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Abstract

Multi-view imaging has stimulated significant research to enhance the user ex-

perience of free viewpoint video, allowing interactive navigation between views and

the freedom to select a desired view to watch. This usually involves transmitting

both textural and depth information captured from different viewpoints to the

receiver, to enable the synthesis of an arbitrary view. In rendering these virtual

views, perceptual holes can appear due to certain regions, hidden in the original

view by a closer object, becoming visible in the virtual view. To provide a high

quality experience these holes must be filled in a visually plausible way, in a process

known as inpainting. This is challenging because the missing information is gener-

ally unknown and the hole-regions can be large. Recently depth-based inpainting

techniques have been proposed to address this challenge and while these generally

perform better than non-depth assisted methods, they are not very robust and can

produce perceptual artefacts.

This thesis presents a new inpainting framework that innovatively exploits

depth and textural self-similarity characteristics to construct subjectively enhanced

virtual viewpoints. The framework makes three significant contributions to the

field: i) the exploitation of view information to jointly inpaint textural and depth

hole regions; ii) the introduction of the novel concept of self-similarity character-

isation which is combined with relevant depth information; and iii) an advanced

self-similarity characterising scheme that automatically determines key spatial

transform parameters for effective and flexible inpainting.

The presented inpainting framework has been critically analysed and shown

to provide superior performance both perceptually and numerically compared to

existing techniques, especially in terms of lower visual artefacts. It provides a flex-

ible robust framework to develop new inpainting strategies for the next generation

of interactive multi-view technologies.
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Chapter 1

Introduction

1.1 Overview

The invention of television (TV) has revolutionised the world through visual and

audio technology. The British Broadcasting Corporation debuted the world’s first

regular TV service in 1936, and since then, there have been much significant ad-

vances in the field of video technology from picture capture to displays. TV broad-

casting has grown from the passive broadcasts to providing interactive on-demand

type services (Owens, 2016; Zhu et al., 2012). The demand for visual media has

led to ever-growing research which has resulted in today’s immersive experience

of Ultra High Definition TV and three-Dimensional (3D) TV (Kryszkiewicz et al.,

2015; Kubota et al., 2007).

3D-Video gives the user an experience as if they are watching real-world ob-

jects through a window rather than looking at images projected onto a flat panel.
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Typically, 3D-Video is obtained from a set of synchronised cameras by capturing

the same scene from two different viewpoints (Kondoz and Dagiuklas, 2014). This

has led to the development of multi-view technology which enables the capture of

different views of the same scene. A 3D multi-view capturing format facilitates

new applications like Free-Viewpoint Video (FVV), which allow the free navig-

ation between viewpoints for a seamless viewing experience (Emori et al., 2015;

Tanimoto et al., 2011). The Moving Picture Experts Group (MPEG) started de-

veloping Free-viewpoint TV (FTV) in 2001, and plans to establish a new FTV

framework to revolutionise the viewing experience, targeting particularly the 2020

Tokyo Olympics (Vito, 2015).

The standard 3DTV and FTV broadcasting chain representing virtual view

rendering is shown in Figure 1.1 and comprises a 3D multi-view capturing unit

(cameras shown as C1 .... Cn) that acquires data from real-world scenes as textural

(i.e. colour) images together with depth maps (Scharstein and Szeliski, 2003).

The captured data is then aligned and efficiently encoded for transmission. At

the receiver, the data is then decoded and the views rendered before final display.

The view rendering process gives the viewer the freedom of navigating through the

scene to choose different viewpoints, however this requires a very large number of

cameras, so capturing and broadcasting arbitrary viewpoints for FVV incur ex-

cessively high coding overheads, expensive processors and high broadcasting costs.

Hence, instead of employing large numbers of multi-view 3D cameras at the en-

coder, the alternative is to apply rendering techniques to synthesise intermediate

views known as virtual views at decoder. This means a smaller number of cameras

is then required to capture the scene information, so minimising the overall trans-
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Figure 1.1: Block diagram of basic FVV system

mission cost (Kubota et al., 2007; Smolic and Kauff, 2005). At the receiver, the

finite number of views can be used to render multiple intermediate views allowing

the user to interactively navigate among various viewpoints and provide content

for display. Thus, the view rendering process represents a significant step in FVV.

The most commonly used rendering method to synthesise virtual views is called

Depth Image-Based Rendering (DIBR) (Muller et al., 2011; Tian et al., 2009;

Vetro et al., 2008). To synthesise a virtual view using DIBR, 3D warping (Tian

et al., 2009) is performed which essentially projects pixels in the camera-captured

reference view to corresponding pixel locations in the new viewpoint (see Section

2.4.1 for details). However, the synthesised view often contains artefacts caused

by missing information or so-called holes which degrade the perceptual experience.
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(a) (b)

(d)

(e)(c)

Figure 1.2: Reference views for: (a) texture; (b) depth; (c) 3D warped texture virtual view
illustrating (d) disocclusion holes and (e) cracks.

For example, Figures 1.2 (a) and (b) show camera captured texture and depth

reference view of the Aloe image (Scharstein and Pal, 2007), which is used to

synthesise the virtual view located to the right hand side of the reference view

(as explained in section 3.3). The plant is considered as a foreground (FG) object

(i.e. it is closer to the camera) with respect to the patterned background (BG)

area which is farther away. After 3D warping, due to the viewpoint change, the
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resulting view contains missing pixels, shown as the black regions in Figure 1.2 (c).

These missing pixels can be classified into two main categories (Zhu et al., 2012) :

i) cracks and ii) disocclusion holes, with examples of each being illustrated in the

zoomed-in regions displayed in Figures 1.2 (e) and (d) respectively.

Cracks appear when projected pixel position is rounded to the nearest integer

and since they are generally one pixel in width (Muddala et al., 2013; Tian et al.,

2009), they can be filled using traditional interpolation and conventional filtering

techniques (Mori et al., 2008; Oh et al., 2009). However, disocclusions are spatial

regions in the virtual view that were occluded by FG objects in the captured camera

view(s) and which during viewpoint change, become exposed or disoccluded in the

virtual view. A hole with no corresponding pixels in the reference view is thus

known as a disocclusion hole (Cheung et al., 2015; Daribo and Pesquet-Popescu,

2010; Guillemot and Meur, 2014).

A major design objective is to suitably fill the disocclusion holes to achieve

satisfactory perceptual quality. In the literature, appropriate strategies for filling

missing pixels, are referred to as inpainting or hole-filling (Bertalmio et al., 2000;

Bugeau et al., 2010; Buyssens et al., 2015) and this is the core process in syn-

thesising a virtual view. The growing popularity of FVV has led to an increased

interest in developing suitable inpainting techniques for DIBR-synthesised views.

The next section discusses some of the more popular inpainting methods used to

fill missing pixels in virtual views.
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1.2 Inpainting of Synthesised Views

Inpainting is the process of reconstructing missing or deteriorated regions such

as scratches and holes in an image in a perceptually undetectable manner. The

2D inpainting (i.e. in the absence of depth information) methods can be broadly

classified as: 1) geometry-based techniques which use partial differential equations

(PDE) (Chan et al., 2002; Masnou and Morel, 1998); 2) texture-based methods

use template matching (Kwatra et al., 2003) 3) exemplar-based schemes (Buys-

sens et al., 2015; Criminisi et al., 2004; Martanez-Noriega et al., 2012). PDE-based

schemes perform well in preserving image structures and geometry, but tend to

degrade when the hole area is large. Texture-based inpainting methods use tem-

plate matching (TM) to fill in missing pixels by copying a fixed-size pixel region

from a known spatial area where there are no holes, to one where there are. While

these generally work well for large region inpainting, they do not preserve the im-

age structure. Exemplar-based inpainting in contrast, combines the advantages

of both geometry and texture based methods to achieve inpainting of large miss-

ing regions, while preserving structure, with the most well-known exemplar-based

algorithm for regular texture images being proposed by (Criminisi et al., 2004).

Due to their structure and texture preserving properties, DIBR-synthesised

views have mainly focused on exemplar-based approaches. Disocclusion holes,

which appear due to missing BG information, are required to be filled from in-

formation in the BG regions. However, 2D inpainting algorithms are inadequate for

filling disocclusion holes in virtual views because they cannot differentiate between

FG from BG regions. This means they can falsely propagate FG information to
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BG regions resulting in visual artefacts. Since depth information is also available

for the view synthesis process, it has been investigated for improving the inpainting

of disocclusion holes. (Ahn and Kim, 2013; Daribo and Pesquet-Popescu, 2010;

Gautier et al., 2011) are all exemplar-based methods that exploit the (Criminisi

et al., 2004) algorithm, but in addition, introduce a depth constraint to the hole-

filling process. While these provided improved inpainting performance compared

with non-depth-assisted methods, they still produce visual artefacts which must

be removed in order to produce the best visual quality of the synthesised view.

1.3 Research Motivation

Generating high quality virtual views is especially challenging as the baseline dis-

tance between the reference camera and selected virtual viewpoint increases, lead-

ing to bigger holes. Disocclusion holes possess certain characteristics which needs

to be considered in developing any new inpainting strategy:

• The order of hole-filling is vital. Exemplar-based methods inpaint texture

regions with structural information first followed by homogeneous regions.

However, for disocclusion holes, it is important to formulate the order so

hole-filling starts from the BG boundary rather than the FG. If the filling

order starts from a FG region, it can lead to serious error propagation in

subsequent steps.

• Disocclusion holes tend to occur at FG object boundaries and are typically

located on the border between FG and BG. The missing region belongs
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to the BG so it is important to inpaint the disocclusion holes using only

BG information. Inpainting with FG information results in more visual

inconsistencies and artefacts.

• In practice, the synthesised virtual view contains disocclusion holes in both

the texture and depth maps. However, various depth-based inpainting meth-

ods assume the availability of a complete depth map (Daribo and Pesquet-

Popescu, 2010; Gautier et al., 2011). This assumption is unreasonable and

inpainting of the synthesised depth map also requires attention alongside

texture inpainting. The potential to effectively inpaint both texture and

depth maps is an important aim as both are correlated and needs to be filled

consistently. Also a synthesised virtual view can then be used as a reference

view to construct other virtual views.

• Exemplar-based methods primarily use TM for hole-filling. The template is a

square region of pixels of fixed size which is called a patch. During matching,

the image is used as a search-space to find the best patch in accordance with

the template patch and copies this to the missing region. However, finding

adequate patches with similar information within an image is problematic, so

generating a richer search space of potential patches for TM may markedly

impact upon the inpainting quality.

• The choice of the best patch size for filling disocclusion holes in different im-

ages is debatable, so suitable mechanisms to determine the most appropriate

patch size for inpainting are worthy of further investigation.

Using these distinct disocclusion hole features, the challenge of how to effectively
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improve the visual and numerical inpainting performance was the main motivation

behind this research, namely how best to exploit a priori knowledge about disoc-

clusion holes for inpainting. This led to the overarching thesis research question

and related objectives, which are discussed in the next section.

1.4 Research Question and Objectives

From the above discussion, the following research question was framed:

How can inpainting achieve high-quality virtual view synthesis?

The aim is to provide a high-quality virtual view which eliminates holes and

minimises visual artefacts in synthesised views by providing an effective and su-

perior inpainting solution for disocclusion hole-filling. After a detailed review of

the existing inpainting methods for hole-filling, an inpainting paradigm that ex-

ploits depth information allied with image self-similarity characteristics has been

identified as a fertile area of investigation.

To address this overarching research question, a set of three objectives were

framed:

1. To develop and critically evaluate a new joint texture-depth inpainting tech-

nique.

Justification: To investigate a new inpainting approach which jointly inpaints

texture and depth pixels in disoccluded regions. Existing solutions (Daribo

and Pesquet-Popescu, 2010; Meur et al., 2011) use depth information to
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propose BG to FG filling order with an underlying assumption that a high-

quality depth map is available at the virtual view for hole-filling. However

this assumption is not valid for practical DIBR systems because the virtual

view can have disocclusion holes in both the texture and depth maps. Also

the filling order may not always perform BG to FG hole-filling. While some

existing methods process depth maps before texture inpainting (Oh et al.,

2009; Ramachandran and Rupp, 2012), others perform only texture hole-

filling and completely ignore the depth inpainting (Wang et al., 2015). Thus,

exploring new inpainting techniques which perform BG to FG hole-filling by

jointly exploiting textural and depth information offers the potential for more

robust and improved inpainting.

2. To investigate how image self-similarity characterisation allied with the depth

information can enhance the quality of inpainting.

Justification: Exemplar-based inpainting methods exploit the self-similarity

of natural images to fill missing pixels by identifying similar pixel patterns

within the image. There are however two key drawbacks: i) the scarcity of

self-similar patches due to the limited search space in an image; and ii) TM

schemes involve an exhaustive search process which is computationally ex-

pensive and leads to higher inpainting times. In view rendering, the texture

image tends to possess transformation properties due to possible depth vari-

ations in either the image or in image patterns. This provided the motivation

to investigate new inpainting strategies which exploit image transformation

characteristics as well as using depth information to both improve the search

space and provide faster inpainting.
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ASC-JTDI: Advanced Self-similarity Characterisation 

SC-JTDI: Self-similarity Characterisation 

JTDI: Joint Texture Depth Inpainting

Figure 1.3: Key contributions of inpainting framework with JTDI as core block.

3. To critically synthesise an advanced self-similarity characterisation technique

for inpainting disocclusion holes.

Justification: A new mechanism is devised that extends the idea of self-

similarity characterisation to broaden the search space by incorporating ad-

ditional image characteristic. A superior approach is modelled for the sim-

ultaneous determination of self-similarity characteristics based on different

image transformation properties. This objective focuses principally upon re-

fining the inpainting framework to achieve better disocclusion hole-filling,

while also affording a trade-off with the overall inpainting time.

The new inpainting framework is illustrated in Figure 1.3. It delivers a robust,

flexible and efficient solution to disocclusion hole-filling by consistently providing

an enhanced visually plausible synthesised view. The high quality inpainting is

accomplished by successfully fulfilling both objectives 2 and 3 above, by intro-

ducing and extending the concept of self-similarity characterisation. This builds

upon the core block, namely joint texture and depth inpainting, developed as the

main outcome of objective 1.
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1.5 Contributions

Guided by the aforementioned research objectives, three original contributions

have been made by the new inpainting framework to tackle the challenges in disoc-

clusion inpainting process and provide an efficient solution to deliver perceptually

pleasing view quality.

The three original scientific contributions made in this thesis to the multi-view

inpainting domain are as follows:

1. Joint Texture-Depth Inpainting (JTDI): This introduces a novel depth-

based inpainting approach for filling disocclusion holes, which simultaneously

exploits both the texture image and corresponding depth map. Using the

available depth information, a BG first hole-filling strategy is formulated to

fill missing texture pixels and then applies this information to inpaint the

corresponding depth pixels. This joint texture and depth approach results

in more effective inpainting both quantitatively and qualitatively.

2. SC-JTDI : This algorithm introduces image self-similarity characterisation

(SC) at the encoder and transmits it as supplementary information to con-

struct enhanced search space at the decoder. The potential search space

is confined to the BG region and the received characterisation information

helps in generating a superior search space for TM. This results in reduced

visual artefacts and improved quantitative performance. The restricted BG

oriented search space also means faster inpainting time in comparison to

JTDI.
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3. ASC-JTDI : An advanced self-similarity characterisation (ASC) is developed

as an extension to SC-JTDI which incorporates additional image character-

istics to expand the search space. It employs a mechanism for flexibility that

automatically determines image-specific, self-similarity characteristics and

applies this information to broaden the search space for improved TM. This

not only benefits the inpainting by providing more reliable characterisation

information to generate an effective search space for refined inpainting, but

also reduces the corresponding visual artefacts.

1.6 Thesis Structure

The remainder of the thesis is organised as follows:

• Chapter 2 presents a brief introduction of multi-view technology followed

by a comprehensive review of view synthesis techniques and a literature

survey on various inpainting techniques. The critique in Chapter 2 helps to

identify the gaps in existing hole-filling methods, specifically for inpainting

disocclusion holes.

• Chapter 3 explains the integrated research methodology adopted, including

the aspects of idea prototyping, testing and validation. The choice of data-

sets, performance metrics, simulation platform and software code validation

used during various stages of the thesis are discussed.

• Chapter 4 presents the first contribution which is a depth-based solution to

encourage BG to FG filling and joint inpainting of the synthesised texture
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and depth views. A rigorous quantitative and qualitative performance ana-

lysis is carried out and its impact on the inpainting performance evaluated.

Work from this chapter has been published in (Reel et al., 2013).

• Chapter 5 introduces the novel concept of self-similarity characterisation

for inpainting the holes. This new technique enables fast inpainting that

provides superior visual and numerical performance. Work from this chapter

has been published in (Reel et al., 2014).

• Chapter 6 presents an advanced characterisation technique which incorpor-

ates additional image self-similarity characteristics for inpainting disocclu-

sion holes. It broadens and strengthens the basic idea of self-similarity

characterisation by providing reliable and focussed self-similarity informa-

tion which is applied effectively to refine the inpainting process.

• Chapter 7 discusses some potential research directions which can exploit the

novel inpainting framework presented.

• Chapter 8 makes some conclusions on the main findings and original contri-

butions made.

1.7 Summary

This chapter has introduced the inpainting problem and motivation behind the

overarching research question addressed by this thesis. Three principal research

objectives have been proposed to address the major challenge of hole-filling in

virtual view synthesis, with a particular focus on inpainting disocclusion holes,
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which can lead to severe visual artefacts and a degraded interactive experience.

The proposed inpainting framework aims to provide an effective and efficient solu-

tion for perceptually pleasing view synthesis. The next chapter presents a critical

literature review of existing view inpainting techniques.



Chapter 2

Inpainting: A Review

2.1 Introduction

The chapter provides a broad overview of well-known inpainting techniques and

their applicability in inpainting disocclusion holes generated during view synthesis.

To provide a better understanding of various artefacts and challenges, an overview

of virtual view synthesis in different scenarios is also presented. Section 2.2 and

2.3 briefly discusses the historical background of 3D and multi-view technology.

2.2 Background of 3D Technology

In 1844, David Brewster invented a stereoscope capable of taking 3D photographic

images. This stimulated the research in 3D technology and in 1851 a stereoscopic

picture of Queen Victoria (see Figure 2.1) became famous worldwide (Crary, 1992).



2.2 Background of 3D Technology 17

(a)

(b)

Figure 2.1: shows (a) Stereograph of Queen Victoria and (b) stereoscope displaying slide of
Queen Victoria (King, n.d.) .

The stereoscopic cameras caught attention and in 1890 a renowned British Film-

maker ‘William Friese-Greene’ filed a patent of 3D movie production process (Zone,

2007). The idea was to project both left and right images (slightly different views

of the same scene) on one screen and when seen through red and green glasses it

resulted in 3D effect. This led to research in 3D film technology and first publically

released 3D movie was ‘The Power of Love’ in 1922 (Kondoz and Dagiuklas, 2013).

On the other hand, the Television broadcast started gaining popularity during

1950’s and thus began the experimental demonstrations of 3DTV. Several limiting

factors involving transmission, storage and displays were researched and during

the 1990s the MPEG started working on compression technology for stereoscopic

video sequences (Schreer et al., 2005). The improvements in 3D technologies led

to growing research in 3DTV and FTV (Morvan et al., 2008; Shade et al., 1998;

Zitnick et al., 2004). Multi-view technology has gained increased attention from

researchers in both academia and industry, aiming to enhance the immersive ex-

perience of the user through free-viewpoint viewing (Fujii and Tanimoto, 2002;

Kubota et al., 2007).
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(a) (b)

Figure 2.2: (a) Texture image and (b) Depth map.

2.3 Multi-view Technology

A depth-based 3D representation emerged as an efficient and flexible approach for

enhanced multi-view technology (Kubota et al., 2007; Tanimoto et al., 2011; Zhu

et al., 2012). The 3D representation refers to ‘2D + Z’ format which consists of a

2D texture/colour image and its corresponding depth map as shown in Figure 2.2

(a) and (b) respectively. The depth map is basically a grey-scale image, resulted

by assigning a depth value (z-value) to each pixel in the colour image.

The depth map can be generated using physical ranging methods such as time-

of-flight (TOF) sensor (Stemmer Imaging Ltd., nd) and structured light scanner.

An example of TOF and structured light sensor methods are shown in Figure 2.3

(a) and (b) respectively. The TOF method is based upon measuring the depth of

scene-points by illuminating the scene with a controlled laser source and analyse

the reflected light (Zhu et al., 2012). Ku (Leuven, nd) explains structured light

as the process of projecting a known pattern (often grids or horizontal bars) on

to a scene and calculating the depth and surface information of the objects by

analysing the deformed pattern.
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(a) (b)

Figure 2.3: Example representing (a) Time-of-flight (Stemmer Imaging Ltd., nd) and (b) Struc-
tured light scanner (Leuven, nd).

These methods tends to have limited capture range which may results in in-

correct measurements. The interference from multiple emitters is another limiting

factor. In recent years, researchers have been developing these technologies to

overcome the limitations for improved depth sensing (Horaud et al., 2016).

Multiple views of same scene captured in texture-plus-depth format are called

Multi-view Video-plus-Depth format (Muller et al., 2008a; Smolic and Kauff, 2005;

Smolic et al., 2011; Zitnick et al., 2004). These representations enable applications

such as free viewpoint viewing which allows the viewer to freely navigate among

the available 3D views by changing the viewpoints. One or more virtual views of

the 3D scene can be synthesised in real-time at the receiver side by a technique

called DIBR (Mark, 1999; McMillan, 1997; Muller et al., 2011; Tian et al., 2009;

Vetro et al., 2008). The virtual views can be rendered with arbitrary baseline and

the number of rendered views can be larger than the original views. To synthesise

an intermediate virtual view, only a subset of required display views has to be

transmitted (Kubota et al., 2007; Merkle et al., 2009, 2007; Smolic et al., 2008).

The next section discusses the virtual view synthesis in detail.
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Texture Depth Texture Depth

3D warping3D warping

View blending

Inpainting / Hole-filling

Final virtual view

Left View Right View

Figure 2.4: Virtual view synthesis with two reference views (DS-DIBR)

2.4 Virtual View Synthesis

Virtual view synthesis can be achieved by using one or more reference views. The

view synthesis using single reference view and two reference views are termed as

Single Sided-DIBR (SS-DIBR) and Double Sided-DIBR (DS-DIBR) respectively.

This comprises of 3D warping, followed by inpainting / hole-filling to achieve high

quality virtual view.

However, in case of DS-DIBR, an additional step of view blending (Section

2.4.2) is performed after 3D warping step, as shown in Figure 2.4.
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2.4.1 3D Warping

To synthesise a virtual view, a reference texture image and its associated depth/dis-

parity map is required (Jiufei et al., 2010; Kauff et al., 2007; Tian et al., 2009). 3D

warping is a pixel-to-pixel mapping such that the reference image pixels are first

projected back to the world coordinates using depth map and then reprojected to

the arbitrary virtual image coordinate (Mark et al., 1997; Tian et al., 2009). To

understand a warping process, consider a case where the cameras are set-up in

a 1D parallel arrangement such that the two cameras are aligned and have only

translational or horizontal shift (i.e. u-axis) but no rotational shift (v-axis).

For simplification, assume the reference and virtual camera share the same

focal length F and rotation matrix. Such that a pixel ur, vr in the reference view

can be mapped to uv in the virtual view as:

uv = ur + F × (tx,v − tx,r)
Z

+ (ox,v − ox,r) (2.1)

uv = ur + d (2.2)

where
d = F × (tx,v − tx,r)

Z
+ (ox,v − ox,r) (2.3)

is the disparity, tx,v and tx,r are the translational vector for virtual and reference

views respectively, and their difference describes the baseline spacing. ox,v − ox,r

is the difference of the principle point offset for virtual view and reference views.

Thus provided disparity or depth map, each pixel in a reference view can be

mapped to corresponding point in the virtual view. However, pixel mapping is not

one-to-one between reference and virtual view, such that multiple pixels attempt

to acquire same pixel location, but the pixel closest to the camera i.e. FG pixel,



2.4 Virtual View Synthesis 22

is selected and mapped to that position. In other case, a pixel may be mapped to

a non-integer pixel position which is actually non-existent in the virtual view grid

and so the location of projected pixel is commonly rounded to the nearest integer

pixel position (Daribo and Saito, 2011; Muller et al., 2008b; Tian et al., 2009).

This can lead to one pixel wide gaps called cracks (see Figure 1.2(e)) (Hornung

and Kobbelt, 2009; Muller et al., 2011; Zitnick et al., 2004).

In practice, pixels of an object closer to the camera have larger displacements

during a viewpoint change than pixels of the BG. This means that there may exist

one or more spatial regions of the BG, occluded by a FG object in the reference

view that becomes exposed in the virtual view (Daribo et al., 2012; Kim et al., 2011;

Muddala et al., 2016). Due to viewpoint change, some pixels in the reference view

are unavailable and thus never get mapped to the virtual view. These unmapped

pixel positions with no corresponding pixels in the reference view are commonly

called disocclusion holes (see Figure 1.2(d)) (Ahn and Kim, 2012; Buyssens et al.,

2015; Chen et al., 2010b; Do et al., 2009; Fehn, 2004a; Gui et al., 2013).

This is elaborated using an example in Figure 2.5; a horizontal camera ar-

rangement shows 3 cameras at positions C1, C2 and C3. Assume C2 alone is used

to synthesise a virtual view at position Cvirtual, the region occluded by the FG

in C2 becomes visible i.e. disoccluded in virtual view. The disoccluded region

degrades the visual performance and thus needs to be filled with visually plausible

information.
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C1 C2 C3Cvirtual

FG

BG

Disoccluded regionInvisible region

Figure 2.5: Horizontal multi-view camera set-up depicting virtual viewpoint Cvirtual and disoc-
cluded region.

2.4.2 View Blending

In case of DS-DIBR (see Figure 2.4) scenario that is used for view generation at

a given viewpoint, both left and right reference views are warped separately to

synthesise two virtual views. The two warped views correspond to a same virtual

viewpoint and contain certain information missing in each-other. The holes in

one view can be filled with the information content from other and is known as

view-merging/blending. These two warped views can be blended together by using

a linear weighting function to blend pixels from two warped views (Muller et al.,

2008b; Zinger et al., 2010) or consider one view as the main view and then fill the

holes in selected view from the other warped view (Domaski et al., 2009; Gao et al.,

2013). The amount of holes in the virtual view generated using DS-DIBR (Gui

et al., 2013) is less as compared to the holes in SS-DIBR due to view blending.
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(a) (b)

(c) (d)

Figure 2.6: Synthesised virtual views after (a) DS-DIBR and (b) SS-DIBR; (c) and (d) represent
their corresponding holes regions, respectively.

Figure 2.6 shows the comparison of holes generated using SS-DIBR and DS-DIBR

for Art dataset (Scharstein and Pal, 2007; Scharstein and Szeliski, 2003). It is

clearly evident that disocclusion problem is particularly challenging when using

SS-DIBR (Lei et al., 2016).

2.4.3 Inpainting/Hole-filling

After 3D warping, two types of holes appear, namely 1) cracks and 2) disocclu-

sions. As discussed, cracks are basically one pixel wide holes which occur due to

round-off errors and can be filled using techniques like interpolation, filtering pro-

cedures (Mori et al., 2008; Muller et al., 2008a; Oh et al., 2009) and morphological

operations (Ahn and Kim, 2013). The second type of holes called disocclusion
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holes occurs when spatial region occluded by a closer object in the reference view,

but become visible in the virtual view (Ahn and Kim, 2012; Muddala et al., 2013;

Reel et al., 2013; Schmeing and Jiang, 2015; Tauber et al., 2007). Disocclusion

holes typically occur at FG object boundaries (specially using SS-DIBR) and are

considered a major problem when synthesising novel viewpoint images via DIBR

(Daribo et al., 2012; Lei et al., 2016; Muddala et al., 2016; Xu et al., 2013; Zhu

and Li, 2016).

The amount of disocclusion holes is baseline distance dependent such that as

the distance between the virtual and original views increases, so does the disocclu-

sion holes. The appearance of these holes cause visible artefacts and is perceptually

unpleasing (Ahn and Kim, 2012; Do et al., 2009; Fehn, 2004b; Gao et al., 2013;

Gautier et al., 2011). The technique used to fill the missing information in the

image is known as Inpainting or hole-filling (Ashikhmin, 2001; Bertalmio, 2001;

Bugeau et al., 2010; Buyssens et al., 2015). Inpainting large disocclusion holes

to render high quality virtual views have been a major challenge in the research

community. This work focuses on inpainting the disocclusion holes in the DIBR

synthesised images and the next Section 2.5 discusses in detail the various tech-

niques to overcome this problem, their advantages, limitations and scope.

2.5 Review of Inpainting Methods

Inpainting is an art of reconstructing missing or deteriorated regions of an image

in an undetectable manner. The applications of inpainting range from restoration

of damaged paintings and photographs to the removal or replacement of selected
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objects (Bertalmio et al., 2000). The missing regions in an image are basically

sets of pixels which may or may not be contiguous (Varzi and Vieu, 2004). These

sets of pixels are called artefacts, scratches, gaps, and holes or unknown regions

depending on the area of application. The techniques used for digital inpainting

include analysis and usage of pixel information from the surrounding area to fill-in

part of image (Bertalmio et al., 2001).

There are various approaches to perform inpainting but mostly the algorithms

are based upon one or more of the basic techniques such as geometry-based,

sparsity-based and patch-based/texture-based methods (Arias et al., 2009). The

geometry-based methods are mainly based upon PDE and focuses on exploiting

the geometric structure of an image to fill the missing information (Ballester et al.,

2001a; Bertalmio et al., 2000; Chan et al., 2002), whereas the patch-based methods

employ image content from the neighbourhood region of the missing regions in the

image (Cao et al., 2011; Martanez-Noriega et al., 2012). The sparsity-based meth-

ods use sparse image representation to synthesise the missing part and optimise

it using sparse distribution. Some techniques that combine both geometry and

texture-based methods are known as exemplar-based inpainting methods. Follow-

ing sub-sections provide a review on various inpainting techniques:

2.5.1 Geometry-Based Methods

These methods formulate inpainting as a heat diffusion problem by introducing

smoothness priors to propagate local structures from the exterior to the interior of

the hole. The method is robust such that it simultaneously fills the holes by con-
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sidering the information around the holes but slows down the process as well cause

the blur within the occluded area when the hole area is large. Thus, the algorithm

is not suitable for filling large holes or reconstruction of sharp edges. A fast in-

painting method based on stopping the diffusion process at certain pre-defined

positions were used (Oliveira et al., 2001) which however appeared as additional

user intervention. Another method combined diffusion with anisotropic filtering

to have an interpretation as fluid transportation using Navier-stokes equations for

fluid dynamics (Bertalmio et al., 2001) to speed up convergence.

Some inpainting methods involved a complicated energy functional which as-

sumes bounded variation (Masnou and Morel, 1998) and total variation models

(Chan and Shen, 2001) for properly reconstructing curved regions. Inpainting

problem was then redefined to consider curvature in the form of Euler elastic curve

to reconstruct contours of missing objects(Ballester et al., 2001b). An inpainting

method called Curvature Driven Diffusion was introduced, where the amount of

diffusion applied is based on the amount of isophote curvature at that point (Chan

et al., 2002). This prevented the blurriness in the smooth areas and shows good im-

provement from Bertalmio’s algorithm. Another technique used variational meth-

ods along with the higher order PDEs (Ballester et al., 2001b) to jointly interpolate

the image gray-levels and gradient/isophotes directions and smoothly extend the

isophote lines into the holes of missing region. Some methods allow information

propagation from outside to inside the holes via a structure-preserving diffusion

method (Tschumperle and Deriche, 2005). These methods provide good results

when filling small regions e.g. straight lines, curves etc. However they tend to

introduce blur when the missing regions are large. Also these methods are helpful
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only in reconstructing the structure of the missing region but fails to recreate their

texture (Kwatra et al., 2003; Ndjiki-Nya et al., 2008).

2.5.2 Sparsity-Based Methods

A sparse representation method fills the missing region using sparse combination

of a redundant dictionary constructed by source patches (Elad et al., 2005; Mairal

et al., 2008a,b; Shen et al., 2009). An extension to this method is made by in-

troducing more regulation terms (Xu and Sun, 2010). Another method casts the

inpainting problem into low-rank matrix recovery and completion problem (Wang

and Zhang, 2011). Based on low-rank assumption, missing region recovery is for-

mulated as a convex optimisation problem via block nuclear norm. This method

promotes blockwise low-rankness of an image with missing regions (Ono et al.,

2012). To recover a low rank matrix, another method formulates the problem as a

Schatten-p norm minimisation problem based on the FOCally Under-determined

System Solver approach (FOCUSS) (Majumdar and Ward, 2011; Majumdar et al.,

2012).

In another method a texture image is modelled as 2D Autoregressive model and

inpainting problem is formulated as minimising the rank of a Hankel matrix (Ding

et al., 2007; Sznaier and Camps, 2005). To overcome the complexity and find an

approximate solution, the nuclear norm heuristic based algorithms are proposed

(Mohan and Fazel, 2010, 2012). The nuclear norm minimisation is formulated as

semi-definite programming and can be solved by interior point method but it is

computationally costly for a large size problem. A fast algorithm based on l2 norm
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minimisation was proposed to find a sparse vector included in the null space of a

matrix (Takahashi et al., 2011) and this algorithm is based on the reweighted least

squares for sparse recovery method (Daubechies et al., 2010). The performances

of sparsity based inpainting approaches are highly dependent on the choice of

dictionary and provide effective results only if the missing region is small such as

sparsely distributed noise over the image. However, sparse based methods provide

inefficient results when the missing region is large (Buyssens et al., 2015; Efros and

Leung, 1999).

2.5.3 Texture-Based Methods

Broadly texture-based methods can be classified into two categories: pixel-based

and patch-based synthesis. Many approaches focus on recovering texture of the

missing region based on the source image. Texture synthesis approach for filling

the holes with the known information can be regarded either as parametric or non-

parametric models. The parametric synthesis fills the missing information using

a compact model with a fixed (Heeger and Bergen, 1995; Portilla and Simoncelli,

2000) or dynamic parameter set. Non-parametric methods usually formulate the

problem based on Markov Random Field (MRF) and can further be classified

as sample based (De Bonet, 1997) and patch based methods (Ashikhmin, 2001;

Kwatra et al., 2003; Ndjiki-Nya et al., 2008). Nonparametric methods yield bet-

ter results in comparison to parametric algorithms, also they can be employed to

large variety of textures (Kwatra et al., 2003). Initially a nonparametric method

for texture synthesis based on MRF was proposed where a new image grows out-

ward from an initial seed, one pixel at a time. Pixel based synthesis yielded good
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results but at expense of computational cost. But for better preservation of local

structures, faster and real time algorithms are required. To speed up the process

instead of copying a pixel, entire patch is copied (Efros and Freeman, 2001).

Patch based texture synthesis is based on TM which copies a fixed-size repeat-

ing pixel patch from a known spatial region to the hole region. The main idea

behind the patch synthesis is based on self-similarity priors (Buades et al., 2005).

The computational cost was reduced by reducing the search space such that to

find the best candidate patch instead of using whole image, only the neighbour-

hood region around the missing pixels is considered (Ashikhmin, 2001). Some

other methods reduce the search space and computational cost by reducing the di-

mensionality of the patches with techniques like Principal Component Analysis or

randomised approaches (Lefebvre and Hoppe, 2006), and employing a multi-scale

framework and organising the image patches in tree structures (Wei and Levoy,

2000). These approaches maintained the coherency of synthesis and yielded good

results, however it failed to preserve local structures or geometry within an image.

Since real images have both texture and structure content, neither geometry

nor texture-based methods alone can offer an adequate solution. For the pre-

servation of local structures as well as the composite textures, the advantages of

both structural and textural inpainting are combined, making it possible to recon-

struct both texture and geometric structures (Aujol et al., 2010; Kawai et al., 2009;

Wexler et al., 2004, 2007). Such techniques which combine structure and texture

synthesis is known as exemplar-based inpainting techniques and (Criminisi et al.,

2004) is regarded as very significant work in the field of the image inpainting.
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Figure 2.7: Diagram representing notation used for Exemplar-Based Inpainting (Criminisi
et al., 2004).

2.5.4 Exemplar-Based Inpainting

An exemplar-based inpainting technique aims to employ a patch priority scheme to

determine which patch to fill first followed by its texture inpainting. The missing

pixels at the edge of an image object have higher priority than missing pixels on

flat regions. This priority is calculation is based on confidence term and data term

(Criminisi et al., 2004). The confidence term gives high priority to those patches

at the edge which have more known (filled) pixels around it. The data term is a

function of the strength of isophotes hitting the front δΩ at each iteration. This

algorithm handles large fill areas which combines the use of texture synthesis and

isophote driven inpainting by a priority based mechanism. This technique is most

influential work in the field of exemplar based image inpainting and the details of

this method and various terms are provided below:

The source region (i.e. the known region) is defined as Φ = I − Ω, where I and

Ω are input image and hole region, respectively. The boundary of hole region is

defined as δΩ and the hole region Ω may not be a single contiguous spatial region

(see Figure 2.7 for an illustration).
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The square pixel patches Ψp centred at pixel p at the border the hole region

are inpainted in the order of their priority (to be discussed). Consider a specific

pixel patch Ψp̂ of default size w × w from among all the Ψp on the boundary,

such that it has maximum priority. This patch with highest priority is termed as

the target patch (TP). The best matching patch Ψq̂, known as candidate patch

(CP) is identified in the source region that is most similar to Ψp̂ and minimises

the matching error as:

Ψq̂ = argminΨq∈Φd(Ψp̂, Ψq) (2.4)

where d(Ψp̂, Ψq) is the Sum of Squared Differences (SSD) between correspond-

ing known colour pixels of the two patches. In other words, known pixels in Ψp̂

are used as a template to find a best matched patch in source region. After Ψq̂ is

identified using (2.4), missing pixels in target patch Ψp̂, Ψp̂ ∩ Ω, are filled using

corresponding pixels in Ψq̂. The order in which the missing pixel patches in the Ω

are filled, is considered critical. Thus a priority term is derived that calculates the

confidence and the data term, the patch with highest priority should be inpainted

first.

The priority term P(p) for each boundary patch, where p ∈ δΩ, is computed

as the product of two terms:

P (p) = C(p) × D(p) (2.5)

Where C(p) and D(p) are the confidence and data terms, respectively. C(p)

and D(p) are defined as follows:
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C(p) =
∑

q∈Ψp∩Φ C(q)
|Ψp|

(2.6)

D(p) =

∣∣∣∇I⊥
p .np

∣∣∣
γ

(2.7)

Where |Ψp|is the number of pixels in target patch Ψp, γ is a normalisation factor

(e.g., γ = 255 for a typical grey-level image), np is the unit vector orthogonal

to δΩ at pixel p , and ∇I⊥
p is the isophote (direction and intensity) at pixel p.

The confidence term C(p) gives higher priority to the patches which have higher

percentage of non-hole pixels. C(p) is initialised to 0 for missing pixels in Ω,

to 1 everywhere else. D(p) defines the strength of linear structures hitting the

boundary δΩ at each iteration, and is used to encourage propagation of linear

structures. After missing pixels in a patch Ψp̂ are filled, the confidence term C(p)

for each newly filled pixel p in the patch is updated as follows:

C(p) = C(p̂), ∀p ∈ Ψp̂ ∩ Ω (2.8)

The confidence values are updated, priorities for the next patch to be filled are

computed and this entire process is repeated till all disocclusion holes are filled.

Improvement to this exemplar-based method was proposed to change the fill

order and a matching cost function (Nie et al., 2006). Unlike the original method

where data term and confidence terms are multiplied for priority calculation (i.e.

if data term is zero then priority also becomes zero), the data and confidence

terms are added. Another method involved a nonlocal-means approach to infer

the target patch by weighting a set of similar candidate patches (Wong & Orchard,

2008). Some methods copy multiple patches in a single step and thus are termed as
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greedy approach (Bornard et al., 2002; Drori et al., 2003; Martanez-Noriega et al.,

2012; Meur et al., 2011) to speed up the process. Several attempts were made

to improve the priority by using a tensor based data term (Meur et al., 2011);

magnifying data term (Martanez-Rach et al., 2014); limiting search space through

user-intervention (Sun et al., 2005).

Since exemplar methods are based on self-similarity prior, some methods broad-

ened the idea by considering various transformations such as varying the scales of

patches (Drori et al., 2003); extending the search space by varying possible scale

and rotations of source patch (Barnes et al., 2010; Mansfield et al., 2011). But

this required huge computation complexity thus another method was proposed

restricting the search space by minimising Euler’s elastica of contrasted level lines

(Cao et al., 2011). Another method proposed detection for transformed patches

(Fedorov et al., 2016, 2015; Huang et al., 2014). The exemplar based methods

proved to establish better results in comparison to the previous methods. In

multi-view imaging system depth is an additional feature and recently it has been

employed to aid in inpainting the missing texture region (Ahn and Kim, 2012,

2013; Daribo and Pesquet-Popescu, 2010). The next section showcases various

depth based image inpainting techniques.

2.5.5 Depth-aided Inpainting

The inpainting techniques discussed above are insufficient for filling disocclusion

holes and requires improved strategy to fill the missing regions. The priori know-

ledge about disocclusions is that they are result of displacement of FG object
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revealing BG areas (Tauber et al., 2007). Therefore, disocclusion holes are loc-

ated on the border between FG and BG, and are required to be filled with the

neighbourhood located on the BG rather than FG. Applying the non-depth as-

sisted methods, as discussed above, tends to wrongly fill the missing regions with

both the BG and FG pixel information and thus cause considerable visual arte-

facts (Chen et al., 2010a; Gui et al., 2013; Jantet et al., 2011; Oh et al., 2009).

To minimise the artefacts some methods process the depth maps to eliminate the

holes before employing it to fill the holes in the texture image (Cheng et al., 2011;

Koppel et al., 2010; Ndjiki-Nya et al., 2011) and other methods employ depth to

distinguish FG from BG to inpaint the missing region from BG only region (Oh

et al., 2009). Certain methods tends to use both the techniques to perform the

inpainting. The various methods used in the literature to perform depth-aided

inpainting are discussed now.

As most of the missing information belongs to the BG, segmentation (Silva

et al., 2010) is performed which involves classifying the data into FG and BG, and

then adequately inserting the BG samples into the disoccluded region. Various

techniques like interpolation or simple image inpainting methods are used to per-

form inpainting but they tend to introduce blur in the unknown areas (Ndjiki-Nya

et al., 2011). One method is to repeat line-wise the last valid BG sample into

the missing region (Muller et al., 2008b). This technique performs poorly when

applied to inpaint structured BG and dominant vertical edges. Another method

fills the missing region with texture synthesis (Jiufei et al., 2010) but that led to

blocking artefacts or luminous inconsistencies in the virtual view. Some meth-

ods perform pre-processing of depth maps to smooth the depth data across the
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edges and this lowers the depth gradients in the virtual view. Most often used

filters are Gaussian low-pass filter (Fehn, 2004b) or asymmetric filter (Zhang and

Tam, 2005). Using this approach usually distorts the FG objects which affect the

output view (Chen et al., 2005). Some methods combine both the approaches

i.e. pre-processing the depth map with a bilateral filter and then filling the tex-

ture using the available BG information (Cheng et al., 2008). Another similar

method uses edge-dependent Gaussian filter and fills the remaining holes via edge-

dependent interpolation (Chen et al., 2010a). These approaches partially eliminate

the geometric distortions but leads to increased computational complexity (Solh

and AlRegib, 2012).

Some methods exploited temporal consistency across successive frames to im-

prove the inpainting (Koppel et al., 2010; Yao et al., 2014). Another approach

extracted the BG information first by background subtraction and then filled

missing region (Schmeing and Jiang, 2015). However, this caused omission of

illumination variation compensation and also required manual correction of disoc-

clusion. Another approach for handling disocclusions considers statistical depend-

encies between different images of a sequence via a BG segment. The holes are

first coarsely estimated and then refined using texture synthesis (Ndjiki-Nya et al.,

2011). The drawback in this approach is the depth estimation inconsistencies may

lead to considerable degradation.

Some methods synthesised stereo images from pair of stereo images using depth,

edge and image segmentation to provide more information for improved filling and

reduced visual artefacts. The best candidate for disoccluded regions is selected

with Conditional Random Fields and graph-cuts (Scharstein and Pal, 2007; Tran
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et al., 2010). Other method exploited disparity information and inter-view correl-

ation instead of using graph cuts optimisation and mean shift segmentation (Jain

et al., 2011). A similar method uses disparity values to separate hole positions

present in FG and BG layers and fill in the missing information (Ramachandran

and Rupp, 2012). Techniques like Hierarchical Hole-Filling minimises the geomet-

ric distortion by using pyramid structure for lower resolution estimation of 3D

warped image to help in estimate the hole pixels (Solh and AlRegib, 2012). Some

approaches using layered depth images or multiple reference texture and depth

images to fill in the holes tends to be computationally expensive (Wang et al.,

2015).

One approach is to replace the FG boundaries with the BG ones located on the

opposite side by intentionally manipulating disocclusion boundaries to have pixels

only from BG (Oh et al., 2009) and then to apply existing inpainting techniques.

But this method does not fully inpaint the holes with the BG since FG boundaries

are not always well identified and properly replaced. Another method extended

Criminisi’s algorithm by modifying the priority function and giving higher priority

to BG pixels over FG (Daribo and Pesquet-Popescu, 2010). The higher priority is

given to the patch with lower depth variance.

Assuming depth information is available per pixel in the entire virtual view,

an extra term L(p) was added to P (p) in (2.5):

P (p) = C(p) × D(p) × L(p) (2.9)

where L(p) is a depth variance term, proportional to the inverse variance of

the corresponding depth patch Zp:
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L(p) = |Zp|
|Zp| +∑

q∈Zp∩Φ(Zp(q) − Zp)2 (2.10)

where |Zp| is the size of depth patch Zp, Zp(q) is the pixel depth value at

the pixel location q under Zp which is mean depth value. The results with this

method contain noticeable errors as the assumption that patches of low depth

variance belong to BG is not always true. Also sometimes the boundaries of

objects in the depth map are mismatched with that of a colour image. The other

extension of Criminisi’s algorithm defined data term using 3D structure tensor

of Di Zenzo matrix and also add depth information in the best patch calculation

module (Gautier et al., 2011). But the problem is Di Zenzo matrix reflects only

the strong gradients well. Also this method tends to introduce blur as it combines

five best patches to fill target regions.

In order to improve upon these shortcomings another method based on the

Criminisi’s technique used Hessian matrix structure tensor and epipolar line term.

The best matched patch is selected considering the data term on the BG regions

which is extracted using warped depth map (Ahn and Kim, 2012, 2013). However,

this tends to provide inferior results in case of intermediate FG objects (Cheung

et al., 2015).

Another improvement to exemplar-based technique, apart from adding depth

information to the priority function, applies local segmentation to prevent propaga-

tion of FG objects into BG texture. Then a gradient based searching is performed

to lower the computational cost by adapting the search window size (Ma et al.,

2012). The inpainting artefacts occur if segmentation fails to properly separate the
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BG and FG. Another recent approach uses depth for estimation of scene geometry

(Kohli et al., 2012). Some methods improve the accuracy of patch matching by us-

ing location distance as a penalty (Ma et al., 2012). Another method use gradient

information as auxiliary information while searching the optimal matching patch

(Wang et al., 2015). However to increase the computation speed a parallel com-

puting platform is used which included Graphic processing unit to attain 51-fold

faster computation (Kuo et al., 2013, 2015). These methods provide improvement

over the non-depth assisted methods, but there is scope for improvement. Next

section provides a discussion on existing disocclusion hole-filling methods and their

limitations.

2.6 Discussion

As discussed in Section 2.5.4, exemplar based approach has been chosen for in-

painting disocclusion holes due to its structure and texture preserving properties.

However, due to certain characteristics of disocclusion holes (e.g. requirement to

be filled from the BG information), the classic exemplar-based techniques does not

work well and the visual quality of synthesised view is compromised. Having the a

priori information about location of disocclusion holes, depth has proved helpful

in framing the inpainting strategy for disocclusion holes.

The well-known exemplar-based method (Criminisi et al., 2004) is based upon

a priority term, numerous subsequent works (Ahn and Kim, 2013; Daribo and

Pesquet-Popescu, 2010; Gautier et al., 2011) kept the TM framework but modified

the definition of the priority term and/or the criteria for TM, using available
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depth information. Some methods modified the priority term to initiate the filling

from the BG holes towards the FG and by distinguishing the FG and BG such

that the best matching patch shall be selected from the BG only. Depth-assisted

techniques helped in improving the inpainting of disocclusion holes, though the

problem remains how to ensure priority selection from BG.

Some methods proposed depth pre-processing to eliminate first the depth holes

by using filtering techniques which tends to introduce blur and often resulted

in additional steps before the actual texture image could be filled. Few others

assumed availability of pre-filled depth maps to assist filling of texture holes which

is quite impractical in real-time scenarios.

The synthesised view contains holes in both the texture and depth maps, thus a

more practical approach is to simultaneously inpaint the missing texture and depth

information and provides consistent texture and depth inpainting. However, little

attention has been paid to jointly fill both texture and depth maps. One method

proposed to fill the depth holes simply by copying the depth values from the

candidate depth map corresponding to the candidate texture image. This direct

copying of depth pixels solely on the basis of texture seems a tenuous proposition

and needs further investigation.

Table 2.1 highlighted major existing inpainting techniques that mainly focusses

on disocclusion holes along with their limitations. Depth is an additional informa-

tion available in DIBR process and recently it has been utilised for inpainting the

disocclusion holes. However, it needs to be explored further to effectively prioritise

the filling order and perform a joint inpainting of texture and depth holes.
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Depth-assisted method
Use pre-processed depth or pre-filled depth

Texture inpainting
Simultaneous texture-depth inpainting

Method Limitations
(Criminisi et al., 2004;
Fedorov et al., 2015)

× - X - Tends to introduce artefacts by
propagating FG into BG in filling
synthesised views.

(Ma et al., 2012;
Muddala et al., 2013;
Solh and AlRegib, 2012)

X × X × Improves texture inpainting but does
not inpaint depth holes.

(Cheng et al., 2011;
Daribo and
Pesquet-Popescu, 2010;
Gautier et al., 2011;
Koppel et al., 2010; Lei
et al., 2016; Ndjiki-Nya
et al., 2011; Oh et al.,
2009; Ramachandran and
Rupp, 2012; Wang et al.,
2015; Xu et al., 2012)

X X X × 1. Require pre-processed or pre-filled
depth.
2. No simultaneous texture and depth
filling.

(Ahn and Kim, 2012) X × X X 1. Inferior results in case of
intermediate FG objects.
2. Depth filling method needs further
investigation.

Table 2.1: Comparative summary of major existing inpainting methods.

Overall these observations conclusively confirm the need of a new inpainting

framework which effectively uses available depth information to simultaneously

inpaint both texture and depth disocclusion holes. This discussion highlights the

scope of improvement for inpainting technique which can provide superior hole-

filling to provide enhanced view synthesis.
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2.7 Summary

This chapter briefly discussed the view synthesis scenarios and highlighted the role

of inpainting during view rendering. It provided a thorough literature review on

various inpainting techniques, their advantages and limitations for filling disocclu-

sion holes. The exemplar-based inpainting technique has been most popular and a

critical analysis of various extensions made to this work have been discussed. The

detailed review has been presented for depth-assisted methods for inpainting disoc-

clusion holes. Based on the literature review, a summary table is provided which

highlights the major existing techniques with a discussion on their limitations.

The next chapter presents the adopted research methodology for this thesis.



Chapter 3

Research Methodology

3.1 Introduction

In a virtual view synthesis scenario, inpainting the disocclusion holes is highly chal-

lenging. This chapter presents the research methodology adopted to address the

challenge. Various strategies involved in design, development and critical evalu-

ation of proposed inpainting framework will be discussed in detail. A wide range of

image datasets are prerequisite to test the robustness of the framework. However

rigorous evaluation of the performance using justifiable quantitative and qualit-

ative comparison metrics is equally important. From the implementation to the

validation of the software code, each component is essential in the framework de-

velopment.

The following sections will discuss all these parameters involved in building the

inpainting framework in detail.



3.2 Research Methodology and Test-bed 44

3.2 Research Methodology and Test-bed

To achieve an effective and efficient inpainting solution that provides a perceptu-

ally pleasing virtual view, this section explains the various phases of the research

methodology adopted and details the experimental test-bed used for critical eval-

uation of the new algorithms developed. The key steps involved in design, devel-

opment, implementation and validation of the proposed inpainting framework can

be summarised as follows:

1. Perform critical literature review by exploring the recent and state-of-art

inpainting techniques used for inpainting in DIBR synthesised virtual views.

Identify their limitations and analyse the key assumptions relating to existing

inpainting methods.

2. Implement established DIBR scenarios (SS-DIBR and DS-DIBR), which will

be used as an underlying block for synthesising intermediate virtual views.

Figure 3.1 shows a high-level block diagram of the adopted research method-

ology. It involves the pre-processed virtual view with holes and multi-view

test datasets as an input to the inpainting framework. The dashed block rep-

resent various steps involved in development of inpainting framework. The

output of the inpainting framework results in final inpainted view.

3. Develop a software simulation based test-bed for developing and testing pro-

posed inpainting framework for disocclusion inpainting. Software implement-

ation offers quick development and verification cycle in comparison to the

hardware based solution. The simulation platform provides great flexibility

to encompass additional functionality and is cost effective as well.
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Figure 3.1: Research methodology adopted for inpainting framework.

4. Before undertaking critical evaluation of each contribution, software code is

validated by performing rigorous testing.

5. The robustness of proposed inpainting framework is tested by identifying

and employing different multi-view datasets commonly used by the research

community. These datasets provide ground truth and are widely adopted by

community to benchmark various inpainting algorithms quantitatively and

qualitatively.

6. Critically evaluate the performance of proposed framework by comparing

with established inpainting methods in terms of the quality of synthesised

view using appropriate performance metrics.

7. Steps 3-6 are repeated and a critical analysis performed to fulfil the research

objectives.
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These steps provide necessary rigour to critically evaluate the inpainting frame-

work. The next section will discuss the view synthesis scenarios.

3.3 View Synthesis Scenarios

Virtual view synthesis from an array of cameras helps provide interactive viewing.

The number of cameras used in a free viewpoint television is generally a trade-off

between data amount and rendering quality (Tola et al., 2009). From rendering

quality perspective, disocclusion hole poses the major challenge for efficient view

synthesis. The number of disocclusion holes occurring in the synthesised view is

highly dependent on both the baseline distance between the reference and virtual

viewpoint and on the adopted view synthesis scenario. This thesis employs two

different view synthesis scenarios, namely DS-DIBR and SS-DIBR as discussed in

Chapter 2.

For view synthesis, a normalised baseline is considered where the left and right

cameras are set at positions 0 and 1, the virtual camera is positioned at α where

0 < α < 1 (Ramachandran and Rupp, 2012). DS-DIBR utilises view #1 and

view #5 (i.e. V1 and V5) and generates three intermediate virtual views namely

V2, V3 and V4 at α =0.25, 0.5 and 0.75, respectively. The SS-DIBR, uses only

V1 to generate V3 at α = 0.5. The amount of disocclusion holes in SS-DIBR is

more as compared to DS-DIBR and hence more challenging to fill. In Chapter

4, the inpainting technique has been tested and evaluated on views synthesised

using both DS-DIBR and SS-DIBR respectively. The experiments undertaken

in Chapters 5 and 6 involve SS-DIBR scenario to test the respective inpainting
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performance. The synthesised view is pre-processed to fill the cracks, i.e. single

pixel holes, through interpolation before performing the disocclusion hole-filling as

discussed in section 2.4.3.

3.4 Image Datasets

The testing and evaluation has been carried out on the Middlebury 2003, 2005

and 2006 datasets (Hirschmuller and Scharstein, 2007; Scharstein and Pal, 2007;

Scharstein and Szeliski, 2003). Each dataset in Middlebury 2005 & 2006 consists of

7 captured colour/texture views of same scene as well as the disparity maps for view

#1 and view #5 as shown in example Figure 3.2. The Middlebury 2003 datasets,

namely Teddy and Cones, consist of nine texture views including disparity maps

for view #2 and view #6.

The disparity maps represent the ‘inverse depth’ because the disparity is in-

versely proportional to the depth, however features such as object edges, remain

the same (Tosic et al., 2011). The disparities are expressed in rectified two-view

geometry and are also called ‘projective depth’ (i.e. 3D scene reconstruction)

(Scharstein et al., 2014) and thus the term disparity image is often referred to as

depth map in the literature (Lu et al., 2012; Solh and AlRegib, 2012). Without loss

of generality therefore, throughout the remainder of the thesis, the term ‘depth

map’ is used when referring to the disparity image.

The images sequences are captured from equally-spaced viewpoints along the

x-axis from left to right. This can be seen clearly in Figure 3.2 by closely observing
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view #0 view #1 view #2 view #3 view #4 view #5 view #6

Figure 3.2: Art representing 7 camera captured texture views with depth maps for view #1
and view #5 (Scharstein and Pal, 2007).

the jug area reducing along the horizontal shifting views from view #0 to view

#6. The images have been rectified to provide a pure horizontal image motion.

The wide range of datasets covers variety of image characteristic e.g. images

with pattern as well as smooth regions, complex textures, multiple objects and

illumination variations etc. Figure 3.3 shows the texture and depth image of Aloe

from the Middlebury 2005 datasets (Hirschmuller and Scharstein, 2007; Scharstein

and Pal, 2007; Scharstein and Szeliski, 2003). A variety of test datasets has been

used at various stages during the experimentation to showcase the strengths of the

proposed framework. The images of these Middlebury datasets used in this thesis

are included in Appendix A (shown as Figure A.1 and A.2). The choice of datasets

during the experimentation is based on those which pose large disocclusion holes

as well as complex textures. To fill-in the texture efficiently around the complex

object edges without visually disturbing artefacts is challenging. The complex

textures are difficult to fill but are usually less evident as compared to the errors

occurring in filling smooth regions. For example, a slight variation in illumination

of inpainted region on smooth areas may result in clearly visible artefact.

The images with patterns (as shown in Figure 3.3(a)) are difficult to inpaint
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in particular since a small variation in the filling the repetitive pattern cause error

propagation and hence result in wider artefact which causes visually disturbing

view. Thus addressing a wide variety of images and filling their disocclusion holes

will test the robustness and reliability of the inpainting framework.

The following three key factors governed the selection of the Middlebury data-

sets for testing and evaluation purpose in this thesis:

1. The availability of ground truth images is essential for both quantitative

and qualitative assessment of the rendered virtual view. The Middlebury

datasets provide high quality images which are used as ground truths for

comparative analysis.

2. The range of these datasets provides good quality stereo sequences with

highly complex geometries. Testing the proposed framework on variety of

datasets with different complexities help in evaluating the robustness of the

proposed inpainting framework.

3. These datasets are widely accepted by the research community for exper-

imental analysis of the DIBR inpainting techniques (Scharstein and Pal,

2007).

3.5 Simulation Platform

In this thesis, the algorithms are designed and implemented in MATLAB® 7.14

R2012a. MATLAB is a high-level language and provides a great facilitating en-

vironment for numerical computation, visualisation, developing and prototyping
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(a) Texture (b) Depth

Figure 3.3: Texture and depth image of Aloe from the Middlebury 2005 datasets (Hirschmuller
and Scharstein, 2007; Scharstein and Pal, 2007; Scharstein and Szeliski, 2003).

algorithms. Other high level languages such as C/C++ and Java are compiler

based and require development of components and libraries, which can be time

consuming. MATLAB provides mathematically robust build-in routines, image

processing toolboxes and data visualisation techniques for plotting graphs and

thus makes it an obvious choice over C++. Open-source platforms like Python

also support specific libraries for image processing applications but lack the ne-

cessary technical support. However, MATLAB provides an efficient and highly-

reliable online support network. MATLAB exhibits much faster development time

which compensates for its lower runtime performance in comparison to C++. MIT

Lincoln Laboratory has developed pMATLAB that enables parallel programming

with MATLAB (Kim et al., 2011) which has been used for saving inpainting time.

The other technical specifications for the personal computer (PC) are detailed in

Table 3.1.
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Software

Platform

PC Specifications

MATLAB 7.14

R2012a

Processor
Intel® CoreT M (M)

i5-2400 CPU @3.10GHz [Quad Core]

RAM 4 GB, DDR2, 800MHz

Hard Disk 250GB, 816MB Cache, 7200 RPM

Operating

System

Ubuntu 12.04 LTS (Precise)

Kernel Linux 3.11.0-13-generic

GNOME 2.30.2

Table 3.1: Simulation platform specifications and their details.

3.6 Performance Metrics

The evaluation and validation of synthesised images is a challenging task as the

generated images suffer from various types of artefacts e.g., synthesis distortion

(Fang et al., 2014), textural and structural distortions due to poor quality depth

maps (Farid et al., 2014; Merkle et al., 2009). There is no common method for-

mulated for evaluating inpainting algorithms in the literature (Oncu et al., 2012).

The intent here is to test the performance of the inpainted texture and depth maps

which is perceptually pleasing with minimal artefacts in comparison to the avail-

able ground truth. To validate the performance of proposed inpainting framework,

the quality of the rendered views is measured both qualitatively and quantitat-

ively. Furthermore an inpainting time analysis has also been performed for the

developed inpainting techniques.
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3.6.1 Quantitative Assessment

The quantitative assessment of inpainted virtual view is performed by means of

standardised objective numerical metrics. In the literature, the most widely used

image quality metrics for evaluation of inpainted images are the Mean Squared

error (MSE) and the corresponding distortion metric, Peak Signal-to-Noise Ratio

(PSNR) (Gonzalez and Woods, 2008; Wang and Bovik, 2009). These are proven

and commonly used methods for measuring quality and analysing the similarity

between the rendered and the original image. PSNR values are represented in

decibels (dB). The equations to calculate MSE and PSNR are given below:

MSE =

N∑
i=1

|xi − x̃i|2

N
(3.1)

PSNR = 10log10
x2

max

MSE
(3.2)

Where xi is the pixel value in original image, x̃i is the value of corresponding

pixel in rendered image, N is the total number of pixels in a frame, and xmax is the

peak pixel value, e.g., 255 in 8 bit image. The higher the PSNR value, the larger

the similarity between the inpainted image to the original. The PSNR is calculated

for the coloured images in this thesis, for this first the MSE is calculated for all

the three (red, green and blue) channels and then its average is computed. Other

quality metrics such as structural similarity index (SSIM ) can also be applied to

the image inpainting analysis, but PSNR is chosen over SSIM for two reasons: i)

the SSIM metric accounts only for luminance values and does not consider texture

information (Martanez-Noriega et al., 2012); the SSIM is determined for entire
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image and its applicability to evaluate arbitrary shaped regions is not straightfor-

ward (Ndjiki-Nya et al., 2010). In contrast, the PSNR can easily be computed

locally for only a specific inpainted region.

Since PSNR calculations are based on per pixel error measurements, errors due

to pixel projection and interpolation may also contribute to the measured PSNR.

Considering this, for a thorough evaluation of the resulting inpainting performance

of the new framework, the PSNR is separately calculated for both the whole image

and the inpainted region only. For whole image, the PSNR calculation includes

all types of errors involved in the view synthesis process, whereas in the inpainted

region only case, only the inpainted hole region is selected for PSNR computation

against the available ground truth image that targets only the disocclusion hole

regions, which is the prime focus in this thesis.

3.6.2 Qualitative Assessment

Evaluating the performance of tested algorithm solely on the basis of quantitative

metrics does not characterise the image quality particularly well (Girod, 1991; Tan

et al., 2005; Wang et al., 2004). In certain cases it is observed that images with

good perceptual quality may have lower PSNR values (Azzari et al., 2010). This

is because PSNR does not always capture the distortion as perceived by a human

being (Martanez-Rach et al., 2014). Since humans are the end users, methods

to assess the visual quality of images by human observer are also important (Se-

shadrinathan et al., 2010). To strengthen the performance assessment criterion,

qualitative image analysis is also performed through visual inspection.
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Due to the inherent subjective nature of the inpainting process alongside the

objective metrics, perceptual assessment helps in analysing results of both texture

image and depth maps. The texture image inpainting results are visually examined

by comparing them against the available ground truths and selected comparators

to test the performance. The key focus areas for visual inspection are the holes that

appear around the object boundaries. The inpainted hole regions are compared

with the corresponding available ground truth image by observing any artefacts

such as unnatural object borders, visual annoyance due to merging of FG objects

into the BG or improper filling as compared to the ground truth etc. (Azzari et al.,

2010). During the results discussion in Chapters 4, 5, 6 to highlight the problem

regions, a subset of inpainted images are enlarged and compared against the subset

of ground truth images and the corresponding comparators. However the inpainted

depth maps cannot be compared directly against a depth ground truth due to the

unavailability of original depth image. Thus the evaluation of inpainted depth

map is performed by visually inspecting for smooth inpainted edges around object

boundaries and comparing with the texture image to detect the object boundaries.

This helps in determining the object shapes and thus detecting the corresponding

depth variations based on the FG and BG depth.

3.6.3 Inpainting Time Analysis

Additionally in this thesis, inpainting time has been discussed as a performance

metric for disocclusion inpainting. Since inpainting is an iterative process, the

PSNR vs time analysis evaluation was undertaken on per iteration basis, with

log files being maintained. The total computation time incurred per iteration for



3.7 Software Code Validation 55

different algorithms has been discussed in detail in the contribution Chapters 4,

5 and 6. At various stages wherever appropriate, time complexity analysis have

been carried out amongst different patch size and with other comparators. In

Chapter 4, the quantitative and qualitative evaluation is performed by repeating

the experiments for different patch size (w×w) varying from 5×5 to 13×13 pixels.

These were chosen to investigate their impact on the inpainting performance in

terms of qualitative, quantitative and time complexity. This investigation assisted

in selecting an appropriate patch size for the proceeding contribution chapters.

Chapter 6 employs pMATLAB to improve the inpainting time.

3.7 Software Code Validation

Code validation is significant in assuring the reliability of implemented software.

To validate the implemented code both static analysis checks and dynamic tests

have been undertaken. Static Code analysis identified and diagnosed run-time

errors such as overflows, divide by zero whereas dynamic tests included unit-tests

to independently scrutinise each testable part for proper operation.

Furthermore, MATLAB Profiler function was employed to improve the run

time performance of the code. The error detection during profiling helped in

isolating the problem and thus troubleshooting. Some functions deployed in the

inpainting framework were available as MATLAB functions in its image processing

toolbox (Mathworks, nd), while other functions are publicly available for direct

implementation (Bhat, nd; Wilmer, 2003).
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Iteration Time PSNR Target Target Candidate Candidate Error

no. (sec) (dB) row column row column value

1 2.1061 19.2586 196 99 69 98 1525

2 2.2288 19.2789 200 100 157 107 3759

3 2.2822 19.2981 204 101 161 108 4881

4 2.2174 19.3 147 340 331 420 12529

5 2.0916 19.3495 181 95 106 83 4885

6 2.0862 19.3839 242 111 242 116 2708

7 2.3146 19.3989 208 102 82 123 10628

8 2.2523 19.4191 246 112 246 117 4776

9 2.1509 19.4226 169 436 167 346 13802

10 2.7748 19.4232 169 440 68 431 14879

Table 3.2: An extract from a test case log file.

1. The correct behaviour of the code implementation of inpainting framework

and comparator was manually checked by using a number of test cases.

2. To validate the iterative inpainting process, log files were generated. An

extract from test case log file is provided in Table 3.2, which shows target and

candidate patch indexes, along with their computed error values, iteration

time and corresponding PSNR. These log files served three purposes:

(a) To cross-check the location of selected target patches in the reference

to the theoretical calculations. This determined that the priority order

for iteratively filling of holes is implemented correctly.

(b) To detect and verify the location of candidate patches and the associated

error value.
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(c) To analyse and evaluate the performance of the proposed framework

against the comparators by plotting the iterative time graphs for in-

painting time analysis.

3. Test functions were used to determine if all holes are filled in the final syn-

thesised image. For example, the missing pixels were represented as NaN

(Not a Number) initially and the RGB values were assigned to them during

each iteration step. In the end, a MATLAB function (e.g. isnan) was used

to identify if all the holes have been filled.

Further, each constituent component of the implementation was also tested inde-

pendently for its functionality. Details of the individual comparators used for val-

idation and results evalution will be specified in respective contribution chapters.

3.8 Summary

This chapter has presented the research methodology adopted in this thesis. A

detailed description of the test-bed used to implement the inpainting framework

for different scenarios has been discussed. The choice of image datasets for ex-

perimentation has been justified and the performance metrics selected to evaluate

the final synthesised view have been identified. Various benefits underlying selec-

tion of MATLAB platform have been highlighted. Details of rigorous testing and

validation methods for assessing the inpainting framework have been presented.

The next chapter will present the first contribution, namely Joint Texture-Depth

Inpainting.



Chapter 4

Joint Texture-Depth Inpainting

4.1 Introduction

As discussed in Chapter 2, transmitting texture and depth maps from one or

more reference views enables a user to freely choose virtual viewpoints which are

synthesised via DIBR. In each DIBR-synthesised image, however, there remain

disocclusion holes with missing pixels that correspond to spatial regions occluded

from reference view images. To complete these holes, previous schemes (Daribo

and Pesquet-Popescu, 2010; Gautier et al., 2011; Meur et al., 2011; Oh et al.,

2009) rely on the availability of a high-quality depth map in the virtual view for

inpainting of corresponding texture map.

The underlying assumption for the majority of these works however, is that

a complete and good-quality depth map at the target virtual view is available,

or can be easily pre-computed a priori, for the computation of the priority term
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and/or matching criteria. This assumption is not realistic for practical DIBR

view synthesis systems; disoccluded pixel locations in the target virtual view with

missing texture information will also have depth information missing. Further,

though depth maps are known to be piecewise smooth, the missing depth pixels

can be more complex than a constant BG depth value, meaning simple signal

extrapolation strategies extending the depth signal of the neighbouring BG pixels

will not always be correct.

In this chapter, a new inpainting technique called Joint texture and Depth

Inpainting (JTDI) is proposed to jointly inpaint texture and depth pixels in disoc-

cluded regions, where first available depth information is leveraged to fill in texture

pixels, then the inpainted texture information is used to fill missing depth pixels.

To facilitate this joint texture and depth filling, an inpainting technique based on

Exemplar-Based Inpainting (EBI) (Criminisi et al., 2004) is presented with a new

depth-based priority term.

The next section presents the JTDI technique and discusses the steps involved.

4.2 Joint Texture-Depth Inpainting

The EBI for regular colour/texture images has been discussed in Section 2.5.4.

The priority computation in EBI involves both a confidence term and a data term

but does not utilise depth information. Depth-Assisted Inpainting (DAI) (Daribo

and Pesquet-Popescu, 2010) used depth variance term to modify the computation

of priority term but it assumes the availability of pre-computed depth map. This
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section presents JTDI, which contains two main contributions: 1) a new depth-

based priority computation based on EBI to inpaint texture and 2) simultaneous

inpainting depth disocclusion holes guided by the inpainted texture. Figure 4.1

shows the detailed block diagram for JTDI and the various steps involved are

discussed below:

Step 1 : Novel Depth-based Priority Computation

This step computes a depth-based priority term for JTDI. As discussed in Section

2.5.5, disocclusion hole is a spatial region that is occluded by a closer object in the

reference view, but become visible in the virtual view. The a priori information

is that disocclusion areas typically occur at FG object boundaries and these areas

are required to be filled with the BG information. Also selecting an appropriate

priority order is crucial, as a patch filled from FG boundary initially will lead to

serious error propagation in the following iterations and cause FG leakage into

large spatial area. Thus, a suitable priority term is required to be computed such

that the filling order begins from BG to FG. Although DAI proposed to give higher

priority to patches on the BG by selecting the patches with smaller depth variance,

it does not assure that the patches are filled starting from BG to FG boundary.

To make sure that BG patches are inpainted first, a new depth-based priority

is computed to provide higher priority to patches with smaller depth mean. This

is because, the patches farther away from the camera belongs to the BG and have

smaller depth values (i.e. Zfar = 0, Znear = 255). Also the depth variance term

which is incorporated as a multiplier to the original terms C(p), D(p), L(p) in
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Figure 4.1: JTDI with contributions highlighted in step 1 and 4 .

(2.9) are now combined additively instead. The rationale behind adding these

terms is to overcome the circumstances where patch priority reduces to zero apart

from having high confidence C(p) and low variance L(p) terms. Such a condition

occurs when the data term D(p) tends to zero (Nie et al., 2006). The additive

combination provides equal weightage to all participating terms. Thus the priority
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Figure 4.2: Depth map showing per pixel values in patch A (in red) and patch B (in blue)
respectively.

term P (p) in (2.9) is revised as:

P (p) = [C(p) + D(p) + L(p)] × (Znear − Zp) (4.1)

where Znear = 255. Unlike DAI, the depth mean term is a clear dominant term

in the computation of P (p), so that patches further in the BG are always selected

for inpainting first. The priority is thus computed for each patch of size w × w at

the holes boundary using (4.1). The overall aim is to select the TP from the BG

which is attained by additional depth mean term to the low depth variance in the

new priority computation.

A worked example is used to illustrate the improved priority term which aims to

perform BG to FG filling. Figure 4.2 shows an example of a depth image with two

patches namely patch A and patch B on FG and BG hole boundary respectively.

The patches A and B of size 5 × 5 each, are zoomed-in to represent their per-pixel
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Stage I Stage II Stage III Stage IV Stage V Stage VI Stage VII

Figure 4.3: Inpainting of Art at different iterations from Stage I to Stage VII illustrating BG
to FG filling order.

values in red and blue matrices respectively. Assume that both these patches have

same confidence and data terms. Using (2.10), L(p) of patch A and patch B is

calculated as 0.71 and 0.64 respectively. This provides higher priority to patch

A on the FG rather than patch B on the BG. However, with the multiplicative

mean depth-based priority term in (4.1), patch B on the BG has higher priority

over patch A on the FG. This is because the (Znear − Zp) for patch A and patch B

are 105 and 175, respectively. Thus, it clearly shows that the new priority order

with depth mean term supports the BG to FG filling by giving higher priority to

patches on the BG.

Figure 4.3 shows another example which illustrates the improved priority order

from BG to FG through various stages from Stage I-VII. Using new depth-based

priority selection, higher priority is given to the patch farthest in the BG which

helps in starting the filling process from the BG boundary. This reduces the chance

of selecting a TP at FG object boundary i.e. sculpture face, and thus minimises

the propagation of unwanted artefacts at the object boundaries. Stage I shows

when no holes are filled, followed by Stage II to VI illustrating the selection of TP

on the BG at each consecutive iteration which results in improved final inpainted
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output in Stage VII. The selection of TP on the FG at any stage would have led

to leakage of FG in to BG and distort the face of the sculpture.

Step 2 : Exhaustive Candidate Search

After the TP is selected, the best CP is searched by performing an exhaustive

TM in the candidate search space, as in EBI. The candidate search space contains

overlapping patches from the known region in the image. The error is computed

among the TP and each CP in the search space as in (2.4), the best matched

candidate having the lowest error is selected for filling TP.

Step 3 : Inpainting Texture Disocclusion Holes

The missing pixels in TP are filled with corresponding known pixels in the selected

CP. However, the depth holes still exist and the next step explains the inpainting

of target depth holes guided by newly filled TP.

Step 4 : Inpainting Depth Disocclusion Holes

The key novelty of JTDI algorithm exists in simultaneous texture and depth in-

painting. JTDI alternates between inpainting of texture pixels using partially

available depth information, and then inpainting of missing depth pixels using in-

painted texture information. Specifically, after the best-matched texture patch Ψq̂

is found in the source region Φ, the corresponding depth patch Zq is used to fill in

missing depth pixels in target depth patch Zp as follows:
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Zp̂ = Zp − (Zq − Zq̂) where Zp ≥ Zq − Zq̂ (4.2)

otherwise Zp̂ = Zp. Here, Zp and Zq are the mean depth values of the target

depth patch Zp (computed using available depth pixels) and the best-matched

depth patch Zq, respectively. Zp̂ is the missing target depth pixels in Zp and Zq̂

represents its corresponding candidate depth pixel in Zq. In other words, only the

depth gradient of the matched patch Zq is copied to the target, while the depth

mean of the original patch Zp (based only on initially known pixels in the TP)

remains the same.

The rationale for (4.2) is as follows: TM between texture patches just en-

sures the textural patterns are similar; the patches could be from quite different

depths of the 3D scene, e.g. same wallpaper pattern recurring on a wall slanted

towards infinity away from the camera. Thus, directly copying of depth pixels from

best-matched patch (evaluated solely on texture content) to the TP, is a tenuous

proposition. On the other hand, given the textural content are similar, the depth

gradient of the best matched patch is more likely to be similar to the gradient

of the TP, as illustrated in the aforementioned wallpaper example. Thus copying

only the depth gradient to the target depth patch is more appropriate. Finally, by

retaining the original mean depth value Zp in the TP, a piecewise smooth depth

map can be achieved.

The outputs of step 3 and 4 provide inpainted texture and depth holes in

the TP. The inpainted holes are updated in the synthesised image and priority

is computed for next iteration. The steps 1 to 4 are repeated in an iterative
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manner until all the holes are filled. The final output image after all the holes are

filled is an inpainted virtual view comprising of both texture and depth map. The

next section critically evaluates and discusses the experimental set-up and results

for JTDI.

4.3 Experimental Set-up and Results

Inpainting experiments are performed on eight Middlebury image datasets to in-

vestigate and analyse the JTDI technique. This section provides a detailed dis-

cussion on four of these datasets and results for other datasets are included in

the Appendices B and E. To test the performance of the designed algorithm, res-

ults are compared in two scenarios: Experiment 1 presents results of inpainting

performed on views synthesised via DS-DIBR and are compared against MVSV

(Ramachandran and Rupp, 2012) whose experimental results are available for

Middlebury datasets. Experiment 2 presents the results for views synthesised

through SS-DIBR and compared against EBI and DAI. EBI is a pioneer work in

the field of image inpainting, mainly focussing on texture image inpainting while

DAI utilises depth information to inpaint missing texture holes. The algorithm for

EBI is publically available for direct implementation (Bhat, nd) and the results for

DAI are reproduced by employing depth-based modifications to EBI as discussed

in (2.9) and (2.10) in Chapter 2. DAI assumes the availability of a complete depth

map a priori, which is achieved by horizontally extrapolating the BG depth val-

ues into the hole region (Xu et al., 2013). Both the scenarios are discussed and

presented in Section 4.3.1 and 4.3.2, respectively.
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4.3.1 Experiment 1 : Inpainting DS-DIBR Views

The experimental results of proposed JTDI are compared for three different virtual

views generated at V2, V3 and V4 using V1 and V5 (i.e. α = 0.25, 0.5 and 0.75,

as discussed in Section 3.3). The inpainting results for 4 datasets have been com-

pared with MVSV(Ramachandran and Rupp, 2012) for quantitative performance

analysis. The PSNR is computed for whole images and the PSNR comparison

of JTDI and MVSV is presented in Figure 4.4 which clearly shows that JTDI

performs considerably better then MVSV.

For example, a modest improvement is observed in the Aloe dataset, where

an average PSNR increment is 4.23 dB. However, for the Art dataset, the PSNR

rise is 0.30 dB. This variation in improvement indicates that during the candidate

search, Aloe has found enough good CPs whereas in Art, there remained scarcity of

good candidate matches with lower MSE and thus resulted in overall lesser PSNR

improvement in comparison to other datasets. It is evident from plots that JTDI

holds an upper edge over its comparator due to significant increase in PSNR for

majority of datasets synthesised at V2, V3, and V4, respectively.

The overall average plot for these datasets is shown in Figure 4.5 and it is

observed that JTDI outperforms MVSV. The comparisons for more datasets and

their summary is presented in Appendix B (Figure B.1 - B.3) for completeness.

During this experimentation, it emerged that due to in-built image charac-

teristics and unavailability of good candidate patches, certain image datasets en-

countered less improvement over other datasets. However the qualitative analysis

could not be performed since the perceptual results of MVSV are unavailable in
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Figure 4.4: PSNR comparison of MVSV and JTDI for (a) Aloe (b) Books (c) Dolls and (d)
Art, for three views (V2, V3 and V4).

public domain. Experiment 1 deals with inpainting of small disocclusion holes as

these experiments are conducted on the view synthesised using DS-DIBR.

In order to test the robustness of the algorithm, Experiment 2 is performed for

inpainting of larger hole regions.
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Figure 4.5: Average PSNR comparisons for MVSV and JTDI.

4.3.2 Experiment 2 : Inpainting SS-DIBR Views

In this experiment, SS-DIBR is used to generate V3 (view #3) using reference V1

(view #1) for Aloe and V2 (view #2) to generate V4 (view #4) for Cones. The

view generation using SS-DIBR poses a bigger challenge for JTDI and amounts

to increased number of holes for disocclusion inpainting. The disocclusion holes

appeared in synthesised texture and depth maps are simultaneously filled using

JTDI.

The results of the implemented JTDI for 4 datasets namely: Aloe, Art, Cones

and Laundry are evaluated and compared both quantitatively and qualitatively

against state-of-art EBI and DAI in the next section.

4.3.2.1 Quantitative Analysis

To test the quantitative performance, PSNR is computed for both 1) Whole Image

and 2) Inpainted Region as discussed in Section 3.6.1. The comparative analysis for

JTDI, EBI and DAI has been performed for 5 different patch size i.e. w = 5, 7, 9,
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Figure 4.6: Whole image PSNR vs patch size (w) plots of EBI, DAI and JTDI for (a) Aloe (b)
Art (c) Cones and (d) Laundry.

11, 13, to evaluate the effect of w on the overall inpainting performance. The plots

in Figures 4.6 (a) - (d) show the PSNR vs. patch size performance comparison of

Aloe, Art, Cones and Laundry, for EBI, DAI and JTDI, respectively. These results

demonstrate that JTDI performed better than EBI and DAI for all datasets. For

example, considering the plot for Aloe image in Figure 4.6 (a), best output PSNR is

observed at w = 5. As w increases, although the PSNR drops for JTDI but it still

remains higher as compared to EBI and DAI. Similar performance is consistently

maintained for almost all the datasets irrespective of the w involved. Overall the
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results suggest that for any given w, JTDI consistently performs better among the

comparator inpainting methods.

On comparing the performance of JTDI at different values of w, it is observed

that Art performs similar at w = 5, 7 and 9 e.g. PSNR difference of w = 9 and

w = 5 is 0.25 dB for whole image. However, for Cones, the PSNR remains similar

at all values of w, except with a increase of 0.18 dB at w = 7 compared to w =

5. For Aloe and Laundry, the PSNR decreases as w increases from 5 to 13. It is

observed that there is no clear evidence of the single best w which provides the

best output PSNR for all the inpainted datasets. However, w has a direct effect

on the inpainting time and will be discussed in Section 4.3.2.4.

Figure 4.7 shows the bar plots representing PSNR comparison of inpainted

region for all three approaches. For Aloe at w = 9, the resulting PSNR increases

by 8.72% and 6.23% as compared to EBI and DAI, respectively. At same w for

Cones, it increases to 11.38% and 8.94% in comparison to EBI and DAI. Similar

results have been observed for other image datasets, which are shown in Appendix

B (Figure B.4 - B.5).

These results highlight that the depth-based BG first priority order helped

in sequencing the iterative inpainting process starting from the BG region and

moving inwards towards the FG hole boundary. This led to lower error propagation

artefacts which rises if the initial filling is performed starting from the FG holes

boundary.

The next section presents the results for qualitative analysis.
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Figure 4.7: Inpainted region PSNR vs patch size (w) plots of EBI, DAI and JTDI for (a) Aloe
(b) Art (c) Cones and (d) Laundry.

4.3.2.2 Qualitative Results

This sub-section discusses the qualitative performance comparison of JTDI with

EBI and DAI for w = 9. Figures 4.8 shows the qualitative results for Aloe. The area

highlighted as red in Figure 4.8 (a) is the subset hole region chosen for analysis.

This region contains large disocclusion holes and is selected to assist in close visual

inspection of the inpainting performance. The sub-region in Figures, 4.8 (b) and

(c) shows a zoomed-in view of hole region and ground truth. The corresponding
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sub-regions shown in Figures, 4.8 (d) - (f) represent the inpainting results for EBI,

DAI and JTDI respectively.

It is observed that the inpainting performance of JTDI around the boundary

of leaf is much smoother in comparison to EBI and DAI which exhibit visible

artefacts. The performance comparison is based on visual analysis of inpainted

holes with respect to the ground truth. On closer inspection of the representative

sub-regions in Figures 4.8 (d)-(f), it is observed that JTDI performs better in

preserving the FG object boundaries and provides better inpainting results over

both the comparators. The reduced artefacts are the result of proposed improved

priority term, where the filling process begins from BG and move inwards toward

FG as seen in Figure 4.8 (f). Some more examples are shown in Figures 4.9, 4.10

and 4.11 representing results for Art, Cones and Laundry datasets, respectively.

In all these Figures, comparing the inpainting results of EBI, DAI and JTDI

amongst themselves and against the respective ground truths, signify the improved

performance of JTDI over DAI and EBI. The selection of TP on the FG first, tends

to find the best matching CP from the FG regions because the CP is chosen based

on the known information contained in the TP. Using this CP to fill the missing

holes results in FG leakage into the BG regions as evident in Figures, 4.8(d) -

4.11(d). DAI performs better then EBI due to the depth variance based priority

term.
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: Inpainting results for Aloe at w = 9 with (a) Image with holes (b) Hole sub-region
(c) Ground Truth and (d), (e) and (f) represent corresponding inpainting results by EBI, DAI
and JTDI respectively.

(a) (b) (c)

(d) (e) (f)

Figure 4.9: Inpainting results for Art at w = 9 with (a) Image with holes (b) Hole sub-region
(c) Ground Truth and (d), (e) and (f) represent corresponding inpainting results by EBI, DAI
and JTDI respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 4.10: Inpainting results for Laundry at w = 9 with (a) Image with holes (b) Hole sub-
region (c) Ground Truth and (d), (e) and (f) represent corresponding inpainting results by EBI,
DAI and JTDI respectively.

(a) (b) (c)

(d) (e) (f)

Figure 4.11: Inpainting results for Cones at w = 9 with (a) Image with holes (b) Hole sub-
region (c) Ground Truth and (d), (e) and (f) represent corresponding inpainting results by EBI,
DAI and JTDI respectively.
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However, the variance term does not always select the TP from BG and hence

may introduces the error by selecting TP from FG. The JTDI improved the priority

computation and shows better results in comparison to DAI as seen in Figures

4.8(e) and (f) - 4.11 (e) and (f) respectively. Similar trend is seen throughout the

experimentation for all the datasets, as presented in Appendix E. The improved

filling in JTDI for all these datasets supports the fact that the new priority order

provides a superior and robust inpainting, in comparison to the other comparators.

4.3.2.3 Depth Inpainting Results

The comparative results for depth disocclusion hole-filling are shown in Figure 4.12.

Due to unavailability of ground truth, the depth inpainting results are compared

mutually. Here, the corresponding texture images are included, to detect the object

boundaries which reflect the depth boundaries, for performance examination. The

inpainting at object boundaries by extrapolation in DAI (column 2) and JTDI

(column 3) are compared against the texture images in column 4.

In Figures 4.12 (a) - (d), it is observed that the depth is inpainted better

by preserving the object boundaries in column 3 as compared to column 2. The

extrapolation method, fills the lowest depth value across the holes into entire region

which tends to propagate the FG depth information e.g. if the holes occur between

two FG objects as seen in Art column 2 Figure 4.12 (b). A similar observation is

made for all the datasets, which shows that depth inpainting results obtained via

JTDI are better compared to pre-depth filling via extrapolation.

The depth inpainting results for more datasets are included in Appendix E, for
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Figure 4.12: Depth inpainting results for (a) Aloe, (b) Art, (c) Laundry and (d) Cones. Column
1 & 4 show the depth map holes and the corresponding ground truth texture image, column 2
& 3 represent inpainting results using extrapolation and JTDI respectively.

completeness. Overall, it is evident, that the simultaneous inpainting of texture

and depth maps result in better inpainting of both views and improve the visual

quality.
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Aloe Hole Image Hole sub-region Ground Truth

EBI 5 DAI 5 JTDI 5

EBI 7 DAI 7 JTDI 7

Figure 4.13: Aloe inpainting results for EBI, DAI and JTDI at w = 5 and 7, with sub-region
indicated as red box.

4.3.2.4 Patch Size vs Inpainting Time Analysis

As discussed above in Experiment 2, JTDI consistently performs better at given

w values for different datasets. To analyse the impact of w on the inpainting time,

Figure 4.13 and Figure 4.14 show visual inpainting results for Aloe dataset at w =

5, 7 and w = 9, 11, 13, respectively. Row 1 in Figure 4.13 shows Aloe hole image

which highlights a sub-region which is zoomed-in for visual inspection and also



4.3 Experimental Set-up and Results 79

EBI 9 DAI 9 JTDI 9

EBI 11 DAI 11 JTDI 11

EBI 13 DAI 13 JTDI 13

Figure 4.14: Aloe inpainting results for EBI, DAI and JTDI for w = 9, 11, and 13 respectively.

shows its corresponding ground truth. Row 2 and row 3 represent the inpainting

results by EBI, DAI and JTDI at w = 5 and 7, respectively. In continuation, row

1, 2 and 3 in Figure 4.14 show corresponding results of EBI, DAI and JTDI at w

= 9, 11 and 13. On inspection, the best visual quality is observed at w = 5 for

all three comparators, however, JTDI provides overall best inpainting compared

to EBI and DAI, at any given w.

It is observed that as w increases from 5 to 13, the inpainting quality degrades
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Figure 4.15: PSNR vs Time plots for DAI and JTDI at w = 5, 7, 9, 11 and 13 for (a) Aloe,
(b) Art, (c) Cones and (d) Laundry respectively.

for all the comparators but the corresponding inpainting time involved in inpaint-

ing process decreases. This relation between the w and inpainting time is shown

in Figure 4.15 for Aloe, Art, Cones and Laundry datasets. The iterative PSNR

results have been plotted for JTDI and DAI for all w. EBI has not been included

in these plots since it does not employ depth information during the inpainting

process and is an entirely texture filling method.

The overall inpainting time involved in both JTDI and DAI remains almost

similar for all w. The variation in time is related to the priority computation
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which affects the number of iterations required to fill the holes for a given w.

As evident from the plots, the inpainting time is in inverse relation to w and

it is observed that for a significant number of datasets, smaller w improves the

inpainting quality but at the cost of high inpainting time. As w increases from 5

to 13, inpainting time decreases drastically but with the corresponding decrease

in the output PSNR. Thus, for an efficient inpainting performance, a trade-off is

required between w and the inpainting time.

To select an appropriate w for inpainting, on reference to Aloe Figure 4.15

(a), as w is increased from 5 to 7, the output PSNR decreases by 0.08 dB but

the total time decreases by almost 40%. Subsequently, when w is increased to 9,

it is observed that the inpainting time declines by 55 % with a small reduction

of 0.20 dB in PSNR. But as w is increased further from 9 to 11 and 13, the

time decreases to 79% but the corresponding inpainting performance and PSNR

eventually degrades by 0.80 dB.

Thus, from the plots, for a balanced trade-off between inpainting performance

and time, w = 9 is considered to be most reasonable choice. Although the output

PSNR is slightly smaller at w = 9 as compared to w = 5, the corresponding

inpainting time reduces drastically. This negligible decline in PSNR does not

necessarily result in low perceptual quality but it reduces the time by almost 55%.

This w analysis facilitates in achieving better inpainting quality but finding w is

not the primary aim of this thesis.
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4.4 Summary

In this chapter, a new inpainting technique is proposed which simultaneously fills

the missing pixels in both texture and depth maps. In particular, using partial

depth information a new priority term is defined to order pixel patches in the

disocclusion region to be inpainted. Then for a given best matched patch in the

source region, the depth gradient of the best-matched patch is copied to the TP

for depth inpainting. JTDI is a robust inpainting technique as it can tackle the

more realistic DIBR view synthesis scenario where both the texture and depth

pixels in the disoccluded regions are missing and challenging to complete. Ex-

perimental results show that the proposed mutual assistance inpainting approach

has noticeable performance gain in both quantitative and qualitative over other

methods.

From the above discussion this is evident that JTDI performs well for majority

of image datasets but still there exists a scope for improvement. Certain regions

near the object edges are still unsmooth and contain artefacts. It is observed,

these artefacts tend to occur as a result of an exhaustive search process adopted

during TM; such that the selected CP used to fill the missing region happens to

belong to the FG due to its proximity to the TP in terms of MSE. This filling from

the FG then results in propagating error boundaries. Improved search methods

need to be explored to ensure filling from BG. Another drawback of the exhaustive

search scheme is high error computation time during TM. Instead of full exhaustive

search, a more focussed approach needs to be investigated which reduces the search

complexity with no or minimal loss in inpainting performance.
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Another reason for improper filling is the scarcity of best matching candidate

patches for a given TP during TM. Such a case appears, if there are inadequate

good patches which provide low MSE while TM. It is observed that a small vari-

ation among the patches e.g. due to image transformational properties; the res-

ulting PSNR is high and thus a potential candidate patch is dropped out from the

TM. To overcome such scenario, Chapter 5 discusses the self-similarity character-

istics of image that can be employed to achieve better inpainting.



Chapter 5

Self-similarity Characterisation

based JTDI

5.1 Introduction

As discussed in previous chapter, JTDI consistently performed better in compar-

ison to existing methods considered. The performance can be further improved in

terms of the visual quality, numerical performance and inpainting time involved.

During TM, JTDI searches the best matching CP by identifying similar pixel

patches through an exhaustive non-local search i.e. whole image is traversed for

TM (Arias et al., 2009). Thus, there exist two main reasons that produce artefacts:

firstly, the insufficient good candidate patches lead to selection of inferior CP for

inpainting disocclusion holes. Secondly, the exhaustive search process tends to

select CP from the FG which results in leaking of FG information into the BG

regions. In addition, the exhaustive search methods are computationally expensive
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and thus results in higher inpainting time. This chapter aims to address the two

aforementioned problems in previous non-local TM schemes.

The natural images tend to possess self-similarity, i.e. similar pixel content ap-

pearing repetitively within the image (Ashikhmin, 2001; Fedorov et al., 2016; Lan

et al., 2010). However, the similar patches may appear slightly transformed (e.g.

scaled or rotated) either due to varying depth or change in viewpoint etc. These

transformed patches although being visually similar, results in high MSE during

TM and generally overlooked during CP selection. It motivates to investigate and

employ these transformed patches as potential candidates during TM. This can

be achieved by characterising the self-similarity to detect the transformation para-

meters for the self-similar patches and then utilise them to enhance the search

space for TM. Searching all the transformations of self-similarity at once results in

high dimensionality (Barnes et al., 2010; Mansfield et al., 2011) so this chapter ex-

ploits the most commonly occurring self-similarity characteristic in images which

is scaling.

This chapter presents a new Self-similarity Characterisation based JTDI (SC-

JTDI) to investigate its performance for disocclusion inpainting. Also, the ex-

haustive search problem is minimised by constraining the search-space only to BG

region using depth information which aims to avoid the selection of CP from FG

and restrict the FG leaking.

The notion of Self-similarity Characterisation is formally defined in the next

section.
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5.2 Self-similarity Characterisation

It is observed that natural images are self-similar in general; i.e., a given pixel

patch is likely to recur one or more times in non-local spatial regions in the same

image. Specifically, the self-similarity is defined as non-local recurrences of pixel

patches within the same image - one such characterisation of self-similarity in a

given image is across different scales in which these patch recurrences take place.

The self-similarity is redefined in a multi-scale manner for natural images: a char-

acterisation of self-similarity for a given natural image is then how well target pixel

patches will match with non-local patches of the same image resized by a specified

scaling factors.

JTDI inpaint the holes using TM and assume the recurrence of pixel patches in

the same scale. In this chapter, the notion is generalised to assume that the recur-

rence of a pixel patch can take place across multiple scales. Thus, self-similarity is

characterised as the scale parameters (SP) over which, given pixel patch is likely to

recur within the same image. This multi-scale self-similarity is an intuitive gener-

alisation; for example, repeating textural patterns like wallpaper vary in size as the

distance to the capturing camera changes. The SP is computed that characterise

multi-scale self-similarity as follows:

A reference texture patch of size w×w pixels is first selected in a texture image.

Then each sliding window of (w + β) × (w + β) pixels is resized to w × w pixels

where β denotes the scale values within a given scale range. Let TP represents

the target patch corresponding to which the best matched candidate patch (CP)

needs to be identified, thus TP i can be defined as:
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TP i = {TP 1, TP 2, ... TP m} (5.1)

Where i = 1 to m represent the number of reference TP. To find the CP i for

each TP i, search space Sj
β is generated by resizing the patches for all values of β

as:

Sj
β = {S1

β, S2
β, ..., Sn

β } (5.2)

Where j = 1 to n, represent the number of scaled patches in the generated

search space. Using MSE as the distortion metric, for each β, the number of best

matched CP is identified as:

CP i
β = min

β
MSE(Sj

β, TP i) where 1 < i < m and 1 < j < n (5.3)

Total Number of best CPs = sum(CP i
β) where 1 < i < m (5.4)

The range of β values for which the total number of best matched patches is higher

than threshold value T defines the SP that characterises, multi-scale self-similarity

in this image.

5.3 Self-similarity Characterisation based JTDI

Having defined the notion of multi-scale self-similarity in natural images, now the

processing blocks of proposed SC-JTDI are discussed. There are two main blocks

namely multi-view encoder and multi-view decoder on either side of the transmis-

sion block as shown in Figure 5.1. The scale-based self-similarity characterisation
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Figure 5.1: Block diagram of SC-JTDI.

is performed at the encoder while the inpainting process is carried out at the de-

coder. The encoders, in general, are computationally more powerful than decoders

(Lukac, 2012). Thus, performing the characterisation at the encoder aims to avoid

any additional computation load at individual user-ends.

At encoder an image is segmented into multiple depth segments using available

per-pixel depth values. Followed by segmentation, each segment undergoes scale

range characterisation for self-similarity analysis as discussed in Section 5.2. The

computed SP for all segments are then transmitted as supplementary information

(SI) to the decoder. At decoder, disocclusion holes are inpainted by performing TM

on per-segment basis and searching for similar patches with the designated SP. The

segmentation at decoder is intended to identify and employ the BG segment as a

dedicated search space for TM. Since the characterisation performed at the encoder

decides the parameters that contribute to the disocclusion hole-filling at decoder,

it is termed as encoder-guided strategy. The following sub-sections describe the
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operations at the encoder to firstly characterise self-similarity of camera-captured

texture images; and secondly the operations at the decoder to perform encoder-

guided inpainting.

5.3.1 Encoder Side Processing

At the encoder, the objective is twofold : i) segment the camera-captured texture

image into depth segments; contiguous spatial areas with similar depth values, and

ii) define and transmit SP for each depth segment to the decoder for encoder-guided

disocclusion inpainting. Figure 5.2 shows a detailed block diagram of encoder side

processing and is explained as:

Step 1 : Depth and Texture Segmentation

The goal of depth segmentation is to divide a camera-captured texture image into

contiguous spatial areas that roughly correspond to physical objects in the 3D

scene. The segmentation aims to reduce complexity at the decoder by performing

multi-scale TM on per segment basis instead of per image.

This is reasonable, since repeated textural patterns likely recur within the same

physical object, contained in a depth segment. However, there may appear more

challenging cases where multiple objects occur within same depth segment. Let IT

and ID denote the texture and depth maps of a camera-captured reference view,

respectively. First ID is divided into s segments by detecting peaks and valleys

in a constructed histogram of depth values using default values as in (Silva et al.,

2010). Figures, 5.3 (a) and (b) represent depth histograms for Aloe and Cones
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Figure 5.2: SC-JTDI: Encoder side processing with contribution highlighted in step 1 and
2 .

datasets respectively. The red line represents the depth cut-off used for segmenta-

tion based on local minima. The depth cut-off values D = {zi} correspond to the

depth segments and these cut-off values are used to perform the segmentation of

corresponding IT and the segments are given as U = {ui} where i = 1, 2 ..... s.

The resulting segmentation results for Aloe and Cones are shown in Figure 5.4

and Figure 5.5, respectively. Figures, 5.4 (a) and (b) show depth segment 1 and

segment 2 for Aloe, and its corresponding texture segment 1 and segment 2 are
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Figure 5.3: Depth-based histogram for (a) Aloe and (b) Cones dataset.

(a) (b)

(c) (d)

Figure 5.4: Segmentation results for Aloe dataset (a) depth segment 1 (b) depth segment 2 (c)
texture segment 1 and (d) texture segment 2.

shown in Figures, 5.4 (c) and (d). The BG segment (i.e. segment 1) for Aloe is

a patterned texture and FG segment (segment 2) represents almost homogeneous

region (i.e. plant). However, unlike Aloe, the texture segment results for Cones

in Figures 5.5 (d), (e) and (f) contain different image characteristics in various
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: Cones dataset (a) depth segment 1 (b) depth segment 2 (c) depth segment 3 and
(d) texture segment 1 (e) texture segment 2 and (f) texture segment 3.

segments like varying patterned region in segment 1, multiple objects in segment

2 and segment 3. The different characteristics in these datasets provided a motiv-

ation for considering them for self-similarity characterisation and evaluating their

performance for disocclusion hole-filling.

Step 2 : Scale Parameter Characterisation

In this step, the multi-scale self-similarity for each computed texture segment is

characterised as discussed in Section 5.2. In these experiments, the scale value β is

considered within range [−3; 3] i.e.[−3, −2,−1, 0, 1, 2, 3]. The patches at various

β are resized and compared against specific boundary texture patches (BTP) to

compute the MSE. Figure 5.6 represents the BTP (shown in red boxes) which are
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Figure 5.6: Aloe with reference texture patches (in red) near boundary (in blue).

considered near the hole boundary regions using a sliding window mask. These

BTPs are used for error computation to find the best candidate patches (BCP).

Such a choice arises from the fact that disocclusion holes tend to appear near

object boundaries (Tian et al., 2009).

For designating the best SP to a given segment, it is thus logical to match the

scaled patches against the BTP instead of matching with patches from whole image

that tends to be more time-consuming. Once the BCP are determined using (5.3)

and (5.4), the bar graph is plotted to analyse those values of β which produced

most candidate matches. This is achieved by comparing these β values against

T and selecting all the β values above T as the SP for given segment. Figure
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Figure 5.7: Bar graphs for Aloe Segment 1-2 in (a) & (b) and Cones Segment 1-3 in (c), (d)
and (e) respectively.

5.7 illustrates the number of best matches for various β values within the range

[−3; 3] for Aloe and Cones images. For a given segment, if the percentage of the

best matching patches exceeds a threshold T , the corresponding β value is included

as SP where the value of T is empirically chosen as 20% based on the bar graphs

plotted for various datasets. For example, Aloe segment 1, β = 1 and 0 yield more

than 20% of best matches and thus are chosen as SP for segment 1 whereas for

segment 2, β = 1 and -1 is selected as its corresponding SP. This implies a high

possibility of finding a superior match at SP = [0; 1] and [1; -1] while inpainting

holes in segment 1 and segment 2, respectively. It is also observed that although

there have been few good matches at β = 2 and -2, but they are excluded from

SP since their best patch percentage is below the set threshold level.
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However, there are scarcely any matches at β = 3 and -3, which state the

unavailability of sufficient self-similar patches at these scale values. Selecting the

scale values below the threshold will cause additional computation cost without

significant advantage in inpainting process. Similarly, for Cones, it is observed

that SP = [1; -1] is dominant throughout all 3 segments. The segmentation results

for more datasets are included in Appendix C (shown in Figures C.1 - C8).

The chosen SP for each segment and depth cut-off values are transmitted as

SI to the decoder along with the reference views for encoder-guided disocclusion

inpainting. The SI transmission accounts for only a small signalling overhead

compared to the size of the reference texture and depth maps. This analysis is not

provided as it is considered beyond the scope of this work.

5.3.2 Decoder Side Processing

The decoder receives IT , ID , SP per segment and their cut-off values D. In previ-

ous chapter, JTDI inpainted texture and depth hole pixels alternately: first using

available depth information to fill in textural pixel holes, and then use inpainted

textural information to fill corresponding depth pixel holes. However, JTDI em-

ploys full-image for TM, to search best CP for each TP as shown as step 2

in Figure 4.1. It was observed that such search process may select the CP from

the FG which results in error propagation and also since inpainting of holes is an

iterative process, the exhaustive search process becomes highly time-consuming.

The SC-JTDI adopts the joint texture and depth inpainting technique but

intends to minimise the errors due to CP selection from FG and reduces the in-
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painting time by employing multi-scale TM within suitable depth segment instead

of full image. The SP provides information on the suitable scaling values to resize

the patches for each segment and generate a superior search space for TM.

The virtual texture view (VT ) and virtual depth map (VD) are synthesised from

IT and ID via DIBR. Before filling disocclusion holes, bothVD and VT are segmented

with the same cut-off values D as discussed in Section 5.3.1. The following sub-

section explains the steps involved in decoder side processing as shown in Figure

5.8 for SC-JTDI.

Step 1 : Compute Priority

The depth-based priority order to select the TP is adopted from JTDI (see step

1 in Figure 4.1). The selected TP is used to identify the segment which is used

to generate the multi-scale candidate search space for finding the CPs in step 2 .

Step 2 : Segment Selection and Template Matching

The target depth patch (Zp) corresponding to texture TP is selected and its known

depth values are used to compute the depth mean (Zp). Since disocclusion holes

are missing pixels from BG region, Zp facilitates the selection of appropriate BG

depth segment(s) Ub as follows:

Ub = {ui ∈ U | Zp ≤ zi, zi ∈ D} where i = 1, 2, ... , s. (5.5)

The SP corresponding to the selected depth segment Ub helps in generating
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Figure 5.8: SC-JTDI: Decoder side processing with contribution highlighted in step 2 .

multi-scale candidate search space X by resizing the patches for given SP values

in the range such that X = {x1, x2, . . . . , xh} where h represents number of patches

in X. This search space is used for finding best candidate patch CP as follows:

CP = min MSE (xj; TP ) where j = 1, 2, ... , h. (5.6)
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Step 3 and 4 : Texture and Depth Inpainting

After the selection of CP, the known pixels of the CP are then copied into cor-

responding unknown (holes) pixels of TP and the depth holes are inpainted as

described in JTDI (see step 3 and 4 in Figure 4.1). This process repeats until

all the disocclusion holes are filled.

Thus, instead of employing exhaustive search, the search space is confined to a

segment but is enriched with addition of more reliable patches in multi-scale search

space generated using SP. The next section discusses the experimental set-up and

results for SC-JTDI.

5.4 Experimental Set-up and Results

In order to evaluate the performance of SC-JTDI, eight Middlebury image data-

sets are used. This section discusses in-depth two of these datasets, namely Aloe

and Cones, which are chosen for their distinctive features as already discussed in

Section 5.3. The results for remaining datasets are included in Appendix E. For

each dataset, reference view #1 is used to generate the view #3.

For quantitative and qualitative performance evaluation, the generated view #3

is inpainted using SC-JTDI with w = 9 and compared against the JTDI results.

The comparator JTDI employs single-scale exhaustive TM to find CP for filling

disocclusion holes. For numerical analysis, the original view #3 of image datasets

is used as the ground truth for the PSNR calculations, and the PSNR is computed

for both the whole image and inpainted region.
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Figure 5.9: PSNR comparison for Aloe and Cones datasets in two scenarios namely, (a) In-
painted Region and (b) Whole image for JTDI and SC-JTDI respectively.

5.4.1 Quantitative Result Analysis

Figure 5.9 shows the PSNR results for two inpainting methods, which reveal that

SC-JTDI performs consistently better than JTDI. For Aloe and Cones, the PSNR

increased by 9.41% and 3.52% for inpainted region in comparison to JTDI. This

shows that characterisation parameters provided as SP results in generating super-

ior space which provides better matching patches with lower MSE. The increase

in PSNR supports the fact that during the disocclusion inpainting process, there

are cases where self-similar patches are available at scales other than β = 0 (same

scale) and provide better matched patches which leads to high PSNR.

5.4.2 Qualitative Result Analysis

From a perceptual quality perspective, the qualitative comparison of proposed SC-

JTDI is performed against JTDI. For comparison, the disocclusion holes, ground
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truth, JTDI and SC-JTDI results are shown for Aloe and Cones datasets in Figure

5.10 and Figure 5.11 respectively. The areas marked red in Figure 5.10 (a) and

Figure 5.11 (a) highlight part of the problem regions which contain larger holes

and are challenging to inpaint. The zoomed-in areas for Aloe and Cones are shown

in Figure 5.10 (b) and Figure 5.11 (b). On comparing the results of JTDI and SC-

JTDI against the ground truth, it is observed that SC-JTDI results in Figure 5.10

(e) and Figure 5.11 (e) are considerably better as compared to JTDI in Figure 5.10

(d) and Figure 5.11 (d). The zoomed-in region for Aloe refers to the same region

considered in Chapter 4 for analysis. It is observed that patterned BG region

near the leaf edges of inpainted Aloe region is well-recovered using SC-JTDI (see

Figure 5.10(e)) but inherits artefacts due to FG region filling in JTDI (see Figure

5.10(d)). The BG in Aloe is a repetitive pattern, thus enhancing the search space

by introducing scaled patches during TM resulted in better matches and provide

improved inpainting. The segment based search however restrained the search

space to the BG region and avoid the CP selection from the FG.

Similar trend can be seen in Cones datasets shown in Figure 5.11(e) where

the details at the object boundaries are well-inpainted and preserved better with

fewer artefacts in comparison to JTDI. From Figure 5.11 (d) and (e), it is observed

that although there is no pattern like Aloe but SC-JTDI successfully filled in the

missing information similar to the original image (Figure 5.11 (c)). This shows

that multi-scale search space helped in retrieving the non-patterned textures as

well and proves the robustness of the proposed technique in different scenarios.

The artefacts in JTDI result from full-image exhaustive TM and its inability to

find good match due to scarcity of potential patches in search space. Once the
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(a) (b)

(c) (d) (e)

Figure 5.10: Aloe (a) Image with holes (b) Holes sub-region, (c) Ground truth, and (d) and
(e) represent inpainting results by JTDI and SC-JTDI respectively.

patch is wrongly filled, it led to increased error propagation further in the filling

process. Unlike JTDI, SC-JTDI search for the CP only in a selected segment as

mentioned in (5.5) and (5.6) and rejects most of unwanted patches. Similar trend

is observed throughout the experimentation for other datasets, as presented in

Appendix E.

Overall, it is observed that SC-JTDI achieved improved visual quality with

fewer inconsistencies and better preserves the FG object boundaries in comparison

to JTDI. Multi-scale TM reduces the artefacts and fills the disocclusion holes

providing enhanced perceptual quality.
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(a) (b)

(c) (d) (e)

Figure 5.11: Cones (a) Image with holes (b) Holes sub-region, (c) Ground truth, and (d) and
(e) represent inpainting results by JTDI and SC-JTDI respectively.

5.4.3 Inpainting Time Analysis

This section discusses the inpainting involved in SC-JTDI in comparison to the

previous JTDI. At this stage it is important to clarify that the computation per-

formed for segmentation and scale characterisation at encoder is entirely offline and

the inpainting time discussed is purely on the basis of time involved in inpainting

the texture and depth holes at the decoder.

Figure 5.12 represents time performance plots of both Aloe and Cones datasets

for SC-JTDI and JTDI inpainting. In terms of the inpainting time, SC-JTDI shows

improved time as compared to JTDI. The computation cost due to multi-scale TM

is compensated by segment based search during inpainting and offline search space

generation. Though searching for patches of different scales entails a larger search
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Figure 5.12: Time performance comparison plots for (a) Aloe and (b) Cones.

space, the resulting search complexity is contained by performing TM only within

designated depth segments i.e. subset of the image with similar depth values.

Thus, the overall computation time is considerably decreased as compared

to exhaustive TM used in JTDI. The time saving for Aloe dataset is 46.5%, on

similar grounds the time involved in inpainting Cones is reduced by almost 24%.

The inpainting time can exceed in case more scale values are added to the SP

for increased search space. Using this approach, considering the amount of time

saving while employing multiple scale values for inpainting and an increased PSNR

justifies the impact and reliability of SC-JTDI.

5.5 Summary

In this chapter, a fast SC-JTDI is proposed that exploits multi-scale self-similarity

in combination with the encoder-guided strategy for inpainting disocclusion holes.

The segment based self-similarity characterisation is performed at encoder to save
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additional computation at the individual decoder end. At decoder, inpainting is

performed within suitable depth segments but across multiple scales as specified

by the transmitted self-similarity parameters. Experimental results show that pro-

posed technique outperforms JTDI by providing improved visual and numerical

performance. The extension of search space through additional scaled patches is

compensated by constraining the search space to selected texture segments which

led to superior inpainting as well as increased inpainting speed. The results demon-

strate the significant contribution of scale-based self-similarity characterisation and

its effectiveness in disocclusion inpainting.

Although the performance of SC-JTDI is appreciable both numerically and

visually, the analysis shows that the choice of scale parameters influence the over-

all inpainting performance. The self-similarity characterisation is based upon the

scale range which is selected empirically as [−3; 3]. It is evident from the de-

tailed discussion in Section 5.4 that the choice of SP is highly dependent on image

characteristics and have a tendency to vary for different images. Thus further in-

vestigation is required to characterise the self-similarity automatically such that it

does not require an empirical scale range and is capable of appropriately choosing

the best scales for a given image. Apart from scale-based self-similarity, natural

images tend to possess other similarities such as rotation. This provides a mo-

tivation to explore advanced characterisation methods to incorporate additional

self-similarity for more robust inpainting.



Chapter 6

Advanced Self-similarity

Characterisation based JTDI

6.1 Introduction

The previous chapter discussed a new encoder-guided strategy that exploited

multi-scale self-similarity to enhance the candidate search space for improving the

overall inpainting performance. Though searching for non-local patches of different

scales entailed a larger search space, the resulting search complexity was contained

by performing TM within designated depth layers. The scale-based, self-similarity

characterisation has proven valuable as discussed in the previous chapter; however,

the presence of spatial similarities may vary depending on the inherent image char-

acteristics. This provided the motivation to investigate whether it is possible to

devise a technique capable of detecting additional self-similarities present in an

image and then to employ these while inpainting the virtual views.
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It is observed that another way of characterising the self-similarity contained

within an image is rotation i.e. the occurrence of similar patches in an image at

different angles. This chapter extends the concept of Self-similarity by utilising

rotation-based self-similarity analysis along with scale to determine the Scale and

Rotation (SR) parameters which can be utilised for inpainting disocclusion holes.

Chapter 5 introduced self-similarity characterisation with an empirical assump-

tion concerning the scale range. In contrast, this chapter introduces an Advanced

Self-similarity characterisation (ASC) to automatically determine scale and rota-

tion parameters combinedly for inpainting disocclusion holes. ASC exploits scale

and rotation invariant properties of Log-Polar Transform (LPT) together with

scale and rotation angle detection technique of Fourier Mellin Transform (FMT)

to achieve self-similarity characterisation.

6.2 Advanced Self-similarity Characterisation

In certain circumstances, two self-similar patches can lead to high MSE, having

undergone a small geometric transformation in terms of rotation and scale and can

prevent its selection as a potential CP during TM. This chapter aims to include

the scaled and rotated self-similar patches as possible candidates during TM for

inpainting disocclusion holes. To achieve this, ASC is performed which is designed

as a two-step approach: 1) Detects self-similar patches using LPT, which are

scale and rotation invariant and 2) compute scale and rotation values among the

correlated patches by applying FMT.
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LPT is a renowned approach for its rotation and scale invariant properties

(Araujo and Dias, 1996; Matungka, 2009; Wong et al., 2008). It uses Log-Polar

coordinates representation instead of Cartesian coordinate which represents the

rotation and scale in the Cartesian coordinates as shifting in the angular and log-

radius directions in the log-polar coordinate, respectively. A point (x, y) ∈ R2 in

the Cartesian coordinates is mapped to log-polar coordinates ρ, θ as:

ρ = log
√

x2 + y2 (6.1)

and θ = tan−1 y

x
(6.2)

Further details about LPT are provided in appendix F.1. LPT have been widely

used in the literature for pattern recognition (Traver and Pla, 2003), face detection

and tracking (Jurie, 1999), texture classification (Mahersia and Hamrouni, 2008),

image registration (Reddy and Chatterji, 1996; Zokai and Wolberg, 2005), forgery

detection in digital images (Bravo-Solorio and Nandi, 2011; Myna et al., 2007) etc.

This provides the motivation to utilise the scale and rotation invariant property

of LPT for self-similarity characterisation and apply it for inpainting disocclusion

holes. The details of self-similarity detection using LPT and FMT are provided

below:

6.2.1 Self-similarity detection using LPT

In the literature, the LPT based method has been used to detect duplicate regions

affected by reflection, rotation and scaling in image forensics (Bravo-Solorio and

Nandi, 2011) and image watermarking (Lin et al., 2001). To achieve the detection
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of similar patches, overlapping pixel patches of an image are converted into rotation

and scale invariant log polar maps (LPM). The sum of LPM along the log-radius

axis results in the 1D descriptor which affords an efficient search for self-similar

patches. These computed 1D descriptors are invariant to both scaling and rotation.

A 1D descriptor −→g i corresponding to a grey-scale patch of pixels Ai(x, y) is

given by:

−→gi (ρ) =
∑

θ

Ai(ρ, θ) (6.3)

and the corresponding descriptor of rotated and scaled version, A
′
i is represented

as:

−→g ′

i(ρ) =
∑

θ

A
′

i(ρ, θ) (6.4)

. In reference to the well-known translation properties of the Fourier Transform

(FT) (Bracewell, 1999), the Fourier magnitude of both descriptors should be closely

correlated as:

c(−→G i,
−→
G

′

i) =
−→
GT

i .
−→
G

′
i√

(−→GT
i

−→
G i)(

−→
G

′T
i

−→
G

′
i)

(6.5)

where c is the correlation coefficient, −→
Gi and −→

G
′
i are the Fourier magnitudes

of −→g i and −→g ′
i, while superscript T represents the transpose, respectively. If the

correlation coefficient of two descriptors is close to 1, that implies they are closely

correlated and similar. To compute the rotation angle and scale factor among

these correlated patches, the FMT (Chen et al., 1994; Raman and Desai, 1995;

Sarvaiya et al., 2009) is used.
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6.2.2 Fourier Mellin Transform

FMT is a widely used mathematical tool for image recognition as its resulting spec-

trum is invariant to rotation, translation and scale (Panigrahi, 2014; Singh et al.,

2005). Since, FT is translation invariant, its conversion to log-polar coordinates

converts the scale and rotation differences to vertical and horizontal offsets which

can then be measured. FMT combines the phase correlation with LPT to quantify

the scaling, rotation and translation parameters among two correlated outputs

(Reddy and Chatterji, 1996).

Firstly, the LPT is applied to the magnitude spectrum of input images, this is

because the log-polar transformation manifests rotation and scale as translation.

However, the magnitude spectrum of the image and translated image are identical

and only their phase spectrum is different, thus the phase correlation is performed

in the log-polar space to recover the rotation and scale (Wolberg and Zokai, 2000).

Appendix F.2 provides a worked example to further illustrate scale and rotation

detection using FMT.

6.3 Advanced Self-similarity Characterisation

based JTDI

The block diagram of ASC-JTDI framework is shown in Figure 6.1. The work

adopts the encoder-guided strategy discussed in Chapter 5, performing ASC to

identify the recurring scales and/or rotation angles per segment at encoder and

employing them to generate a superior search space for inpainting at decoder. The
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Figure 6.1: Block diagram of ASC-JTDI.

self-similarity characterisation is advanced since it automatically determines the

most dominant SR parameters contained in individual segments of an image.

The detected SR parameters are then transmitted as SI along with the depth

cut-offs and reference views. At the decoder, computed SR parameters are utilised

to generate a new Neighbourhood Search Window (NSW) oriented segment search

space for TM. The steps at encoder and decoder side processing of proposed ASC-

JTDI are illustrated in Figure 6.1 and described in Sections, 6.3.1 and 6.3.2:

6.3.1 Encoder Side Processing

At the encoder, the main aim is to determine SR parameters per segment which

can then be transmitted to the decoder to assist the TM for inpainting. This

section elaborates upon the various steps involved in encoder side processing for
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Figure 6.2: ASC-JTDI: Encoder side processing with contribution highlighted in step 2 .

ASC-JTDI as shown in Figure 6.2.

Step 1 : Depth and Texture Segmentation

Firstly, the histogram based depth segmentation is performed followed by the tex-

ture segmentation as discussed in Section 5.3.1 step 1 . The segmentation results

are similar to Figure 5.2 since the same methodology is applied for segmenta-
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tion. Each texture segment undergoes ASC in the next step for SR parameters

computation.

Step 2 : Advanced Self-Similarity Characterisation

The goal of this step is twofold: 1) to detect most similar patch combinations in

the segment even if they are scaled and rotated; 2) to quantify the scale factor and

rotation angle between the patches for SR parameters computation.

1. Scale and Rotation Invariant Patch Detection: To detect the most

similar scale and rotation invariant patches, each segment is first divided into

overlapping pixel patches. These patches are converted to log polar maps

which are used to compute 1D descriptors as discussed in Section 6.2.1.

However, the patches with hole pixels are discarded during the mapping.

These computed descriptors are rotation and scale invariant. To find the

best correlated patches, the descriptors that correspond to the boundary

patches are considered as reference patches since these are the significant

regions where disocclusion holes tend to occur during view synthesis. The

correlation coefficient is computed between the descriptors corresponding to

BTP and BCP as in (6.5). The one whose output is closest to 1 is selected

as the best correlated patch pair.

To find the best correlated patches, the following two conditions are imposed

to avoid the false matches (Bravo-Solorio and Nandi, 2011):

(a) Discarding the patches which overlaps with reference patch; such that

the minimum distance is dij > τd where dij =
√

(xi − xj)2 + (yi − yj)2



6.3 Advanced Self-similarity Characterisation based JTDI 113

and τd is equal to the diameter of the patch.

(b) Minimising the patches having low-entropy luminance i.e. patches with

uniform or homogeneous information. To achieve this, a luminance

feature vector is computed for each patch as:

fi = −
∑

k

pklog2pk (6.6)

Where pk is probability of each luminance value within a patch and the

luminance of each colour pixel is computed as (Stone, 2016):

Y = 0.2126R + 0.7152G + 0.0722B (6.7)

where R, G and B represents red, green and blue channels in the image. Find

the best correlated patches such that |fi − fj| ≤ τe, where τe is pre-defined

threshold. Imposing these two conditions τd and τe minimise the occurrence

of false matches and results in identifying the true matches which correspond

to best correlated patches even when scaled or rotated.

2. Compute FMT: The best correlated patch pairs resulting from previous

step are used to determine the dominant scale and rotation combinations, in

a given segment. The computation of scales and rotation angles is performed

using the method discussed in Section 6.2.2. This involves computing the

Fast Fourier transform (FFT) for each correlated patch pair detected in

previous step and then applying LPT. Employing phase correlation to the

log polar transform outputs provides the scale and rotation values between

the two correlated patches (Wilmer, 2003). The SR pair for all the correlated
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Figure 6.3: Bar graph representing SR (scale, rotation) parameters for Aloe (a) Segment 1 and
(b) Segment 2. Rotation is denoted in degrees.

patches is computed to determine SR parameters for each segment of texture

image.

3. SR parameters Analysis: To analyse the percentage count of each SR

pair to determine the most occurring SR pairs, a bar graph is plotted. The

SR pairs with the percentage count above a set threshold are selected as

the SR parameters for the given segment. These parameters are intended to

be employed for generating a search space by resizing the patches for TM
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during the inpainting of holes. The bar plots are shown for Aloe in Figure 6.3,

where the SR pairs are arranged in descending order of the percentage count

of best matches on the x-axis. The SR pairs corresponding to fewer patch

matches are intentionally removed from the plot since they are insignificant

and imply false matches during the SR parameter selection. The threshold

value is empirically chosen as 10 % of the best matching patches, which

selects a SR pair as SR parameter for a given segment. It is observed that

lowering this value increases the inpainting time without a substantial gain

in the inpainting performance. The SR pairs for false matches are discarded

since they fall below the chosen threshold due their low occurrences. The

SR parameters are determined in the similar manner for all the segments in

a particular dataset.

An example of Aloe dataset is considered to present the output of ASC in

terms of bar graph plotting and SR parameter selection. The w value for the

ASC is empirically selected as 21. Initially w = 9 was considered for ASC

but due to the lower resolution of patch it resulted in high false detections.

It is observed that patch size variation does not affect the significant scale

and rotation values computed for the datasets.

For each boundary patch, the best correlated patch is detected against the

empirically chosen threshold value of τe as 3 to avoid false matches due to

homogeneous regions. Figure 6.4 shows the example of scale and rotation

invariant correlated patches for the Aloe dataset segment 1 with their cor-

responding SR pairs = [1, 0; 1, 1; 1.1, 0; 1, -2]. It is observed that Segment

1 contains a patterned BG which resulted in multiple SR parameter com-
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Figure 6.4: Example correlated patch pairs for Aloe dataset segment 1 at (a) SR = (1, 0), (b)
SR = (1, 1), (c) SR = ( 1.1, 0) and (d) SR = (1, -2).

binations whereas segment 2 mainly has homogeneous plant region and thus

there is no clear scale and rotation combination other than [1, 0] i.e. no

scaling or rotation. The resolution of the scale factor and rotational angle

is 0.1 and 1 degree, respectively. The rotation and scale values between the

correlated patches are determined by applying the Fourier Mellin Transform

as in (Wilmer, 2003).
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Figure 6.5: ASC-JTDI: Decoder side processing with contribution highlighted in step 2 .

The selected SR parameters for each segment are sent as SI to the decoder along

with the reference views and depth cut-offs. These are used to enhance the search

space by generating additional candidate patches at given scales and rotation val-

ues for each segment, and will be discussed further in next section.
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6.3.2 Decoder Side Processing

This section describes the steps involved in the decoder side processing for ASC-

JTDI as shown in Figure 6.5. The decoder side processing is similar to Chapter 5

but differs in context of adopted search space for finding the best CP.

Step 1 : Compute Priority

The priority computation for selecting the patch filling order and the segment

selection is similar to SC-JTDI as described earlier in step 1 in Figure 5.8. After

the segment selection, the next step is to define a new NSW region.

Step 2 : Neigbourhood Search Window Selection and Template Match-

ing

Unlike the exhaustive search space in JTDI, SC-JTDI narrowed the search space

to a segment but included more scales to increase the availability of good patches

while searching for best CP. The ASC adopts the segment based inpainting ap-

proach in SC-JTDI but confines it further to a square region, NSW of size l × l

around TP as shown in Figure 6.6. This is because there is high possibility of

finding a good matches near the target patch (Ashikhmin, 2001), and it provided

the motivation for using NSW based segment search criteria. Such a search cri-

teria aims to minimise the additional computation time for searching CP which

increases with the addition of more parameters in generating an efficient search

space while focussing on providing more accurate information around the missing

pixels. As shown in the Figure 6.6, the NSW overlays on both FG and BG, how-
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Figure 6.6: Neighbourhood Search Window around the Target Patch.

ever due to the BG segment selection in the previous step, it would only include

the region which is common to both NSW and the selected segment.

The NSW is used to generate an efficient segment search space in the form

of a set of Look-Up Tables (LUT) as shown in step 2 in Figure 6.5. In the

search space, each LUT − SRs generated by utilising a given set of SR for each

segment received from encoder, where s signifies the segment number. The TM is

performed in a sequential manner to determine the best CP among all the possible

candidates in each LUT-SR one at a time, and finally select the best CP among

them. It is observed that with each additonal LUT-SR, such a sequential search

approach becomes lengthy. Thus to minimise the search time, the TM can be

transformed into a parallelised process.

MIT Lincoln Laboratory provides an excellent library called pMATLAB that

enables parallel computing framework with MATLAB for implementing numerical

computations (Kim et al., 2011). The parallel processing can be also implemented

using multiple processors, Graphic Processing Unit or using MATLAB’s inbuilt

parallel processing toolbox. However, pMATLAB is freeware and its compatib-

ility with MATLAB makes it a more viable choice over others. This technique
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provides the flexibility to perform the TM through the LUT-SR either in a se-

quential manner or in parallel depending upon the hardware availability. The

sequential approach is termed as ASC-JTDI and the parallel approach is referred

to as pASC-JTDI . It is used to perform parallel TM through all the LUT-SR

at once and search the best CP among them. The overall aim of pASC-JTDI is

to minimise the candidate search time while providing the same quantitative and

qualitative inpainting outcomes as ASC-JTDI.

Step 3 and 4 : Texture and Depth Inpainting

After the best CP has been selected, the joint inpainting of texture and depth

holes is performed as in JTDI step 3 and 4 in Figure 4.1. The next section

discusses the experimental results for ASC-JTDI.

6.4 Experimental Results and Discussion

The inpainting experiments are performed on eight Middlebury image datasets to

evaluate the performance of ASC-JTDI. This section presents a detailed discussion

on Aloe and Cones, providing their quantitative and qualitative results. The SR

parameters are computed as in Section 6.3.1, followed by the inpainting process in

Section 6.3.2. Firstly, the quantitative results of the inpainting are presented and

thereafter the qualitative analysis is performed to show the impact of selected SR

for enhanced TM. For all the experiments, w = 9 is considered for inpainting, as

in Chapter 5 and the NSW value is empirically selected as six times the w value.
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Figure 6.7: PSNR comparison for Aloe and Cones datasets in two scenarios namely, (a) In-
painted Region and (b) Whole image for ASC-JTDI and SC-JTDI respectively.

6.4.1 Quantitative Result Analysis

This section presents the quantitative performance analysis of ASC-JTDI in com-

parison to SC-JTDI. The PSNR analysis is performed for both 1) Whole image

and 2) only the Inpainted Region. Figure 6.7 shows the PSNR results computed

between the inpainted image and available ground truth image for the Aloe and

Cones datasets. The plots clearly show an increase in PSNR as compared to the

SC-JTDI as a result of introducing both scale and rotation parameters to enhance

the search space which helped in finding superior candidate patches with lower

MSE.

For Aloe and Cones, the percentage PSNR increase for inpainted region is 5.28%

and 3.06% respectively, in comparison to SC-JTDI. The reason for the increased

PSNR for Aloe is because, among the two segments, most of the holes occur in the

BG segment which includes dominant SR parameters to generate the search space

and results in finding good candidate patches with low MSE. Similarly, for Cones,
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Figure 6.8: Percentage best matching patches vs SR parameters used for inpainting (a) Aloe
(b) Cones.

the SR parameters are mainly associated with the BG layer but significant number

of holes occurring in the in middle segment contains multiple objects and results in

improved inpainting due to restricted NSW. A similar trend is also evident in other

datasets, as summarised in Appendix D. However, the overall percentage increase

is better in Aloe as compared to Cones which shows that the images characteristics

e.g. repetitive patterns, homogeneous regions etc. impacts upon the selection of

SR parameters and their contribution to the inpainting performance.

Figure 6.8 presents the impact of various SR parameters on the inpainting

performance. The plot shows total number of patches inpainted using a particular

SR pair which is the representation of the maximum number of patches per SR

that results in lowest MSE during TM. It is observed that for Aloe and Cones

dataset, four SR parameters have been used and all of them have competitively

participated in providing good candidate patches during inpainting.

This provides evidence that the chosen SR parameters detected during the
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(a) (b)

(c) (d) (e)

Figure 6.9: Aloe (a) Full Image with holes (b) Holes sub-region, (c) Ground truth, and (d) and
(e) represent inpainting results by SC-JTDI and ASC-JTDI respectively.

ASC make a significant contribution to the disocclusion inpainting and results in

improved quantitative performance.

6.4.2 Qualitative Result Analysis

Further to the quantitative analysis, the qualitative results are discussed for Aloe

and Cones. Considering the Aloe dataset, Figure 6.9 represents the visual results

with the zoomed-in region for the inpainted datasets to highlight upon a problem

area in 6.9 (a) with its corresponding ground truth in 6.9 (c) and the inpainting

results for SC-JTDI and ASC-JTDI as in Figures, 6.9 (d) and (e) respectively.

Comparing the inpainted region in Figures 6.9 (d) and (e), it is observed that

ASC-JTDI shows improved inpainting around the leaf edges as a result of finding
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Figure 6.10: Cones (a) Full Image with holes (b) Holes sub-region, (c) Ground truth, and (d)
and (e) represent inpainting results by SC-JTDI and ASC-JTDI respectively.

better CP against the target region in the TP, in comparison to SC-JTDI. The

segmentation restricted the search space to the BG region and utilising the NSW,

narrowing the search space further and providing a superior set of candidates

during TM due to addition of better patches as a result of employing the SR

information to generate the LUT’s. The dual effect of segmentation coupled with

NSW improved the overall TM and as a result, the patterned region in the BG

is well-preserved and propagated to inpaint the hole region. Although the region

near the top right corner is filled with the BG in (e) but it still contains artefact

in comparison to the (c). This is because there exist no BG information in this

region i.e. the hole region is surrounded only by the FG leaves and thus the target

patches does not contain enough information to fully recover the texture.

Figure 6.10 shows the corresponding results for the Cones dataset. This data-
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sets contains multiple overlapping objects with homogeneous regions and thus is

complex to inpaint. It is observed that finding the best candidate in NSW resulted

in better inpainting near the cone edge in Figure 6.10 (e) as compared to Figure

6.10 (d). This is because the NSW ignores the FG region within the search window

and performs TM only in the BG patches in LUT-SR. Qualitative results for more

datasets are provided in Appendix E.

Overall, it is observed that ASC-JTDI showcase better qualitative perform-

ance as compared to SC-JTDI. Both SR parameters and NSW contributed to the

improved inpainting of the disocclusion regions. The next section discusses the

inpainting time performance.

6.4.3 Inpainting Time Analysis

The inpainting time analysis is performed for ASC-JTDI and compared with SC-

JTDI. As discussed in Section 6.3.2, the segment based search space in SC-JTDI is

further confined by considering NSW in ASC-JTDI. The NSW defines the region

which is used to generate a LUT by employing the SR parameters for a given

segment. This aims to reduce the time involved in TM while providing superior

matches by utilising enhanced search space.

For TM, the search space is generated offline and only once with a unique

LUT for each set of SR parameters. For Aloe, 4 SR parameters have been used

to generate 4 LUT’s to perform TM in a serial manner to select the patch with

the minimum MSE. Thus the time involved for finding a best candidate patch

is four-times in comparison to if a single SR parameter LUT is used. However,



6.4 Experimental Results and Discussion 126

0 0.5 1 1.5 2 2.5 3

·103

20

25

30

Time (secs)

P
S
N
R

(d
B
)

Aloe

SC-JTDI
ASC-JTDI
pASC-JTDI

(a)

0 1 2 3 4 5 6 7

·103

18

20

22

24

Time (secs)

P
S
N
R

(d
B
)

Cones

SC-JTDI
ASC-JTDI
pASC-JTDI

(b)

Figure 6.11: PSNR vs Time plot for SC-JTDI, ASC-JTDI and pASC-JTDI with pMATLAB.

pASC-JTDI performs parallel search in all LUT’s and find the corresponding best

CP in almost same time. Figure 6.11 shows Aloe and Cones plots representing

PSNR vs Time analysis for pASC-JTDI, ASC-JTDI and SC-JTDI.

The plot shows the ASC-JTDI has highest inpainting time followed by SC-

JTDI and the lowest for pASC-JTDI. This is because ASC-JTDI employs four

SR parameters that are mainly associated with the BG segment which contains

significant amount of holes. Thus, for inpainting each TP a sequential search

through all the SR is time-consuming whereas in case of SC-JTDI, each segments

has only two SP and thus it takes less time for TM in comparison to ASC-JTDI.

Although the inpainting time for SC-JTDI is less compared to ASC-JTDI, the

final PSNR is also low. However, pASC-JTDI presents a fair balance between time

and PSNR by providing the same PSNR as ASC-JTDI but even lesser inpainting

time compared to SC-JTDI. This is because the parallel TM performs simultaneous

search in all the LUT’s and thus minimises the overall inpainting time by almost
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34% and 61% compared to SC-JTDI and ASC-JTDI respectively. The pASC-JTDI

shows significant improvement in inpainting time while efficiently inpainting the

holes.

A similar trend is seen for Cones dataset, where pASC-JTDI improves the

inpainting time by almost 4% and 64% for SC-JTDI and ASC-JTDI respectively.

It is concluded that the proposed technique provides better inpainting but at an

expense of time which is efficiently minimised by parallelising the process while

delivering the same output quality.

6.5 Summary

This chapter presented an Advanced Self-similarity Characterisation framework

for inpainting the disocclusion holes. It exploited well-recognised LPT and FMT

to automatically characterise scale and rotation invariant self-similarities within an

image and utilise them for enhanced inpainting. Overall, the numerical and qual-

itative results for ASC-JTDI show improved and effective inpainting performance

with reduced visual artefacts as compared to SC-JTDI. However, the ASC-JTDI

is more effective in the presence of a patterned region than the homogeneous re-

gions in the image, thus the inpainting performance is dependent on the image

characteristics.

The flexibility of ASC-JTDI can be extended by including more image trans-

formations for self-similarity characterisation. The increase in inpainting time due

to additional characterisation parameters is compensated by using parallel imple-
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mentation. This provides a proof of concept for parallel computation which can

be further explored to employ GPU for real-time implementation.



Chapter 7

Future Work

The new inpainting framework presented in this thesis makes a number of original

contributions to fill the disocclusion holes that appear during virtual views syn-

thesis. There are a number of potential opportunities to extend the framework

as well as to investigate extending the findings into other possible application

domains. Some prospective avenues of new research building upon the findings

presented in this thesis will now be discussed.

1. ASC-JTDI exploits the scale and rotation invariant, image self-similarity

characteristics for inpainting disocclusion holes. As the new framework is

flexible, the choice of characterisation parameters could be further extended

to employ other affine transformations (Fedorov et al., 2016; Huang et al.,

2014) such as shear or composite transformations in images, to enhance the

candidate search space for template matching. It would also be insightful

to investigate new approaches to jointly detect various transformations and

employ these for inpainting holes in order to reduce visual artefacts.
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2. JTDI analysed the impact of patch size on the inpainting quality and time,

with the general conclusion being that a fixed patch size of 9 pixels was the

best compromise. However, determining the most appropriate patch size

is critical for the inpainting quality and is highly dependent on individual

image characteristics. Recent exemplar-based techniques have analysed the

significance of smaller and larger patch size for both structure and texture

synthesis respectively (Buyssens et al., 2015). It would be beneficial to ex-

amine the feasibility of applying an adaptive patch size selection strategy

tailored to the target patch characteristics. Thus a trade-off between in-

painting quality and time complexity could be established by for instance,

using larger patch size to fill homogeneous regions and smaller patches for

highly textured regions such as holes between multiple FG objects.

3. ASC-JTDI flexibly chose the scale and rotation parameters for a given image,

however, the computational complexity increase with the number of para-

meters selected for search space enhancement. To overcome the additional

complexity, the search was confined to neighbourhood region and further,

employing pMATLAB has shown to improve inpainting times. Investigat-

ing techniques to speed-up the inpainting by adopting a faster simulation

platform such as Graphic Processing Unit would be beneficial for real-time

inpainting applications (Kuo et al., 2013, 2015) in FVV.

4. 3D point cloud data captured by Light Detection and Ranging (LiDAR) sys-

tems for surveying and architectural applications often contain large numbers

of texture holes behind FG objects of nearly all real-world scans (Doria and

Radke, 2012; Kobal et al., 2015). Synthesising realistic information in these
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large holes would represent a challenging extension for the new inpainting

framework. Colour images captured by Kinect cameras often contain holes

in their corresponding depth maps due to occlusions, transparent objects or

scattering. Filling these holes effectively is another possible future research

direction (Hu et al., 2013; Wang et al., 2014).

5. While inpainting has significantly improved the visual quality and proved its

worth in various multimedia applications, it is also gaining attention in other

domains like medical imaging and remote sensing. For example, it has been

used to reduce the impact of undesired features by pre-processing intravas-

cular ultrasound (IVUS) images (Stolojescu-Crisan and Isar11, 2015) and

reducing CT metal artefacts by inpainting sinogram (Chen et al., 2012). In-

painting also finds it applicability in compressive sensing (Stolojescu-Crisan

and Isar, 2015) and remote sensing (Cerra et al., 2015). It is promising to in-

vestigate some of the unique challenges in these various application domains

in order to evaluate how the new inpainting framework can be advanced or

refined to support the essential robust inpainting strategies required.



Chapter 8

Conclusion

Advances in multimedia technologies have inspired considerable research into in-

teractive multi-view applications like free viewpoint video, with the aim of provid-

ing users with an immersive experience by allowing free navigation between views,

without confining the viewer to only broadcasted views. While Depth Image-Based

Rendering enables the synthesis of arbitrary virtual views from the available set of

transmitted views, these almost inevitably include disocclusion holes which must

be filled to achieve a visually pleasing virtual image. Traditional 2D inpainting

methods employ purely textural information which is inadequate for disocclusion

hole-filling and has led to depth-assisted inpainting solutions being developed to

address the challenging hole-filling problem. The most prominent disocclusion

holes inpainting methods are exemplar-based, which utilise spatial information

from reference views, but these often do not provide sufficient numbers of good

candidate patches for effective template matching. This was the motivation be-

hind the research question to investigate novel inpainting approaches to achieve
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perceptually pleasing virtual view synthesis.

This thesis has presented a new inpainting framework for virtual view syn-

thesis which efficiently uses a depth-assisted solution to uniquely exploit image

transformational self-similarities and joint texture and depth inpainting of disoc-

clusion holes. The new framework makes three original contributions to the field:

1. The most significant is the Advanced Self-similarity Characterisation based

Joint Texture-Depth Inpainting which automatically determines the key scale

and rotational parameters in a reference image to jointly inpaint disocclusion

holes in both the texture and depth maps of the virtual view. The approach

characterises scale and rotation invariant self-similarities to determine the

dominant scales and rotation values for each segment of the image and ap-

plies them to generate a rich search space for candidate selection whilst con-

fining it to a narrow search window for efficient inpainting. The approach is

flexible so it can be extended to include the characterisation of additional im-

age self-similarity features and can reduce the inpainting time by adopting

parallel programming techniques. Experimental results conclusively show

the superior inpainting performance achieved with this framework, with for

example, a PSNR gain of 25.22% for the Aloe dataset.

2. Underpinning the first contribution is the introduction of the concept of Self-

similarity Characterisation to enhance inpainting performance. The original

self-similarity based Joint Texture-Depth Inpainting technique employed a

characterisation mechanism utilising an empirically selected scale range for

segment-based, multi-scale self-similarity analysis at the encoder. The result-
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ing transmitted scaling parameters enrich the segment-based search space at

decoder for simultaneous hole-filling. This encoder-guided approach requires

only one self-similarity characterisation at the encoder. This has the benefit

of avoiding the imposition of additional complexity upon the decoder, while

securing a superior search space for fast template matching. The segment-

based inpainting approach improves the selection of candidate patches to

reduce the resulting perceptual artefacts during the hole-filling process.

3. The original Joint Texture-Depth Inpainting algorithm is the core constituent

block of all the presented inpainting contributions of the new framework,

focusing explicitly on the joint inpainting of texture and depth virtual views.

It uses available depth information to guide texture hole-filling and then

utilised the in-filled texture information to assist in-filling the depth holes. A

new depth oriented priority term ensured an effective filling order to minimise

error propagation during inpainting, while empirical patch size evaluations

provided the design flexibility to trade between inpainting speed and quality.

In comparison to existing inpainting techniques, this technique produced

superior and more robust performance under a variety of test datasets.

In reflecting on the main features and performance benefits of the new inpaint-

ing framework and contrasting with existing schemes, it presents an innovative

solution for effective and efficient disocclusion hole inpainting in terms of reduced

perceptual artefacts. From a practical perspective, it is recognised that many is-

sues remain to be resolved in regard to how accurate, real-time inpainting can be

achieved in applications like FVV. However, overall, the new framework makes a

notable contribution to the inpainting field by affording both a robust and extend-
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able platform on which to develop real-world inpainting solutions for virtual view

synthesis.
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Appendix A

Middlebury Dataset Images

This Appendix includes the images from the Middlebury datasets (Hirschmuller

and Scharstein, 2007; Scharstein and Pal, 2007; Scharstein and Szeliski, 2003),

used in this thesis. Figure A.1 displays the texture and depth images of Aloe, Art,

Books and Cones. Similarly, Figure A.2 displays the texture and depth images of

Dolls, Laundry, Midd1 and Teddy.
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Aloe

(a)

Art

(b)

Books

(c)

Cones

(d)

Figure A.1: Texture and depth images of (a) Aloe, (b) Art, (c) Books and (d) Cones from
the Middlebury dataset (Hirschmuller and Scharstein, 2007; Scharstein and Pal, 2007; Scharstein
and Szeliski, 2003).
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Dolls

(a)

Laundry

(b)

Midd1

(c)

Teddy

(d)

Figure A.2: Texture and depth images of (a) Dolls, (b) Laundry, (c) Midd1 and (d) Teddy from
the Middlebury dataset (Hirschmuller and Scharstein, 2007; Scharstein and Pal, 2007; Scharstein
and Szeliski, 2003).



Appendix B

Supplementary Results for

Chapter 4: Experiment 1 and 2

This Appendix includes the supplementary results for Experiment 1 and 2 , dis-

cussed in Chapter 4.
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Figure B.1: PSNR results for Experiment 1 : Inpainting DS-DIBR views. Comparison of three
views (V2, V3 and V4) for (a) Aloe, (b) Art, (c) Books, (d) Cloth1 and (e) Dolls, inpainted using
MVSV and JTDI.
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Figure B.2: PSNR results for Experiment 1 : Inpainting DS-DIBR views. Comparison of three
views (V2, V3 and V4) for (a) Laundry, (b) Moebius, (c) Monopoly, (d) Plastic and (e) Rocks1,
inpainted using MVSV and JTDI.
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Figure B.3: Average PSNR results for Experiment 1 : Inpainting DS-DIBR views, using MVSV
and JTDI.
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Figure B.4: Whole image PSNR vs patch size results for Experiment 2 : Inpainting SS-DIBR
views, using EBI, DAI and JTDI for (a) Books (b) Dolls (c) Midd1 and (d) Teddy.



Appendix B: Supplementary Results for Chapter 4: Experiment 1 and 2 172

5 7 9 11 13
11

13

15

Patch Size (w)

P
S
N
R

(d
B
)

Books

EBI DAI JTDI

(a)

5 7 9 11 13

15

16

17

18

Patch Size (w)

P
S
N
R

(d
B
)

Dolls

EBI DAI JTDI

(b)

5 7 9 11 13

13

15

17

Patch Size (w)

P
S
N
R

(d
B
)

Midd1

EBI DAI JTDI

(c)

5 7 9 11 13

14

16

18

Patch Size (w)

P
S
N
R

(d
B
)

Teddy

EBI DAI JTDI

(d)

Figure B.5: Inpainted region PSNR vs patch size results for Experiment 2 : Inpainting SS-DIBR
views, using EBI, DAI and JTDI, for (a) Books (b) Dolls (c) Midd1 and (d) Teddy.



Appendix C

Segmentation Results

This Appendix includes the results for depth based segmentation of Middlbury

datasets. Figures C.1, C.2, C.3 and C.4 show the segmentation of Aloe, Art, Books

and Cones and their corresponding SP values. Similarly, Figures C.5, C.6, C.7

and C.8 show the segmentation of Dolls, Laundry, Midd1 and Teddy and their

corresponding SP values.
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Figure C.1: Segmentation result for Aloe (a) whole image, (b) depth histogram, and texture,
depth images and corresponding SP values of (c) Segment 1 and (d) Segment 2, respectively.



Appendix C: Segmentation Results 175

(a)

0 50 100 150 200 250
0

2

4

6

8

·103
Segment 1 Segment 2

Segment 3

Depth value

N
u
m
b
er

of
p
ix
el
s

Art Segmentation

(b)

Segment 1

-3 -2 -1 0 1 2 3
0

20

40

β (in pixels)

B
es
t
m
a
tc
h
in
g
p
at
ch
es

(i
n
%
)

Art Segment 1

(c)

Segment 2

-3 -2 -1 0 1 2 3
0

20

40

β (in pixels)

B
es
t
m
a
tc
h
in
g
p
at
ch
es

(i
n
%
)

Art Segment 2

(d)

Segment 3

-3 -2 -1 0 1 2 3
0

20

40

β (in pixels)

B
es
t
m
a
tc
h
in
g
p
at
ch
es

(i
n
%
)

Art Segment 3

(e)

Figure C.2: Segmentation result for Art (a) whole image, (b) depth histogram, and texture,
depth images and corresponding SP values of (c) Segment 1, (d) Segment 2 and (e) Segment 3,
respectively.
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Figure C.3: Segmentation result for Books (a) whole image, (b) depth histogram, and texture,
depth images and corresponding SP values of (c) Segment 1 and (d) Segment 2, respectively.
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Figure C.4: Segmentation result for Cones (a) whole image, (b) depth histogram, and texture,
depth images and corresponding SP values of (c) Segment 1, (d) Segment 2 and (e) Segment 3,
respectively.
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Figure C.5: Segmentation result for Dolls (a) whole image, (b) depth histogram, and texture,
depth images and corresponding SP values of (c) Segment 1, (d) Segment 2 and (e) Segment 3,
respectively.
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Figure C.6: Segmentation result for Laundry (a) whole image, (b) depth histogram, and tex-
ture, depth images and corresponding SP values of (c) Segment 1, (d) Segment 2 and (e) Segment
3, respectively.
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Figure C.7: Segmentation result for Midd1 (a) whole image, (b) depth histogram, and texture,
depth images and corresponding SP values of (c) Segment 1, (d) Segment 2 and (e) Segment 3,
respectively.
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Figure C.8: Segmentation result for Teddy (a) whole image, (b) depth histogram, and texture,
depth images and corresponding SP values of (c) Segment 1 and (d) Segment 2, respectively.



Appendix D

Supplementary Quantitative

Results for Chapter 4, 5 and 6

This Appendix includes supplementary quantitative results for Chapter 4, 5 and

6.
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Figure D.1: Whole image PSNR comparison for various image datasets.
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Figure D.2: Inpainted region PSNR comparison for various image datasets.
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Dataset Segment SP SR

Aloe
1 {0, 1} {(1, 0), (1.1, 0), (1, 1), (1, -2)}

2 {-1, 1} {(1, 0)}

Art

1 {-1, 1} {(1, 0), (1.1, 0), (1, -1)}

2 {-1, 1} {(1, 0)}

3 {0, 1} {(1, 0)}

Books
1 {0} {(1, 0), (1.1, 1)}

2 {0, 1} {(1, 0), (1.1, -2), (1, -1)}

Cones

1 {-1, 1} {(1, 0), (1.1, 1), (1.2, -1)}

2 {-1, 1} {(1, 0), (1.2, 2)}

3 {-1, 1} {(1, 0)}

Dolls

1 {-1, 1} {(0.9, -1), (1.1, 0)}

2 {-1, 1} {(1, -1),(1.1, 0)}

3 {-1, 1} {(1, 0)}

Laundry

1 {0} {(1, 0), (1.1, 1)}

2 {0, 1} {(1, 0), (0.9, 0)}

3 {0, 1} {(1, 0)}

Midd1

1 {-1, 1} {none}

2 {-1, 1} {(1, 2)}

3 {0, 1} (1, 0)

Teddy
1 {-1, 1} {(1.1, 2), (1, -1), (1, 2)}

2 {-1, 1} {1, 1}

Table D.1: Chosen SP and SR parameters for various image datasets in Chapter 5 and 6
respectively.



Appendix E

Supplementary Qualitative

Results for Chapter 4, 5 and 6

This Appendix includes supplementary qualitataive results for Chapter 4, 5 and

6.
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(a)

(b)

Figure E.1: Aloe texture image with (a) holes and its corresponding (b) ground truth.
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(a)

(b)

Figure E.2: Aloe texture image inpainted using (a) EBI and (b) DAI.
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(a)

(b)

Figure E.3: Aloe texture image inpainted using (a) JTDI and (b) SC-JTDI.



Appendix E: Supplementary Qualitative Results for Chapter 4, 5 and 6 190

Figure E.4: Aloe texture image inpainted using ASC-JTDI.

Figure E.5: Aloe depth image with holes.
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(a)

(b)

Figure E.6: Aloe depth image inpainted using (a) Extrapolation and (b) JTDI.
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(a)

(b)

Figure E.7: Art texture image with (a) holes and its corresponding (b) ground truth.
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(a)

(b)

Figure E.8: Art texture image inpainted using (a) EBI and (b) DAI.
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(a)

(b)

Figure E.9: Art texture image inpainted using (a) JTDI and (b) SC-JTDI.
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Figure E.10: Art texture image inpainted using ASC-JTDI.

Figure E.11: Art depth image with holes.
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(a)

(b)

Figure E.12: Art depth image inpainted using (a) Extrapolation and (b) JTDI.
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(a)

(b)

Figure E.13: Books texture image with (a) holes and its corresponding (b) ground truth.
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(a)

(b)

Figure E.14: Books texture image inpainted using (a) EBI and (b) DAI.
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(a)

(b)

Figure E.15: Books texture image inpainted using (a) JTDI and (b) SC-JTDI.
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Figure E.16: Books texture image inpainted using ASC-JTDI.

Figure E.17: Books depth image with holes.
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(a)

(b)

Figure E.18: Books depth image inpainted using (a) Extrapolation and (b) JTDI.
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(a)

(b)

Figure E.19: Cones texture image with (a) holes and its corresponding (b) ground truth.
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(a)

(b)

Figure E.20: Cones texture image inpainted using (a) EBI and (b) DAI.
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(a)

(b)

Figure E.21: Cones texture image inpainted using (a) JTDI and (b) SC-JTDI.
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Figure E.22: Cones texture image inpainted using ASC-JTDI.

Figure E.23: Cones depth image with holes.
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(a)

(b)

Figure E.24: Cones depth image inpainted using (a) Extrapolation and (b) JTDI.
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(a)

(b)

Figure E.25: Dolls texture image with (a) holes and its corresponding (b) ground truth.
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(a)

(b)

Figure E.26: Dolls texture image inpainted using (a) EBI and (b) DAI.
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(a)

(b)

Figure E.27: Dolls texture image inpainted using (a) JTDI and (b) SC-JTDI.



Appendix E: Supplementary Qualitative Results for Chapter 4, 5 and 6 210

Figure E.28: Dolls texture image inpainted using ASC-JTDI.

Figure E.29: Dolls depth image with holes.
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(a)

(b)

Figure E.30: Dolls depth image inpainted using (a) Extrapolation and (b) JTDI.
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(a)

(b)

Figure E.31: Laundry texture image with (a) holes and its corresponding (b) ground truth.
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(a)

(b)

Figure E.32: Laundry texture image inpainted using (a) EBI and (b) DAI.
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(a)

(b)

Figure E.33: Laundry texture image inpainted using (a) JTDI and (b) SC-JTDI.
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Figure E.34: Laundry texture image inpainted using ASC-JTDI.

Figure E.35: Laundry depth image with holes.
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(a)

(b)

Figure E.36: Laundry depth image inpainted using (a) Extrapolation and (b) JTDI.
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(a)

(b)

Figure E.37: Midd1 texture image with (a) holes and its corresponding (b) ground truth.
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(a)

(b)

Figure E.38: Midd1 texture image inpainted using (a) EBI and (b) DAI.
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(a)

(b)

Figure E.39: Midd1 texture image inpainted using (a) JTDI and (b) SC-JTDI.
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Figure E.40: Midd1 texture image inpainted using ASC-JTDI.

Figure E.41: Midd1 depth image with holes.
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(a)

(b)

Figure E.42: Midd1 depth image inpainted using (a) Extrapolation and (b) JTDI.
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(a)

(b)

Figure E.43: Teddy texture image with (a) holes and its corresponding (b) ground truth.
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(a)

(b)

Figure E.44: Teddy texture image inpainted using (a) EBI and (b) DAI.
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(a)

(b)

Figure E.45: Teddy texture image inpainted using (a) JTDI and (b) SC-JTDI.
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Figure E.46: Teddy texture image inpainted using ASC-JTDI.

Figure E.47: Teddy depth image with holes.
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(a)

(b)

Figure E.48: Teddy depth image inpainted using (a) Extrapolation and (b) JTDI.
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Supplementary Literature

F.1 Log Polar Transform

The mathematical expression of mapping Cartesian coordinates I(x, y) to the log-

polar coordinates LP (ρ, θ)is:

ρ = logbase

√
(x − xc)2 + (y − yc)2 (F.1)

θ = tan−1 y − yc

x − xc

(F.2)

Where (x, y) denotes the sampling pixel in the Cartesian coordinates and

(xc, yc) is the centre pixel of transformation in the Cartesian coordinates. (ρ, θ)

denotes the log-radius and the angular position in the log-polar coordinates and a

natural logarithmic base.
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(a)

(b)

Figure F.1: LPT mapping: (a) LPT sampling in the Cartesian Coordinates, (b) the transformed
result in the angular θ and log-radius r directions (Matungka, 2009).

Matungka (Matungka, 2009) explains the Log Polar Transform using the pictorial

representation as shown in Figures, F.1 and F.2. Figure F.1 shows an example

of the sampling point for image in the Cartesian coordinates and the transformed

result.

As shown in Figure F.1(a), the distance between two consecutive sampling

points in the radius direction increases exponentially from the centre to the fur-

thest circumference. In the angular direction, for each radius, the circumference is

sampled with the same number of samples. Hence, image pixels close to the centre

are oversampled while image pixels further away from the centre are under-sampled

or missed.
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The advantage of using log-polar over the Cartesian coordinate representation

is that any rotation and scale in the Cartesian coordinate representation is rep-

resented as shifting in the angular and the log-radius directions in the log-polar

coordinates, respectively. Given l(x′, y′) a scaled and rotated image of f(x, y)

with scale, rotation values a and ξ degrees, respectively, we have: x′

y′

 =

 a cos ξ −a sin ξ

a sin ξ a cos ξ


 x

y

 (F.3)

x′ = ax cos ξ − ay sin ξ, y′ = ax sin ξ + ay cos ξ (F.4)

In log-polar coordinate, f(ρ, θ) → l(ρ′, θ′),we have:

ρ′ = logbase

√
(ax cos ξ − ay sin ξ)2 + (ax sin ξ + ay cos ξ)2 (F.5)

ρ′ = logbase

√
(ar cos θ cos ξ − ar sin θ sin ξ)2 + (ar cos θ sin ξ + ar sin θ cos ξ)

(F.6)

ρ′ = logbase

√
(ar cos(θ + ξ))2 + (ar sin(θ + ξ))2 = logbase

√
a2r2 = ρ + logbase(a)

(F.7)

and

θ′ = tan−1
(

y′

x′

)
= tan−1

(
ax sin ξ + ay cos ξ

ax cos ξ + ay sin ξ

)
(F.8)

θ′ = tan−1
(

ar cos θ sin ξ + ar sin θ cos ξ

ar cos θ cos ξ − ar sin θ sin ξ

)
(F.9)

θ′ = tan−1
(

ar sin (θ + ξ)
ar cos (θ + ξ)

)
= θ + ξ (F.10)
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Figure F.2: (a) The Lena image, (b) the scaled and rotated image of (a), (c) the LPT image
of (a), and (d) the LPT image of (b) (Matungka, 2009)

The advantage of using log-polar over the Cartesian coordinate representation

is that any rotation and scale in the Cartesian coordinates is represented as shifting

in the angular and the log-radius directions in the log-polar coordinates, respect-

ively, as shown in Figure F.2. Figure F.2 (a) is the original image and Figure F.2

(b) is the scaled and rotated version of the original image. Figures, F.2 (c) and

(d) are the LPT images of Figures, F.2(a) and (b), respectively.
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The column of the log-polar coordinates represents the angular direction while

the row represents the log-radius, thus rotation and scale in the Cartesian coordin-

ates are represented as shifting in the log-polar coordinates.

F.2 Fourier Mellin Transform

Fourier Mellin Transform is used to recover rotation and scale between two similar

images (Bozek and Pivarciova, 2012; Sarvaiya et al., 2009). A worked example

is used to show the various steps involved in determining the scale and rotation

between two images. Following are the steps:

1. Load the two input images: an image 1 and image 2 which is scaled and

rotated version of image 1. Figure F.3(a) shows an example Lena image of

size 256 × 256 pixels, used as reference image. It is rotated to 40◦ and scaled

by a factor 1.2 as shown in Figure F.3 (b).

2. Calculate 2D - FFT of both the images to attain two 2D arrays of FFT

coefficient.

3. Perform convolution of magnitude spectrum of FFT coefficients. The out-

come of this step is shown in Figure F.3 (c) and (d).

4. To calculate the scale and rotation between the images, the modified FFT

arrays are transformed to log polar space (ρ, θ). The computed LPT images

corresponding to Figure F.3 (c) and (d) are illustrated in Figure F.3 (e) and

(f) respectively.
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Figure F.3: Lena (a) image 1, (b) image 2, (c) and (d) represent magnitude spectrum of (a)
and (b), (e) and (f) corresponds to LPT of (c) and (d)
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(a)

(b)

Figure F.4: (a) Cross power spectrum representing maximum magnitude peak Rpeak(x, y), (b)
Final overlaid images.

5. Compute the cross power spectrum to determine the maximum magnitude

peak Rpeak. Figure F.4 (a) show the maximum magnitude peak Rpeak of the

cross power spectrum.
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6. Based on the (x, y) coordinates of Rpeak, rotation angle is calculated as:

rotation angle = degrees per pixel × (y − 1) (F.11)

where degrees per pixel = 360◦/size of image.

The scale is computed as:

scale =



1 if x = 0

(rho(−x + 1) + rho(−x + 2))/2 x < 0

2/(rho(x + 1) + rho(x + 2)) otherwise

(F.12)

For the calculation of the scale of the vector with the logarithmic layout

between ⟨log10; log10m⟩ is used as:

m = min([Ac − Cen(1) Cen(1) − 1 Ar − Cen(2) Cen(2) − 1]); (F.13)

rho = logspace(log10(1), log10(m), Nrho); (F.14)

Where Nrho is the number of points-lines of the transformed image, Ac is

the number of columns of the input image, Ar is the number of rows of the

input image, Cen is the center of the input image.

As shown in Figure F.4 (a), Rpeak = 0.1821 is observed at (x, y) = (10, 29).

Using (F.11) - (F.14), the rotation angle and scale are computed as 39.35◦

and 1.19 respectively. Figure F.4 (b) shows the final image, after Image 2 is

scaled and rotated using calculated values and overlaid over image 1.
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From this example, this is evident that FMT helps in determining the rotation

angle and scale values between similar images
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