3,460 research outputs found

    Hierarchical Hole-filling For Depth-based View Synthesis In Ftv And 3d Video

    Get PDF
    Methods for hierarchical hole-filling and depth adaptive hierarchical hole-filling and error correcting in 2D images, 3D images, and 3D wrapped images are provided. Hierarchical hole-filling can comprise reducing an image that contains holes, expanding the reduced image, and filling the holes in the image with data obtained from the expanded image. Depth adaptive hierarchical hole-filling can comprise preprocessing the depth map of a 3D wrapped image that contains holes, reducing the preprocessed image, expanding the reduced image, and filling the holes in the 3D wrapped image with data obtained from the expanded image. These methods are can efficiently reduce errors in images and produce 3D images from a 2D images and/or depth map information.Georgia Tech Research Corporatio

    Loss-resilient Coding of Texture and Depth for Free-viewpoint Video Conferencing

    Full text link
    Free-viewpoint video conferencing allows a participant to observe the remote 3D scene from any freely chosen viewpoint. An intermediate virtual viewpoint image is commonly synthesized using two pairs of transmitted texture and depth maps from two neighboring captured viewpoints via depth-image-based rendering (DIBR). To maintain high quality of synthesized images, it is imperative to contain the adverse effects of network packet losses that may arise during texture and depth video transmission. Towards this end, we develop an integrated approach that exploits the representation redundancy inherent in the multiple streamed videos a voxel in the 3D scene visible to two captured views is sampled and coded twice in the two views. In particular, at the receiver we first develop an error concealment strategy that adaptively blends corresponding pixels in the two captured views during DIBR, so that pixels from the more reliable transmitted view are weighted more heavily. We then couple it with a sender-side optimization of reference picture selection (RPS) during real-time video coding, so that blocks containing samples of voxels that are visible in both views are more error-resiliently coded in one view only, given adaptive blending will erase errors in the other view. Further, synthesized view distortion sensitivities to texture versus depth errors are analyzed, so that relative importance of texture and depth code blocks can be computed for system-wide RPS optimization. Experimental results show that the proposed scheme can outperform the use of a traditional feedback channel by up to 0.82 dB on average at 8% packet loss rate, and by as much as 3 dB for particular frames

    Depth image based rendering with inverse mapping

    Get PDF

    A disocclusion replacement approach to subjective assessment for depth map quality evaluation

    Get PDF
    An inherent problem of Depth Image Based Rendering (DIBR) is the visual presence of disocclusions in the rendered views. This poses a significant challenge when the subjective assessment of these views is utilised for evaluating the quality of the depth maps used in the rendering process. Although various techniques are available to address this challenge, they result in concealing distortions, which are directly caused by the depth map imperfections. For the purposes of depth map quality evaluation, there is a need for an approach that deals with the presence of disocclusions without having further impact on other distortions. The aim of this approach is to enable the subjective assessments of rendered views to provide results, which are more representative of the quality of the depth map used in the rendering process

    Livrable D5.2 of the PERSEE project : 2D/3D Codec architecture

    Get PDF
    Livrable D5.2 du projet ANR PERSEECe rapport a été réalisé dans le cadre du projet ANR PERSEE (n° ANR-09-BLAN-0170). Exactement il correspond au livrable D5.2 du projet. Son titre : 2D/3D Codec architectur

    Depth-based Multi-View 3D Video Coding

    Get PDF
    • …
    corecore