679 research outputs found

    Solving variational inequalities defined on a domain with infinitely many linear constraints

    Get PDF
    We study a variational inequality problem whose domain is defined by infinitely many linear inequalities. A discretization method and an analytic center based inexact cutting plane method are proposed. Under proper assumptions, the convergence results for both methods are given. We also provide numerical examples to illustrate the proposed method

    On the Efficient Solution of Variational Inequalities; Complexity and Computational Efficiency

    Get PDF
    In this paper we combine ideas from cutting plane and interior point methods in order to solve variational inequality problems efficiently. In particular, we introduce a general framework that incorporates nonlinear as well as linear "smarter" cuts. These cuts utilize second order information on the problem through the use of a gap function. We establish convergence as well as complexity results for this framework. Moreover, in order to devise more practical methods, we consider an affine scaling method as it applies to symmetric, monotone variationalinequality problems and demonstrate its convergence. Finally, in order to further improve the computational efficiency of the methods in this paper, we combine the cutting plane approach with the affine scaling approach

    An oracle based method to compute a coupled equilibrium in a model of international climate policy

    Get PDF
    This paper proposes a computational game-theoretic model for the international negotiations that should take place at the end of the period covered by the Kyoto protocol. These negotiations could lead to a self-enforcing agreement on a burden sharing scheme given the necessary global emissions limit that will be imposed when the real extent of climate change is known. The model assumes a non-cooperative behavior of the parties except for the fact that they will be collectively committed to reach a target on total cumulative emissions by the year 2050. The concept of normalized equilibrium, introduced by J.B. Rosen for concave games with coupled constraints, is used to characterize a family of dynamic equilibrium solutions in an m-player game where the agents are (groups of) countries and the payoffs are the welfare gains obtained from a Computable General Equilibrium (CGE) model. The model deals with the uncertainty about climate sensitivity by computing an S-adapted equilibrium. These equilibria are computed using an oracle-based method permitting an implicit definition of the payoffs to the different players, obtained through simulations performed with the global CGE model GEMINI-E

    Volumetric center method for stochastic convex programs using sampling

    Get PDF
    We develop an algorithm for solving the stochastic convex program (SCP) by combining Vaidya's volumetric center interior point method (VCM) for solving non-smooth convex programming problems with the Monte-Carlo sampling technique to compute a subgradient. A near-central cut variant of VCM is developed, and for this method an approach to perform bulk cut translation, and adding multiple cuts is given. We show that by using near-central VCM the SCP can be solved to a desirable accuracy with any given probability. For the two-stage SCP the solution time is independent of the number of scenarios

    An optimization algorithm applied to the Morrey conjecture in nonlinear elasticity

    Get PDF
    AbstractFor a long time it has been studied whether rank-one convexity and quasiconvexity give rise to different families of constitutive relations in planar nonlinear elasticity. Stated in 1952 the Morrey conjecture says that these families are different, but no example has come forward to prove it. Now we attack this problem by deriving a specialized optimization algorithm based on two ingredients: first, a recently found necessary condition for the quasiconvexity of fourth-degree polynomials that distinguishes between both classes in the three dimensional case, and secondly, upon a characterization of rank-one convex fourth-degree polynomials in terms of infinitely many constraints.After extensive computational experiments with the algorithm, we believe that in the planar case, the necessary condition mentioned above is also necessary for the rank-one convexity of fourth-degree polynomials. Hence the question remains open
    corecore