37,040 research outputs found

    How do we approach intrinsic motivation computationally? : a commentary on: What is intrinsic motivation? A typology of computational approaches. by Pierre-Yves Oudeyer and Frederic Kaplan

    Get PDF
    What is the energy function guiding behavior and learningµ Representationbased approaches like maximum entropy, generative models, sparse coding, or slowness principles can account for unsupervised learning of biologically observed structure in sensory systems from raw sensory data. However, they do not relate to behavior. Behavior-based approaches like reinforcement learning explain animal behavior in well-described situations. However, they rely on high-level representations which they cannot extract from raw sensory data. Combinations of multiple goal functions seems the methodology of choice to understand the complexity of the brain. But what is the set of possible goals. ..

    Intrinsic Motivation Systems for Autonomous Mental Development

    Get PDF
    Exploratory activities seem to be intrinsically rewarding for children and crucial for their cognitive development. Can a machine be endowed with such an intrinsic motivation system? This is the question we study in this paper, presenting a number of computational systems that try to capture this drive towards novel or curious situations. After discussing related research coming from developmental psychology, neuroscience, developmental robotics, and active learning, this paper presents the mechanism of Intelligent Adaptive Curiosity, an intrinsic motivation system which pushes a robot towards situations in which it maximizes its learning progress. This drive makes the robot focus on situations which are neither too predictable nor too unpredictable, thus permitting autonomous mental development.The complexity of the robot’s activities autonomously increases and complex developmental sequences self-organize without being constructed in a supervised manner. Two experiments are presented illustrating the stage-like organization emerging with this mechanism. In one of them, a physical robot is placed on a baby play mat with objects that it can learn to manipulate. Experimental results show that the robot first spends time in situations which are easy to learn, then shifts its attention progressively to situations of increasing difficulty, avoiding situations in which nothing can be learned. Finally, these various results are discussed in relation to more complex forms of behavioral organization and data coming from developmental psychology. Key words: Active learning, autonomy, behavior, complexity, curiosity, development, developmental trajectory, epigenetic robotics, intrinsic motivation, learning, reinforcement learning, values

    Changing the Environment Based on Empowerment as Intrinsic Motivation

    Get PDF
    This is an open access article distributed under the Creative Commons Attribution License CC BY 3.0 which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.One aspect of intelligence is the ability to restructure your own environment so that the world you live in becomes more beneficial to you. In this paper we investigate how the information-theoretic measure of agent empowerment can provide a task-independent, intrinsic motivation to restructure the world. We show how changes in embodiment and in the environment change the resulting behaviour of the agent and the artefacts left in the world. For this purpose, we introduce an approximation of the established empowerment formalism based on sparse sampling, which is simpler and significantly faster to compute for deterministic dynamics. Sparse sampling also introduces a degree of randomness into the decision making process, which turns out to beneficial for some cases. We then utilize the measure to generate agent behaviour for different agent embodiments in a Minecraft-inspired three dimensional block world. The paradigmatic results demonstrate that empowerment can be used as a suitable generic intrinsic motivation to not only generate actions in given static environments, as shown in the past, but also to modify existing environmental conditions. In doing so, the emerging strategies to modify an agent’s environment turn out to be meaningful to the specific agent capabilities, i.e., de facto to its embodiment.Peer reviewedFinal Published versio

    Gaussian processes for choosing laser parameters for driven, dissipative Rydberg aggregates

    Full text link
    To facilitate quantum simulation of open quantum systems at finite temperatures, an important ingredient is to achieve thermalization on a given time-scale. We consider a Rydberg aggregate (an arrangement of Rydberg atoms that interact via long-range interactions) embedded in a laser-driven atomic environment. For the smallest aggregate (two atoms), suitable laser parameters can be found by brute force scanning of the four tunable laser parameters. For more atoms, however, such parameter scans are too computationally costly. Here we apply Gaussian processes to predict the thermalization performance as a function of the laser parameters for two-atom and four-atom aggregates. These predictions perform remarkably well using just 1000 simulations, demonstrating the utility of Gaussian processes in an atomic physics setting. Using this approach, we find and present effective laser parameters for generating thermalization, the robustness of these parameters to variation, as well as different thermalization dynamics

    Fast, Dense Feature SDM on an iPhone

    Full text link
    In this paper, we present our method for enabling dense SDM to run at over 90 FPS on a mobile device. Our contributions are two-fold. Drawing inspiration from the FFT, we propose a Sparse Compositional Regression (SCR) framework, which enables a significant speed up over classical dense regressors. Second, we propose a binary approximation to SIFT features. Binary Approximated SIFT (BASIFT) features, which are a computationally efficient approximation to SIFT, a commonly used feature with SDM. We demonstrate the performance of our algorithm on an iPhone 7, and show that we achieve similar accuracy to SDM

    Dimension Estimation Using Random Connection Models

    Get PDF
    Information about intrinsic dimension is crucial to perform dimensionality reduction, compress information, design efficient algorithms, and do statistical adaptation. In this paper we propose an estimator for the intrinsic dimension of a data set. The estimator is based on binary neighbourhood information about the observations in the form of two adjacency matrices, and does not require any explicit distance information. The underlying graph is modelled according to a subset of a specific random connection model, sometimes referred to as the Poisson blob model. Computationally the estimator scales like n log n, and we specify its asymptotic distribution and rate of convergence. A simulation study on both real and simulated data shows that our approach compares favourably with some competing methods from the literature, including approaches that rely on distance information
    • …
    corecore