331 research outputs found

    Building Footprint Extraction from LiDAR Data and Imagery Information

    Get PDF
    This study presents an automatic method for regularisation of building outlines. Initially, building segments are extracted using a new fusion method. Data- and model-driven approaches are then combined to generate approximate building polygons. The core part of the method includes a novel data-driven algorithm based on likelihood equation derived from the geometrical properties of a building. Finally, the Gauss-Helmert and Gauss-Markov models adjustment are implemented and modified for regularisation of building outlines considering orthogonality constraints

    A review of hough transform and line segment detection approaches

    Get PDF
    In a wide range of image processing and computer vision problems, line segment detection is one of the most critical challenges. For more than three decades researchers have contributed to build more robust and accurate algorithms with faster performance. In this paper we review the main approaches and in particular the Hough transform and its extensions, which are among the most well-known techniques for the detection of straight lines in a digital image. This paper is based on extensive practical research and is organised into two main parts. In the first part, the HT and its major research directions and limitations are discussed. In the second part of the paper, state-of-the-art line segmentation techniques are reviewed and categorized into three main groups with fundamentally distinctive characteristics. Their relative advantages and disadvantages are compared and summarised in a table

    Graph Clustering, Variational Image Segmentation Methods and Hough Transform Scale Detection for Object Measurement in Images

    Get PDF
    © 2016, Springer Science+Business Media New York. We consider the problem of scale detection in images where a region of interest is present together with a measurement tool (e.g. a ruler). For the segmentation part, we focus on the graph-based method presented in Bertozzi and Flenner (Multiscale Model Simul 10(3):1090–1118, 2012) which reinterprets classical continuous Ginzburg–Landau minimisation models in a totally discrete framework. To overcome the numerical difficulties due to the large size of the images considered, we use matrix completion and splitting techniques. The scale on the measurement tool is detected via a Hough transform-based algorithm. The method is then applied to some measurement tasks arising in real-world applications such as zoology, medicine and archaeology

    A review of hough transform and line segment detection approaches

    Get PDF
    In a wide range of image processing and computer vision problems, line segment detection is one of the most critical challenges. For more than three decades researchers have contributed to build more robust and accurate algorithms with faster performance. In this paper we review the main approaches and in particular the Hough transform and its extensions, which are among the most well-known techniques for the detection of straight lines in a digital image. This paper is based on extensive practical research and is organised into two main parts. In the first part, the HT and its major research directions and limitations are discussed. In the second part of the paper, state-of-the-art line segmentation techniques are reviewed and categorized into three main groups with fundamentally distinctive characteristics. Their relative advantages and disadvantages are compared and summarised in a table

    Estimating Damaged Volume of Historic Pagodas in Bagan after Earthquake using 3D Hough Transform

    Get PDF
    On 24th August 2016, the magnitude of a 6.8 earthquake struck in Bagan from the depth of 52 miles. This earthquake caused much damage in historic pagodas in Bagan, one of the archeological houses in Asia. Analyzing the affected areas is an essential task for the restoration and reconstruction of historic buildings after a disaster. Traditional methods of detecting damage to buildings focus on detecting 2D changes (i.e., only the appearance of the image), but the 2D information provided by the image is not sufficient when it involves detecting damage to buildings is often not precise. For finding out the solution, a method of 3D change detection is needed for estimating the volumes of damaged pagodas after the earthquake. The proposed system aims at producing a quick assessment of the damaged pagodas accurately and correctly. This system estimates the damaged volume of the pagoda based on the nature of the 3D point clouds. Post-earthquake photos are taken using an anonymous aircraft (UAV) and point cloud data is generated using VisualSFM software. The 3D Hough transform is used to find the intersection of the tower vertex and the 3D vertex at the line boundary. Besides, the proposed system can detect the reformed structure of the entire pagoda. The results show that the proposed approach facilitates the automated 3D detection of damaged pagodas and is a time-saving method for estimating the volume of damage caused to precious historic pagodas after a disaster

    Structure-aware image denoising, super-resolution, and enhancement methods

    Get PDF
    Denoising, super-resolution and structure enhancement are classical image processing applications. The motive behind their existence is to aid our visual analysis of raw digital images. Despite tremendous progress in these fields, certain difficult problems are still open to research. For example, denoising and super-resolution techniques which possess all the following properties, are very scarce: They must preserve critical structures like corners, should be robust to the type of noise distribution, avoid undesirable artefacts, and also be fast. The area of structure enhancement also has an unresolved issue: Very little efforts have been put into designing models that can tackle anisotropic deformations in the image acquisition process. In this thesis, we design novel methods in the form of partial differential equations, patch-based approaches and variational models to overcome the aforementioned obstacles. In most cases, our methods outperform the existing approaches in both quality and speed, despite being applicable to a broader range of practical situations.Entrauschen, Superresolution und Strukturverbesserung sind klassische Anwendungen der Bildverarbeitung. Ihre Existenz bedingt sich in dem Bestreben, die visuelle Begutachtung digitaler Bildrohdaten zu unterstützen. Trotz erheblicher Fortschritte in diesen Feldern bedürfen bestimmte schwierige Probleme noch weiterer Forschung. So sind beispielsweise Entrauschungsund Superresolutionsverfahren, welche alle der folgenden Eingenschaften besitzen, sehr selten: die Erhaltung wichtiger Strukturen wie Ecken, Robustheit bezüglich der Rauschverteilung, Vermeidung unerwünschter Artefakte und niedrige Laufzeit. Auch im Gebiet der Strukturverbesserung liegt ein ungelöstes Problem vor: Bisher wurde nur sehr wenig Forschungsaufwand in die Entwicklung von Modellen investieret, welche anisotrope Deformationen in bildgebenden Verfahren bewältigen können. In dieser Arbeit entwerfen wir neue Methoden in Form von partiellen Differentialgleichungen, patch-basierten Ansätzen und Variationsmodellen um die oben erwähnten Hindernisse zu überwinden. In den meisten Fällen übertreffen unsere Methoden nicht nur qualitativ die bisher verwendeten Ansätze, sondern lösen die gestellten Aufgaben auch schneller. Zudem decken wir mit unseren Modellen einen breiteren Bereich praktischer Fragestellungen ab

    Robotic Cameraman for Augmented Reality based Broadcast and Demonstration

    Get PDF
    In recent years, a number of large enterprises have gradually begun to use vari-ous Augmented Reality technologies to prominently improve the audiences’ view oftheir products. Among them, the creation of an immersive virtual interactive scenethrough the projection has received extensive attention, and this technique refers toprojection SAR, which is short for projection spatial augmented reality. However,as the existing projection-SAR systems have immobility and limited working range,they have a huge difficulty to be accepted and used in human daily life. Therefore,this thesis research has proposed a technically feasible optimization scheme so thatit can be practically applied to AR broadcasting and demonstrations. Based on three main techniques required by state-of-art projection SAR applica-tions, this thesis has created a novel mobile projection SAR cameraman for ARbroadcasting and demonstration. Firstly, by combining the CNN scene parsingmodel and multiple contour extractors, the proposed contour extraction pipelinecan always detect the optimal contour information in non-HD or blurred images.This algorithm reduces the dependency on high quality visual sensors and solves theproblems of low contour extraction accuracy in motion blurred images. Secondly, aplane-based visual mapping algorithm is introduced to solve the difficulties of visualmapping in these low-texture scenarios. Finally, a complete process of designing theprojection SAR cameraman robot is introduced. This part has solved three mainproblems in mobile projection-SAR applications: (i) a new method for marking con-tour on projection model is proposed to replace the model rendering process. Bycombining contour features and geometric features, users can identify objects oncolourless model easily. (ii) a camera initial pose estimation method is developedbased on visual tracking algorithms, which can register the start pose of robot to thewhole scene in Unity3D. (iii) a novel data transmission approach is introduced to establishes a link between external robot and the robot in Unity3D simulation work-space. This makes the robotic cameraman can simulate its trajectory in Unity3D simulation work-space and project correct virtual content. Our proposed mobile projection SAR system has made outstanding contributionsto the academic value and practicality of the existing projection SAR technique. Itfirstly solves the problem of limited working range. When the system is running ina large indoor scene, it can follow the user and project dynamic interactive virtualcontent automatically instead of increasing the number of visual sensors. Then,it creates a more immersive experience for audience since it supports the user hasmore body gestures and richer virtual-real interactive plays. Lastly, a mobile systemdoes not require up-front frameworks and cheaper and has provided the public aninnovative choice for indoor broadcasting and exhibitions
    • …
    corecore