)

Filter-Only K-PPP/INS
Median Roll (deg) 0.014
Median Pitch (deg) 0.010
Median Yaw(deg) 0.012
S.D Roll σ (deg) 0.110
S.D Pitch σ (deg) 0.198
S.D Yaw σ (deg) 2.196
Bias Roll b (deg) 0.004
Bias Pitch b (deg) 0.002
Bias Yaw b (deg) 0.182

Max Roll (|b|) (deg) 1.352
Max Pitch(|b|) (deg) 4.655
Max Yaw (|b|) (deg) 4.522

As stated above, for the eight data sets, two different INS were flown. The first systems is the

Novatel SPAN package with a navigation grade IMU. The second system is the Applanix Pos-AV

package with a tatical grade IMU. Now, we will look at the attitude estimate with respect to the

grade of the IMU. The CDF of the RMS attitude error for the navigation grade and tatical grade

IMUs can be seen in Fig. 6.11 and Fig. 6.12, respectively. The total statsitcs can be seen in Table

6.11 and Table 6.12 for the two systems. From Table 6.11 and Table 6.12 it should be noted that

while both shows very good agreement with the smoothed attitude solution, the tatical grade IMU

performs better, specifically with respect to yaw estimation.
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Figure 6.11: Navigation Grade IMU Attitude Statistics for Base Run Configuration

Table 6.11: Statistics of attitude performance for navigation grade IMU for all fligth data with
baserun configuration (flight data)

Filter-Only K-PPP/INS
Median Roll (deg) 0.019
Median Pitch (deg) 0.019
Median Yaw(deg) 1.180
S.D Roll σ (deg) 0.118
S.D Pitch σ (deg) 0.181
S.D Yaw σ (deg) 1.544
Bias Roll b (deg) 0.009
Bias Pitch b (deg) 0.016
Bias Yaw b (deg) 1.300

Max Roll (|b|) (deg) 0.895
Max Pitch(|b|) (deg) 1.986
Max Yaw (|b|) (deg) 4.522
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Figure 6.12: Tatical Grade IMU Attitude Statistics for Base Run Configuration

Table 6.12: Statistics of attitude performance for tatical grade IMU for all flight data with base run
configuration (flight data)

Filter-Only K-PPP/INS
Median Roll (deg) 0.012
Median Pitch (deg) 0.024
Median Yaw(deg) 0.395
S.D Roll σ (deg) 0.096
S.D Pitch σ (deg) 0.216
S.D Yaw σ (deg) 2.027
Bias Roll b (deg) 0.002
Bias Pitch b (deg) 0.029
Bias Yaw b (deg) 1.348

Max Roll (|b|) (deg) 1.352
Max Pitch(|b|) (deg) 4.655
Max Yaw (|b|) (deg) 0.583
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Chapter 7

Conclusion

The previous chapters have discussed the development of a simulation environment and a tightly-

coupled PPP/INS error-state extended Kalman filter within MATLAB, the integration of the INS

formulation into RTGx, and the evaluation of RTGx with flight collected data sets. This chapter

summarizes the work and presents some future work.

A simulation environment was developed within MATLAB that allowed a Monte Carlo analysis

of the sensitivity of PPP/INS to various conditions: such as, the intensity of multipath errors, the

number of phase breaks, the satellite geometry, the atmospheric conditions, the noise characteristics

of the inertial sensor, and the accuracy of GPS orbit products. The benefit of incorporating INS

when confronted with scenarios that typically degrade GPS performance including poor satellite

geometry and an increase level of phase breaks was characterized. The inclusion of INS is shown

to offer a smoother solution leading to better absolute positioning performance in an RMS and

median sense over the 100 trials. PPP/INS also exhibited the ability to initially converge quicker,

which is critical for PPP. In addition, the performance increase sensitivity for including tactical

grade INS when confronted with poor PPP orbit product quality and increased path dynamics was

demonstrated.

After the PPP/INS formulation was verified within simulation, the INS formulation was adopted

by NASA JPL’s real-time positioning software RTGx. The INS formulation was then verified using

flight collected data sets provided by NGA, NOAA. With the data sets, a sensitivity study was

performed to see when the inclusion of INS is beneficial for position estimation. Again, it was found

that INS helps significiantly when the platform is confronted with a GPS challenged environment,

or poor GPS models (i.e. low fidelity troposphere model, pseudorange only solution).
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