518 research outputs found

    Instrumentation and validation of a robotic cane for transportation and fall prevention in patients with affected mobility

    Get PDF
    Dissertação de mestrado integrado em Engenharia FĂ­sica, (especialização em Dispositivos, Microssistemas e Nanotecnologias)O ato de andar Ă© conhecido por ser a forma primitiva de locomoção do ser humano, sendo que este traz muitos benefĂ­cios que motivam um estilo de vida saudĂĄvel e ativo. No entanto, hĂĄ condiçÔes de saĂșde que dificultam a realização da marcha, o que por consequĂȘncia pode resultar num agravamento da saĂșde, e adicionalmente, levar a um maior risco de quedas. Nesse sentido, o desenvolvimento de um sistema de deteção e prevenção de quedas, integrado num dispositivo auxiliar de marcha, seria essencial para reduzir estes eventos de quedas e melhorar a qualidade de vida das pessoas. Para ultrapassar estas necessidades e limitaçÔes, esta dissertação tem como objetivo validar e instrumentar uma bengala robĂłtica, denominada Anti-fall Robotic Cane (ARCane), concebida para incorporar um sistema de deteção de quedas e um mecanismo de atuação que possibilite a prevenção de quedas, ao mesmo tempo que assiste a marcha. Para esse fim, foi realizada uma revisĂŁo do estado da arte em bengalas robĂłticas para adquirir um conhecimento amplo e aprofundado dos componentes, mecanismos e estratĂ©gias utilizadas, bem como os protocolos experimentais, principais resultados, limitaçÔes e desafios em dispositivos existentes. Numa primeira fase, foi estipulado o objetivo de: (i) adaptar a missĂŁo do produto; (ii) estudar as necessidades do consumidor; e (iii) atualizar as especificaçÔes alvo da ARCane, continuação do trabalho de equipa, para obter um produto com design e engenharia compatĂ­vel com o mercado. Foi depois estabelecida a arquitetura de hardware e discutidos os componentes a ser instrumentados na ARCane. Em seguida foram realizados testes de interoperabilidade a fim de validar o funcionamento singular e coletivo dos componentes. Relativamente ao controlo de movimento, foi desenvolvido um sistema inovador, de baixo custo e intuitivo, capaz de detetar a intenção do movimento e de reconhecer as fases da marcha do utilizador. Esta implementação foi validada com seis voluntĂĄrios saudĂĄveis que realizaram testes de marcha com a ARCane para testar sua operabilidade num ambiente de contexto real. Obteve-se uma precisĂŁo de 97% e de 90% em relação Ă  deteção da intenção de movimento e ao reconhecimento da fase da marcha do utilizador. Por fim, foi projetado um mĂ©todo de deteção de quedas e mecanismo de prevenção de quedas para futura implementação na ARCane. Foi ainda proposta uma melhoria do mĂ©todo de deteção de quedas, de modo a superar as limitaçÔes associadas, bem como a proposta de dispositivos de deteção a serem implementados na ARCane para obter um sistema completo de deteção de quedas.The act of walking is known to be the primitive form of the human being, and it brings many benefits that motivate a healthy and active lifestyle. However, there are health conditions that make walking difficult, which, consequently, can result in worse health and, in addition, lead to a greater risk of falls. Thus, the development of a fall detection and prevention system integrated with a walking aid would be essential to reduce these fall events and improve people quality of life. To overcome these needs and limitations, this dissertation aims to validate and instrument a cane-type robot, called Anti-fall Robotic Cane (ARCane), designed to incorporate a fall detection system and an actuation mechanism that allow the prevention of falls, while assisting the gait. Therefore, a State-of-the-Art review concerning robotic canes was carried out to acquire a broad and in-depth knowledge of the used components, mechanisms and strategies, as well as the experimental protocols, main results, limitations and challenges on existing devices. On a first stage, it was set an objective to (i) enhance the product's mission statement; (ii) study the consumer needs; and (iii) update the target specifications of the ARCane, extending teamwork, to obtain a product with a market-compatible design and engineering that meets the needs and desires of the ARCane users. It was then established the hardware architecture of the ARCane and discussed the electronic components that will instrument the control, sensory, actuator and power units, being afterwards subjected to interoperability tests to validate the singular and collective functioning of cane components altogether. Regarding the motion control of robotic canes, an innovative, cost-effective and intuitive motion control system was developed, providing user movement intention recognition, and identification of the user's gait phases. This implementation was validated with six healthy volunteers who carried out gait trials with the ARCane, in order to test its operability in a real context environment. An accuracy of 97% was achieved for user motion intention recognition and 90% for user gait phase recognition, using the proposed motion control system. Finally, it was idealized a fall detection method and fall prevention mechanism for a future implementation in the ARCane, based on methods applied to robotic canes in the literature. It was also proposed an improvement of the fall detection method in order to overcome its associated limitations, as well as detection devices to be implemented into the ARCane to achieve a complete fall detection system

    Building “with the systems” vs. building “in the system” of IMS open technology of prefabricated construction: challenges for new “infill” industry for massive housing retrofitting

    Get PDF
    Post-war industrialized housing between 1955 and 1985 in Belgrade and its special form of integrated prefabrication has been analyzed with a strong interest in transformation capacity of industrialized building model (IBM) on different technical levels. Research field is massive housing up to 23 floors, 400 dwellings per building and different housing layouts—to be evaluated for potential retrofitting at the dwelling level. IBM for massive housing built with IMS construction technology represents an integration of systems’ components into hierarchy assemblies by simple joints. IMS Building Technology by IMS Institute is the system for high-rise structures with prefabricated elements of the skeleton. In order to assess the current situation regarding the selection and implementation of energy savings measures and the role of industrialized technology in supporting the rehabilitation of post-war housing in Belgrade—building configuration model and IMS construction technology has been analyzed, providing in-depth information on the way building components and systems are put together into IBM. In which way retrofit may be approached? IBM is represented with graph model (GM) diagram to describe a number of value-added processes according to independent systems/components and flexible connections. This paper highlights the technological aspects of “open” prefabrication industry and building with the systems that should be assessed in the future retrofitting of massive housing based on industrialization and energy efficiency. The paper proposes an IBM that provides concrete description of massive housing buildings, the requirements for information to be provided to approving refurbishment processes. The research also addresses both: challenges as well as opportunities for advancing Building Information Modeling (BIM) standards in off-site re-construction of massive housing with new “infill” industry.Peer ReviewedPostprint (published version

    Wastewater irrigation and health: assessing and mitigating risk in low-income countries

    Get PDF
    Wastewater irrigation / Public health / Health hazards / Risk assessment / Epidemiology / Sewage sludge / Excreta / Diseases / Vegetables / Leaf vegetables / Economic impact / Wastewater treatment / Irrigation methods / Developing countries

    Low-Cost Sensors and Biological Signals

    Get PDF
    Many sensors are currently available at prices lower than USD 100 and cover a wide range of biological signals: motion, muscle activity, heart rate, etc. Such low-cost sensors have metrological features allowing them to be used in everyday life and clinical applications, where gold-standard material is both too expensive and time-consuming to be used. The selected papers present current applications of low-cost sensors in domains such as physiotherapy, rehabilitation, and affective technologies. The results cover various aspects of low-cost sensor technology from hardware design to software optimization

    Sonic interactions in virtual environments

    Get PDF
    This book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments

    Sonic Interactions in Virtual Environments

    Get PDF

    Deep Underground Science and Engineering Laboratory - Preliminary Design Report

    Full text link
    The DUSEL Project has produced the Preliminary Design of the Deep Underground Science and Engineering Laboratory (DUSEL) at the rehabilitated former Homestake mine in South Dakota. The Facility design calls for, on the surface, two new buildings - one a visitor and education center, the other an experiment assembly hall - and multiple repurposed existing buildings. To support underground research activities, the design includes two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the design includes a Department of Energy-shepherded Large Cavity supporting the Long Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates one laboratory module and additional spaces for physics and Earth science efforts. With input from some 25 science and engineering collaborations, the Project has designed critical experimental space and infrastructure needs, including space for a suite of multidisciplinary experiments in a laboratory whose projected life span is at least 30 years. From these experiments, a critical suite of experiments is outlined, whose construction will be funded along with the facility. The Facility design permits expansion and evolution, as may be driven by future science requirements, and enables participation by other agencies. The design leverages South Dakota's substantial investment in facility infrastructure, risk retirement, and operation of its Sanford Laboratory at Homestake. The Project is planning education and outreach programs, and has initiated efforts to establish regional partnerships with underserved populations - regional American Indian and rural populations

    Design for Child-Robot Play The implications of Design Research within the field of Human-Robot Interaction studies for Children

    Get PDF
    This thesis investigates the intersections of three disciplines, that are Design Research, Human-Robot Interaction studies, and Child Studies. In particular, this doctoral research is focused on two research questions, namely, what is (or might be) the role of design research in HRI? And, how to design acceptable and desirable child-robot play applications? The first chapter introduces an overview of the mutual interest between robotics and design that is at the basis of the research. On the one hand, the interest of design toward robotics is documented through some exemplary projects from artists and designers that speculate on the human-robot coexistence condition. Vice versa, the robotics interest toward design is documented by referring to some tracks of robotic conferences, scienti c workshops and robotics journals which focused on the design-robotics relationship. Finally, a brief description of the background conditions that characterized this doctoral research are introduced, such as the fact of being a research founded by a company. The second chapter provides an overview of the state of the art of the intersections between three multidisciplinary disciplines. First, a de nition of Design Research is provided, together with its main trends and open issues. Then, the review focuses on the contribution of Design Research to the HRI eld, which can be summed up in actions focused on three aspects: artefacts, stakeholders, and contexts. This is followed by a focus on the role of Design Research within the context of children studies, in which it is possible to identify two main design-child relationships: design as a method for developing children’s learning experiences; and children as part of the design process for developing novel interactive systems. The third chapter introduces the Research through Design (RtD) approach and its relevance in conducting design research in HRI. The proposed methodology, based on this approach, is particularly characterized by the presence of design explorations as study methods. These, in turn, are developed through a common project’s methodology, also reported in this chapter. The fourth chapter is dedicated to the analysis of the scenario in which the child-robot interaction takes place. This was aimed at understanding what is edutainment robotics for children, its common features, how it relates to existing children play types, and where the interaction takes place. The chapter provides also a focus on the relationship between children and technology on a more general level, through which two themes and relative design opportunities were identi ed: physically active play and objects-to-think-with. These were respectively addressed in the two design explorations presented in this thesis: Phygital Play and Shybo. The Phygital Play project consists of an exploration of natural interaction modalities with robots, through mixed-reality, for fostering children’s active behaviours. To this end, a game platform was developed for allowing children to play with or against a robot, through body movement. Shybo, instead, is a low-anthropomorphic robot for playful learning activities with children that can be carried out in educational contexts. The robot, which reacts to properties of the physical environment, is designed to support different kinds of experiences. Then, the chapter eight is dedicated to the research outcomes, that were de ned through a process of reflection. The contribution of the research was analysed and documented by focusing on three main levels, namely: artefact, knowledge and theory. The artefact level corresponds to the situated implementations developed through the projects. The knowledge level consists of a set of actionable principles, emerged from the results and lessons learned from the projects. At the theory level, a theoretical framework was proposed with the aim of informing the future design of child- robot play applications. Thelastchapterprovidesa naloverviewofthe doctoral research, a series of limitations regarding the research, its process and its outcomes, and some indications for future research
    • 

    corecore