85 research outputs found

    New Approaches to Classic Graph-Embedding Problems - Orthogonal Drawings & Constrained Planarity

    Get PDF
    Drawings of graphs are often used to represent a given data set in a human-readable way. In this thesis, we consider different classic algorithmic problems that arise when automatically generating graph drawings. More specifically, we solve some open problems in the context of orthogonal drawings and advance the current state of research on the problems clustered planarity and simultaneous planarity

    Experiments with Point Placement Algorithms and Recognition of Line Rigid Graphs

    Get PDF
    The point placement problem is to determine the position of n distinct points on a line, up to translation and reflection by fewest possible pairwise adversarial distance queries. This masters thesis focusses on two aspects of point placement problem. In one part we focusses on an experimental study of a number of deterministic point placement algorithms and an incremental randomized algorithm, with the goal of obtaining a greater insight into the behavior of these algorithms, particularly of the randomize algorithm. The pairwise distance queries in the point placement problem creates a type of graph, called point placement graph. A point placement graph G is dened as line rigid graph if and only if the vertices of G has unique placement on a line. The other part of this thesis focusses on recognizing line rigid graph of certain class based on structural property of an arbitrarily given graph. Layer graph drawing and rectangular drawing are used as key idea in recognizing line rigid graphs

    Twice-Ramanujan Sparsifiers

    Full text link
    We prove that every graph has a spectral sparsifier with a number of edges linear in its number of vertices. As linear-sized spectral sparsifiers of complete graphs are expanders, our sparsifiers of arbitrary graphs can be viewed as generalizations of expander graphs. In particular, we prove that for every d>1d>1 and every undirected, weighted graph G=(V,E,w)G=(V,E,w) on nn vertices, there exists a weighted graph H=(V,F,w~)H=(V,F,\tilde{w}) with at most \ceil{d(n-1)} edges such that for every x∈RVx \in \R^{V}, xTLGx≤xTLHx≤(d+1+2dd+1−2d)⋅xTLGx x^{T}L_{G}x \leq x^{T}L_{H}x \leq (\frac{d+1+2\sqrt{d}}{d+1-2\sqrt{d}})\cdot x^{T}L_{G}x where LGL_{G} and LHL_{H} are the Laplacian matrices of GG and HH, respectively. Thus, HH approximates GG spectrally at least as well as a Ramanujan expander with dn/2dn/2 edges approximates the complete graph. We give an elementary deterministic polynomial time algorithm for constructing HH

    Sampling Balanced Forests of Grids in Polynomial Time

    Full text link
    We prove that a polynomial fraction of the set of kk-component forests in the m×nm \times n grid graph have equal numbers of vertices in each component, for any constant kk. This resolves a conjecture of Charikar, Liu, Liu, and Vuong, and establishes the first provably polynomial-time algorithm for (exactly or approximately) sampling balanced grid graph partitions according to the spanning tree distribution, which weights each kk-partition according to the product, across its kk pieces, of the number of spanning trees of each piece. Our result follows from a careful analysis of the probability a uniformly random spanning tree of the grid can be cut into balanced pieces. Beyond grids, we show that for a broad family of lattice-like graphs, we achieve balance up to any multiplicative (1±ε)(1 \pm \varepsilon) constant with constant probability, and up to an additive constant with polynomial probability. More generally, we show that, with constant probability, components derived from uniform spanning trees can approximate any given partition of a planar region specified by Jordan curves. These results imply polynomial time algorithms for sampling approximately balanced tree-weighted partitions for lattice-like graphs. Our results have applications to understanding political districtings, where there is an underlying graph of indivisible geographic units that must be partitioned into kk population-balanced connected subgraphs. In this setting, tree-weighted partitions have interesting geometric properties, and this has stimulated significant effort to develop methods to sample them

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    Facets of Planar Graph Drawing

    Get PDF
    This thesis makes a contribution to the field of Graph Drawing, with a focus on the planarity drawing convention. The following three problems are considered. (1) Ordered Level Planarity: We introduce and study the problem Ordered Level Planarity which asks for a planar drawing of a graph such that vertices are placed at prescribed positions in the plane and such that every edge is realized as a y-monotone curve. This can be interpreted as a variant of Level Planarity in which the vertices on each level appear in a prescribed total order. We establish a complexity dichotomy with respect to both the maximum degree and the level-width, that is, the maximum number of vertices that share a level. Our study of Ordered Level Planarity is motivated by connections to several other graph drawing problems. With reductions from Ordered Level Planarity, we show NP-hardness of multiple problems whose complexity was previously open, and strengthen several previous hardness results. In particular, our reduction to Clustered Level Planarity generates instances with only two nontrivial clusters. This answers a question posed by Angelini, Da Lozzo, Di Battista, Frati, and Roselli [2015]. We settle the complexity of the Bi-Monotonicity problem, which was proposed by Fulek, Pelsmajer, Schaefer, and Stefankovic [2013]. We also present a reduction to Manhattan Geodesic Planarity, showing that a previously [2009] claimed polynomial time algorithm is incorrect unless P=NP. (2) Two-page book embeddings of triconnected planar graphs: We show that every triconnected planar graph of maximum degree five is a subgraph of a Hamiltonian planar graph or, equivalently, it admits a two-page book embedding. In fact, our result is more general: we only require vertices of separating 3-cycles to have degree at most five, all other vertices may have arbitrary degree. This degree bound is tight: we describe a family of triconnected planar graphs that cannot be realized on two pages and where every vertex of a separating 3-cycle has degree at most six. Our results strengthen earlier work by Heath [1995] and by Bauernöppel [1987] and, independently, Bekos, Gronemann, and Raftopoulou [2016], who showed that planar graphs of maximum degree three and four, respectively, can always be realized on two pages. The proof is constructive and yields a quadratic time algorithm to realize the given graph on two pages. (3) Convexity-increasing morphs: We study the problem of convexifying drawings of planar graphs. Given any planar straight-line drawing of an internally 3-connected graph, we show how to morph the drawing to one with strictly convex faces while maintaining planarity at all times. Our morph is convexity-increasing, meaning that once an angle is convex, it remains convex. We give an efficient algorithm that constructs such a morph as a composition of a linear number of steps where each step either moves vertices along horizontal lines or moves vertices along vertical lines. Moreover, we show that a linear number of steps is worst-case optimal.Diese Arbeit behandelt drei unterschiedliche Problemstellungen aus der Disziplin des Graphenzeichnens (Graph Drawing). Bei jedem der behandelten Probleme ist die gesuchte Darstellung planar. (1) Ordered Level Planarity: Wir führen das Problem Ordered Level Planarity ein, bei dem es darum geht, einen Graph so zu zeichnen, dass jeder Knoten an einer vorgegebenen Position der Ebene platziert wird und die Kanten als y-monotone Kurven dargestellt werden. Dies kann als eine Variante von Level Planarity interpretiert werden, bei der die Knoten jedes Levels in einer vorgeschriebenen Reihenfolge platziert werden müssen. Wir klassifizieren die Eingaben bezüglich ihrer Komplexität in Abhängigkeit von sowohl dem Maximalgrad, als auch der maximalen Anzahl von Knoten, die demselben Level zugeordnet sind. Wir motivieren die Ergebnisse, indem wir Verbindungen zu einigen anderen Graph Drawing Problemen herleiten: Mittels Reduktionen von Ordered Level Planarity zeigen wir die NP-Schwere einiger Probleme, deren Komplexität bislang offen war. Insbesondere wird gezeigt, dass Clustered Level Planarity bereits für Instanzen mit zwei nichttrivialen Clustern NP-schwer ist, was eine Frage von Angelini, Da Lozzo, Di Battista, Frati und Roselli [2015] beantwortet. Wir zeigen die NP-Schwere des Bi-Monotonicity Problems und beantworten damit eine Frage von Fulek, Pelsmajer, Schaefer und Stefankovic [2013]. Außerdem wird eine Reduktion zu Manhattan Geodesic Planarity angegeben. Dies zeigt, dass ein bestehender [2009] Polynomialzeitalgorithmus für dieses Problem inkorrekt ist, es sei denn, dass P=NP ist. (2) Bucheinbettungen von dreifach zusammenhängenden planaren Graphen mit zwei Seiten: Wir zeigen, dass jeder dreifach zusammenhängende planare Graph mit Maximalgrad 5 Teilgraph eines Hamiltonischen planaren Graphen ist. Dies ist äquivalent dazu, dass ein solcher Graph eine Bucheinbettung auf zwei Seiten hat. Der Beweis ist konstruktiv und zeigt in der Tat sogar, dass es für die Realisierbarkeit nur notwendig ist, den Grad von Knoten separierender 3-Kreise zu beschränken - die übrigen Knoten können beliebig hohe Grade aufweisen. Dieses Ergebnis ist bestmöglich: Wenn die Gradschranke auf 6 abgeschwächt wird, gibt es Gegenbeispiele. Diese Ergebnisse verbessern Resultate von Heath [1995] und von Bauernöppel [1987] und, unabhängig davon, Bekos, Gronemann und Raftopoulou [2016], die gezeigt haben, dass planare Graphen mit Maximalgrad 3 beziehungsweise 4 auf zwei Seiten realisiert werden können. (3) Konvexitätssteigernde Deformationen: Wir zeigen, dass jede planare geradlinige Zeichnung eines intern dreifach zusammenhängenden planaren Graphen stetig zu einer solchen deformiert werden kann, in der jede Fläche ein konvexes Polygon ist. Dabei erhält die Deformation die Planarität und ist konvexitätssteigernd - sobald ein Winkel konvex ist, bleibt er konvex. Wir geben einen effizienten Algorithmus an, der eine solche Deformation berechnet, die aus einer asymptotisch optimalen Anzahl von Schritten besteht. In jedem Schritt bewegen sich entweder alle Knoten entlang horizontaler oder entlang vertikaler Geraden
    • …
    corecore