297 research outputs found

    Distinct replay signatures for prospective decision-making and memory preservation

    Get PDF
    Theories of neural replay propose that it supports a range of functions, most prominently planning and memory consolidation. Here, we test the hypothesis that distinct signatures of replay in the same task are related to model-based decision-making (“planning”) and memory preservation. We designed a reward learning task wherein participants utilized structure knowledge for model-based evaluation, while at the same time had to maintain knowledge of two independent and randomly alternating task environments. Using magnetoencephalography and multivariate analysis, we first identified temporally compressed sequential reactivation, or replay, both prior to choice and following reward feedback. Before choice, prospective replay strength was enhanced for the current task-relevant environment when a model-based planning strategy was beneficial. Following reward receipt, and consistent with a memory preservation role, replay for the alternative distal task environment was enhanced as a function of decreasing recency of experience with that environment. Critically, these planning and memory preservation relationships were selective to pre-choice and post-feedback periods, respectively. Our results provide support for key theoretical proposals regarding the functional role of replay and demonstrate that the relative strength of planning and memory-related signals are modulated by ongoing computational and task demands

    A Computational Model of Learning Flexible Navigation in a Maze by Layout-Conforming Replay of Place Cells

    Full text link
    Recent experimental observations have shown that the reactivation of hippocampal place cells (PC) during sleep or immobility depicts trajectories that can go around barriers and can flexibly adapt to a changing maze layout. Such layout-conforming replay sheds a light on how the activity of place cells supports the learning of flexible navigation of an animal in a dynamically changing maze. However, existing computational models of replay fall short of generating layout-conforming replay, restricting their usage to simple environments, like linear tracks or open fields. In this paper, we propose a computational model that generates layout-conforming replay and explains how such replay drives the learning of flexible navigation in a maze. First, we propose a Hebbian-like rule to learn the inter-PC synaptic strength during exploring a maze. Then we use a continuous attractor network (CAN) with feedback inhibition to model the interaction among place cells and hippocampal interneurons. The activity bump of place cells drifts along a path in the maze, which models layout-conforming replay. During replay in rest, the synaptic strengths from place cells to striatal medium spiny neurons (MSN) are learned by a novel dopamine-modulated three-factor rule to store place-reward associations. During goal-directed navigation, the CAN periodically generates replay trajectories from the animal's location for path planning, and the trajectory leading to a maximal MSN activity is followed by the animal. We have implemented our model into a high-fidelity virtual rat in the MuJoCo physics simulator. Extensive experiments have demonstrated that its superior flexibility during navigation in a maze is due to a continuous re-learning of inter-PC and PC-MSN synaptic strength

    Neural replay in representation, learning and planning

    Get PDF
    Spontaneous neural activity is rarely the subject of investigation in cognitive neuroscience. This may be due to a dominant metaphor of cognition as the information processing unit, whereas internally generated thoughts are often considered as noise. Adopting a reinforcement learning (RL) framework, I consider cognition in terms of an agent trying to attain its internal goals. This framework motivated me to address in my thesis the role of spontaneous neural activity in human cognition. First, I developed a general method, called temporal delayed linear modelling (TDLM), to enable me to analyse this spontaneous activity. TDLM can be thought of as a domain general sequence detection method. It combines nonlinear classification and linear temporal modelling. This enables testing for statistical regularities in sequences of neural representations of a decoded state space. Although developed for use with human non- invasive neuroimaging data, the method can be extended to analyse rodent electrophysiological recordings. Next, I applied TDLM to study spontaneous neural activity during rest in humans. As in rodents, I found that spontaneously generated neural events tended to occur in structured sequences. These sequences are accelerated in time compared to those that related to actual experience (30 -50 ms state-to-state time lag). These sequences, termed replay, reverse their direction after reward receipt. Notably, this human replay is not a recapitulation of prior experience, but follows sequence implied by a learnt abstract structural knowledge, suggesting a factorized representation of structure and sensory information. Finally, I test the role of neural replay in model-based learning and planning in humans. Following reward receipt, I found significant backward replay of non-local experience with a 160 ms lag. This replay prioritises and facilitates the learning of action values. In a separate sequential planning task, I show these neural sequences go forward in direction, depicting the trajectory subjects about to take. The research presented in this thesis reveals a rich role of spontaneous neural activity in supporting internal computations that underpin planning and inference in human cognition

    Neural basis of route-planning and goal-coding during flexible navigation

    Get PDF
    Animals and humans are remarkable in their ability to flexibly adapt to changes in their surroundings. Navigational flexibility may take many forms and in this thesis we investigate its neural and behavioral underpinnings using a variety of methods and tasks tailored to each specific research aim. These methods include functional resonance magnetic imaging (fMRI), freely moving virtual reality, desktop virtual reality, large-scale online testing, and computational modelling. First, we reanalysed previously collected rodent data in the lab to better under- stand behavioural bias that may occur during goal-directed navigation tasks. Based on finding some biases we designed a new approach of simulating results on maze configurations prior to data collection to select the ideal mazes for our task. In a parallel line of methods development, we designed a freely moving navigation task using large-scale wireless virtual reality in a 10x10 space. We compared human behaviour to that of a select number of reinforcement learning agents to investigate the feasibility of computational modelling approaches to freely moving behaviour. Second, we further developed our new approach of simulating results on maze configuration to design a novel spatial navigation task used in a parallel experiment in both rats and humans. We report the human findings using desktop virtual reality and fMRI. We identified a network of regions including hippocampal, caudate nu- cleus, and lateral orbitofrontal cortex involvement in learning hidden goal locations. We also identified a positive correlation between Euclidean goal distance and brain activity in the caudate nucleus during ongoing navigation. Third, we developed a large online testing paradigm to investigate the role of home environment on wayfinding ability. We extended previous reports that street network complexity is beneficial in improving wayfinding ability as measured using a previously reported virtual navigation game, Sea Hero Quest, as well as in a novel virtual navigation game, City Hero Quest. We also report results of a navigational strategies questionnaire that highlights differences of growing up inside and outside cities in the United States and how this relates to wayfinding ability. Fourth, we investigate route planning in a group of expert navigators, licensed London taxi drivers. We designed a novel mental route planning task, probing 120 different routes throughout the extensive street network of London. We find hip- pocampal and retrosplenial involvement in route planning. We also identify the frontopolar cortex as one of several brain regions parametrically modulated by plan- ning demand. Lastly, I summarize the findings from these studies and how they all come to provide different insights into our remarkable ability to flexibly adapt to naviga- tional challenges in our environment

    Prioritized memory access explains planning and hippocampal replay.

    Get PDF
    To make decisions, animals must evaluate candidate choices by accessing memories of relevant experiences. Yet little is known about which experiences are considered or ignored during deliberation, which ultimately governs choice. We propose a normative theory predicting which memories should be accessed at each moment to optimize future decisions. Using nonlocal 'replay' of spatial locations in hippocampus as a window into memory access, we simulate a spatial navigation task in which an agent accesses memories of locations sequentially, ordered by utility: how much extra reward would be earned due to better choices. This prioritization balances two desiderata: the need to evaluate imminent choices versus the gain from propagating newly encountered information to preceding locations. Our theory offers a simple explanation for numerous findings about place cells; unifies seemingly disparate proposed functions of replay including planning, learning, and consolidation; and posits a mechanism whose dysfunction may underlie pathologies like rumination and craving

    Embodying a Computational Model of Hippocampal Replay for Robotic Reinforcement Learning

    Get PDF
    Hippocampal reverse replay has been speculated to play an important role in biological reinforcement learning since its discovery over a decade ago. Whilst a number of computational models have recently emerged in an attempt to understand the dynamics of hippocampal replay, there has been little progress in testing and implementing these models in real-world robotics settings. Presented first in this body of work then is a bio-inspired hippocampal CA3 network model. It runs in real-time to produce reverse replays of recent spatio-temporal sequences, represented as place cell activities, in a robotic spatial navigation task. The model is based on two very recent computational models of hippocampal reverse replay. An analysis of these models show that, in their original forms, they are each insufficient for effective performance when applied to a robot. As such, choosing particular elements from each allows for a computational model that is sufficient for application in a robotic task. Having a model of reverse replay applied successfully in a robot provides the groundwork necessary for testing the ways in which reverse replay contributes to reinforcement learning. The second portion of the work presented here builds on a previous reinforcement learning neural network model of a basic hippocampal-striatal circuit using a three-factor learning rule. By integrating reverse replays into this reinforcement learning model, results show that reverse replay, with its ability to replay the recent trajectory both in the hippocampal circuit and the striatal circuit, can speed up the learning process. In addition, for situations where the original reinforcement learning model performs poorly, such as when its time dynamics do not sufficiently store enough of the robot's behavioural history for effective learning, the reverse replay model can compensate for this by replaying the recent history. These results are inline with experimental findings showing that disruption of awake hippocampal replay events severely diminishes, but does not entirely eliminate, reinforcement learning. This work provides possible insights into the important role that reverse replays could contribute to mnemonic function, and reinforcement learning in particular; insights that could benefit the robotic, AI, and neuroscience communities. However, there is still much to be done. How reverse replays are initiated is still an ongoing research problem, for instance. Furthermore, the model presented here generates place cells heuristically, but there are computational models tackling the problem of how hippocampal cells such as place cells, but also grid cells and head direction cells, emerge. This leads to the pertinent question of asking how these models, which make assumptions about their network architectures and dynamics, could integrate with the computational models of hippocampal replay which make their own assumptions on network architectures and dynamics

    The hippocampus and inferential reasoning: building memories to navigate future decisions

    Get PDF
    A critical aspect of inferential reasoning is the ability to form relationships between items or events that were not experienced together. This review considers different perspectives on the role of the hippocampus in successful inferential reasoning during both memory encoding and retrieval. Intuitively, inference can be thought of as a logical process by which elements of individual existing memories are retrieved and recombined to answer novel questions. Such flexible retrieval is sub-served by the hippocampus and is thought to require specialized hippocampal encoding mechanisms that discretely code events such that event elements are individually accessible from memory. In addition to retrieval-based inference, recent research has also focused on hippocampal processes that support the combination of information acquired across multiple experiences during encoding. This mechanism suggests that by recalling past events during new experiences, connections can be created between newly formed and existing memories. Such hippocampally mediated memory integration would thus underlie the formation of networks of related memories that extend beyond direct experience to anticipate future judgments about the relationships between items and events. We also discuss integrative encoding in the context of emerging evidence linking the hippocampus to the formation of schemas as well as prospective theories of hippocampal function that suggest memories are actively constructed to anticipate future decisions and actions

    Predictive maps in rats and humans for spatial navigation

    Get PDF
    Much of our understanding of navigation comes from the study of individual species, often with specific tasks tailored to those species. Here, we provide a novel experimental and analytic framework integrating across humans, rats, and simulated reinforcement learning (RL) agents to interrogate the dynamics of behavior during spatial navigation. We developed a novel open-field navigation task ("Tartarus maze") requiring dynamic adaptation (shortcuts and detours) to frequently changing obstructions on the path to a hidden goal. Humans and rats were remarkably similar in their trajectories. Both species showed the greatest similarity to RL agents utilizing a "successor representation," which creates a predictive map. Humans also displayed trajectory features similar to model-based RL agents, which implemented an optimal tree-search planning procedure. Our results help refine models seeking to explain mammalian navigation in dynamic environments and highlight the utility of modeling the behavior of different species to uncover the shared mechanisms that support behavior

    Goals and habits in the brain

    Get PDF
    An enduring and richly elaborated dichotomy in cognitive neuroscience is that of reflective versus reflexive decision making and choice. Other literatures refer to the two ends of what is likely to be a spectrum with terms such as goal-directed versus habitual, model-based versus model-free or prospective versus retrospective. One of the most rigorous traditions of experimental work in the field started with studies in rodents and graduated via human versions and enrichments of those experiments to a current state in which new paradigms are probing and challenging the very heart of the distinction. We review four generations of work in this tradition and provide pointers to the forefront of the field’s fifth generation
    corecore