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Abstract

For a long time it has been studied whether rank-one convexity and quasiconvexity give rise to different families of con-
stitutive relations in planar nonlinear elasticity. Stated in 1952 the Morrey conjecture says that these families are different,
but no example has come forward to prove it. Now we attack this problem by deriving a specialized optimization algo-
rithm based on two ingredients: first, a recently found necessary condition for the quasiconvexity of fourth-degree poly-
nomials that distinguishes between both classes in the three dimensional case, and secondly, upon a characterization of
rank-one convex fourth-degree polynomials in terms of infinitely many constraints.

After extensive computational experiments with the algorithm, we believe that in the planar case, the necessary condi-
tion mentioned above is also necessary for the rank-one convexity of fourth-degree polynomials. Hence the question
remains open.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Different relaxations of convexity have been proposed as constitutive assumptions in the Theory of Non-
linear Elasticity in the framework of the Calculus of Variations, see Ball (1978) or Dacorogna (1989). The pur-
pose is to have a sufficiently large class of functions, i.e., that contains functions which might represent the
stored energy function for a wide variety of materials, but one would like to keep the global energy functional
being sequentially weakly lower semicontinuous (s.w.l.s.c. for short), to have that weakly convergent
sequences of minimizers converge to a minimum. For this latter condition the class of quasiconvex functions
is the precise one, unfortunately its definition is extremely difficult to verify. On the other hand from the Had-
amard stability condition one obtains that the stored energy function is necessarily rank-one convex.
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It is known that quasiconvex functions are rank-one convex, however the reciprocal has not been proved
nor disproved in the planar case and Morrey conjectured that they are different, see Morrey (1952) which was
confirmed forty years later, but only for three dimensions, by the famous counterexample of Šverák (1992),
consisting of a fourth-degree polynomial. Much analytical work has been done in terms of comparing the
two classes in the planar case, see for example Alibert and Dacorogna (1992) where additionally a counterex-
ample was obtained of a fourth-degree quasiconvex polynomial that is not polyconvex, a sufficient condition
for quasiconvexity requiring that the function can be written as a convex function of its minors. See also Ped-
regal (1996), Müller (1999), Kałamajska (2003) and the references therein. Finally in Székelyhidi (2005) the
characterization of the rank-one convex hull is studied, leading to an important analytical result.

Some numerical work has been done previously for this problem. In Dacorogna et al. (1990) a particular,
albeit important, function was studied, namely the counterexample of Dacorogna and Marcellini (1988) that
shows that rank-one convexity does not imply polyconvexity, which is again a fourth-degree polynomial. A
very extensive study was done in Dacorogna and Haeberly (1998) covering particular families of functions
for which there were detailed analytical results. See also Brighi and Chipot (1994).

The existence of non-quasiconvex rank-one convex functions is linked to a fundamental question in the
theory of composite materials, namely whether all composites can be constructed by sequential laminates,
see Milton (2002). Furthermore quasiconvex functions have been extensively used in many other subjects in
mechanics due to their good behavior in terms of variational principles, as is explained below. Examples of this
are: the modelling of phase transitions in solids, see Carstensen (2005), shape optimization, see Pedregal (2005)
and fracture mechanics as in Francfort and Marigo (1998), just to cite one reference for each area of research.

The question about the difference between quasiconvexity and rank-one convexity is also connected to a con-
jecture in the theory of quasiconformal mappings, see Astala et al. (1998) and Iwaniec (2002), related to the
norm of the Beurling–Ahlfors transform, however the direction explored here is not helpful for such conjecture
since Proposition 2 below gives a trivial result when applied to the functions related to this conjecture.

Here this question is studied through the derivation of a specialized optimization algorithm based on a nec-
essary condition for the quasiconvexity of fourth-degree polynomials contained in Proposition 2 below, that we
proved recently see Gutiérrez (2006), and which explains Šverák’s example. Therefore the approach followed
here is novel since it gives a new way to look at this problem, which by now is known to be very hard analytically.

We report here our numerical efforts, since this might help in the discussion about the most appropriate
way to attack numerically this very hard problem, for example by proposing a better optimization algorithm
than the one we used. On the other hand, for the more analytically minded researchers it is very useful to have
a strong indication that the much sought-for counterexample, most likely lies on a class of functions broader
than that of the fourth-degree polynomials and that the condition we found in Gutiérrez (2006) does not seem
to be fine enough to distinguish between rank-one convexity and quasiconvexity in the most general case.

2. Rank-one convexity and quasiconvexity

Let m and N be either 2 or 3 and X � RN be a bounded regular open set, representing the body whose defor-
mation we want to study. Mm·N will denote the space of the m · N real matrices. If we have a sequence of
vector fields with m components which are defined on X, it is customary to speak of their gradients as a
sequence of m · N-matrix valued fields on X.

The system of Nonlinear Elasticity reads as
�divrðx;ruÞ ¼ f x 2 X;
where u : X! Rm represents the displacement fields, which should also satisfy some boundary conditions,
f : X! Rm are the external forces and r : X · Mm·N!Mm·N gives the internal stresses. Then, assuming that
there exists a smooth function W, called the strain-energy density of the body, one has that
rijðx;ruÞ ¼ oW
oðruÞij

ðx;ruÞ: ð1Þ
Eq. (1) is called the stress–strain relation and it represents the constitutive assumption made on the material at
position x 2 X. It corresponds to the generalization of Hooke’s law.
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One can use the framework of the Direct Method of the Calculus of Variations and try to minimize the
total strain energy
JðuÞ ¼
Z

X
W ðx;ruðxÞÞdx:
In this approach, however, one needs two ingredients: first one has to generate a minimizing sequence that
belongs to a sequentially compact set for weak convergence and secondly J should be s.w.l.s.c. In that form
the weak limit of the sequence will be a minimizer of the problem and then, under smoothness assumptions, a
solution to the nonlinear elasticity system. The assumptions needed over W to make this approach work, lead
to the notion of quasiconvexity, namely W is quasiconvex if for any matrix U in Mm·N, any x measurable
subset of X whose measure is denoted by jxj and any u 2 C1c ðx;RmÞ, one has that
Z

x
W ðU þruÞdx P jxjW ðUÞ:
Quasiconvexity is equivalent to s.w.l.s.c. for the W1,1 weak w topology. The problem, however, is that to
check whether the definition of quasiconvexity holds is extremely difficult, which explains the usefulness of
having the more stringent condition of polyconvexity, see Ball (1978), and the more relaxed condition of
rank-one convexity. A function F : Mm�N ! R is said rank-one convex if for any matrix U in Mm·N and
any pair g 2 Rm, n 2 RN , the function
/ðtÞ ¼ F ðU þ tg� nÞ
is convex when t 2 (0,1).
A function F that is quasiconvex is necessarily rank-one convex. This has been known at least since the

work of Morrey, who also stated in 1952 the conjecture that these two families of functions are different in
the vectorial case, i.e., N,m P 2, known as the Morrey conjecture. This conjecture, however, has not been
proved neither disproved in the most general case N,m P 2. For N P 2 and m P 3 the conjecture was proved
by Šverák (1992), who gave a rank-one convex fourth-degree polynomial that is not quasiconvex. In Gutiérrez
(2006) we derived a necessary condition for the quasiconvexity of a polynomial of degree four with vanishing
constant and linear terms, see Proposition 2 below. In that paper it was shown that the counterexample of
Šverák, which falls into the class for which our proposition holds, does violate the necessary condition we
found.

If F 2 C2ðMm�N ;RÞ an equivalent condition to rank-one convexity is the Legendre–Hadamard condition,
namely that for any U 2Mm·N
Xm

i;k¼1

XN

j;l¼1

o2F ðUÞ
oUij oU kl

ginjgknl P 0 8g 2 Rm; n 2 RN :
From now on we identify Mm·N with RNm by putting the first row of the matrix as the first N entries of the
vector, the second row as the following N entries and so on. Then, the Legendre–Hadamard condition for
F becomes that for any d 2 RNm, the Hessian F00(d) must be a positive semidefinite matrix over the following
cone in RNm, equivalent to the set of rank-one matrices in Mm·N:
K ¼ fk 2 RNm : 9g 2 Rm; n 2 RN n f0g such that k ¼ ðg1n; . . . ; gmnÞTg:
If we restrict F to be a fourth-degree polynomial, then the Hessian matrix of F at any point td, with t 2 R and
d 2 RNm, is given by
F 00ðtdÞð�; �Þ ¼ F 00ð0Þð�; �Þ þ tF ð3Þð0Þðd; �; �Þ þ 1

2
t2F ð4Þð0Þðd; d; �; �Þ:
Thus, F is rank-one convex if and only if for any k 2 K, d 2 RNm and t 2 R one has that
F 00ð0Þðk; kÞ þ tF ð3Þð0Þðd; k; kÞ þ 1

2
t2F ð4Þð0Þðd; d; k; kÞP 0;
which then gives the following result.
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Proposition 1. Let F be a fourth-degree polynomial in RNm. Then F is rank-one convex if and only if the following

three conditions hold:
(a) F00(0)(k,k) P 0 "k 2 K,

(b) F ð4Þð0Þðd; d; k; kÞP 0 8d 2 RNm; k 2 K,

(c) F ð3Þð0Þðd; k; kÞ2 � 2F 00ð0Þðk; kÞF ð4Þð0Þðd; d; k; kÞ 6 0 8d 2 RNm; k 2 K.

Let us define
V 0 ¼ fðk; nÞ 2 RNm � ðRN n f0gÞ : k ¼ ðg1n; . . . ; gmnÞT; gi 2 R; i ¼ 1; . . . ;mg:
So when we project V0 onto RNm we get the cone K.
The Theory of Compensated Compactness, see Tartar (1979) or Tartar (1993), is a part of Nonlinear Anal-

ysis devoted to characterize either sequential continuity under weak convergence or even s.w.l.s.c. when the
weakly convergent sequences also satisfy some linear partial differential equations. It has been successfully
used to answer several mathematical questions in fields as diverse as: Homogenization, Optimal Design
and Systems of Nonlinear Hyperbolic Conservation Laws. Because quasiconvexity is equivalent to s.w.l.s.c.
for the W1,1 weak w topology, it is this latter characterization of quasiconvexity which has a connection with
Compensated Compactness and then, based on this theory, in Gutiérrez (2006) the following result was
derived.

Proposition 2. Let X � R2 be a bounded regular open set and F be a fourth-degree polynomial in R2m, satisfying

F(0) = 0 and such that one has that V1P 0, for any sequence Un 2 L1ðX;R2mÞ for which the following hold:
(i) Un N 0 in L1 weak w

(ii) F(Un) N V1 in L1 weak w

(iii)
oUn

2k�1

ox2
¼ oUn

2k
ox1

for k = 1, . . . ,m and x 2 X.

Then if the directions n1 and n2 are linearly independent and we take n3 = n1 + n2 and choose (ki,ni) 2 V0 for

i = 1,2,3 and if we call
X ¼
X3

i¼1

F ð4Þð0Þðki; ki; ki; kiÞ þ 4
X3

i;j¼1;i<j

F ð4Þð0Þðki; ki; kj; kjÞ;
one necessarily one has that
4F ð3Þð0Þðk1; k2; k3Þ2 6 X
X3

i¼1

F 00ð0Þðki; kiÞ: ð2Þ
Condition (2) is violated by the famous counterexample of Šverák valid for N = 2 and m P 3 cited in Section
1. This is verified in Gutiérrez (2006). Therefore, for N = m = 2 it is natural to look for a rank-one convex
fourth-degree polynomial that violates condition (2). For that purpose we derive in the next section a special-
ized optimization algorithm.
3. The optimization algorithm

Let us call P4 the set of the fourth-degree polynomials in R4 with vanishing constant and linear terms. Bear-
ing in mind Proposition 2, on which our optimization algorithm will be based, we first define the function
W : P 4 � K3 ! R by
WðF ; k1; k2; k3Þ ¼ �4F ð3Þð0Þðk1; k2; k3Þ2 þ X
X3

i¼1

F 00ð0Þðki; kiÞ
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and secondly we define the following subset of K3:
Ks ¼ fðk1; k2; k3Þ : ðki; niÞ 2 V 0 for i ¼ 1; 2; 3; n1; n2 are l:i: and n3 ¼ n1 þ n2g:
Let P R1
4 be the set of the polynomials in P4 which are rank-one convex. Then, the goal is to see whether we can

find a polynomial in P R1
4 which is not quasiconvex.

Now for any F 2 P4 and any triplet k1; k2; k3 2 R4, we first consider F00(0)(ki,k) as a function of k, compute
its Taylor expansion about kk and evaluate it at kj to obtain
F 00ð0Þðki; kjÞ ¼ F 00ð0Þðki; kkÞ þ F ð3Þð0Þðki; kk; kj � kkÞ þ 1

2
F ð4Þð0Þðki; kk; kj � kk; kj � kkÞ

for i; j; k 2 f1; 2; 3g with j 6¼ k; ð3Þ
which is exact since F is a fourth-degree polynomial. Similarly, we consider F(3)(0)(ki,kj,k), compute its Taylor
expansion at kl and evaluate it at kk, which now gives
F ð3Þð0Þðki; kj; kkÞ ¼ F ð3Þð0Þðki; kj; klÞ þ F ð4Þð0Þðki; kj; kl; kk � klÞ for i; j; k; l 2 f1; 2; 3g with k 6¼ l: ð4Þ
Equalities (3) and (4) give 27 nonlinear constraints that any F 2 P4 must satisfy. We shall enforce them as con-
straints in the optimization problem we now define.

To get started we formulate the following optimization problem:
minfWðF ; k1; k2; k3Þ : F 2 P R1
4 ; ðk

1; k2; k3Þ 2 Ks; ð3Þ and ð4Þ holdg: ð5Þ
If the optimal value of this problem is negative, we would have a counterexample that shows that both classes
of functions are indeed different. On the other hand if the solution is nonnegative, it could be either because
the two classes do coincide when intersected with P4, or because condition (2) is just not precise enough to
distinguish one from the other.

The number of coefficients needed to characterize any F 2 P4 is 65: there are 10 quadratic, 20 cubic and 35
quartic coefficients. Hence one can identify P R1

4 with a set in R65. To characterize a point in Ks one uses two
vectors in the plane: n1 and n2 and to generate the kis we need another three two-dimensional vectors, corre-
sponding to the pairs (g1,g2) in the definition of K. Therefore to characterize a point in Ks we need 10 real
variables. To avoid ill scalings we require that these five vectors have unitary euclidean norm and also normal-
ize the coefficients of the polynomial F to be a vector with the square of its euclidean norm being 65. These
scalings do not affect the objective function W, which is homogeneous of degree six on the k’s and homoge-
neous of degree two on F. Similarly, these scalings do not affect constraints (3) and (4).

The main difficulty comes from the fact that the set P R1
4 is characterized by infinitely many inequalities,

namely those coming from conditions (a), (b) and (c) in Proposition 1. Then we can either use the machinery
of semi-infinite programming, see Polak (1997), to handle the infinitely many constraints at all times, or pro-
gressively include some of these constraints in the fashion of the cutting-plane method of Kelly. We chose the
last option, first because it looks much simpler and because there will be a natural way in which to pick the
constraints to be added from one iteration to the next.

Observe that if the condition in (a) is satisfied with strict inequality and (c) holds, then condition (b) is auto-
matically satisfied. Similarly if condition (c) holds as a strict inequality and (a) holds, then again condition (b)
will automatically hold. Now, if for the polynomials in P4 we only impose conditions (a) and (c), we get a set
just slightly larger than P R1

4 as now condition (b) could be violated, but only if the conditions in (a) and (c) hold
with equality. Therefore we only consider conditions (a) and (c) and for that we define two auxiliary functions,
G1 : P 4 � K! R given by G1(F,k) = F00(0)(k,k) and G2 : P 4 � K� R4 ! R being
G2ðF ; k; dÞ ¼ 2F 00ð0Þðk; kÞF ð4Þð0Þðd; d; k; kÞ � F ð3Þð0Þðd; k; kÞ2:
From Proposition 1 we get that P R1
4 � eP 4, where
eP 4 ¼ F 2 P 4 : min
k2K

G1ðF ; kÞP 0 and min
k2K;d2R4

G2ðF ; k; dÞP 0

� �
: ð6Þ
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Finally we write a relaxation of problem (5) by replacing P R1
4 by eP 4. The objective function will now be given

by a homogeneous fourteenth-degree polynomial and we should, in principle, handle infinitely many nonlinear
constraints. Namely the problem to solve is
minfWðF ; k1; k2; k3Þ : F 2 eP 4; ðk1; k2; k3Þ 2 Ks; ð3Þ and ð4Þ holdg: ð7Þ

To solve this problem we implement an algorithm, based on the idea of the cutting-plane method of Kelly,
that solves the relaxation of (7) obtained by replacing condition F 2 eP 4 by a finite number of constraints
on the coefficients of F, number which is increased from one iteration to the next by choosing those vectors
d and k for which either condition (a) or condition (c) are most violated by the current F.

The algorithm reads as follows:

• initial step: k = 0 with I0 and J0 finite sets in K and K� R4 respectively.
• general step: For k a nonnegative integer we call
P k
4 ¼ F 2 P 4 :

minfG1ðF ; kÞ : k 2 IkgP 0

minfG2ðF ; k; dÞ : ðk; dÞ 2 J kgP 0

� �
and solve the following relaxation of (7):
WðF k; k1
k ; k

2
k ; k

3
kÞ ¼ min

F2P k
4

ðk1;k2;k3Þ2Ks
ð3Þ and ð4Þ

WðF ; k1; k2; k3Þ: ð8Þ
• If the minimum value is nonnegative we stop, since all rank-one convex functions will satisfy condition (2)
and therefore we cannot find the counterexample.

• If the minimum is strictly negative, we want to check whether Fk does belong to eP 4. For this we solve the
problems
min
k2K

G1ðF k; kÞ ð9Þ
and
min
k2K;d2R4

G2ðF k; k; dÞ: ð10Þ
• If both problems have nonnegative minimum values we stop, since then F k 2 eP 4 and we would have a good
candidate for our counterexample.

• If not, we incorporate the constraints in the characterization (6) that are being most violated by Fk, this is
the minimizers of (9) and (10), therefore increasing Ik and Jk into Ik+1 and Jk+1. This will then make P kþ1

4

closer to eP 4. Make k = k + 1 and iterate once more.
4. Numerical results and final remarks

We ran the algorithm with the hope that only a finite number of constraints will suffice to characterize eP 4

well enough in terms of the solution of (7). Hope which was confirmed by the extensive numerical computa-
tions we made.

We performed such calculations on our local Computing Center (SECICO) on an ALPHA Compaq DS20
machine running under TRU64 5.1b (OSF1), with 2 GB of main memory and a dual ev7 processor, running at
a speed of 666 MHz. We used the AMPL modelling language, the solver LANCELOT for the main problem
(8) as well as for the two subproblems (9) and (10). We made several other runs which gave a similar behavior.
Each run took about six weeks with an average CPU usage of about 50%. The algorithm stops when it finds
three consecutive values above a small positive tolerance, for the objective function of the main problem. The
first example made 796 iterations while the second made 1235 iterations.

As a first example of the algorithm, we show in Figs. 1–3 the evolution of the optimal values in terms of the
iteration number for the main problem (8) and for the minimization of G1 and G2, (9) and (10) respectively.
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S. Gutiérrez, J. Villavicencio / International Journal of Solids and Structures 44 (2007) 3177–3186 3183
Similar plots for a second example are shown in Figs. 4–6. From Figs. 1 and 4 we see that the objective func-
tion of the main problem goes to zero, meaning that no counterexample was found.

From Fig. 2 we see that as the optimization process advances, it becomes progressively harder to find vec-
tors in K to make G1 negative, meaning that the quadratic form induced by the Hessian matrix of F is becom-
ing close to being positive definite over K for F 2 P k

4 and then condition (a) is very close to being enforced by
iteration 400. The fact that sometimes G1 cannot be made negative is not very important as it only contributes
new constraints to the main problem when it is found to be negative for a certain k 2 K. On the other hand
Fig. 3 shows that G2 is progressively being forced to be positive on P k

4, but much more slowly than G1, which is
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natural since G2 is far more complex to minimize than G1. Figs. 1 and 4 resemble each other taking into
account of the difference in iterations made. Similarly Figs. 2 and 5 are similar. However Figs. 3 and 6 look
different, but this is due to the two very strong negative values found in the second case, quite late in the
computation.

The final answer, after several attempts with different starting points, is that the solution of (7) is zero.
Therefore the numerical conclusion is that for N = m = 2 condition (2), which is necessary for quasiconvexity,
is also necessary for rank-one convexity. Furthermore, since only finitely many constraints sufficed to force the
objective function of the main problem to be almost zero, it would seem that the necessary condition for quas-
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iconvexity is necessary on a set strictly containing P R1
4 and then it cannot be sufficient for the quasiconvexity of

a fourth-degree polynomial. Therefore if one searches analytically for the example, it should be on a set larger
than the subset of P4 containing polynomials with nonzero quadratic, cubic and quartic terms.
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