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Abstract

Information about intrinsic dimension is crucial to perform dimensionality reduction, com-
press information, design efficient algorithms, and do statistical adaptation. In this paper
we propose an estimator for the intrinsic dimension of a data set. The estimator is based
on binary neighbourhood information about the observations in the form of two adjacency
matrices, and does not require any explicit distance information. The underlying graph is
modelled according to a subset of a specific random connection model, sometimes referred
to as the Poisson blob model. Computationally the estimator scales like n log n, and we
specify its asymptotic distribution and rate of convergence. A simulation study on both real
and simulated data shows that our approach compares favourably with some competing
methods from the literature, including approaches that rely on distance information.

Keywords: adaptation, dimensionality reduction, intrinsic dimension, random connec-
tion model, random graph

1. Introduction

In machine learning and computational geometry we often want to discover, or sometimes
impose, structure on observations, and dimension plays a crucial role in this task. The
dimension of a data set can perhaps be best interpreted as the number of variables needed to
describe it. However, there is often a gap between the ambient dimension of a data set – the
number of variables used to describe it – and its intrinsic dimension – the number of variables
needed to describe it (eventually up to a certain level of precision). For instance, high-
dimensional data sets often live in lower dimensional spaces; infinite-dimensional parameters
of non-parametric models can often be accurately estimated using just a few parameters;
complex data can potentially be highly compressible. However, this is usually not evident by
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just looking at the data, so in this paper we propose an algorithm to estimate the intrinsic
dimension of a data set, and study its behaviour.

There are plenty of reasons to be interested in intrinsic dimensions. Perhaps the most
straightforward one is to perform dimensionality reduction. Dimensionality reduction arises
from a need to be able to extract meaningful conclusions from high-dimensional observa-
tions. There is an extensive literature on this subject using multidimensional scaling, man-
ifold learning, and projection techniques like principal component analysis and projection
pursuit; for a general overview cf. (Fodor, 2002; Burges, 2010; Lee and Verleysen, 2007).
For specific techniques see for example (Kohonen, 1990; Cox and Cox, 2000; Tenenbaum
et al., 2000; Roweis and Saul, 2000; Donoho and Grimes, 2003; Huo and Chen, 2002; Giné
and Koltchinskii, 2006), and the references therein. In order to be used to their full extent,
these approaches require a priori knowledge about the intrinsic dimension of the data set.
Knowledge about intrinsic dimension is also important in independent component analysis;
cf. (Hyviirinen et al., 2001).

From a statistical perspective, the intrinsic dimension provides information about the
difficulty of making inference. Non-parametric estimators usually rely on approximation
properties of certain function spaces; the dimension of the support of these functions influ-
ences these approximation properties. Statistical adaptation often focuses on smoothness,
but dimension actually has a more substantial impact on rates of convergence. Knowledge
about dimension is also important to avoid (if possible) the curse of dimensionality. Dimen-
sion plays an important role in classification problems as well, where performance is greatly
compromised in high dimensions; cf. (Bickel and Levina, 2004; Fan and Fan, 2008). There
are also connections to search, and to outlier detection; cf. (Amsaleg et al., 2015) and the
references therein.

From a computational perspective, the dimension of a data set impacts the amount of
space needed to store data (compressibility). The speed of algorithms is also commonly af-
fected by the dimension of input data. Learning the underlying dimension is also important
to design algorithms that require less data (meaning, make better use of available data)
when data happen to live on a low dimensional space. Because of this, knowledge about
dimension is crucial in many fields such as biomedicine, economics, engineering, astronomy,
remote sensing, and computer vision, with important applications in mass spectrometry,
genetics, networking, image processing, automatic text analysis, among others; for some
concrete applications see (Verleysen et al., 1999; Lähdesmäki et al., 2005; Abrahao and
Kleinberg, 2008; Carter et al., 2010) and references therein.

Early work on dimension estimation dates back to (Shepard, 1962a,b; Kruskal, 1964a,b;
Bennett, 1969) on multidimensional scaling. The idea is that one has measurements of
similarities (or dissimilarities) between data points, and would like to find points in a po-
tentially high-dimensional vector space that are consistent with the observed similarities
(resp. dissimilarities). Other approaches such as that of (Fukunaga and Olsen, 1971; Fuku-
naga, 1982) are based on Karhunen–Loève expansions. There, and much in the spirit of
principal component analysis, the idea is that minimal representations that capture most
of the variation in the data carry information about dimensionality; see also an approach
based on testing by (Trunk, 1968). Information criteria such as AIC by (Akaike, 1974) and
BIC by (Schwarz, 1978) can also be used to estimate dimensions within a model.
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More recent work of (Camastra and Vinciarelli, 2002; Kégl, 2002; Hein and Audibert,
2005; Sricharan et al., 2010) is based on the notion of correlation integral; cf. (Grassberger
and Procaccia, 2004). The correlation dimension is a limit associated with this correlation
integral. This notion of dimension, which we also use in this paper, is computationally
attractive when compared with other notions of dimension such as that of box counting
dimension, for example. There are also the techniques of (Costa and Hero, 2004; Farahmand
et al., 2007; Leonenko et al., 2008; Kleindessner and von Luxburg, 2015) based on different
types of graphs where edges represent some form of proximity, like k-nearest neighbour
graphs, and geodesic minimal spanning trees. Their work relies on the fact that certain
quantities associated with these graphs scale monotonically with dimension. By exploring
this, one can extract information about dimensionality by inverting these relations. A
similar idea is used in (Amsaleg et al., 2015) by recurring to notions from extreme value
theory. See also (Eriksson and Crovella, 2012) for a clustering-based approach, and the work
of (Levina and Bickel, 2004) for an estimator based on an approximation of the likelihood.

There is some room for improvement in the approaches mentioned above. Some of
them rely on rather extensive knowledge about distances between all possible pairs of ob-
servations, sometimes also of perturbations thereof, or on certain hierarchical constructs
like dendrograms; because execution times tend to scale quadratically with the sample size
and linearly with dimension, these quickly become computationally costly as the number
of observations or the dimension of the measurements is high – exactly the situation where
dimension estimation is most important. (In genetics and computer vision applications,
for instance, the number of observed dimensions can easily reach hundreds of thousands.)
Therefore, either due to the volume or to complexity of the data, we may be computation-
ally limited to work with very crude information, such as knowing only whether each pair of
observations is close or not. Because of this, it is of interest to develop methods to estimate
dimension that rely on as little information as possible.

Another aspect that is often overlooked in the literature is that the intrinsic dimension
of a data set is usually scale-dependent: the dimension of the data set depends on the scale
at which we analyse it; cf. (Burges, 2010). Say we sample points uniformly at random on a
manifold with noise; if we look at the data set on a fine scale we only pick up on the noise,
whereas at a larger scale the features of the manifold will dominate. The manifold itself
can have different dimensions depending on which scale we look at it, and the noise may
have arbitrary dimension. It is therefore not clear what “the dimension of a data set” is,
unless we specify a scale to go with it (or if the support of the distribution of the data is
homogeneous or unstructured). However, even then the dimension is very dependent on the
specific data (e.g., structure of the manifold, distribution of the noise). Approaches based
on regressing the logarithm of the correlation integral on the logarithm of its argument fail
to capture this and instead return something akin to an average dimension across scales for
the data set. Approaches based on k-nearest-neighbour graphs also have limitations with
regards to this; the distance from a datapoint to its k-nearest neighbour scales in a non-
trivial way with dimension and is quite dependent on the distribution of the observations.
This makes it difficult to estimate dimension by inversion without specific knowledge on the
distribution of the data.

In this paper we resolve the limitations identified above. We estimate the intrinsic
dimension of a data set at a user-prescribed scale based solely on binary neighbourhood
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relations between observations. More specifically, we assume that certain undirected graphs
(or their adjacency matrices) can be observed. In this graph, each vertex corresponds to
an observation that lives in some high- (possibly infinite-) dimensional space. An edge is
present between two vertices if the corresponding observations are close. What we consider
to be close determines the scale at which we analyse the data. The goal is to estimate
the intrinsic dimension of the data set based on the adjacency matrix of the graph only,
i.e., without explicit access to distance information. We model such a graph according to
a subset of a random connection model, a model from continuum percolation; cf. (Penrose,
1991), and (Meester and Roy, 1996) for an overview on the subject. More specifically, we
model it according to a subgraph of a graph sampled from the so called Poisson blob model;
cf. (Grimmett, 1999).

We propose an estimator based on the doubling property of the Lebesgue measure and
on the notion of correlation integral. The estimator does not rely on distance information
about the observations and has computation time that scales like n log n, which is partic-
ularly important when dealing with large, high-dimensional data sets. Since only (sparse)
adjacency matrices have to be stored, our approach also leads to a reduction of the re-
quired storage space. Under an identifiability condition, we show that the estimator is
consistent and asymptotically Gaussian, and we compute its rate of convergence. To the
best of our knowledge such results are not yet available in the literature. The estimator
strongly concentrates around its expectation but in general the constants involved in the
rate scale exponentially with the intrinsic dimension; the bias plays an important role as it
is the main bottleneck in the procedure leading to a logarithmic rate. We propose a bias
corrected estimator that follows the same (optimal) asymptotics, but which performs much
better according to our numerical experiments.

Minimax rates are unknown for the type of data that we consider, but in the (easier)
case where one has access to the actual observations, these can be found in (Koltchinskii,
2000) and are logarithmic. (For the noiseless case see Kim et al., 2016.) This means that
our procedure is essentially optimal and that its computational efficacy is not obtained at
the expense of precision. Furthermore, we are capable of producing estimates of the spread
of the estimator, without a need for resampling, and these quantify the uncertainty in the
estimate fairly well. This is particularly important given the slow convergence rate, and is
a major improvement over competing approaches, which tend to overly concentrate around
biased estimates. We also run some numerical simulations that show that our estimator
compares favourably with competing estimators (particularly when it comes to recuperate
an integer dimension), including estimators that rely on distance information.

This paper is structured as follows. In Section 2 we formally define our model. The
interpretation of the effect of scale in the model is given in Section 3. Section 4 has a
description of our estimator. Section 5 contains consistency results for a relevant probability
in the model. Section 6 has our main result about the consistency of our estimator for the
intrinsic dimension, and a comparison with related work from the literature. In Section 7
we present some numerical illustrations for our method, and we propose our bias corrected
estimator. We close with some conclusions in Section 8. The proofs of our main results are
collected in the Appendix.
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2. Sampling, Model, Notation, and Problem Formulation

Consider the following model. Sample design points X1, . . . , Xn ∈ RD, independently,
from a distribution F , where D ∈ N is some ambient dimension. Given the design points
X = (X1, . . . , Xn)T , construct a random undirected graph by placing an edge between
two vertices i < j ∈ {1, . . . , n} if r(Xi, Xj) ≤ ε, ε > 0, where r is a metric1 on RD. We
denote the adjacency matrix of the resulting random graph as Aε. If we disregard that
our design points are typically concentrated (since they are sampled from F ), this is a
subset of a graph sampled from what is usually called the Poisson blob model, a model
from continuum percolation. In this model we allow ε = εn to converge to 0 as n → ∞, if
need be; we discuss the role of ε in more detail in Section 3. Most of the quantities that
we define in the following depend on n but this is omitted from the notation except when
n plays a role.

We assume that the observations in our data set actually live (potentially in approximate
form) in a lower (potentially fractional) dimensional space. For instance, the design points
can have the form Xi = ϕ(X̃i) + σ · εi, σ ≥ 0, where ϕ : Rd 7→ RD, d ≤ D, is some
embedding. The observations can therefore be highly structured; they can be concentrated
around, say, a manifold. The number d is called the intrinsic dimension of the data set X,
and it is our object of interest.

Our statistical problem is the following: for a data set with n observations we have
access to a symmetric, binary matrix A where Ai,j = Aj,i = 1 if, and only if, the i-th and
j-th observations are “close”; the data points (or distances between data points) are not
actually observed. We assume that our notion of “close” is reasonable, in the sense that
we can model A according to a random connection model: A = Aε for some ε and some
metric r (which are not necessarily known to us). Given access to such adjacency matrices2

we would like to estimate the intrinsic dimension d. The point is that although the support
of F may be high-dimensional, most of the mass of F might be concentrated on a (lower)
dimensional sub-space or manifold (eventually as n→∞, or σ → 0), such that one can find
a parsimonious representation for that data that still preserves its main features.

We denote by Bε the degrees of the vertices in the graph such that Bε = (Bε,1, . . . , Bε,n),

Bε,i =

n∑
j=1

Aε,i,j , i = 1, . . . , n, (1)

where the (binary) entries Aε,i,j of the adjacency matrix Aε satisfy

Aε,i,j = Aε,j,i = 1{r(Xi,Xj)≤ε}, and Aε,i,i = 0, i, j = 1, . . . , n, i 6= j. (2)

By construction, the distribution of the random matrix Aε is invariant under any permuta-
tion of its rows and columns so that the Bε,i are identically distributed but not independent.
Define the two functions

pε(x) = P{r(X,x) ≤ ε}, and pε(x, y) = P{r(X,x) ≤ ε, r(X, y) ≤ ε}, (3)

1. All of the assumptions on the metric will be implicit.
2. In fact we consider two adjacency matrices as it will become clear from the definition of our estimator

in (7). We argue in Section 4, that this is inevitable since ε trades off with the standard deviation of F .
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where the probability is taken with respect to X ∼ F . This is the (local) connection
probability for a design point at site x, and the probability of two design points at sites x
and y sharing a neighbour. With this notation,

Bε,i|Xi ∼ Bin{n− 1, pε(Xi)}. (4)

From this we see that if p were constant, then the model would reduce to the Erdős–Rényi
model of (Erdős and Rényi, 1959). If pε (which depends exclusively on F and ε) is not
constant, then this leads to some inhomogeneity for the resulting random graph.

In what follows we denote, for i, j, k mutually different,

pε,1 = EAε,i,j , and pε,2 = EAε,i,kAε,k,j . (5)

These two numbers (or sequences, if ε → 0) are the probability that two vertices connect
and the probability that two vertices have a common neighbour, respectively. Note that if
X,Y, Z are independent and distributed according to F , then

pε,1 = P{r(X,Y ) ≤ ε} = EP{r(X,Y ) ≤ ε|X} = Epε(X),

and in the same way,

pε,2 = EP{r(X,Z) ≤ ε, r(Z, Y ) ≤ ε|X,Y } = Epε(X,Y ).

By definition, pε(X,X) = pε(X). Also, by independence and Jensen’s inequality,

pε,2 = EP{r(X,Z) ≤ ε, r(Z, Y ) ≤ ε|Z} = E{pε(Z)2} ≥ E{pε(Z)}2 = p2ε,1.

In fact, the (non-negative) difference pε,2− p2ε,1 is the variance of the connection probability
function pε(x) which will play an important role later in the paper.

Both pε,1 and pε,2 depend on ε (and F ), but also on the dimensionality of the data. For
example, it is clear that pε,1 and pε,2 decrease as ε decreases. In fact, most of what follows
is based on this dependence. Before we give the intuition behind our estimator, we discuss
the role of ε in our approach.

3. Role of ε in the Model

The parameter 1/ε can be seen as a resolution level that determines at which distance we
distinguish between design points. This parameter plays a crucial role in our approach as
is explained in this section. In Figure 1 we exemplify the effect of the size of ε. We sampled
points uniformly at random on a manifold, then added some (3-dimensional) Gaussian noise;
these points are the design points X and are embedded on a 3-dimensional space. We then
took one of the design points, and coloured red all points that fall within a given Euclidean
distance ε of the selected design point; the three plots correspond to different choices of ε.

If ε is so small that no red dots would be present, then the detected dimension is 0. If ε is
large enough to capture just a few nearest neighbours (leftmost plot), then we capture only
the effect of the noise – 3-dimensional in our case – but arbitrary in general. Increasing ε
(central plot), the intersection is now a 2-dimensional section of the surface of the manifold.
Further increasing ε (rightmost plot) changes the shape of the intersection which is now the
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Figure 1: Design points sampled uniformly on a torus, with noise. Design points within an ε distance
(increasing from left to right) of a fixed design point are coloured red.

(1-dimensional) surface of a tube. In either case, with much larger choices for ε we would
capture all design points and the volume of the intersection would vanish with respect to ε;
this would again lead the trivial case where dimension 0 is detected.

Of course the dimension can also be fractal, and we could also be interested in the
dimension of just a region of the manifold in which case the choice of ε (and the design
point that defines the neighbourhood) plays an important role again. The bottom line
is that ε should be considered a parameter of the model (as opposed to a parameter of
the estimator) in that the target intrinsic dimension should be seen as a function of ε;
cf. (Burges, 2010) for a similar discussion. In other words, the resolution level should be
chosen in line with the goals of the analysis; to learn the structure of the noise one would
pick relatively small values of ε, while to learn the dimension of the manifold we would have
to pick larger values. This is related to the scale of the observations, and it should be taken
into consideration when choosing ε. Another issue is that one should also account for the
sample size in the form of a finite sample correction. We return to this point in Section 7
where we use some numerical experiments to illustrate this point.

Next we define and give the intuition for our estimator of the intrinsic dimension d.

4. Estimation of the Intrinsic Dimension

We start by providing some heuristic motivation for our estimator of d. Consider, for
x ∈ Rm, m ∈ N the balls Vε(x,m) = {y ∈ Rm : r(x, y) ≤ ε} for a homogeneous, translation-
invariant metric r, and denote Vε(m) = Vε(0,m). Assume, without loss of generality, that
0 ∈ X ⊆ RD, where X is an appropriate high probability set in the support of F . If ε is
small (or if ε → 0) and if F admits a continuous density f with respect to the Lebesgue
measure µ, then we expect

pε(x) ≈
∫
X

1Vε(x,D)(y) f(y) dµ(y) ≈ f(x) ·
∫
X

1Vε(D)(y) dµ(y) , f(x) · vε.

The assumption that the intrinsic dimension of the data set is d, corresponds to assuming,
with mild abuse of the notation, that (for all appropriately small ε)

vε , µ{Vε(D) ∩ X} ≈ µ{Vε(d)}.

(In fact, this relation can be seen as a definition of the ε-scale intrinsic dimension.) This has
the interpretation that at the ε-scale the data looks d-dimensional. The point is that pε(x)
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should not be sensitive to the dimension D of the data points, but instead to the intrinsic
dimension d of the data set and an ε-scale.

Since pε,1 = E{pε(X)}, we can approximate

pε,1 ≈ Ef(X) · µ{Vε(d)}.

One can estimate d by replacing pε,1 by an estimator and inverting the relation above.
However, this would only be feasible with knowledge of the distribution F via the constant
Ef(X) and of the parameter ε, which in general we do not have access to.

Arguably, the most reasonable way to get rid of the dependence on F and ε is to examine
the data at two different scales simultaneously. For appropriately small ε,

p2ε,1
pε,1

≈ µ{V2ε(d)}
µ{Vε(d)}

· (6)

This is a natural idea. Looking back at Figure 1, the (hyper-)volume of the intersections
(which can be inferred from the number of points in the intersection) does not give us any
information about dimension; it is how this quantity scales with ε that is informative.

With this approximation in mind, we define an estimator for d: for an arbitrary function
gε(d) – ideally p2ε,1/pε,1, but in general any reasonable approximation of µ{V2ε(d)}/µ{Vε(d)}
– the estimator is defined as (any) implicit solution d̂n to the equality

p̂n,2ε,1
p̂n,ε,1

= gε
(
d̂n
)
, (7)

where p̂n,ε,1 is any estimator for pε,1, ε > 0. If d is an integer, then we can consider an

estimator [d̂n ], where [ · ] represents the argument rounded to the closest integer. Note that
the function gε is allowed to depend on n.

The need to look at the data at two different scales simultaneously should not be a
surprise. The probability pε,1 itself does not carry any information about dimension if
F is unknown; it is instead how pε,1 scales as a function of ε that provides information
about dimension. This notion of scaling is in fact connected with the notion of expansion
dimension of (Karger and Ruhl, 2002).

For a given metric r one can numerically approximate the function µ{V2ε(d)}/µ{Vε(d)},
but in analogy to the doubling property of the Lebesgue measure this function should be
constant over ε, at least if ε is appropriately small. So a canonical choice (independent of
ε) would be gε(d) = 2d, in which case one has an explicit estimator for d:

d̂n =
log p̂n,2ε,1 − log p̂n,ε,1

log 2
· (8)

This is just an example of a possible form that the estimator can take. However, it does
suggest that at least for certain models one can expect to have explicit estimators for d that
do not require knowledge of ε, F , or r and are therefore completely parameter-free.

Although ε should be known (or indeed picked, as pointed out in the discussion in
Section 3), one can define reasonable estimators for d in the case where ε is unknown. In
fact, it is is not possible to estimate ε consistently from adjacency matrices Aε without
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knowledge of the distribution F . This follows from the trade-off between the standard
deviation of the distribution F and the radius ε. Let σ > 0, and say Aε/σ is associated with
design points X ∼ F and A′ε is associated with design points X ′ ∼ F (·/σ); then

Aε/σ,i,j = 1{r(Xi,Xj)≤ε/σ} = 1{r(σXi,σXj)≤ε} ∼ A
′
ε,i,j ,

so that information about ε cannot be retrieved from the adjacency matrix without knowl-
edge of the distribution F . However, if ε is known, one may try to flesh out lower order
terms in the approximation above to reduce the bias of the estimates.

We can more precisely approximate the local connection probability as

pε(x) ≈ f(x) · vε +

∫
X

1Vε(x,D)(y) (y − x)T∇f(x) dµ(y),

where ∇f denotes the gradient of the density f , so that by taking expectation,

pε,1 ≈ Ef(X) · vε ·
(
1 + ∆ε

)
, ∆ε =

E
∫
X 1Vε(X,D)(y) (y −X)T∇f(X) dµ(y),

Ef(X) · vε
·

For our canonical choice gε(d) = 2d we thus obtain the approximation

log p2ε,1 − log pε,1
log 2

≈
log v2ε − log vε + log

(
1 + ∆2ε

)
− log

(
1 + ∆ε

)
log 2

≈ d+
∆2ε −∆ε

log 2
.

By the Cauchy-Schwarz inequality to the inner product (y − x)T∇f(x), we conclude that

|∆2ε −∆ε|
log 2

≤ 3

log 2
· E‖∇f(X)‖

Ef(X)
· ε.

Although the multiplier above is unknown, it depends only on F and is therefore fixed.
Furthermore, it is reasonable to expect the multiplier to be of order d, since the gradient
of the density should only be non-trivial along d independent directions. This means that
certain choices for the function gε(d), like for example choices that are independent of the
scale ε, should result in a bias of order O(d · ε). We return to this discussion in Section 6
after we have specified the asymptotics of d̂n for arbitrary gε.

Remark 1 A similar reasoning to the one that was applied to pε,1 above can be applied to
other probabilities associated with the model, like for example pε,2, to motivate alternative
estimators for the intrinsic dimension. Although not reported here, we did not find any
noticeable difference between the d̂n estimator defined in (7) and a pε,2 based estimator.

From the discussion above, it is clear that the consistency of the estimators defined
in (7) depends on three factors: the consistency of the estimates of pε,1 that are used, the
quality of the approximation in (6), and the slope of gε(d) around the underlying intrinsic
dimension d. First we address the estimation of pε,1.
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5. Estimates of the Connection Probability and their Asymptotics

An estimator for pε,1 is obtained by averaging off-diagonal entries of the matrix Aε. For
any mn ≤ n (mn is for now left unspecified, and is a parameter of the estimator),

p̂n,ε,1 =
1

mn

mn∑
i=1

Bε,i
n− 1

=
2

mn(n− 1)

mn∑
i=1

n∑
j=i+1

Aε,i,j , (9)

using the symmetry of Aε. Since EBε,i/(n−1) = pε,1, the estimator p̂n,ε,1 is unbiased. This
estimator can be evaluated in O(nmn) instructions. If we set mn = n then the execution
time may be prohibitive if n is large so the parameter mn offers some flexibility. However,
as we will see below and in Sections 6 and 7, the role of the sequence mn goes beyond just
controlling the computational complexity of the estimator. In Section 7.2, in particular, we
discuss what constitutes a “good” choice for mn.

The following theorem provides the asymptotics for the estimator in (9).

Theorem 2 Let mn ≤ n and mn →∞ as n→∞. If mn = o(n), and pε,2 > p2ε,1, then

S
−1/2
n,ε,1 ·

{
p̂n,ε,1
pε,1

− 1

}
d−→ N(0, 1), where Sn,ε,1 =

pε,2 − p2ε,1
mn p2ε,1

. (10)

If mn = n then the previous display also holds if we further assume that n(pε,2−p2ε,1)2 →∞.
(This assumption always holds if ε is fixed.)

The proof of this theorem can be found in the Appendix. This result is valid irrespec-
tively of the distribution F , and holds even if ε→ 0, as n→∞, so that pε,1, pε,2 → 0. The
difference pε,2− p2ε,1 = E{pε(X)2}−{Epε(X)}2 is the variance of the function pε. From this
we see that pε being more variable has a negative impact on the estimation of pε,1, which is

not surprising. If ε is fixed, then pε,1 can be estimated with rate m
−1/2
n . However, if ε→ 0

the rates may be different depending on how the probabilities involved scale with ε, which
in turn depends on the specific distribution F and the metric r at hand.

Next we give conditions under which the estimators (7) are consistent for d.

6. Consistency of Estimates for the Intrinsic Dimension

Based on the asymptotics of p̂n,ε,1 from the previous section, whether the procedure outlined
in Section 4 delivers consistent estimates for d or not, now depends on the specific model
in question and on gε(d).

Theorem 3 Consider the implicit estimators (7). Assume that the conditions of Theorem 2

required for the convergence of p̂n,ε,1 and p̂n,2ε,1 with rate m
−1/2
n hold. For that ε, d, and

mn, assume that, as n→∞,

p2ε,1 = pε,1 · gε
{
d+ o(m−1/2n )

}
. (B)

10
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Assume also that the derivative (with respect to d) of gε(d) exists, is continuous and non-zero
at d. If pε,1 · (1− p2ε,1) = o

[
n{pε,2ε,2 − pε,1 · p2ε,1}

]
and mn = o(n), then as n→∞,

S−1/2n,ε ·
{
d̂n − d

}
d−→ N(0, 1), where Sn,ε =

{
∂ log gε(d)

∂d

}2

· Vε
mn

where for pε1,ε2,2 = P{r(X,Z) ≤ ε1, r(Y,Z) ≤ ε2},

Vε =
p2ε,1 · p2ε,2 − 2 · pε,2ε,2 · pε,1 · p2ε,1 + p22ε,1 · pε,2

p2ε,1 · p22ε,1

Remark 4 In Theorem 3 we consider the case mn = o(n), which is the most relevant case
in practice. The general expression for Vε (meaning for any sequence mn ≤ n) can be found
in (16), in the Appendix.

Remark 5 Condition (B) controls the asymptotic bias of the estimator for d. Note that
this condition should be interpreted as a condition on gε and on the sequence mn, and not a
condition on ε, since ε is a modelling parameter set by the user. If condition (B) does not
hold, then the statement of the previous theorem is still valid if we centre d̂n with E( d̂n )
instead of d, but in that case the estimator might be asymptotically biased. Alternatively,

if (B) holds with rn = o(mn), instead of mn, then we conclude that r
−1/2
n

(
d̂n− d

)
= oP (1).

(Note that the condition becomes more restrictive for faster rates.)

For the explicit estimator in (8) the gε(d)-dependent scaling in the variance is log(2)−2.
In this case, the bias condition (B) reduces to

p2ε,1 = pε,1 · 2d+o
(
m

−1/2
n

)
.

This requires the connection probability pε,1 to approximately have a doubling property: if
the distance at which vertices connect doubles, then the probability of connection goes up by
a factor 2d, approximately. (Note that also ε should in general depend on n, but we return
to this point in Section 7.1.) How much leverage we have in terms of the approximation
depends mostly on the sequence mn and is, in a sense, the price to pay for the computational
speed-up. However, the choice of mn goes well beyond this.

Remark 6 Since our estimator for d only requires access to mn rows of Aε and A2ε, one

can obtain several (correlated) estimates d̂
(1)
n , d̂

(2)
n , . . . , of d based on disjoint sets of rows

if mn = o(n). From these one can estimate the variance of d̂n.
Say that we consider the following estimator for the variance

σ̂2n = V̂d̂n =
1

tn − 1

tn−1∑
i=1

{
d̂(i)n − d̄n

}2
, with d̄n =

1

tn

tn∑
i=1

d̂(i)n ,

where tn ∈ N is at most n/mn. It is straightforward to check that

Eσ̂2n = σ2
[
1− ρ

{
d̂(1)n , d̂(2)n

}]
,

11
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where ρ(X,Y ) represents the correlation between X and Y . Making use of the fact that

p̂
(i)
n,ε,1 and p̂

(i)
n,2ε,1 are independent for i ∈ N, we have

V
{
d̂(1)n , d̂(2)n

}
=

1{
log(2)2

} [V{ log p̂
(1)
n,ε,1, log p̂

(2)
n,ε,1

}
+ V

{
log p̂

(1)
n,2ε,1, log p̂

(2)
n,2ε,1

}]
.

Using the approximation3 V(logX, log Y ) ≈ V(X,Y )/(EX · EY ), it is enough to look at

V
{
p̂
(1)
n,ε,1, p̂

(2)
n,ε,1

}
. If we denote the range of rows associated with these two estimators as

respectively I1 and I2, then writing the covariance as a four-fold sum, we get

V
{
p̂
(1)
n,ε,1, p̂

(2)
n,ε,1

}
=

{
2

mn(n− 1)

}2 ∑
i1∈I1

∑
i2∈I2

n∑
j1=i1+1

n∑
j2=i2+1

V
(
Aε,i1,j1 , Aε,i2,j2

)
≤ 4

n− 1

(
pε,2 − p2ε,1

)
,

where we use the fact that since I1 ∩ I2 = ∅, then V
(
Aε,i1,j1 , Aε,i2,j2

)
= pε,2 − p2ε,1 if j1 = j2,

and V
(
Aε,i1,j1 , Aε,i2,j2

)
= 0, if j1 6= j2. Finally, under the conditions of Theorems 2 and 3,

we can put everything together to bound∣∣Eσ̂2n − σ2∣∣ . mn

n
· Sn,ε,1
Sn,ε

;

this upper bound converges to zero for appropriate ε, if mn = o(n).

Note that when the metric r is induced by the Euclidean norm ‖ · ‖2, and mn = n, the
estimator p̂n,ε,1 (as a function of ε) coincides with a realisation of the so-called correlation
integral; cf. (Camastra and Vinciarelli, 2002). This is defined in the following way. With
x1, . . . , xn denoting points on a manifold whose dimension we would like to measure, let

Cn(ε) =
2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

1{‖xi−xj‖2≤ε}; (11)

the correlation integral C(ε) is the limit, when n → ∞, of Cn(ε). The underlying idea
behind the intrinsic dimension being d is that C(ε) should scale like εd so that the limit as
ε→ 0 of log{C(ε)}/ log(ε) is d; this is then called the correlation dimension, which is a type
of fractal dimension. Following up on Remark 1, basing our estimator on pε,2 would lead
to a variation on the correlation integral above. We found no advantage in using the pε,2
based estimator over the pε,1 based one.

Some estimators for intrinsic dimension like that of (Grassberger and Procaccia, 1983)
are based on the idea of regressing log{Cn(ε)} on log(ε), and estimating the (correlation)
dimension from the slope of the fit. However, based on the discussion from Section 3,
this slope actually corresponds to some average dimension over different scales, which is
not what we are interested in; cf. Fig. 3.3 of Lee and Verleysen, 2007, for an example of
the scale dependence of the correlation integral. Further, this also makes extensive use of

3. Here we use the fact that V(logX, log Y ) = V{log(X/EX), log(Y/EY )} ≈ V(X/EX − 1, Y/EY − 1) =
V(X,Y )/(EX · EY ), since log(1 + x) ≈ x, for all appropriately small x.

12
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distances between the observations, while we rely only on the neighbourhood information
provided by adjacency matrices.

As we argue in the previous section, one has to examine the data at (at least) two
different scales to derive meaningful information about dimension, and this has been noted
in the literature before. (Kégl, 2002) proposed a scale dependent notion of correlation
dimension based on

Dn(ε1, ε2) =
log{Cn(ε2)} − log{Cn(ε1)}

log(ε2)− log(ε1)
(12)

This improves upon the idea of regressing the logarithms of the empirical version of the cor-
relation integral (cf. Grassberger and Procaccia, 1983; Pettis et al., 1979) on the logarithm
of ε by allowing one to focus on a specific range of scales. Indeed, this is closely reflected
in our estimator d̂n, although we distinguish ourselves from other approaches by deriving
the asymptotic distribution of our estimator within a flexible framework; to the best of our
knowledge the central limit theorem that we derive is new to the literature.

Other approaches to intrinsic dimension estimation follow similar ideas but make use of
other notions of dimension like for example Hausdorff dimension, information dimension,
box counting dimension, (generalised) expansion dimension, packing dimension, and also
local versions of these concepts. The success of such approaches depends mostly on how
computationally tractable computing the estimate of the dimension is, and how adequate
the particular notion of dimension at hand is for the model under consideration.

Another approach corresponds to the maximum likelihood estimator of (Bickel and
Levina, 2004). This estimator is based on maximising the likelihood obtained by assuming
that the observations come from a homogeneous Poisson process. The estimator is then
based on distances to the k-the nearest neighbour of each point, with k interpreted as a
“bandwidth” parameter of the estimator. Another estimator based on k-nearest-neighbours
is that of (Kleindessner and von Luxburg, 2015). In both cases the connection between k
and the scale at which we estimate dimension has not yet been explored in detail, however.
The disadvantage of k-nearest-neighbour approaches seems to be that the way in which the
distance of an observation to its k nearest neighbour scales with dimensions may heavily
depend on the underlying distribution of the data. Although this does open the door to
sharper estimates of the intrinsic dimension, this is done at the expense of needing more
information about the distribution of the data. Besides this, relating k to the scale at which
the intrinsic dimensions is being estimated also seems to be difficult.

The approaches mentioned above, as well as our approach, are examples of so called
geometric methods. A different class of methods are eigenvalue (or projection) methods.
These stem from the work of (Fukunaga and Olsen, 1971); see also (Bruske and Sommer,
1998). These methods are typically based on principal component analysis (PCA) and
estimate the dimension based on how many eigenvalues are above certain (small) threshold.
They seem to be less useful for estimating intrinsic dimension because of the difficulty of
determining what constitutes an appropriate threshold; cf. (Verveer and Duin, 1995).

In the next section we present some numerical results to illustrate our approach. These
results guide us in our choice of the sequence mn.

13



Serra and Mandjes

●

●

●

●
●

●
●

●
●

●

ε = 2

d

lo
g{

m
nS

n,
ε}

1 2 3 4 5 6 7 8 9 10

−12

−10

−8

−6

−4

−2

0

2

4 ● Uniform
Gaussian
Cauchy
Exponential
Beta

●

●

●

●
●

●
●

●
●

●

ε = 1

d

lo
g{

m
nS

n,
ε}

1 2 3 4 5 6 7 8 9 10

−12

−10

−8

−6

−4

−2

0

2

4

●

●

●

●
●

●
●

●
●

●

ε = 1 2

d

lo
g{

m
nS

n,
ε}

1 2 3 4 5 6 7 8 9 10

−12

−10

−8

−6

−4

−2

0

2

4

Figure 2: Effect of the distribution of the design points, d, and ε on the logarithm of the asymptotic
variance of our estimator for d. The three plots correspond to ε ∈ {2, 1, 1/2}, left to right. In
each plot, each line corresponds to a different distribution for the design points.

7. Numerical Results

In this section we present some numerical results. We start by exemplifying in Section 7.1
how the probabilities pε,1 and pε,2 determine the bias and variance of our estimator for
different distributions for the observations X. Section 7.2 is about the consequences of the
choice of the sequence mn in our estimator. In Section 7.3 the performance of our estimator
is evaluated for different combinations of dimension d and resolution 1/ε. The main goal
of these first three subsections is to understand what constitutes a good choice for the
sequence mn that features in the definition (9). Section 7.4 concerns a non-trivial choice for
the function gε (meaning a choice other than 2d), as well as other types of bias correction.
In Section 7.5 we illustrate the effect of noise on our estimator. Finally, in Section 7.6, we
apply our estimator to a batch of data sets of both simulated, and real data. To simplify
the exposition, in all cases the metric r is the Euclidean distance.

7.1 Scaling of pε,1 and pε,2, and their Influence on the Bias and Variance of d̂n

The probabilities pε,1 and pε,2 play an important role in our approach. The quantity
{pε,2 − p2ε,1}/p2ε,1 is the variance of the function pε(x)/pε,1, which is the relative connec-
tion probability at each site x. We see, for example, that if mn = o(n), then the scaling
mn · Sn,ε that features in the asymptotics for our estimator for d is up to a constant factor
the variance of pε(X)/pε,1 − p2ε(X)/p2ε,1. However, this quantity still depends on ε and d,
so it is interesting to see how it behaves for different distributions for the design points.

In Figure 2 we plot the logarithm of mn ·Sn,ε, as a function of the intrinsic dimension d
for several different choices for the distribution of the design points, for three choices of ε.
If ε is fixed, then mnSn,ε is just the constant that features in the rate of convergence of the

estimator of d̂n. (The curves were computed by numerical integration, but are otherwise
exact.) The coordinates of the design points Xi were sampled independently from the
indicated distributions (uniform, Gaussian, exponential, and beta{2, 5}, all scaled standard
deviation 1; Cauchy with scale parameter 1). The main message is that for appropriately
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Figure 3: Effect of the distribution of the design points, d, and ε on {log p2ε,1 − log pε,1}/ log(2). Left to
right, the plots correspond to ε ∈ {2, 1, 1/2}. The shaded area corresponds to d± 1/2.

large d (about d ≥ 5) the lines increase roughly linearly, which would mean that the
constants in the asymptotic statement in Theorem 3 increase exponentially with d. In
general, d is fixed, but these plots give an indication that if the intrinsic dimension is large,
then in order to attain a given level of precision, one should need a fairly large number of
observations. This should give a notion of when the asymptotics described in Section 6 kick
in. The effect of ε, on the other hand, does not seem too pronounced and affects mostly
how the lines behave when the intrinsic dimension d is relatively small.

While the variance of the estimator is, up to the scaling {∂ log gε(d)/∂d}2, only model
dependent, the bias depends greatly on the function gε used in the definition of the estimator.
In particular it depends on how well gε(d) approximates p2ε,1/pε,1 as prescribed by the bias
condition (B). As discussed in Section 4, for appropriately small ε, it should hold that
p2ε,1/pε,1 ≈ 2d, making gε(d) = 2d our canonical choice for gε. For this choice of g and for
the same distributions as before, in Figure 3 we plot d 7→ {log p2ε,1 − log pε,1}/ log(2), for
different ε; we compare it with the identity d 7→ d.

In the plots above, the black dotted line along the diagonal is the identity, and the grey
shaded area encompasses d± 1/2 (for reference). As before, the remaining lines correspond
to different distributions for the design points. As expected from the discussion in Section 4,
as ε gets smaller, these lines mimic the doubling property of the Lebesgue measure more
closely so that d 7→ p2ε,1/pε,1 indeed gets closer to d 7→ 2d. The plots also suggest that
considering gε(d) = 2d should lead to the dimension being systematically underestimated,
and that one may want to consider a multiplicative correction based on ε. In a sense, this
is the price to be paid for having a parameter-free estimator.

Part of the bias is a consequence of the fact that, in general, we do not have access to
a good (model dependent) function g. For example, if g is constant over ε, as discussed
in Section 4, the bias should, in fact, be of order ε. One should therefore consider to take
ε small to reduce the bias of the estimates. However, this is somewhat at odds with the
notion put forward in Section 3, where we explain that ε determines the scale at which we
examine the data and is therefore a (fixed) modelling parameter.
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As it turns out, there is a justification for taking ε = εn converging to zero. The rationale
is the following. Typically, there will be noise in our data so that the support of F is an
enlarged version of the manifold whose dimension we would like to estimate. If the design
points are relatively concentrated, in the sense that P

{
r(0, X) > x

}
. exp(−x2), x > 0,

say, then, by the union bound,

P
{

max
i=1,...,n

r(0, Xi) >
√
δ log n

}
≤

n∑
i=1

P
{
r(0, Xi) >

√
δ log n

}
. n1−δ, δ > 1.

In other words, if ε1 is to express the distance at which we would like to analyse the data,
then if we observe only n points and take ε ≡ ε1, we are overestimating the typical distances
between points by roughly a factor

√
log n. In a sense, this growing spread can be thought of

as arising from noise, so that we should therefore establish connections at a slightly smaller
distance, say for instance εn = ε1/

√
log(1 + n), ε1 > 0. This can also be seen as a finite

sample correction for the estimator; cf. (Grassberger, 1988). Another reason to consider
ε of this kind would be to ensure that the adjacency matrices that we work with remain
relatively sparse. This means that we avoid storage problems even when the sample size n
is large. This can also be motivated from the point of view of discriminability; cf. (Beyer
et al., 1999; Weber et al., 1998; Houle, 2013). If the dimensionality of the data is high,
then distance values are less discriminative, in the sense that they tend to concentrate
more around the mean of their distribution. Because of this, it makes sense to increase the
strictness with which new connections are accepted as the sample size grows.

This has three important consequences. The first is that for the parameter-free es-
timator (8), with the finite sample correction described above should have squared bias
O(1/ log n). This means that the sequence mn should be set to O(log n) to balance vari-
ance and squared bias. The proverbial less is more comes to mind: picking mn large and
averaging over many vertices leads to deceptive results, since the variance of the estimate
is reduced, while the bias remains unchanged. This is an inherent feature of estimators
obtained via inversion, but it is something that is invariably missed in the literature – es-
timates are strongly concentrated around biased estimates. This is undesirable from the
point of view of uncertainty quantification; see also the next section. By doing this our
estimator attains the minimax rate for this problem which is known to be logarithmic;
cf. (Koltchinskii, 2000).

The second consequence follows from the first: setting mn = O(log n) leads to an
algorithm with complexity O(n log n). This is a great advantage over competing algo-
rithms whose execution time typically scales like O(n2), sometimes like O(Dn2); cf. Table
1 in (Eriksson and Crovella, 2012). Finally, since mn is rather small compared with n, this
means that we are estimating d based on the degrees of only a few vertices. By repeating
the estimation for disjoint sets of vertices we can estimate the standard deviation of the
estimator without a need for resampling. The conclusion is that picking small mn is better,
both from a theoretical and practical perspective.

In the next subsection we perform some numerical experiments to investigate more
closely the consequences of different choices for mn.
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Figure 4: Example of 5 · 104 points sampled uniformly at random on a Sierpinski carpet. Points like these
are used as design points in the simulations in this section.

7.2 Different Choices of mn

In this section we look more closely at the choice of mn by exemplifying the effect that the
choice of this sequences has on: a) the bias, b) the variance, and c) the execution time. To
have a nontrivial dimension we consider design points sampled uniformly at random on a
Sierpinski carpet. This can be done in the following way. Consider

P0 =

[
0
0

]
, and C =

[
0 1/2 1 1/2 0 −1/2 −1 −1/2
1 1/2 0 −1/2 −1 −1/2 0 1/2

]
.

Let ei = [0 · · · 0 1 0 · · · 0]T , i = 1, . . . , 8, be unit vectors that have a 1 in the i-th position,
and let ij ∼ U{1, . . . , 8}, j = 1, 2, . . . , be a sequences of independent, discrete uniform
random variables taking values on {1, . . . , 8}. A point can be drawn uniformly at random
on a Sierpinski carpet as

P = P0 + C

∞∑
j=1

3−j · eij .

Figure 4 depicts 5·104 points drawn according to this procedure. In practice we truncate the
sum at 100 terms. (Note that this is accurate enough to get the neighbourhood matrices Aε

exactly.) The correlation dimension of the Sierpinski carpet is, to the best of our knowledge,
unknown, but its Hausdorff dimension is log 8/ log 3 ≈ 1.89, which should provide a good
indication to what the intrinsic dimension should be.

In this section we ran our algorithm for all combinations of n = 10 ·2γ , γ ∈ {0, 1, . . . , 8},
and mn either log(n) or nγ , γ ∈ {1/4, 1/2, 3/4, 1}. The parameter ε was set to εn =
sd{vect(X)}/

√
log(n+ 1), where vect(X) represents the entries for X written as a vector;

the standard deviation of the coordinates of the design points, although in practice unknown,
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mn

log(n) n1/4 n1/2 n3/4 n

n

10 1.1780 (0.78) 1.1243 (0.55) 1.0945 (0.39) 1.0877 (0.32) 1.0861 (0.26)

20 1.2678 (0.54) 1.2528 (0.43) 1.2483 (0.33) 1.2409 (0.24) 1.2367 (0.18)

30 1.3784 (0.49) 1.3718 (0.40) 1.3673 (0.26) 1.3631 (0.17) 1.3602 (0.12)

40 1.4852 (0.44) 1.4781 (0.35) 1.4668 (0.20) 1.4660 (0.12) 1.4636 (0.08)

160 1.5491 (0.32) 1.5441 (0.27) 1.5434 (0.15) 1.5398 (0.08) 1.5395 (0.05)

320 1.6037 (0.28) 1.5963 (0.22) 1.5925 (0.12) 1.5930 (0.06) 1.5923 (0.03)

640 1.6395 (0.27) 1.6376 (0.19) 1.6332 (0.09) 1.6320 (0.04) 1.6320 (0.02)

1280 1.6595 (0.22) 1.6622 (0.18) 1.6596 (0.07) 1.6595 (0.03) 1.6597 (0.01)

2560 1.6790 (0.22) 1.6770 (0.15) 1.6778 (0.06) 1.6768 (0.02) 1.6772 (0.01)

Table 1: Results for the estimation of the intrinsic dimension d for random Sierpinski carpet design points,
for different combinations of n and mn. For each combination, d̂n was estimated 105 times; we
display the mean estimate, and in parenthesis the standard deviation among the estimates.

was used here to ensure that ε is on the right scale. These simulations were repeated 105

times and the results are averaged.

Table 1 summarises the average and standard deviation of the estimates that were
obtained for each combination of n and mn. Irrespectively of the sequence mn, it is clear
that as n grows the estimates stabilise. This is in tune with our consistency result, also in
that the reduction of the bias is rather slow. It is also clear from the results that the sequence
mn does not seem to have much influence on the quality of the estimate, particularly as n
grows. This is also in tune with our results: larger mn does increase the precision of the
estimates of the probabilities pε,1; what mainly determines the precision of the estimate
of d is the bias introduced by the function gε, though. The effect of mn on the standard
deviation is also as expected: increasing either n or mn generally leads to a decreased of the
variability of the estimate. From this it might seem reasonable to set mn to a large value
(after all, it does reduce the variance of the estimator without reducing precision). There
are however two good reasons to keep the growth of mn slow.

The first reason is execution time. Figure 5 shows the evolution of the average execution
time of the algorithm as a function of n, when mn = log(n). For comparison, Table 2 shows
the average execution time as a multiplier of the execution time for mn = log(n), for the
same value of n. In words: the numbers on the table indicate how much slower it is to set
mn to each choice, compared to just setting it to log(n).

The conclusion from Figure 5 is that the execution time for mn = log(n) grows roughly
linearly with n. On the other hand, from Table 2, for other choices of mn the execution
time quickly becomes prohibitive, particularly for faster-growing sequences mn.

There is a second reason to set mn = O{log(n)}. Table 3 shows the percentage of
runs in which d falls within 2 standard deviations from d̂n. The effect of mn is clear. The
confidence interval contains the true value of d, only when mn grows appropriately slowly.
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Figure 5: The evolution of the average execution time of our algorithm as a function of n when mn =
log(n). The plot is on a log-log scale. For reference, the dashed line represents log(n) plotted
against log(n)− 10. The execution time grows roughly linearly with n.

mn

n1/4 n1/2 n3/4 n

n

10 1.13 1.65 2.14 3.20

20 1.29 1.63 2.94 5.98

40 1.34 2.63 5.59 12.72

80 1.31 3.51 9.75 28.43

160 1.20 3.57 12.10 42.46

320 1.52 5.24 21.72 90.87

640 1.91 8.05 39.19 194.22

1280 1.53 9.03 53.86 325.12

2560 1.99 12.68 89.80 638.54

Table 2: Average execution times for the algorithm. For each combination of n and sequence mn, the
respective entry in the table specifies how many times larger the execution time of the algorithm
is compared to using mn = log(n). For example, if we set mn = n, then, when n is 2560, we
have to wait more than 638 times longer for the algorithm to terminate than if we had used
mn = log(n).

Since the estimates are biased, if the sequence mn grows too quickly, then the variance
of the estimates is too small. The estimate d̂n becomes overly concentrated around its
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mn

log(n) n1/4 n1/2 n3/4 n

n

10 84.75 71.68 47.59 30.78 15.16

20 80.44 69.40 52.01 24.14 5.62

40 83.08 76.07 48.46 14.38 0.60

80 86.30 79.55 43.72 6.03 0.00

160 82.07 76.13 36.11 1.45 0.00

320 83.70 73.95 27.07 0.12 0.00

640 85.73 73.30 17.81 0.00 0.00

1280 83.21 75.57 10.24 0.00 0.00

2560 84.95 71.52 4.52 0.00 0.00

Table 3: Percentage of the 105 runs where the true value of d is within 2 standard deviations of d̂n.

biased mean. In effect, because the bias and the variance are out of balance, the standard
deviation fails to properly quantify the uncertainty in the estimate. Also remember that if
mn is small, then we can produce several estimates of d, from which we can estimate the
standard deviation without a need for resampling.

To conclude, the sequence mn affects the variance of the estimator d̂n, but it does not
affect the bias of the estimate, which comes mostly from the function gε. Faster growing mn

therefore leads to estimates that are overly concentrated around their (biased) mean, so that
their variability gives misleading information about the uncertainty in the estimate. Such
choices of mn also lead to a large computations cost. Therefore, setting mn = O{log(n)} is
arguably the correct choice to make.

7.3 Different Combinations of d and n

In this section we show how the estimator d̂n behaves for different combinations of d and
n. We set the distribution of the design points X ∼ Nd(0, I), for d ∈ {1, 2, 3, 4, 5, 10}, and
chose n ∈ {103, 104, 105, 106, 107}; irrespectively of the dimension we always set ε = εn =
4/(log n)1/2. Based on the discussion from the previous section, the parameter mn was set
to max(1, log n).

Table 4 below contains the results of estimating the intrinsic dimension d 10 times: for
each combination of n and d we sampled an adjacency matrix, estimated d 10 times from
10 disjoint subsets of mn vertices (chosen at random, without replacement); the average
and (in brackets) the standard deviation of the 10 estimates make up the entries of the
table. Note that since we only average over a relatively small number of vertices in the
graph, producing Table 4 does not actually require any resampling; the same data set can
be used (for each combination of n and d). Note also that for the choice of mn above, the
execution time of the algorithm is O(n log n), meaning that it is considerable faster than
any alternative approach.
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n

103 104 105 106 107

d

1 0.49 (0.15) 0.58 (0.11) 0.54 (0.12) 0.63 (0.07) 0.71 (0.15)

2 0.91 (0.18) 1.18 (0.19) 1.31 (0.26) 1.41 (0.25) 1.53 (0.17)

3 1.76 (0.24) 1.99 (0.29) 2.23 (0.36) 2.28 (0.34) 2.51 (0.20)

4 2.55 (0.50) 2.94 (0.30) 3.23 (0.42) 3.05 (0.44) 3.42 (0.32)

5 3.24 (0.37) 3.61 (0.38) 3.96 (0.43) 4.31 (0.18) 4.39 (0.44)

10 5.95 (0.61) 7.46 (0.53) 8.59 (0.70) 8.81 (0.70) 8.97 (0.75)

Table 4: Results for the estimation of d for Gaussian design points for different combinations of d and
n. For each combination d̂n was estimated 10 times; we display the mean estimate, and in
parentheses the standard deviation among the estimates.

A few things are clear from the results in Table 4. As hinted in Section 7.1, the estima-
tor tends to underestimate the true intrinsic dimension, especially if the dimension is large.
However, as far as recuperating the integer dimension, the estimator performs well, espe-
cially considering that the data is entirely comprised of random fluctuations. The standard
deviation also does a good job at quantifying the precision of the estimate.

We emphasise that the estimates are parameter free – one can improve the results with
extra knowledge about the distribution of the data. We do this in the following subsection.

7.4 Non-canonical Choice of gε(d), and Bias Corrections

In this section we propose some modifications of our estimator aimed at removing (or at least
mitigating) its bias. Since we know that the estimator d̂n systematically underestimates d,
a simple way of obtaining a “bias corrected” estimator is by scaling d̂n up. We consider
three different ways of doing this.

Following the discussion at the end of Section 4, where we justified that the bias should
be of order O(d · ε), we consider

d̃n = d̂n ·
{

1 +
2

log(2)
· ε
}
· (13)

The motivation for considering this form is indeed the heuristic upper bound on the bias
from Section 4. We replaced the factor 3/ log(2) with a 2/ log(2) to be conservative, since
we do not expect the upper bound on the bias to be tight. We also use the fact that
the ratio of expectations in the bound can reasonably be expected to be of order d since,
on average, the gradient of the density should only be non-trivial along d independent
directions. A multiplicative correction of this form seems to be appropriate not just for
the Gaussian case, where the expectations that feature in the bound on the bias can be
computed. Indeed, this form of the estimator performs quite well without any adjustments
on subsequent experiments; see Table 8. With more knowledge about F one can certainly
make more informed choices about the specific constants in (13). Table 5 shows the values
that the bias corrected estimates (13) take.
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n

103 104 105 106 107

d

1 0.55 (0.17) 0.64 (0.12) 0.59 (0.13) 0.69 (0.08) 0.78 (0.16)

2 1.03 (0.20) 1.32 (0.21) 1.44 (0.29) 1.54 (0.28) 1.66 (0.18)

3 2.00 (0.27) 2.22 (0.32) 2.46 (0.40) 2.49 (0.37) 2.72 (0.22)

4 2.89 (0.57) 3.28 (0.34) 3.55 (0.46) 3.34 (0.48) 3.71 (0.35)

5 3.67 (0.42) 4.02 (0.43) 4.37 (0.48) 4.71 (0.19) 4.77 (0.48)

10 6.74 (0.69) 8.31 (0.59) 9.47 (0.77) 9.63 (0.77) 9.74 (0.81)

Table 5: This table contains the results of repeating the experiment from the previous section, but we
compensate for the bias by considering a multiplicative correction.

Comparing these results with those of Table 4, we see that indeed this correction seems
to substantially improve the estimates.

One can also consider other choices for the function gε to reduce the bias. The idea is
to use knowledge of the distribution of the design points to select a better suited candidate
for this function. This also leads to more precise estimates of the intrinsic dimension. If
X ∼ Nd(0, I), independent of Y ∼ Nd(0, I) then Z = X − Y ∼ Nd(0, 2I), so that, if we
abbreviate Zε = {z ∈ Rd : ‖z‖ ≤ ε}, then

pε,1 = P(‖X − Y ‖ ≤ ε) = P(‖Z‖ ≤ ε) =
1

(4π)d/2

∫
Zε
e−

1
4
‖z‖2 dz =

vε

(4π)d/2

∫ 1

0
e−

1
4
u2ε2 du,

where vε represents the volume of a d-dimensional Euclidean ball of radius ε. The integral
above can be expressed in terms of the Gauss error function erf, so that

pε,1 = (4π)−d/2 · vε ·
√
π

ε
· erf(ε/2), whence

p2ε,1
pε,1

= 2d · erf(ε)/2

erf(ε/2)
·

What is arguably the ideal choice for the function gε is then

gε(d) = 2d · erf(ε)/2

erf(ε/2)
, leading to d̄n = d̂n +

log{erf(ε/2)} − log{erf(ε)/2}
log 2

,

where d̂n is the canonical estimator from (8). Note that using the exact function gε(d)
does not entirely remove the bias of the estimate since gε(d) is not linear in d, and since
p̂n,2ε,1/p̂n,ε,1 is not an unbiased estimator for p2ε,1/pε,1. Note also that the correction factor
depends only on ε, but not on d. To understand the effect of this new estimator based on the
more precise choice of gε(d), we repeat the numerical experiment of the previous section now
for the estimator d̄n from the previous display; Table 6 summarises these results. Comparing
Tables 4 and 6, it is clear that, as one would expect, a more informed choice for mapping gε
considerably improves the estimates. The improvement provided by this additive correction
typically performs somewhat worse than the multiplicative correction, but the difference
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n

103 104 105 106 107

d

1 1.04 (0.25) 1.04 (0.11) 1.06 (0.14) 1.00 (0.11) 0.99 (0.15)

2 1.63 (0.22) 1.76 (0.33) 1.69 (0.24) 1.80 (0.27) 1.84 (0.17)

3 2.42 (0.37) 2.45 (0.48) 2.54 (0.23) 2.48 (0.33) 2.73 (0.33)

4 2.99 (0.41) 3.23 (0.35) 3.71 (0.38) 3.64 (0.32) 3.50 (0.28)

5 3.98 (0.54) 4.37 (0.47) 4.49 (0.44) 4.36 (0.34) 4.30 (0.33)

10 6.56 (0.67) 7.87 (0.60) 8.47 (0.79) 9.63 (0.82) 9.39 (0.71)

Table 6: This table contains the results of repeating the experiment from the previous section, but instead
using the true underlying function gε(d) that maps d to the ratios p2ε,1/pε,1.

n

103 104 105 106 107

d

1 0.79 0.80 0.78 0.77 1.01

2 1.27 1.56 1.83 1.91 1.87

3 2.24 2.57 2.95 2.96 2.91

4 3.55 3.54 4.07 3.93 4.06

5 3.98 4.37 4.82 4.67 5.27

10 7.17 8.52 9.99 10.21 10.47

Table 7: This table contains the results of repeating the experiment from the previous section, but we
compensate for the bias by adding two standard deviations to the estimate.

seems to be small. This is most likely due to the fact that the multiplicative correction
is better at compensating for the bias induced by the bias of our moment estimator of
p2ε,1/pε,1.

As a third and final alternative, one can also shift the estimates up by a factor depending
on the standard deviations of the estimates. This is motivated by the fact that our choice
of mn = O{log(n)} balances squared bias and variance. (Again, the standard deviation is
estimated using the same data as d̂n without any need from resampling.) Table 7 presents
the results of adding (since we otherwise under-estimate) two standard deviations to the
corresponding estimate d̂n.

This correction performs well, particularly considering that it requires no extra infor-
mation about the distribution of the data. Overall this seems to present the best correction
for exactly this reason.

Although asymptotically any of the three corrections performs equally well, for finite
samples, and with extra knowledge of the distribution of the design points, the multiplicative
correction provides the best results. Without extra knowledge though, the variance based
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Figure 6: The estimator’s sensitivity to noise. Each plot corresponds to a different sample size, from left to
right: n ∈ {103, 104, 105}. The lines correspond to different estimates of the intrinsic dimension
for different values of s, and the different colours correspond to different SNR.

correction still improves the canonical estimate d̂n considerably. However, this does not
change the fact that one will always need a large sample size n when the intrinsic dimension
d is large.

7.5 Effect of the Noise

An important aspect to be taken into consideration is the robustness of the estimation
procedure to the presence of noise. Irrespectively of the nature of the observations, if they
are corrupted with enough noise, the estimation procedure will only detect the noise. In
this respect we would like to see how sensitive the estimator is to the presence of noise. To
see if this, we sampled design points X(s) in R5 according to

X
(s)
i

i.i.d.∼ N5

{
0, diag

( s︷ ︸︸ ︷
σ2signal, . .

5−s︷ ︸︸ ︷
., σ2noise

)}
, i = 1, . . . , n, s = 1, . . . , 5.

We set ε = εn = σsignal(2 log n)−1/2, and ran our estimation procedure on the adjacency
matrix obtained from X(s) for s = 1, . . . , 5. Each plot in Figure 6 corresponds to a different
sample size n ∈ {103, 104, 105}. The coloured lines in each plot correspond to the 5 estimates
d̂n, averaged over 10 disjoint sets of vertices. Different colours correspond to different signal
to noise ratio (SNR); namely, we fixed σsignal = 1 and chose σnoise such that SNR =
σ2signal/σ

2
noise ∈ {1, 2, 4, 8, 16, 32, 64}.

The estimator performs as intended. Consider first the rightmost plot in Figure 6, where
n is the largest. When the SNR is 1, the intrinsic dimension is 5; in this case, we detect
intrinsic dimension 5 for s = 1, . . . , 5, and the corresponding line is roughly the constant
function s 7→ 5. When the SNR is high, the mass of the design points is mostly concentrated
on an s-dimensional subspace so that the intrinsic dimension is s; the resulting estimates
are then close to the identity s 7→ s. Between these extreme cases it is not clear exactly
what the intrinsic dimension is. However, the lines corresponding to the estimates behave
roughly monotonically. This means that the estimator is correctly picking up on the fact
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n d D Data set d̃n

1 1000 1 3 Uniform on a helix 1.25 (0.16)

2 1000 2 3 Swiss roll 2.44 (0.59)

3 1000 5 5 Independent Gaussian 5.26 (1.15)

4 1000 7 8 Uniform on a sphere 6.66 (0.16)

5 5000 7 8 Uniform on a sphere 7.10 (0.08)

6 1000 12 12 Uniform on [0, 1]12 8.70 (0.61)

7 5000 12 12 Uniform on [0, 1]12 9.65 (0.35)

8 698 – 64× 64 Isomap faces 4.22 (0.70)

9 481 – 512× 480 Hands 2.14 (0.35)

10 7141 – 28× 28 MNIST “3” 15.62 (0.11)

11 6824 – 28× 28 MNIST “4” 15.65 (0.16)

12 6313 – 28× 28 MNIST “5” 15.45 (0.07)

Table 8: Numerical experiments from Section 4.2 of (Kleindessner and von Luxburg, 2015) for different
simulated and real data sets. For each data set we indicate the sample size, intrinsic dimension
d, and ambient dimension D. The first seven data sets are simulated, while the last five are real.
The intrinsic dimension of the real data sets is unknown.

that the mass of the distribution is concentrating on a lower dimensional subspace, and
gradually changing to reflect this. For smaller sample sizes, as per the discussion from
Section 7.1, the rightmost points in the plot are not reliable estimates.

7.6 Comparison with Other Estimators

We compare our estimator with competing approaches from the literature. To do this we
repeat the numerical simulations of Section 4.2 of (Kleindessner and von Luxburg, 2015),
which is conceptually close to our estimator. Our results can then be compared directly
with the results from their Table 1. Note that we base our estimates on two (symmetric)
adjacency matrices Aε and A2ε, while the estimators from (Kleindessner and von Luxburg,
2015) are based on a (directed) k-nearest neighbour graph, so that both approaches require
the same number of measurements. We consider twelve data sets; seven consist of simulated
data, and five of real data. Table 8 contains the results.

The simulated data sets are self explanatory. The Isomap faces data set4 contains 698
images (D = 64 × 64 pixels) of a rendered face of a sculpture taken from different angles,
under different lighting conditions. The Hands data set5 contains 481 frames (D = 512×480
pixels) from a video of a hand holding a rice bowl and revolving it while moving from right

4. http://isomap.stanford.edu/datasets.html

5. http://vasc.ri.cmu.edu//idb/html/motion/hand/index.html
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to left. The MNIST data sets6 contain 7141, 6824, and 6313 images (D = 28 × 28 pixels)
of handwritten digits “3”, “4”, and “5”, respectively.

About the choice of ε for the experiments. For every synthetic data set we set ε =
4/(log n)1/2 as before. For the real data sets this turned out to be inappropriate since
the observations are on completely different scales. We scaled ε up so that the resulting
adjacency matrices Aε and A2ε were neither complete graphs nor empty graphs, since this
would lead to trivial estimates. This turn out to give us ε equal to 14, 17, 1600, 1600, and
1600, for data sets 8–12, respectively. In practice this can be achieved based on some notion
of the scale of the observations, or based on a preliminary analysis, simulated data sets, or
subsamples. In all experiments we set mn = 2 log n.

Our estimator compares quite well with the competing approaches, particularly as far as
recuperating the integer dimension is concerned; the results are perhaps closer to the ones
obtained by the estimator of (Levina and Bickel, 2004), but contrary to their estimator we
do not require any knowledge about how the distance from a given point to its k-nearest-
neighbour scales, or any distance data, or for any parameters to be set in the estimator. Also,
the computational complexity of our estimator scales like O(n log n), considerably smaller
than the typical O(n2). Furthermore, the results in each row of Table 8 were obtained
from a single data set, without repeated sampling. Because of this we can provide standard
deviations for our estimates without a need to resample the data, including for the real
data sets. These standard deviations are much more realistic than the ones associated with
competing approaches. We suspect that this is because for those it is difficult to properly
balance the variance and the squared bias of the estimator, resulting in estimates that are
overly concentrated around their biased means.

For the simulated data sets the true dimension is recuperated with good accuracy, with
the exception of the sixth and seventh data set where the intrinsic dimension is relatively
high. Indeed, as discussed in Section 7.1, in order to recuperate the intrinsic dimension
consistently, the sample size should be quite large compared to the intrinsic dimension,
since the minimax rates for the problem are logarithmic in n. This also comes from the
fact that the support of the data set is rather unstructured, unlike for example data set 2,
4, and 5, or even 10, 11, and 12.

Less can be said about the results for the real data sets since the true intrinsic dimen-
sion is unknown. However, our results are comparable to the ones obtained by competing
approaches. In particular, in all cases the intrinsic dimension is substantially smaller than
the ambient dimension. For the Isomap faces data set we estimate the intrinsic dimension
as 4; although the statue is 3-dimensional, the different lighting conditions may explain the
fact that we detect an extra dimension in the data set. For the Hands data set we estimate
the dimension as 2.14. One would probably expect the dimension to be 3, but given the
symmetries in the hand and bowl, and that the images actually make up a smooth anima-
tion may explain the lower estimate. As for the MNIST data set, it seems reasonable that
the estimates are not too different for the three digits. Also, if one were to parametrise the
digits in terms of lengths, relative angles, and curvatures of the line segments, the estimate
seems rather natural.

6. http://yann.lecun.com/exdb/mnist/
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8. Discussion

In this paper we propose a method to estimate the intrinsic dimension of high-dimensional
data sets. The approach combines the notion of correlation dimension with the doubling
property of the Lebesgue measure to provide a computationally tractable estimator for
data sets with (potentially) scale-dependent dimension. The approach does not require any
parameters to be chosen, other than the scale at which one would like to estimate the di-
mension. This is particularly useful for data that live on manifolds whose dimension may be
different at different scales, data sets corrupted with noise, or whenever not much is known
about the distribution of the data. We compute the estimator’s asymptotic distribution
and rate of convergence. The rate that we obtain matches the logarithmic minimax rate
for the (easier) problem where one has access to the observations – not just whether each
pair of observations is close or not – and is therefore optimal. The estimator can be quickly
evaluated in O(n log n) steps which is also an advantage over competing approaches, whose
execution time typically scales like O(n2). Also in terms of storage there are advantages be-
cause the adjacency matrix that we base our estimator on will typically be sparse (since the
underlying graph is embedded in a Euclidean space). Our results provide important infor-
mation for algorithms commonly used to perform dimensionality reduction, learn manifolds,
compress information, do statistical adaptation, and design efficient algorithms.

Distance-based estimators usually require rather (distribution specific) knowledge since
one needs to know quite precisely how distances between perturbed observations scale.
These also usually require certain bandwidth parameters to be defined without an auto-
matic, or data driven way of picking them. Rather than assuming that we have access to
the observations (or distances between them), we simply assume that we observe a graph
encoding whether observations are close or not at the scale we are interested in. This is
particularly relevant when dealing with large data sets. Modelling the resulting graph as a
random connection model allows us to provide bounds on the probability of recuperating
the correct intrinsic dimension of the data set, under a mild identifiability condition.

Our numerical experiments show that the intrinsic dimension can be well recuperated
even without access to any distance information between the observations. Furthermore,
our estimator properly picks up on the uncertainty of the estimate (the standard deviation
of the estimator can be estimated without need for resampling), which can be used to avoid
the estimator to be overly concentrated around its biased mean. Distance-based estimators
tend to be much more costly, computationally. The estimator is parameter-free, but it can
easily be improved by using any knowledge one may have about the distribution of the
data. This is done by incorporating this knowledge into the choice of the function gε that
features in the definition of the estimator.

Similar distance-free estimators such as those based on k-nearest-neighbours, seem to
somewhat underperform in comparison. Although based on a similar idea, it seems like
the number of k-nearest-neighbours to a fixed observations does not scale in a simple way
with the dimension, making it more difficult to recuperate the dimension accurately from
such kind of information alone. It is also not clear how to control exactly at which scale
the dimension is being recuperated by choice of k. This suggests that in data sets with
different dimensions at different scales, or data sets corrupted with noise, those estimators
may return some form of “average dimension” across scales.
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Another point to make is that one can also use our work for estimation of local dimension;
cf. (Amsaleg et al., 2015). These are cases where the dimension of the underlying manifold
of interest is not equal everywhere, and the space is instead some heterogeneous manifold.
Our estimator is based on looking at just mn vertices in the underlying neighbourhood
graph. If we focus on vertices corresponding to the region of the manifold where we would
like to estimate the local dimension (rather than picking these mn vertices arbitrarily), then
our estimator promptly delivers an estimate of this local dimension.
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Appendix

In this appendix we collect the proofs to our results.

Proof of Theorem 2: By the symmetry of Aε it suffices to control the sum

mn∑
i=1

n∑
j=i+1

{
Aε,i,j − pε,1

}
=

mn∑
i=1

mn∑
j=i+1

{
Aε,i,j − pε,1

}
+

mn∑
i=1

n∑
j=mn+1

{
Aε,i,j − pε,1

}
= (A) + (B).

The proof now proceeds in two different ways: if mn = n then (B) = 0 and use the martin-
gale central limit theorem to show that a properly rescaled version of (A) is asymptotically
standard Gaussian7; if mn = o(n) then (B) dominates (A), so we show instead that (B) is
asymptotically Gaussian.

Let mn = n. By the symmetry of Aε, and since Aε,i,i = 0, (A) can be rewritten as

n∑
i=2

 i−1∑
j=1

{
Aε,i,j − pε(Xj)

}
+ (n− i)

{
pε(Xi)− pε,1

}+ (n− 1)
{
pε(X1)− pε,1

}
.

(Note that we are just adding and subtracting pε(Xj) inside the double sum and reordering
terms.) Denote the term in square brackets as ηn,i. The two terms in the previous display
are uncorrelated; the variance of the second term is (n − 1)2(pε,2 − p2ε,1). Further, ηn,i has
expectation 0, and is measurable with respect to Fn,i = Fi = σ(X1, . . . , Xi). Since j < i,

E
[
ηn,i | Fi−1

]
=

i−1∑
j=1

{
E
[
Aε,i,j | Xj

]
− pε(Xj)

}
+ (n− i)

{
Epε(Xi)− pε,1

}
= 0, i = 2, . . . , n,

so that ηn,i is a martingale increment. This means that if we define Sn,k =
∑k

i=2 ηn,i, then
{Sn,k,Fn,k, 2 ≤ k ≤ n, n ≥ 2} is a martingale array.

7. The case where O(n) ≤ mn < n is controlled in the same way.
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We show that a scaled version of Sn,n is asymptotically standard Gaussian, as n →
∞. With the convention that pε(Xi, Xi) = pε(Xi), by expanding the square and taking
conditional expectations term-wise it holds that

E
[
η2n,i | Fi−1

]
=

i−1∑
j1=1

i−1∑
j2=1

{
pε(Xj1 , Xj2)− pε(Xj1)pε(Xj2)

}
+

+ 2(n− i)
i−1∑
j=1

{
E
[
Aε,i,j pε(Xi) | Xj

]
− pε,1 pε(Xj)

}
+ (n− i)2(pε,2 − p2ε,1),

(14)

where we use the definitions of pε(X) and pε(X,Y ), the fact that pε(Xj) ∈ Fn,i−1, for
j ≤ i− 1, and that Xi – or indeed pε(Xi) – is independent of Fn,i−1, i = 2, . . . , n.

The expectation of η2n,i is obtained by taking expectation of the previous display and
noting that for any j1, j2, j 6= i,

E
{
pε(Xj1 , Xj2)− pε(Xj1)pε(Xj2)

}
= {pε,1 − VPε(X)} 1{j1=j2} + pε,21{j1 6=j2} − p

2
ε,1,

E
{
E
[
Aε,i,j pε(Xi) | Xj

]
− pε,1 pε(Xj)

}
= pε,2 − p2ε,1.

Note that
∑n

i=2(i− 1) is n2{1/2 + o(1)}, and the sums
∑n

i=2(n− i)2, 2
∑n

i=2(n− i)(i− 1),
and

∑n
i=2(i−1)(i−2) are all n3{1/3+o(1)}. We assume8 that pε,1−pε,2 = o{n(pε,2−p2ε,1)},

as n→∞ so that the variance of Sn,n becomes

VSn,n =

n∑
i=2

Eη2n,i =

{
n2

2
(pε,1 − p2ε,1) + n3(pε,2 − p2ε,1)

}
{1+o(1)} = n3(pε,2−p2ε,1){1+o(1)}.

We therefore define Zn,i = Sn,i/{VSn,n}1/2, with increments ξn,i = ηn,i/{VSn,n}1/2.
Based on the preceding, {Zn,i,Fn,i, 2 ≤ i ≤ n, n ≥ 2} is a (zero-mean, unit variance)

martingale array. Since Fn,i = Fi, the σ-fields satisfy Fn,i ⊆ Fn+1,i, 2 ≤ i ≤ n, n ≥ 2, so
that they are nested. We check the conditions of Corollary 3.1 of (Hall and Heyde, 2014):

n∑
i=2

E
[
ξ2n,i1{|ξn,i|>δ} | Fi−1

] P−→ 0, δ > 0, and
n∑
i=2

E
[
ξ2n,i | Fi−1

] P−→ 1. (15)

To check the first condition we use E
[
|Z|21{|Z|>δ}

]
≤ EZ4/δ2 (by the Cauchy-Schwarz

inequality, and Markov’s inequality), and (a + b)4 ≤ 23(a4 + b4), a, b ∈ R (by Young’s
inequality). Therefore, checking (15) reduces to showing that as n→∞,

n∑
i=2

E
[(∑i−1

j=1

{
Aε,i,j − pε(Xj)

})4 | Fi−1]
n6(pε,2 − p2ε,1)2

P−→ 0,

n∑
i=2

(n− i)4E
[(
pε(Xi)− pε,1

)4]
n6(pε,2 − p2ε,1)2

−→ 0.

If ε is fixed, then pε,1 and pε,2 are fixed, the numerators are of order n5 and the conditions
are met. Assume therefore that ε→ 0 so that pε(x)→ 0. Since the summands are positive,
both conditions follow if we assume that n(pε,2 − p2ε,1)2 →∞.

8. This assumption is weaker than the assumption n(pε,2 − p2ε,1)2 →∞ which will be imposed later.
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To show the second condition in (15) holds, it suffices to show that the sum over i =
2, . . . , n of each of the three terms in (14) divided by n3(pε,2 − p2ε,1) converges to 1/3, in
probability; this is obvious for the third term, for the second term it follows easily from
Chebyshev’s inequality (since the terms in the sum are independent), so that only the
convergence of the first term requires justification.

By Chebyshev’s inequality and symmetry, it suffices to show that

E
(∑n

i=2

∑i−1
j1=1

∑i−1
j2=1

{
pε(Xj1 , Xj2)− pε(Xj1)pε(Xj2)− (pε,2 − p2ε,1)

})2
n6(pε,2 − p2ε,1)2

converges to zero. By Jensen’s inequality, we can upper bound the previous display by

(n−1)
n∑
i=2

E
(∑i−1

j1=1

∑i−1
j2=1

{
pε(Xj1 , Xj2)− pε(Xj1)pε(Xj2)− (pε,2 − p2ε,1)

})2
n6(pε,2 − p2ε,1)2

.
1

n(pε,2 − p2ε,1)2
.

The last equality follows from the fact that of the (i − 1)4 involved in the square above,
(i−1)2(i−3)2 of them have zero mean; the remaining terms are O(i3). The previous display
is o(1) since we assume n(pε,2 − p2ε,1)2 →∞.

To complete the proof, we consider the case mn = o(n). Adding and subtracting pε(Xi)
inside the double sum, and then interchanging the two summations we can rewrite (B) as

n∑
j=mn+1

[
mn∑
i=1

{
Aε,i,j − pε(Xi)

}]
+ (n−mn)

mn∑
i=1

{
pε(Xi)− pε,1

}
= (C) + (D).

Since the terms in (D) are independent, it is easy to see that the variance of (D) is mn(n−
mn)2(pε,2 − p2ε,1), so that it dominates the terms in (A), and is asymptotically Gaussian. It
remains to show that the variance of (C) is dominated by that of (D).

Define the sum in square brackets in the previous display as ζj . These terms are uncor-
related: for indices j1 6= j2, with j1, j2 > i1, i2,

Eζj1ζj2 =

mn∑
i=1

E
{
Aε,i,j1 − p(Xi)

}{
Aε,i,j2 − p(Xi)

}
+

mn∑
i1=1

mn∑
i2=1
i2 6=i1

E
{
Aε,i1,j1 − pε(Xi1)

}{
Aε,i2,j2 − pε(Xi2)

}
,

which is zero. From this we conclude that the variance of (C) is O{nm2
n(pε,2 − p2ε,1)}, and

is therefore dominated by that of (D). This concludes the proof.

Proof of Theorem 3: We apply the delta method. For this we need to know the joint
distribution of {p̂n,ε,1, p̂n,2ε,1}. This is established using the Cramér-Wold device by showing
that for each α, β ∈ R, α p̂n,ε,1 + β p̂n,2ε,1 is asymptotically Gaussian. As in the proof of
Theorem 2 we control

mn∑
i=1

n∑
j=i+1

{
αAε,i,j + βA2ε,i,j − αpε,1 − βp2ε,1

}
=

mn∑
i=1

n∑
j=i+1

{
A∗ε,i,j − p∗ε,1

}
.
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Since A∗ε,i,j is measurable with respect to Xi and Xj , and bounded, and since the previous
display has mean zero, we can follow exactly the same steps as in Theorem 2 to show that
the previous display is asymptotically Gaussian.

To fully specify the asymptotic distribution of {p̂n,ε,1, p̂n,2ε,1} it remains to compute the
covariance of the estimates p̂n,ε,1 and p̂n,2ε,1. Define pε1,ε2,2 = P{r(X,Z) ≤ ε1, r(Z, Y ) ≤ ε2},
and assume that pε,1−pε,1 ·p2ε,1 = o

[
n{pε,2ε,2−pε,1 ·p2ε,1}

]
. Simple computations then give

V
{
p̂n,ε,1, p̂n,2ε,1

}
=

(n+ 3mn){pε,2ε,2 − pε,1p2ε,1}
n ·mn

{1 + o(1)}.

Write Aε = pε,2−p2ε,1, Bε = p2ε,2−p22ε,1, and Cε = (n+3mn){pε,2ε,2−pε,1 ·p2ε,1}/n. Conclude
that under the assumptions of Theorem 2 (verified also with ε replaced with 2ε),w

m1/2
n

{[
p̂n,ε,1
p̂n,2ε,1

]
−
[
pε,1
p2ε,1

]}
d−→ N

{[
0
0

]
,

[
Aε Cε
Cε Bε

]}
.

In the general case of the implicit estimates in (7), consider d 7→ gε(d); let g−1ε represent the
inverse of gε (which exists, at least in a neighbourhood of d). The asymptotic distribution
of the estimator d̂n is obtained by applying the delta method to the previous display using
the function (α, β) 7→ g−1ε (β/α), whose gradient is {∂ log gε(d)/∂d}−1[−1/α, 1/β]T . This
delivers the asymptotic distribution of

g−1ε (p̂n,ε,1/p̂n,2ε,1)− g−1ε (pε,1/p2ε,1) = d̂n − d+ d− g−1ε (pε,1/p2ε,1) = d̂n − d+ o(m−1/2n ),

where the last equality follows from the bias condition (B). We conclude that

m1/2
n

{
d̂n − d

}
d−→ N

{
0,

{
∂ log gε(d)

∂d

}−2 [ Aε
p2ε,1

+
Bε
p22ε,1

− 2Cε
pε,1 p2ε,1

]}
.

Replacing Aε, Bε, and Cε, the component of the variance in square brackets is

6
mn

n
+
p2ε,1p2ε,2 + p22ε,1pε,2

p2ε,1p
2
2ε,1

− 2
(

1 + 3
mn

n

) pε,2ε,2
pε,1p2ε,1

. (16)

For the explicit estimator from (8), the delta method is used with the function (α, β) 7→
log(β/α)/ log(2) = g−1ε (β/α), such that the scaling in the variance becomes log(2)−2.
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