77 research outputs found

    Virtual Factory:a systemic approach to building smart factories

    Get PDF

    Virtual Reality

    Get PDF
    At present, the virtual reality has impact on information organization and management and even changes design principle of information systems, which will make it adapt to application requirements. The book aims to provide a broader perspective of virtual reality on development and application. First part of the book is named as "virtual reality visualization and vision" and includes new developments in virtual reality visualization of 3D scenarios, virtual reality and vision, high fidelity immersive virtual reality included tracking, rendering and display subsystems. The second part named as "virtual reality in robot technology" brings forth applications of virtual reality in remote rehabilitation robot-based rehabilitation evaluation method and multi-legged robot adaptive walking in unstructured terrains. The third part, named as "industrial and construction applications" is about the product design, space industry, building information modeling, construction and maintenance by virtual reality, and so on. And the last part, which is named as "culture and life of human" describes applications of culture life and multimedia-technology

    Product Design

    Get PDF
    Product design is a comprehensive process related to the creation of new products, and the ability to design and develop efficient products are key to success in today’s dynamic global market. Written by experts in the field, this book provides a comprehensive overview of the product design process and its applications in various fields, particularly engineering. Over seven chapters, the authors explore such topics as development of new product design methodologies, implementation of effective methods for integrated products, development of more visualized environments for task-based conceptual design methods, and development of engineering design tools based on 3D photogrammetry, among others

    Visualization and Human-Machine Interaction

    Get PDF
    The digital age offers a lot of challenges in the eld of visualization. Visual imagery has been effectively used to communicate messages through the ages, to express both abstract and concrete ideas. Today, visualization has ever-expanding applications in science, engineering, education, medicine, entertainment and many other areas. Different areas of research contribute to the innovation in the eld of interactive visualization, such as data science, visual technology, Internet of things and many more. Among them, two areas of renowned importance are Augmented Reality and Visual Analytics. This thesis presents my research in the fields of visualization and human-machine interaction. The purpose of the proposed work is to investigate existing solutions in the area of Augmented Reality (AR) for maintenance. A smaller section of this thesis presents a minor research project on an equally important theme, Visual Analytics. Overall, the main goal is to identify the most important existing problems and then design and develop innovative solutions to address them. The maintenance application domain has been chosen since it is historically one of the first fields of application for Augmented Reality and it offers all the most common and important challenges that AR can arise, as described in chapter 2. Since one of the main problem in AR application deployment is reconfigurability of the application, a framework has been designed and developed that allows the user to create, deploy and update in real-time AR applications. Furthermore, the research focused on the problems related to hand-free interaction, thus investigating the area of speech-recognition interfaces and designing innovative solutions to address the problems of intuitiveness and robustness of the interface. On the other hand, the area of Visual Analytics has been investigated: among the different areas of research, multidimensional data visualization, similarly to AR, poses specific problems related to the interaction between the user and the machine. An analysis of the existing solutions has been carried out in order to identify their limitations and to point out possible improvements. Since this analysis delineates the scatterplot as a renowned visualization tool worthy of further research, different techniques for adapting its usage to multidimensional data are analyzed. A multidimensional scatterplot has been designed and developed in order to perform a comparison with another multidimensional visualization tool, the ScatterDice. The first chapters of my thesis describe my investigations in the area of Augmented Reality for maintenance. Chapter 1 provides definitions for the most important terms and an introduction to AR. The second chapter focuses on maintenance, depicting the motivations that led to choose this application domain. Moreover, the analysis concerning open problems and related works is described along with the methodology adopted to design and develop the proposed solutions. The third chapter illustrates how the adopted methodology has been applied in order to assess the problems described in the previous one. Chapter 4 describes the methodology adopted to carry out the tests and outlines the experimental results, whereas the fifth chapter illustrates the conclusions and points out possible future developments. Chapter 6 describes the analysis and research work performed in the eld of Visual Analytics, more specifically on multidimensional data visualizations. Overall, this thesis illustrates how the proposed solutions address common problems of visualization and human-machine interaction, such as interface de- sign, robustness of the interface and acceptance of new technology, whereas other problems are related to the specific research domain, such as pose tracking and reconfigurability of the procedure for the AR domain

    The Benefits of Extended Reality for Technical Communication : Utilizing XR for Maintenance Documentation Creation and Delivery

    Get PDF
    The main goal of this dissertation is to explore the benefits of extended reality for technical communication. Both of these fields offer opportunities and also pose challenges to each other, and this dissertation provides insight into this relationship. The research was initiated by the author’s personal interest in both fields and also human-technology interaction and user needs in general. Even though this is an academic dissertation, it is first and foremost a practitioner’s view of these evolving technologies and their potential uses in industry and, specifically, in industrial maintenance and technical communication. Under the umbrella of extended reality and technical communication, this dissertation focuses on two main themes. The first part studies virtual reality as a technology to facilitate collaboration and digital content creation for technical documentation in industrial companies, and the second part explores the possibilities of augmented reality and smart glasses as a delivery channel for maintenance instructions. The developed concepts were tested by domain experts in user tests. The overall results of testing were positive, and domain experts expressed enthusiasm toward the concepts and technologies in general. The technical documentation process is an inherently collaborative process involving stakeholders from different teams and organizations, and virtual reality was evaluated to have a positive effect on that process, especially in the case of globally scattered teams. The developed tools were also rated positively for digital content creation. Therefore, virtual reality offers many benefits for technical documentation creation, an area where it has not been utilized until now. On the augmented reality side, domain experts were generally enthusiastic about the use of smart glasses even though the technologies are not yet mature enough for field use in industrial maintenance. Furthermore, the results show that content created in the technical communications industry standard, DITA XML, works well when delivered to smart glasses, and the same content can be single sourced to other delivery channels. The use of DITA XML, therefore, eliminates the need to tailor content for each delivery channel separately, and offers an effective way to create and update content for AR applications in industrial companies. This, in turn, can advance the use of AR technologies and related devices in field operations in industrial companies. In conclusion, the findings of this dissertation show that the fields of technical communication and extended reality have a significant amount of synergy. In this dissertation I establish use cases and guidelines for these areas

    Modular Human-in-the-loop Design Framework Based on Human Factors

    Get PDF
    Human-in-the-loop design framework introduced in this dissertation utilizes Digital Human Modeling (DHM) to incorporate Human Factors Engineering (HFE) design principles early in design process. It embodies scientific methods (e.g., mathematics) and artistic approaches (e.g., visualization) to assess human well-being and overall system performance. This framework focuses not only on ergonomics assessments but also actual design process including, but not limited to, concept development, structural integrity and digital prototyping. It addresses to three major limitations found in HFE literature and practices

    ISMCR 1994: Topical Workshop on Virtual Reality. Proceedings of the Fourth International Symposium on Measurement and Control in Robotics

    Get PDF
    This symposium on measurement and control in robotics included sessions on: (1) rendering, including tactile perception and applied virtual reality; (2) applications in simulated medical procedures and telerobotics; (3) tracking sensors in a virtual environment; (4) displays for virtual reality applications; (5) sensory feedback including a virtual environment application with partial gravity simulation; and (6) applications in education, entertainment, technical writing, and animation

    Performance Factors in Neurosurgical Simulation and Augmented Reality Image Guidance

    Get PDF
    Virtual reality surgical simulators have seen widespread adoption in an effort to provide safe, cost-effective and realistic practice of surgical skills. However, the majority of these simulators focus on training low-level technical skills, providing only prototypical surgical cases. For many complex procedures, this approach is deficient in representing anatomical variations that present clinically, failing to challenge users’ higher-level cognitive skills important for navigation and targeting. Surgical simulators offer the means to not only simulate any case conceivable, but to test novel approaches and examine factors that influence performance. Unfortunately, there is a void in the literature surrounding these questions. This thesis was motivated by the need to expand the role of surgical simulators to provide users with clinically relevant scenarios and evaluate human performance in relation to image guidance technologies, patient-specific anatomy, and cognitive abilities. To this end, various tools and methodologies were developed to examine cognitive abilities and knowledge, simulate procedures, and guide complex interventions all within a neurosurgical context. The first chapter provides an introduction to the material. The second chapter describes the development and evaluation of a virtual anatomical training and examination tool. The results suggest that learning occurs and that spatial reasoning ability is an important performance predictor, but subordinate to anatomical knowledge. The third chapter outlines development of automation tools to enable efficient simulation studies and data management. In the fourth chapter, subjects perform abstract targeting tasks on ellipsoid targets with and without augmented reality guidance. While the guidance tool improved accuracy, performance with the tool was strongly tied to target depth estimation – an important consideration for implementation and training with similar guidance tools. In the fifth chapter, neurosurgically experienced subjects were recruited to perform simulated ventriculostomies. Results showed anatomical variations influence performance and could impact outcome. Augmented reality guidance showed no marked improvement in performance, but exhibited a mild learning curve, indicating that additional training may be warranted. The final chapter summarizes the work presented. Our results and novel evaluative methodologies lay the groundwork for further investigation into simulators as versatile research tools to explore performance factors in simulated surgical procedures

    Virtual Reality and Its Application in Education

    Get PDF
    Virtual reality is a set of technologies that enables two-way communication, from computer to user and vice versa. In one direction, technologies are used to synthesize visual, auditory, tactile, and sometimes other sensory experiences in order to provide the illusion that practically non-existent things can be seen, heard, touched, or otherwise felt. In the other direction, technologies are used to adequately record human movements, sounds, or other potential input data that computers can process and use. This book contains six chapters that cover topics including definitions and principles of VR, devices, educational design principles for effective use of VR, technology education, and use of VR in technical and natural sciences
    • …
    corecore