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天下无心外之物，如此花树在深山中自开自落，于我心亦何相关？ 

你未看此花时，此花与汝心同归于寂。你来看此花时，则此花颜色一

时明白起来。 

—— 王阳明 

 

Q:  If there is nothing under heaven external to the mind, these flowering trees 

on the high mountain blossom and drop their blossoms of themselves. What 

have they to do with my mind? 

A: Before you look at these flowers, they and your mind are in the state of 

silent vacancy. As you come to look at them, their colors at once show up 

clearly. From this you can know that these flowers are not external to your 

mind. 

—— Wang Yangming 
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Abstract	

Spontaneous neural activity is rarely the subject of investigation in cognitive neuroscience. 

This may be due to a dominant metaphor of cognition as the information processing unit, 

whereas internally generated thoughts are often considered as noise. Adopting a 

reinforcement learning (RL) framework, I consider cognition in terms of an agent trying to 

attain its internal goals. This framework motivated me to address in my thesis the role of 

spontaneous neural activity in human cognition. 

First, I developed a general method, called temporal delayed linear modelling (TDLM), to 

enable me to analyse this spontaneous activity. TDLM can be thought of as a domain 

general sequence detection method. It combines nonlinear classification and linear 

temporal modelling. This enables testing for statistical regularities in sequences of neural 

representations of a decoded state space. Although developed for use with human non-

invasive neuroimaging data, the method can be extended to analyse rodent 

electrophysiological recordings.  

Next, I applied TDLM to study spontaneous neural activity during rest in humans. As in 

rodents, I found that spontaneously generated neural events tended to occur in structured 

sequences. These sequences are accelerated in time compared to those that related to actual 

experience (30 -50 ms state-to-state time lag). These sequences, termed replay, reverse their 

direction after reward receipt.  Notably, this human replay is not a recapitulation of prior 

experience, but follows sequence implied by a learnt abstract structural knowledge, 

suggesting a factorized representation of structure and sensory information. 

Finally, I test the role of neural replay in model-based learning and planning in humans. 

Following reward receipt, I found significant backward replay of non-local experience with 

a 160 ms lag. This replay prioritises and facilitates the learning of action values. In a 

separate sequential planning task, I show these neural sequences go forward in direction, 

depicting the trajectory subjects about to take.  

The research presented in this thesis reveals a rich role of spontaneous neural activity in 

supporting internal computations that underpin planning and inference in human cognition.  

 

 

 

 



ii 

Impact	Statement	

The line of research presented in this thesis, starts with introduction of a general sequence 

detection method, followed by its contribution to an understanding of structured 

spontaneous neural activity, termed replay, in mental representation, model-based learning 

and planning. The thesis ends with a call for new directions in cognitive neuroscience.  

Having a method (TDLM) to measure fast neural sequences in non-spatial spaces in 

humans non-invasively is of great importance. This is because an ability to detect replay 

outside of contexts related to spatial processing broadens its potential scope. This includes 

enabling experiments that investigate broader areas of cognitive neuroscience, especially 

measurement of human replay in contexts that are not possible in rodents (such as language, 

numerical cognition, or flexible executive tasks). The method is also domain general, 

although developed in the context of human neuroimaging, it can be applied to other data 

sources, including rodent electrophysiology recordings. It has the potential to facilitate 

novel cross-species investigations. 

Next, I show that human replay facilitates building a factorized representation. In other 

words, I demonstrate that multiple representations of different aspects of events are 

replayed simultaneously, and these basic representations can be recombined to make new 

events. This is important because factorised representations provide a powerful means for 

generalising knowledge. With factorised representations, individual experiences can be 

decomposed into parts and these parts can be meaningfully recombined into a vast number 

of ways – a form of combinatorial generalisation which has the potential to dramatically 

improve learning and inference.   

Finally, I show human replay facilitates non-local learning and supports model-based 

planning. I show that replay exploits knowledge of the world (task structure) to perform 

non-local mental simulations that support model-based computations. This suggests human 

cognition is a not a simple matter of processing external stimuli but instead uses rich 

internal computations to support complex adaptive behavior.  

I conclude by proposing a new framework and experimental paradigm that takes its 

inspiration from model-based reinforcement learning, as well as a call for a more unified 

approach within cognitive neuroscience research. I suggest a unification of terminology. 

coupled with a new metaphor in human psychology (e.g., a RL agent), can open doors to a 

renewed research focus on the functional role of the brain’s internal computations.  
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1 INTRODUCTION 
1.1 The general question 
In the era of modern cognitivism, we study cognition within an information processing metaphor, where 

the core notion is that the mind processes an informational input from the outside world and generates 

action commands thereafter 1. This is, arguably, consistent with a stimulus-response framework that can 

be traced back to Behaviourism 2. In the modern time, while cognition is no longer considered solely in 

these terms, there is still a dominant metaphor in thinking cognition as a responsive process, triggered 

by external stimuli.  

In neuroscience, we rarely consider spontaneous neural activity as reflecting cognition, particularly 

under a stimulus-response framework. In fact, in another area of neuroscience, spontaneous neural 

activity is referred to as  “default mode”, based on observations that some expressions of neural activity 

in specific brain regions are deactivated by task demands, as compared to rest 3.  

In psychology, there is a line of research inspecting the internal mental states, especially after the 

'cognitive revolution' 4. For example, Burke, et al. 5 studied free recall in neurosurgical patients and 

found both intracranial theta and high-frequency activity in the temporal lobe are associated with 

spontaneous episodic retrieval. Such line of research on mental state, does move away from stimuli 

evoked response, but it is still task related, it is not during rest.  

During rest, we often have random thoughts that are not in any way relevant to any current task or goal. 

But are random thoughts, or spontaneous neural activity useful to the task, e.g., supporting behavior? 

To answer this, we need a different metaphor to how we think about the brain and cognition.  

1.2 Reinforcement learning 
Rather think of the brain as a passive computation machine that is responsive to external input, we need 

to think of it as more like an agent driven by internal goals. Ideally, this goal should be general. For 

this, we turn to the framework of reinforcement learning (RL) 6. RL describes how an agent should 

behave in order to maximize long-term, cumulative reward.  

To answer whether spontaneous neural activity is instrumental to the task goal. I begin by first 

describing RL, and then formulate this question in RL terms. Here, I appreciate that RL is also by itself 

limited. Nevertheless, it benefits from providing a common language that can be expressed in rigorous 

mathematical terms 7.  



   13 

 

 

The concept of RL can differ across fields of enquiry. In machine learning, it is one of three dominate 

paradigms, together with supervised and unsupervised learning. In control theory, RL can be seen as a 

particular solution to model-based planning, with less of a focus on the learning or the model-free part 

of RL. Within psychology, researchers often see RL as a synonym for Rescorla–Wagner 8, a model of 

classical conditioning (which, in my opinion, is a disservice to both RL and Rescorla -Wagner 9). I will 

use RL in its broad sense and borrow its language, concepts and general framework, without committing 

to the specificities of certain algorithms 6. 

The general problem in RL is usually characterized by a state space, 𝑆, where the agent has a set of 

actions, 𝐴, that they can choose from. Normally the goal is to learn how to choose specific action 𝑎, at 

individual state, 𝑠, to maximize the state-action value, 𝑄(𝑠, 𝑎). 𝑄(𝑠, 𝑎) comprises both the immediate 

reward received conditional on the current action, and the expected (discounted) sum of future reward. 

The latter part is the crucial difference between RL and typical associative learning model, e.g., 

Rescorla–Wagner. It also sets up a requirement for cognition not just on current information input (e.g., 

current state, action or reward), but have to consider information non-locally.  

The state space characterizes the relationship between states, 𝑇 = 𝑝(𝑠!|𝑠, 𝑎) , The probability of 

transitioning to next state 𝑠! is determined by, and only by current state and action, 𝑠, 𝑎, a property 

referred to as Markovian. This is the only hard requirements on state space. It is possible to build 

difference state spaces for the same task. It turns out how to select the right task representation, 

characterized by 𝑇, is crucial for the efficiency of learning and generalization in novel contexts 10.  

Policy, 𝜋, describes the probability of choosing each action in each given state,  𝜋 = 𝑝(𝑎|𝑠).  If we 

denote the immediate reward upon on the current action, as 𝑟, and the discounting factor on future 

reward as 𝛾. Then we can describe the most desirable policy in given state  𝜋∗(𝑠): 

                                                             𝜋∗(𝑠) = argmax
#$%

𝑄∗(𝑠, 𝑎)                                                         (1) 

                                Where, 𝑄∗(𝑠, 𝑎) = 𝑟 + 𝛾∑ 𝑝(𝑠!|𝑠, 𝑎)max
#!

𝑄∗(𝑠!, 𝑎′)&!∈( 																																											(2)	

This equation describes how the best action can be taken with full knowledge of the state space, i.e., 𝑇, 

and the state-action value, 𝑄(𝑠, 𝑎). In reality, however, 𝑄(𝑠, 𝑎) is not given and can change due to the 

stochasticity of reward. In an ever-changing environment, this creates a constant task – updating the 

estimate of 𝑄(𝑠, 𝑎). This can be done based on the difference between feedback and current estimate. 

For example,  

																																								𝑄	(𝑠, 𝑎) ← 𝑄	(𝑠, 𝑎) +𝛼	[𝑟 + 𝛾max
#!

𝑄(𝑠!, 𝑎!) −𝑄	(𝑠, 𝑎)]																																						(3)	
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This is called Q learning 11, where 𝛼 is learning rate, determines how much the agent should learn from 

this discrepancy. This learning method is proven to converge on the optimal 𝑄∗(𝑠, 𝑎) 11. Notably, the 

outcome, and action are normally separated both in space and time. For example, a bad action in the 

early playing of GO 12, might lead to final failure several hours and many individual plays later. How 

to update the 𝑄	(𝑠, 𝑎) in early states based on a final outcome is a problem called credit assignment.  

In situations where the 𝑄∗(𝑠, 𝑎) is unknown, how to select the best action is also an active field of 

research. It is dangerous to simply take actions that argmax
#$%

𝑄∗(𝑠, 𝑎) based on current estimate (i.e., 

greedy policy), because the estimate of 𝑄∗(𝑠, 𝑎) depends on the 𝑄∗(𝑠!, 𝑎′), i.e., the future state-action 

value. Being greedy based on current estimate will likely lead to suboptimal behavior given future 

reward might be higher if we choose a different action in current state (albeit it might lead to less 

immediate reward). This is a problem known as sequential decision making, i.e., where the optimal 

decision at current state also depends on decisions at future states.  

Both the problem of credit assignment in learning, and sequential decision-making in planning, are hard 

to solve if we only consider information input from the current state, action or reward. Also, RL operates 

on a mental representation of task space. This need not to be exactly the same as the visual input itself. 

In fact, how to represent a task state plays crucial role in generalization and inference in novel context. 

For example, we know where to go when we land at a new airport, this is because we don’t consider 

the particular colour or texture of the wall important, but instead believe the general layout and function 

of all airports have similarities. Thus, we know that for any airport we will have to first go through 

boarder control before we can claim our baggage. We can infer this because we carry a general 

representation of the layout of the airport. A, perhaps more fundamental, question remains un-answered: 

how we build efficient task representations.  

It is unknown how our brains solve all these problems. One thing abundantly clear is that none of this 

can be accomplished if we don’t allow our cognition to detach from processing current information.  

1.3 Replay 
An intriguing and remarkable neural phenomenon found in rodent is that cells in hippocampus, those 

that normally represent given locations in space, also fire spontaneously and sequentially during rest 13-

15. This firing pattern is found not to be random but recapitulates past or future trajectories, termed 

replay 13,16-19. Replay is interesting because it is an expression of structured neural activity that is 

detached from current input. In rodents, both the direction and content of replay are modulated by 

reward and task demands 20,21.  
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In neuroscience, early study of replay focus on its time compression feature14,15, such feature make it 

suitable to support Hebbian learning, e.g., by reactivating memory in a short time window, so that spike 

timing dependent plasticity can help form new memories 22. Later studies have found a broader role of 

replay that goes beyond memory consolidation 16,  For example, Ambrose, et al. 20 found replay, 

especially reverse replay during outcome receipt supports value learning. Ólafsdóttir, et al. 23 found 

hippocampal place cells construct reward related sequences through unexplored space, potentially 

supporting planning or mental simulation. Interestingly, neural replay is not constrained to 

hippocampus. Similar phenomena have also been found in entorhinal cortex24, and visual cortex25. In 

situations, those replays coordinate with hippocampal replay26,27. 

While replay studies are mostly conducted in rodents. There are also hint that such replay might also 

exist in humans. For example, using intracranial electroencephalography in humans, Vaz, et al. 28 found 

replay of spiking sequences in the temporal lobe during associative memory retrieval (although it is not 

time compressed). Using non-invasive neuroimaging, e.g., functional magnetic resonance imaging 

(fMRI), Tambini, et al. 29 showed enhanced brain correlations during rest are related to memory for 

recent experiences, and in a subsequent study, using transcranial magnetic stimulation, they 

demonstrated that the functional connectivity between hippocampus and lateral occipital cortex is 

causally related to memory consolidation 30. Taking a step further, Schuck and Niv 31 have provided 

evidence of sequential reactivation of task states in human hippocampus during rest,  although it is not 

clear what is the speed of such replay given the temporal resolution constraint of fMRI.  

The replay like phenomenon is also implicated in RL theory. In one particular family of algorithms, 

called DYNA32,33, all past experiences are proposed to be stored in a memory pool, or built into a model. 

During an updating phase, samples are drawn from this memory pool to facilitate learning of 𝑄(𝑠, 𝑎) 

nonlocally, an idea that has empirically improved the performance of deep neural networks (e.g., 

AlphaGo, which beat the world Champions in GO 12). A recent RL model suggests prioritizing memory 

access to this memory pool explain many replay related phenomena in rodents, where the prioritization 

is based on utility: namely, how much extra reward can be earned due to better choices 34.  

What makes replay more interesting, perhaps, is that it might also help build efficient representations 

of a task. This echoes a notion that goes back to the idea of “cognitive map” from Tolman 35. A cognitive 

map or world model is the representation of task space, it is about the relational structure representing 

the way different elements are connected to each other 10. There are two important quantifies – states 

and their relationship. The state itself can change based on the goal, for example, representing airport 

as one single state is more convenient if you want to describe how to go from airport to hotel. On the 

other hand, we might want to represent it differently, if our goal is to figure out where to go to claim 

the luggage. Different state definitions therefore entail different relational structures, i.e., different 𝑇. 
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In rodents, replay has been shown to not be a simple function of experience, it can represent shortcuts 

that the rodent has not traversed 36. This raises an interesting question, whether replay re-organizes 

experience in order to build suitable task representations based on different goals.  

It is intriguing to think that this replay is a neural correlate of random thought, given it is spontaneous 

neural activity often seen during rest, as well as an expression of a sequential reactivation of neural 

representations of spaces. At neural level, seminal work in rodents and humans has shown that cognitive 

maps (or states) are encoded in the hippocampal-entorhinal system 26,27,37-41, regions where replay also 

occurs. If we can show similar replay phenomenon exist for non-spatial spaces in humans, it might 

suggest replay is a more generic footprint of cognition. 

To answer whether random thoughts, or spontaneous patterns of structured neural activity are useful, I 

study the role of human replay in the framework of RL. First, I develop a method to measure sequences 

on any graphs where they are not necessarily reflecting physical space. The more long-term aim of this 

is to study arbitrary transitions in non-spatial tasks, a step in opening doors on to the investigation of 

higher cognition. This method needs to enable sequence measurement on non-invasive human 

neuroimaging data, and should also be applicable to invasive electrophysiology recording, commonly 

seen in rodent research, to facilitate cross-species comparisons.  

Note, there are conceptual difference between replay and theta sequence in rodent literature 42-44, with 

replay mostly during rest, while theta sequences are mostly described during active navigation. In active 

spatial navigation, there is a continuous theta (4-10 Hz) background neural activity in rodent 

hippocampus 45. Interestingly, the spiking of place cell relative to the background theta phase moves 

earlier when traverse the place field, a phenomenon called theta phase precession 46. Also, unlike replay 

during rest, which can go in either forward or backward direction, and encode distant (non-local) 

information, Theta sequence is almost always forward, and encoding local information, sometimes 

termed “look ahead” signal 42. Theta sequence is found to support spatial planning in rodents. Similar 

theta related coding is also found in humans. For example, Heusser, et al. 47 found a theta-gamma phase 

code coupling that support episodic sequence memory formation in humans, and Kahana, et al. 48 found 

theta oscillations in humans exhibit task dependence during virtual maze navigation. Human theta is in 

a range of 3-7 Hz and it is not continuous compared to rodents 49.  

In human studies reported in this thesis there is no active movement involved, though some of the 

studies do look for sequence at decision time (i.e., not rest). For consistency and simplicity, I will call 

any sequential pattern of spontaneous neural activity found in humans – replay (during rest or 

planning/decision time). I will discuss implications of the presence of human sequences with respect to 

rodent findings in the end.  
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2 MEASURING SEQUENCES OF REPRESENTATIONS 

2.1 Introduction 
Human neuroscience has made remarkable progress in detailing the relationship between the 

representations of different stimuli during task performance 50,51. At the same time, it is increasingly 

clear that at rest, off-task, brain activity is structurally rich and characterising this is important for 

understanding the neural underpinnings of cognition 52. However, unlike the case for task-based activity, 

little attention has been given to techniques that can measure representational content or structure in 

this resting activity. Here, we introduce TDLM (temporal delayed linear modelling) as an analysis 

framework, based on linear modelling, that can characterize temporal structure of internally generated 

neural representations.   

TDLM enables a detailed examination of sequential patterns in neural reactivation that are not tied to 

task events. This approach is inspired by evidence from the rodent literature of rich temporal structure 

in representational content of offline brain activity. A seminal finding in rodent electrophysiological 

research is “hippocampal replay” 13,14,17. During rest and quiet wakefulness, place cells in the 

hippocampus (that signal self-location during periods activity) spontaneously recapitulate old, and 

explore new, trajectories through an environment 13,17. These internally generated sequences are 

hypothesized to reflect a fundamental feature of neural computation across tasks 10,20,22,42.  

Applying TDLM on non-invasive neuroimaging data, we, and others, have shown it is possible to 

measure spontaneous sequences of neural representations during rest in humans 53,54. The results 

resemble key characteristic of  rodent hippocampal replay and can inform key computational principles 

of human cognition 54.  

In the following, we introduce the logic and mechanics of TDLM in detail. We first compare 

performance of alternative algorithms on synthetic data, where the ground truth is known (see methods 

on “simulating MEG data”). Subsequently, we apply the method to  real neural data, both human 

magnetoencephalography (MEG) 53,54 and rodent hippocampal electrophysiological (ephys) recordings 

(see methods on “Human MEG dataset” and “Rodent hippocampal ephys for detecting theta sequence”). 

In relation to the latter, we show TDLM successfully reproduces key findings, including the presence 

of theta sequences 55. We have also shown the applicability of TDLM to human EEG (Appendix 1). 

TDLM is a general, and flexible, tool for measuring neural sequences. It facilitates cross-species 

investigations by linking large-scale measurements in humans to cellular measurements in non-human 

species. I will outline its potential for revealing abstract cognitive processes that extend beyond sensory 
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representation, open possible new avenues of research in cognitive science. All code and facilities will 

be available at https://github.com/yunzheliu/TDLM. 

2.2 Results 

2.2.1 TDLM 

 Overview of TDLM 
My primary goal is to test for temporal structure of neural representation in humans. I also want a 

method to measure sequence in other species (e.g., rodents) to facilitate cross-species investigation. 

This sequence detection method, therefore, needs to be domain general. I choose to measure sequences 

in a decoded state space (e.g., posterior estimated locations in rodents56 or time course of object 

reactivations in humans57). This approach renders results from different data types more comparable.  

A general sequence detection method, ideally, should (1) uncover structural regularity in the 

reactivation of neural activity, (2) control for confounds that are not of interest, or tied to certain data 

types, and (3) test whether this regularity conforms to an underlying hypothesized structure. To achieve 

these, I developed the method under the General linear modelling (GLM) framework, and call it 

temporal delayed linear modelling, i.e., TDLM.  

TDLM works on a decoded state space but it still needs to take care of confounds inherent in the data 

from where the state space is decoded. This is one of the main focus of TDLM. 

The starting point of TDLM is a set of n time series, each corresponding to a decoded neural 

representation of a variable of interest. This is what we call state space, X, with dimension of time by 

states. These time series could themselves be obtained in several ways, described in detail in a later 

section (“Getting the states”). The aim of TDLM is to identify task or structure related regularities in 

sequences of these representations. 

Consider, for example, a task in which participants have been trained such that n=4 distinct sensory 

objects (A, B, C, and D) belong to a consistent order:	𝐴 → 𝐵 → 𝐶 → 𝐷 (Figure 2.1a, b). If we are 

interested in replay of this sequence during subsequent resting periods (Figure 2.1c, d), we might want 

to ask statistical questions of the following form: “Does the existence of a neural representation of A, 

at time T, predict the occurrence of a representation of B at time T+∆𝑡”, and similarly for 𝐵 → 𝐶 and 

𝐶 → 𝐷 .  

In TDLM we ask such questions using a two-step process. First, for each of the n2 possible pairs of 

variables Xi and Xj, we find the correlation between the Xi time series and the ∆𝑡-shifted Xj time series. 
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These n2 correlations comprise an empirical transition matrix, describing how likely each variable is to 

be succeeded at a lag of ∆𝑡 by each other variable (Figure 2.1e). Second, we correlate this empirical 

transition matrix with a task-related transition matrix of interest (Figure 2.1f). This produces a single 

number that characterizes the extent to which the neural data follow the transition matrix of interest, 

which we call ‘sequenceness’. Finally, we repeat this entire process for all ∆𝑡 of interest, yielding a 

measure of sequenceness at each possible lag between variables, and submit for statistical inference 

(Figure 2.1g). 

Note that, for now, this approach decomposes a sequence (such as 𝐴 → 𝐵 → 𝐶 → 𝐷) into its constituent 

transitions and adds the evidence for each transition. It therefore does not require that the transitions 

themselves are sequential: 𝐴 → 𝐵 and 𝐵 → 𝐶 could occur at unrelated times, so long as the within-pair 

time lag was the same. In section “Multi-step sequences”, we address how to strengthen the inference 

by looking explicitly for longer sequences.  

 Constructing the empirical transition matrix  
In order to find evidence for state-to-state transitions at some time lag ∆𝑡, we could regress a time-

lagged copy of one state, 𝑋), onto another, 𝑋*:  

                                                        𝑋)(𝑡 + ∆𝑡) = 𝑋*(𝑡)𝛽*)                                                                      (1) 

Instead, TDLM includes all states in the same regression model for important reasons, detailed in 

section “Controlling confounds and maximizing sensitivity in sequence detection”: 

                                       𝑋)(𝑡 + ∆𝑡) = ∑ 𝑋+(𝑡)𝛽+),
+-.                  (2) 

In this equation, the values of all states 𝑋+ at time t are used in a single multilinear model to predict the 

value of the single state 𝑋) at time 𝑡 + ∆𝑡.  

The regression described in Equation 2 is performed once for each 𝑋) , and these equations can be 

arranged in matrix form as follows:   

                                               𝑋(∆𝑡) = 𝑋𝛽                                                                                (3) 

Each row of X is a timepoint, and each of the n columns is a state. 𝑋(∆𝑡) is the same matrix as X, but 

with the rows shifted forwards in time by ∆𝑡. 𝛽 is an 𝑛 × 𝑛 matrix of weights – which we call the 

empirical transition matrix. 𝛽*) is an estimate of the influence of 𝑋*(𝑡) on 𝑋)(𝑡 + ∆𝑡), over and above 

variance that can be explained by other states at the same time.  

To obtain 𝛽, we invert Equation 3 by ordinary least squares regression.  

                                                      𝛽 = (𝑋/𝑋)0.𝑋/𝑋(∆𝑡)                                                                     (4) 
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This inversion can be repeated for each possible time lag (∆𝑡 = 1, 2, 3, …), resulting in a separate 

empirical transition matrix β at every time lag. We call this step the first level sequence analysis.  

 Testing the hypothesized transitions 
The first level sequence analysis assesses evidence for all possible state-to-state transitions. The next 

step in TDLM is to test for the strength of a particular hypothesized sequence, specified as a transition 

matrix, 𝑇1. We therefore construct another GLM which relates 𝑇1 to the empirical transition matrix β. 

We call this step the second level sequence analysis: 

                                                                𝛽 = ∑ 𝑍(𝑟) ∗ 𝑇2 		2
2-.                                                                (5) 

𝛽 is the empirical transition matrix, with dimension 𝑛 by 𝑛, where 𝑛 is the number of states. Each entry 

in 𝛽 reflects the unique contribution of state i to state j at given time lag.	𝑟 is the number of regressors. 

𝑇2 is the regressor in the design matrix, each of which is a transition matrix, e.g., 𝑇#345, 𝑇65,&4, 𝑇1 and 

𝑇7.  

𝑇1 and 𝑇7 are the transpose of each other (e.g., red and blue entries in Figure 2.1b), indicating transitions 

of interest in forward and backward direction, respectively. In physical space 𝑇1 and 𝑇7 would be the 

shifted diagonal matrices with ones on the first upper and lower off diagonals. 𝑇65,&4  is a constant 

matrix that models away the average of all transitions, ensuring that any weight on 𝑇1 and 𝑇7. 𝑇#345is 

the identity matrix, 𝑇#345 models self-transitions to control for auto-correlation (equivalently, we could 

simply omit the diagonal elements from the regression).  

Z is the weights of the second level regression, which is a vector with dimension of 𝑟 by 1. Each entry 

in Z reflects the evidence strength of the hypothesized transitions in the empirical ones, i.e., 

sequenceness. Repeating the regression of Equation 5 at each time lag (∆𝑡 = 1, 2, 3, …) results in time 

courses of the sequenceness as a function of time lag (e.g., the solid black line in Figure 2.1f), in which 

𝑍1, 𝑍7 are the forward and backward sequenceness respectively (e.g., red and blue lines in Figure 2.1g). 

In many cases, ZF and ZB will be the final outputs of a TDLM analysis. However, it may sometimes also 

be useful to consider the quantity:  

                                                              𝐷 = 𝑍1 − 𝑍7     (6) 

𝐷 contrasts forward and backward sequences to give a measure that is positive if sequences occur 

mainly in a forward direction, and negative if sequences occur mainly in a backward direction. This 

may be advantageous if, for example, 𝑍1 and 𝑍7 are correlated across subjects (due to factors such as 

subject engagement and measurement sensitivity). In this case, 𝐷  may have lower cross-subject 

variance than either 𝑍1 or 𝑍7, as the subtraction removes common variance.  
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Finally, to test for statistical significance, TDLM relies on a nonparametric permutation-based method. 

The null distribution is constructed by randomly shuffling the identities of the n states and re-calculating 

the second level analysis for each shuffle (Figure 2.1g). This approach allows us to reject the null 

hypothesis that there is no relationship between the empirical transition matrix and the task-defined 

transition of interest. Note that there are many wrong ways to perform permutations, which permute 

factors that are not exchangeable under the null hypothesis and will therefore lead to false positives. 

We will examine some of these later with simulations and real data. In some cases, it may be desirable 

to test slightly different hypotheses by using a different set of permutations; this will also be discussed 

later. 

If the time lag ∆𝑡 at which neural sequences exist is not known a priori, then it is critical to correct for 

multiple comparisons over all tested lags. This can be achieved by using the maximum ZF across all 

tested lags as the test statistic. If we choose this test statistic, then any values of ZF exceeding the 95th 

percentile of the null distribution can be treated as significant at 𝛼 = 0.05 (e.g., the grey dotted lined in 

Figure 2.1g).  

 

 

Figure 2.1 Task design and illustration of TDLM 

a, Task design in both simulation and real MEG data. Assuming there is one sequence, A->B->C->D, indicated 

by the four objects. During task, participants are shown the objects, and are asked to work out where the object 

fits in underling sequence while undergoing MEG scanning. A snapshot of MEG data is shown below. It is a 

matrix with dimension of sensors by time.  b, The transitions of interests are shown, with the red and blue entries 

indicating transitions in forward and backward direction respectively. c, The first step of TDLM is to construct 

decoding models of states from the task data, and (d) then transform the data (e.g., resting-state) from sensor space 

to the state space. TDLM works on the decoded state space throughout. e, The second step of TDLM is to quantify 
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the temporal structure of the decoded states using multiple linear regressions. The first level GLM results in a 

state*state regression coefficient matrix at each time lag, i.e., 𝛽. f, The second-level GLM, this coefficient matrix 

is projected onto the hypothesized state transition matrix (black entries), to give a single measure of sequenceness. 

Repeating this process for the number of time lags of intertest, generate 𝑍 , for example, 𝑍! ,  the estimated 

sequenceness of forward transitions of interest over all computed time lags (solid black line). g, The third step of 

TDLM is statistical inference. Statistical significance is tested using a nonparametric state permutation test by 

randomly shuffling the transition matrix of interest (in grey). To control for multiple comparisons, the permutation 

threshold is defined as the 95th percentile of all shuffles on the maximum value over all tested time lags.   

 

2.2.2 TDLM steps in detail 

 Getting the states 
As described above, the input to TDLM is a set of time series of decoded neural representations, or 

states. Here we give three examples of specific state spaces (X, with dimension of time by states) that 

we have worked with using TDLM.  

 States as sensory stimuli   
The simplest case, perhaps, is to define a state in terms of a neural representation of sensory stimuli, 

e.g., face, house. To obtain their neural representation, we present stimuli in a randomized order at the 

start of a task, while whole-brain neural activity is recorded by a non-invasive neuroimaging method, 

e.g., MEG or EEG. We then train a supervised decoding model to map the pattern of recorded neural 

activity to the presented image (Figure 2.2). This could be any of the multitude of available decoding 

models. For simplicity we have used a logistic regression model throughout.  
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Figure 2.2 Source localization of stimuli evoked neural activity 

States are defined as stimuli evoked neural activity. The classifiers are trained at 200 ms post-stimulus onset. For 

example, take the stimuli as consisting faces, buildings, body parts, and objects. Source localizing the evoked 

neural activity, we find expected activation patterns for the 4 stimuli based on literature. For faces, activation 

peaked in a region roughly consistent with the fusiform face area (FFA) as well as the occipital face area (OFA). 

Activation for building stimuli was located between the well-known parahippocampal place area (PPA) and the 

retrosplenial cortex (RSC), a region also known to respond to scene and building stimuli. Activation for body part 

stimuli was in a region consistent with the extrastriate body area (EBA). Activation for objects was in a region 

consistent with the object-associated lateral occipital cortex (LOC) as well as an anterior temporal lobe (ATL) 

cluster that may relate to conceptual processing of objects. Individual category maps thresholded to display 

localized peaks for illustration. This is adapted from Wimmer, et al. 58. Full unthresholded maps can be found at 

https://neurovault.org/collections/6088/. 

 

In MEG/EEG, neural activity is recorded by multiple sensor or channel arrays on the scalp. The sensor 

arrays record whole-brain neural activity at millisecond temporal resolution. To avoid a potential 

selection bias (given the sequence is expressed in time), we choose to use the whole brain sensor activity 

at a single time point (i.e., spatial feature) as the training data fed into classifier training.  

Ideally, we would like to select a time point where the neural activity provides the most truthfully read- 

out. This can be indexed as the time point that gives the peak decoding accuracy. If the state is defined 

by the sensory feature of stimuli, we can use a classical leave-one-out cross-validation scheme to 

determine the ability of classifiers to generalize to unseen data of the same stimulus type (decoding 

accuracy) at each time point (see Appendix 2 for its algorithm box). This cross-validation scheme is 

asking whether the classifier trained on the sensory feature can be used to classify the unseen data of 

same stimuli (Figure 2.3a, b). After we have identified the peak time point based on the cross validation, 

we can train the decoding models based on the sensor data at that given time.  

Specifically, let’s denote the training data, 𝑀, with dimension of number of observations, 𝑏, by number 

of sensors, 𝑠. The label, Y, with dimension of 𝑏 by 1. The job here is to obtain the classifier weights, 

W, so that Y ≈ σ(MW). 𝜎 is the logistic sigmoid function. 

Normally we apply L1 regularization on the inference of weights (we will detail the reasons in later 

section “Regularization”):  

                                    W	 = 	argmax
8

[log(P(Y|M,W)) 	+ 	b	λ9.	||	W	||.]                                            (7) 
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After that, we can translate the data at testing time (e.g., during rest), R, from sensor space to the 

decoded state space: 

                                                                 X = σ(RW)                                                                             (8) 

R is the testing data, with dimension of time by sensors. X is the decoded state space, with dimension 

of time by states. 

 States as abstractions 
As well as sequences of sensory representations, it is possible to search for replay of more abstract 

neural representations, within the constraint that we can build a decoder for them. Such abstractions 

might be associated with the presented image (e.g., mammal vs fish), in which case the analysis can 

proceed as above simply by swapping categories for images.  

A more subtle example, however, is where the abstraction has to do with the sequence or graph itself. 

For example, one representation of interest might be whatever is common at a particular location in 

space but invariant to what sensory stimuli are present at that location 59. A related type of abstraction 

corresponds to the position of an item in a sequence, invariant to which actual item is in that very 

position 54,60.  

We need to exercise care when setting up cross-validation schemes for training “abstract” classifiers, 

because we don’t want the “abstract” classifier to capitalize on common sensory features. Otherwise, 

we might report false positive sequences of abstract codes when in fact there is only sequence for 

sensory information (Figure 2.4). This can happen if we train and test on the same sensory (as well as 

abstract) object. In other words, we need to ensure that there is no one-to one mapping between sensory 

and abstract code. To do so, we need more than one sensory exemplar for each abstract state.  

If we have exemplars of 𝑁	(𝑁 > 1) different sensory images for each abstract state, then training can 

proceed in the following way. For example, the training set for the “2” decoder comprises 𝑁 − 1	types 

of sensory images at position 2, leaving out all instances of one single type sensory example for cross-

validation (see Appendix 2 for its algorithm box). Therefore, an above chance classification must rely 

on features that are shared between the N-1 sensory images and the one left-out sensory image, which 

is the abstract code. If there are just 2 stimuli per abstraction, we can train on one stimulus, and test on 

the other (and vice versa), selecting the time point that does best in this “cross-validation”. This scheme 

therefore searches for representations that generalize over at least two stimuli that embody the same 

abstract meaning (Figure 2.3c).  

Note, after we have identified the peak time point of the abstract code, we should still regress out the 

sensory information at given time before training classifiers for the abstract code. This is important 
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because the above cross-validation scheme only tries to find the time when we have the strongest 

abstract code, it does *not* exclude sensory information at that time. We want to obtain a decoding 

model of *pure* abstract code; therefore, we have to make sure it does not contain sensory information. 

Fail to do so will lead to false positive (Figure 2.4).  

Specifically, let’s assume we have two training data, one for sensory code, 𝐷&, one for abstract code, 

𝐷:. Critically, 𝐷& does not contain abstract information and will be used to obtain the representation of 

pure sensory code, 𝑊&;,&52<. This can be achieved through either decoding (as described above) or 

simply averaging trials together to get the mean multivariate sensor pattern of given state (or de-mixed 

PCA) 61. We can then regress out the contribution of sensory information from the training data of 

abstract code: 

                                                	𝐸= = 𝐷: − 𝑝𝑖𝑛𝑣e𝑊&;,&52<f × 𝐷: ×𝑊&;,&52<                                     (9) 

After regressing out the sensory information, we can obtain the classifier weight of the abstract code 

using the residuals, 	𝐸=, as the training data. The analysis pipeline will be the same as in “States as 

sensory stimuli” to obtain the state space, 𝑋. 

 States as sequence events 
TDLM can also be used iteratively to ask questions about the ordering of different types of replay events 

(Figure 2.3d). This can lead to powerful inferences about the temporal organization of replay, such as 

the temporal structure between sequences, or the repeating pattern of the same sequence. This more 

sophisticated use of TDLM merits its own consideration and is discussed below under “Sequences of 

sequences”. The state space here, are meta-state, obtained based on the space of original states, 𝑋52*>. 

First, based on the transition of interest, 𝑇, we can obtain the projection matrix, 𝑋:25): 

                                                                  𝑋:25) = 𝑋52*> × 𝑇                                                             (10) 

If we know the state lag within sequence, ∆𝑡 (e.g., the time lag give rise to the strongest sequenceness) 

or have it a prior. We can obtain the time lagged matrix, 𝑋?#>:   

                                                                 𝑋?#> = 𝑋52*>(𝑡 − ∆t)                                                              (11) 

Then, we can obtain state space with sequence event as states by elementwise multiply 𝑋:25) and 𝑋?#> 

(Figure 2.3d): 

                                                                   𝑋 = 𝑋?#>	.∗ 𝑋:25)                                                             (12) 

Each element in 𝑋 indicates the strength of a (pairwise) sequence at a given moment in time. 
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Figure 2.3 Obtaining different state spaces 

a, Assuming we have two abstract codes, each abstract code has two different sensory codes (left panel). The 

M/EEG data corresponding to each stimulus is a conjunctive representation of sensory and abstract codes (right 

panel). The abstract code can be operationalized as the common information in the conjunctive codes of two 

stimuli that share the same abstract representation. b, Training decoding models for stimulus information. The 

simplest state is defined by sensory stimuli. To determine the best time point for classifier training, we can use a 

classical leave-one-out cross validation scheme on the stimuli-evoked neural activity. c, Training decoding models 

for abstract information. The state can also be defined as an abstraction. To extract this information alone, we 

need to avoid any ‘contamination’ by sensory information. We train the classifier on neural activity evoked by 

one stimulus and tested on another that shares the same abstract representation. If neural activity contains both a 

sensory and abstract code, then the only information that can generalize is the common abstract code. d, A state 

can also be defined as the sequence event itself. 
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Figure 2.4 Sequences of abstract code 

a, Illustration of the relationship between sensory code and (abstract) structural code. The problem is we cannot 

directly access structural code. We can only indirectly obtain structural code from the conjunctive code which 

have both sensory and structural information. As ground truth, there is a sequence of sensory code but not of 

structural code. b, We show in simulation the importance of controlling for sensory (stim) information, when 

looking for an abstract code. 

 

2.2.3 Controlling confounds and maximizing sensitivity in sequence detection 
Here, we motivate the key features of TDLM.   

 Temporal correlations 
In standard linear methods, unmodelled temporal autocorrelations can inflate statistical scores. 

Techniques such as auto-regressive noise modelling are commonplace to mitigate these effects 62,63. 

However, autocorrelation is a particular burden for analysis of sequences, where it interacts with 

correlations between the decoded neural variables.  

To unpack this, consider a situation where we are testing for the sequence 𝑋* → 𝑋). TDLM is interested 

in the correlation between 𝑋* and lagged 𝑋) (see Equation 1). But if the 𝑋* and 𝑋) time series contain 

an autocorrelation and are also correlated with one another, then 𝑋*(𝑡) will necessarily be correlated 

with 𝑋)(𝑡 + ∆𝑡). Hence, the analysis will report spurious sequences.   

Correlations between states are commonplace. Consider representations of visual stimuli decoded from 

neuroimaging data. If these states are decoded using an n-way classifier (forcing exactly one state to be 

decoded at each moment), then the n states will be anti-correlated by construction. On the other hand, 

if the states are each classified against a null state corresponding to the absence of stimuli, then the n 

states will typically be positively correlated with one another.  
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Notably, in our case, because these autocorrelations are identical between forward and backward 

sequences, one approach for removing them is to compute a difference measure described above 

(𝐷 = 𝑍1 − 𝑍7 ). This approach that works well and was suggested first in Kurth-Nelson, et al. 11. 

However, a downside is that it prevents us from measuring forward and backward sequences 

independently. The remainder of this section considers alternative approaches that can allow an 

independent measurement of forward and backward sequences.  

Moving to multiple linear regression: The spurious correlations above are induced because 𝑋)(𝑡) 

mediates a linear relationship between 𝑋*(𝑡) and 𝑋)(𝑡 + ∆𝑡). Hence, if we knew 𝑋)(𝑡),	 we could solve 

the problem by simply controlling for it in the linear regression, as in Granger Causality 64: 

                                             𝑋)(𝑡 + ∆𝑡) = 𝛽@ + 𝑋*(𝑡)𝛽*) + 𝑋)(𝑡)𝛽))               (13) 

Unfortunately, however, we do not have access to the ground truth of 𝑋 – since these variables have 

been decoded noisily from brain activity. Any error in  𝑋)(𝑡) but not 𝑋*(𝑡) will mean that the control 

for autocorrelation will be imperfect, leading to spurious weight on 𝛽*), and therefore spurious inference 

of sequences.  

This problem cannot be solved without a perfect estimate of X, but it can be systematically reduced 

until negligible. It turns out the necessary strategy is simple. We do not know ground truth 𝑋)(𝑡), but 

what if we knew a subspace that included estimated 𝑋)(𝑡)? If we controlled for that whole subspace, 

we would again be protected. We can get closer and closer to this by including further co-regressors 

that are themselves correlated with estimated 𝑋)(𝑡) with different errors from ground truth 𝑋)(𝑡). The 

most straightforward approach is to include the other states of 𝑋(𝑡), each of which has different errors, 

leading to the multiple linear regression of Equation 2.                                       

Figure 2.5a shows this method applied to the same simulated data whose correlation structure induces 

false positives in the simple linear regression of Equation 1, and by the same logic, so also in cross 

correlation. This is why studies based solely on cross-correlation53,65 cannot look for sequenceness in 

forward and backward direction separately, but have to rely on their asymmetry. The multiple regression 

accounts for the correlation structure of the data and allows for correct inferences to be made. Unlike 

the simple subtraction method proposed above (Figure 2.5a, left panel), the multiple regression permits 

a separate inference on forward and backward sequences.  

Oscillations and long timescale autocorrelations are another potential confound. Equation 2 performs 

multiple regression, regressing each 𝑋)(𝑡 + ∆𝑡) onto each 𝑋*(𝑡) whilst controlling for all other state 

estimates at time t. This method works well when spurious relationships between  𝑋*(𝑡) and 𝑋)(𝑡 + ∆𝑡) 

are mediated by the subspace spanned by the other estimated states at time t (in particular 𝑋)(𝑡)).  One 
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situation in which this assumption might be challenged is when replay is superimposed on large scale 

neural oscillations. For example, during rest with eyes closed (which is often of interest in replay 

analysis), MEG and EEG data often express a large alpha rhythm, at around 10Hz.  

If all states experience the same oscillation at the same phase, the approach correctly controls false 

positives. The oscillation induces a spurious correlation between 𝑋*(𝑡) and 𝑋)(𝑡 + ∆𝑡) but, as before, 

this spurious correlation is mediated by 𝑋)(𝑡).  

However, this logic fails when states experience the oscillation at different phases. This scenario may 

occur, for example, if there are travelling waves in cortex 66,67, because different sensors will experience 

the wave at different times, and different states have different contributions from each sensor. This is 

different from detecting replay in rodents. The state space here is the decoded time by state matrix, like 

the posterior estimated posterior locations in rodents. But unlike the rodent data, we cannot obtain this 

matrix from spikes which do not have background oscillation, instead we decode this matrix from the 

MEG sensor data recorded during rest. Those MEG sensors can be seen as measures of local field 

potential, which do contain background oscillations. It is dominantly alpha during rest in humans. 

In this case, 𝑋*(𝑡) predicts 𝑋)(𝑡 + ∆𝑡) over and above 𝑋)(𝑡). To see this, consider the situation where 

∆𝑡 is .
A
	𝜏 (where 𝜏 is the oscillatory period) and the phase shift between 𝑋*(𝑡) and 𝑋)(𝑡) is pi/2. Now 

every peak in 𝑋)(𝑡 + ∆𝑡) corresponds to a peak in 𝑋*(𝑡) but a zero of 𝑋)(𝑡).   

To combat this problem, we can include phase shifted versions/more timepoints of 𝑋(𝑡). If a dominant 

background oscillation is at alpha frequency (e.g., 10Hz), neural activity at time T would be correlated 

with activity at time T +	𝜏. We can control for that, by including 𝑋(𝑡 + 𝜏), as well as 𝑋(𝑡) in the GLM 

(Fig. 3b). Here 𝜏 = 100 ms, if assuming the frequency is 10Hz. Applying this method to the real MEG 

data during rest, we see much diminished 10Hz oscillation in sequence detection during rest 54.  

 Spatial correlations 
As mentioned above, correlations between decoded variables occur commonly. The simplest type of 

decoding model is a binary classifier that maps brain activity to one of two states. These states will, by 

definition, be perfectly anti-correlated. Conversely, if separate classifiers are trained to distinguish each 

state’s representation from baseline (“null”) brain data, then the states will often be positively correlated 

with each other. 

Unfortunately, positive or negative correlation between states reduces the sensitivity of sequence 

detection, because it is difficult to distinguish between states within the sequence: collinearity impairs 

estimation of β in Equation 2. In Figure 2.5c, we show in simulation that the ability to detect real 
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sequences goes down as the absolute value of spatial correlation goes up. We took the absolute value 

here because the direction of correlation is not important, only the magnitude of the correlation matters. 

Ideally, the state decoding models should be as independent as possible. We have suggested the 

approach of training models to discriminate one state against a mixture of other states and against null 

data 53,54. The mixture ratio can be adjusted. Adding more null data causes the states to be positively 

correlated with each other, while less null data leads to negative correlation. We adjust the ratio to bring 

the correlation between states as close to zero as possible. In Figure 2.5d, we show in simulation the 

benefit this has for sequence detection. An alternative method is penalizing covariance between states 

in the classifier’s cost function 68. 

 Regularization 
A key parameter in training high dimensional decoding models is the degree of regularization. In 

sequence analysis, we are often interested in spontaneous reactivations of state representations – as in 

replay. However, our decoding models are typically trained on stimulus-evoked data, because this is 

the only time at which we know the ground truth of what is being represented. This poses a challenge 

in so far as the models best suited for decoding evoked activity at training may not be best suited for 

decoding spontaneous activity at subsequent test.  

During classifier training, we can impose L1, L2 constraints over the inference of classifier coefficients, 

𝑊. This amount to finding the coefficients, 𝑊, that maximise the likelihood of the data observations, 

under the constraint imposed by the prior term. L1 regularization can be phrased as maximising the 

likelihood subject to a regularisation penalty on the L1 norm of the coefficient vector: 

                                            	W	 = 	 argmax
8

[log(P(Y|M,W)) 	+ 	b	λ9.	||	W	||.]	                                  (14)  

While L2 regression can be viewed as a problem of maximizing the likelihood subject to a regularization 

penalty on the L2 norm of the coefficient vector: 

                                            W	 = 	argmax
8

i	logeP(Y|M,W)f + 	b	λ9B	||	W	||Bj                                 (15)  

Where M is the task data, with dimension of number of observations, 𝑏, by number of sensors, 𝑠. Y is 

the label of observations, a vector with dimension of 𝑏 by 1.  P(Y|M,W) = σ(MW) , and 𝜎 is the 

logistic sigmoid function. 

We find that L1 weight regularization outperforms L2 regularization in detecting sequences (Figure 

2.5e). In this simulation, we specify the number of sequences to be inserted in the resting state data. 

The ground truth sequence is with 40 ms time lag. The beta estimate of sequence strength at 40 ms is 

positively related to the number of sequences. A higher sequenceness value indicates higher sensitivity 
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in detecting the ground truth sequence. In Figure 2.5e, the green dot there is the sequence detection 

ability without any regularization but with everything else being equal. This can be seen a baseline for 

measuring the performance of L1 and L2 regularization. We can see L1 regularization (red dots) 

increases sequence detection ability compared to baseline (green dot), while the L2 regularization (blue 

dots) does not. The L1, and L2 regularization-based sequence results are plotted also against the 

absolute spatial correlation. We can see the reason L1 achieve the higher sequence detection ability is 

because it reduces the covariances between the classifiers.  

In addition to minimizing spatial correlation as discussed above. It is also shown that the L1-induced 

sparsity encodes weaker assumptions about background noise distributions into the classifiers as 

compared to L2 regularization 69. This may be of special interest to researchers who want to detect 

replay during sleep – where the use of sparse classifiers would be helpful when applied to sleep data, 

as background noise distributions are likely to differ substantially from the (awake state) training data. 

 

 

Figure 2.5 Effects of temporal, spatial correlations, and classifier regularization on TDLM 

a, Simple linear regression or cross-correlation approach relies on the asymmetry of forward and backward 

transitions; therefore, subtraction is necessary (left panel). TDLM instead relies on multiple linear regression. 

TDLM can assess forward and backward transitions separately (right panel). b, Background alpha oscillations, as 

seen during rest periods, can reduce sensitivity of sequence detection (left panel), controlling alpha in TDLM 

helps recover the true signal (right panel). c, The spatial correlation between the sensor weights of decoders for 

each state reduces sensitivity in sequence detection. This suggests reducing overlapping patterns between states 
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is important for sequence detection. d, Adding null data to a training set can increase the sensitivity of sequence 

detection by reducing the spatial correlations of the trained classifier weights. Here the number indicates the ratio 

between null data and task data. “1” means the same amount of null data and the task data. “0” means no null data 

is added for training. e, L1 regularization helps sequence detection by reducing spatial correlations (all red dots 

are L1 regularization with a varying parameter value), while L2 regularization does not help sequenceness (all 

blue dots are L2 regularization with a varying parameter value) as it does not reduce spatial correlations of the 

trained classifiers compared to the classifier trained without any regularization (green point).  

 

2.2.4 Statistical inference 
So far, we have shown how to quantify sequences in representational dynamics. An essential final step 

involves assessing the statistical reliability of these quantities. 

All the tests described in this section evaluate the consistency of sequences across subjects. This is very 

important, because even in the absence of any real sequences of task-related representations, 

spontaneous neural activity is not random but often follows repeating dynamical motifs 70. Solving this 

problem requires a randomized mapping between the assignment of physical stimuli to task states. This 

can be done across subjects, permitting valid inference at the group level. 

At the group level, the statistical testing problem can be complicated by the fact that sequence measures 

do not, in general, follow a known distribution. Additionally, if the state-to-state lag of interest (𝛥𝑡) is 

not known a priori, it will be necessary to perform tests at multiple lags, creating a multiple comparisons 

problem over a set of tests with complex interdependencies. In this section we discuss inference with 

these issues in mind. 

 Distribution of sequenceness at a single lag 
If the state-to-state lag of interest (𝛥𝑡) is known a priori then the simplest approach is to compare the 

sequenceness against zero, for example using either a signed-rank test, or one-sample t test (assuming 

Gaussian distribution). Such testing assumes that the data is centred on zero, if there were no real 

sequences. We show this approach is safe in both simulation (assuming no real sequences) and when 

using real MEG data where we know there are no sequences. 

In simulation, we assume no real sequences, but state time courses are autocorrelated. At this point, 

there is no systematic structure in the correlation between the neuronal representations of different states 

(see later for this consideration). We then simply select the 40 ms time lag and compare its sequenceness 

to zero, using either a signed-rank test or one-sample t test. We can compare false positive rates 
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predicted by the statistical tests with false positive rates measured in simulation (Figure 2.6a). Here we 

see the empirical false positives are well predicted by theory.  

We can also test this on real MEG data. In Liu, et al. 54 we had one condition where we measured resting 

activity before subjects saw any stimuli. Therefore, by definition these stimuli could not embody replay 

of states of interest, but we can use the classifiers from these state/stimuli (measured later) to test the 

false positive performance of statistical tests of replay. We note this is different to the preplay 

phenomena observed in rodent literature. In rodent, the preplay happens before the rodent enters a novel 

maze, where the suggestion is that this is due to an anatomical defined canonical dynamic in the 

hippocampus 18,71. Crucially, the transitions in the spatial space are fixed, and there are (nearly) one-to-

one mapping between place cells and locations in the space. Both of these are not true in the target MEG 

data. In this MEG experiment, we analyse resting state data before stimuli presentation. In this case, it 

is like the preplay experiment, but unlike the rodent experiment, the mapping between stimuli and state 

are randomized across subjects, and on average we are looking for consistent state-to-state transitions. 

Even there is a consistent dynamic between stimuli-related processing, e.g., face -> house, they will 

indicate different states in different subjects, so that one would expect this *stimuli* preplay will not 

contribute to the *stimuli-defined state* preplay. 

To obtain many examples, we randomly permute the 8 different stimuli 10,000 times and then compare 

sequenceness (at 40 ms time lag) to zero using either signed rank test or one-sample t test across 

subjects. Again, predicted and measured false positive rates match well (Figure 2.6b, left panel). This 

holds true across all computed time lags (Figure 2.6b, right panel).  

An alternative to making assumptions about the form of the null distribution is to compute an empirical 

null distribution by permutation. Given we are interested in the sequence of states over time, one could 

imagine permuting either state identity or time. However, permuting time uniformly typically leads to 

a very high incidence of false positives, as time is not exchangeable under the null hypothesis (Figure 

2.6c, blue colour). This false positive also exists if we circular shift the time dimension of each state 

rather than randomly permutating it. Permuting time destroys the temporal smoothness of neural data, 

creating an artificially narrow null distribution 53,54. State permutation, on the other hand, only assumes 

state identities are exchangeable under the null hypothesis, while preserving the temporal dynamics of 

the neural data, represents a safer statistical test that is well within 5% false positive rate (Figure 2.6c, 

purple colour). 

 Correcting for multiple comparisons 
If the state-to-state lag of interest is not known, then we have to search over a range of time lags. As a 

result, this will create a multiple comparison problem. Unfortunately, we don’t yet have a good 
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parametric method to control for multiple testing over a distribution. It is possible to use methods that 

exploit the properties of Gaussian Random Fields, as is common in the analysis of fMRI 72, but we have 

not evaluated this approach. We could also use a Bonferroni correction, but there is a limitation due to 

an assumption that each computed time lag is independent is likely false and overly conservative.  

As an alternative we recommend relying on state-identity based permutation. To control the family wise 

error rate (assuming 𝛼 = 0.05), we want to ensure that there is a 5% probability of getting the tested 

sequenceness strength (𝑆4;&4) or bigger by chance in *any* of the multiple tests. We therefore need to 

know what fraction of the permutations give 𝑆4;&4 or bigger in any of their multiple tests. If any of the 

sequenceness scores in each permutation exceed 𝑆4;&4, then the maximum sequenceness score in the 

permutation will exceed 𝑆4;&4, so it is sufficient to test against the maximum sequenceness score in the 

permutation. The null distribution is therefore formed by first taking the peak of sequenceness across 

all computed time lags of each permutation. This is the same as approach as is used for family-wise 

error correction for permutations tests in fMRI data 73, and in our case it is shown to behave well 

statistically (Figure 2.6d). 

 What to permute 
We can choose which permutations to include in the null distribution. For example, consider a task with 

two sequences, 𝑆𝑒𝑞1:	𝐴 → 𝐵 → 𝐶 → 𝐷, and 𝑆𝑒𝑞2:	𝐸 → 𝐹 → 𝐺 → 𝐻. We can form the null distribution 

either by permuting all states (e.g., one permutation might be: E→ 𝐹 → 𝐴 → 𝐵, H→ 𝐶 → 𝐸 → 𝐷), as 

was performed in Kurth-Nelson, et al. 53.  Alternatively, we can form a null distribution which only 

includes transitions between states in different sequences (e.g., one permutation might be: D→ 𝐺 →

𝐴 → 𝐸, H→ 𝐶 → 𝐹 → 𝐵), as was performed in Liu, et al. 54.  In each case, permutations are equivalent 

to the test data under the assumption that states are exchangeable between positions and sequences. The 

first approach has the advantage of many more possible permutations, and therefore may make more 

precise inferential statements in the tail. The second may be more sensitive in the presence of signal, as 

the null distribution is guaranteed not to include permutations which share any transitions with the test 

data (Figure 2.6e). For example, in the Figure 2.6e, the blue swaps are the permutations that only 

exchange state identity across sequences, as in Liu, et al. 54; while the red swaps are the permutations 

that permit all possible state identity permutations, as in Kurth-Nelson, et al. 53. There will be many 

more different state permutations in red swaps than in blue swaps. We can make different levels of 

inferences by controlling the range of the null distributions in the state permutation tests. 

This state identity-based permutation is similar to shuffling the rate maps of each place cell in rodent 

ephys analysis. Effectively, they both make a null distribution where states (positions) are exchangeable 

at the decoded state space. We cannot do rate map like shuffling in MEG data, because the state (with 
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analogy to position) and sensors (with analogy to place cells) mappings are not one-to-one. Instead, the 

state patterns are multivariate in MEG. The state-sensors shuffling in MEG analysis will not make the 

same null distribution (states are exchangeable), it instead will make the state decoding nosier. 

 Cautionary note on exchangeability of states after training  
Until now, all tests have assumed that state identity is exchangeable under the null hypothesis. Under 

this assumption, it is safe to perform state-identity based permutation tests on 𝑍1 and 𝑍7. In this section, 

we consider a situation where this assumption is broken. 

More specifically, we are considering a situation where the neural representation of state 𝐴 and 𝐵 are 

related in a systematic way or, in other words, the classifier on state 𝐴 is confused with state 𝐵, and we 

are testing sequenceness of  𝐴 → 𝐵. Crucially, to break the exchangeability assumption, representations 

of 𝐴 and 𝐵 have to be systematically more related than other states, e.g., 𝐴 and 𝐷. This cannot be caused 

by low level factors (e.g., visual similarity) because states are counterbalanced across subjects, so any 

such bias would cancel out at the population level. However, such a bias might be induced by task 

training.  

In this situation, it is, in principle, possible to detect sequenceness of 𝐴 → 𝐵, even in the absence of real 

sequences. In the autocorrelation section above, we introduced protections against the interaction of 

state correlation with autocorrelation. These protections can fail in the current case as we cannot use 

other states as controls (as we do in the multiple linear regression), because 𝐴  has systematic 

relationship with 𝐵, but not with other states. State permutation will not protect us from this problem 

because state identity is no longer exchangeable.  

Is this a substantive problem? After extensive training, behavioral pairing of stimuli can indeed result 

in increased neuronal similarity 74,75. These early reports relate to lengthy training in monkeys. More 

recent studies have shown that an induced representational overlap can be seen in human imaging 

within a single day 57,76,77. However, when analyzed across the whole brain, such representational 

changes tend to be localized to discrete brain regions 78,79,  and as a consequence are likely to have 

limited impact on whole brain decodeability.  

Whilst we have not yet found a simulation regime in which false positives are found (as opposed to 

false negatives), there exists a danger in cases where, by experimental design, the states are not 

exchangeable. 
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Figure 2.6 Statistical inference 

a, P-P plot of one-sample t test (blue) and Wilcoxon signed rank test (red) against zero. This is done in simulated 

MEG data assuming auto-correlated state time courses but no real sequences. In each simulation, the statistics are 

done only on sequenceness at 40 ms time lag, across 24 simulated subjects. There are 10,000 simulations. b, We 

have also tested the sequenceness distribution on the real MEG data. The state identity is randomly shuffled 10,000 

times to construct the null distribution. c, Time-based permutation test tends to give high false positive, while 

state identity-based permutation does not. This is done in simulation assuming no real sequences (n=1000). d, P-

P plot of state identity-based permutation test over peak sequenceness is shown. To control for multiple 

comparisons, the null distribution is formed taking the maximal absolute value over all computed time lags within 

a permutation, and the permutation threshold is defined as the 95% percentile over permutations. In simulation, 

we only compared the max sequence strength in the data to this permutation threshold. e, Blue are the permutations 

that only exchange state identity across sequences. Red are the permutations that permit all possible state identity 

permutations. The X axis is the different combinations of the state permutation. It is sorted so that the cross-

sequence permutations are in the beginning.  
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2.2.5 Extensions to TDLM 
TDLM can be used iteratively. Two extensions of TDLM of particular interest are: Multi-step sequences 

and Sequence of sequences. The former asks about consistent regularity among multiple states, the latter 

ask about the hierarchical structure of state reactivation, not only within but between sequences. 

 Multi-step sequences 
So far, we have introduced methods for quantifying the extent to which the state-to-state transition 

structure in neural data matches a hypothesized task-related transition matrix. An important limitation 

of these methods is that they are blind to hysteresis in transitions. In other words, they cannot tell us 

about multi-step sequences. In this section, we describe a methodological extension to measure 

evidence for sequences comprising more than one transition: for example, 𝐴 → 𝐵 → 𝐶.  

The key ingredient is controlling for shorter sub-sequences (e.g., 𝐴 → 𝐵 and 𝐵 → 𝐶), in order to find 

evidence unique to the multi-step sequence of interest. 

Assuming constant state-to-state time lag, ∆𝑡, between A and B, and between B and C. We can create 

new state space AB, by shifting B up ∆𝑡, and elementwise multiply it with state A. This new state AB 

measure the reactivation strength of 𝐴 → 𝐵, with time lag ∆𝑡. In the same way, we can create new state 

space, BC, AC, etc. Then we can construct the same first level GLM on the new state space. For 

example, if we want to know the evidence of 𝐴 → 𝐵 → 𝐶 at time lag ∆𝑡. We can regress AB onto state 

time course C, at each ∆𝑡 (cf. Equation 1). But we want to know the unique contribution of AB to C. 

More specifically, we want to test if the evidence of 𝐴 → 𝐵 → 𝐶 is stronger than 𝑋 → 𝐵 → 𝐶, where X 

is any state but not A. Therefore, similar as Equation 2, we want to control CB, DB, when looking for 

evidence of AB of C. Applying this method, we show TDLM successfully avoids false positives arising 

out of strong evidence for shorter length (see simulation results in Figure 2.7a, see results obtained on 

human neuroimaging data in Figure 2.7b). This process can be generalized to any number of steps. 

TDLM in current form assuming a constant state-to-state time lags intra-sequence. If one wants to have 

variability between state transitions, TDLM can still cope, but not very elegantly. Assuming there is a 

three states sequence, 𝐴 → 𝐵 → 𝐶, with intra-sequence variance. TDLM will need to test all possible 

combinations of state-to-state time lags in 𝐴 → 𝐵 and 𝐵 → 𝐶 . If there are 𝑛 number of time lag of 

interest in either of the two transitions, TDLM will have to test 𝑛^2 possible time lag combinations. 

This is a big search space and will increase exponentially as a function of the length of sequence.  
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We also note this analysis is different from a typical rodent replay analysis which assesses the overall 

evidence of the sequence length 19,56. TDLM is asking do we see more evidence of A->B->C, above and 

beyond B->C, for example. However, if the main question of interest is “do we have evidence of A-

>B->C in general”, as is normally the case in the rodent replay analysis 19,56, then we should not control 

for shorter lengths, we can instead average the evidence together, as have done in  Kurth-Nelson, et al. 
53. 

 Sequence of sequences  
We have so far detailed the use of either sensory or abstract representations as states in TDLM. We now 

take a step further and use sequences themselves as states. With this kind of hierarchical analysis, we 

can search for sequences of sequences. This is useful because it can reveal the temporal structure not 

only within sequence, but also between sequences. The organization between sequences is of particular 

interest for revealing neural computations. For example, the forward and backward search algorithms 

hypothesized in planning and inference 80 can be cast as sequences of sequences problem: the temporal 

structure of forward and backward sequence. This can be tested by using TDLM iteratively.  

As yet little human neural data is available on the organization of sequences. Interestingly, one can 

think of theta sequence, a well-documented phenomenon during rodent spatial navigation 39,42,55, as a 

neural sequence repeating itself in theta frequency (6 - 12 Hz). We will show TDLM is able to detect 

this well-known phenomenon. 

To look for sequences between sequences we need first to define sequences as new states. To do so, the 

raw state course, for example, state B needs to be shifted up by the empirical within-sequence time lag 

∆𝑡 (determined by the two-level GLM described above), to align with the onset of state A, if assuming 

sequence 𝐴 → 𝐵 exist (at time lag ∆𝑡). Then, we can elementwise multiply the raw state time course A 

with the shifted time course B, resulting in a new state AB (Figure 2.3d). Each entry in this new state 

time course indicates the reactivation strength of sequence AB at a given time. 

After that, the general two-level GLMs framework still applies, but with one important caveat. The new 

sequence state (e.g., AB) is defined based on the original states (A and B), and we are now interested 

in the reactivation regularity, i.e., sequence, between sequences, rather than the original states. We 

should therefore control for the effects of the original states. Effectively, this is like controlling for main 

effects (e.g., state A and shifted state B) when looking for their interaction (sequence AB). TDLM 

achieves this by putting time lagged original state regressors A, B, in addition to AB, in the first level 

GLM sequence analysis. 
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Specifically, let’s assume the sequence state matrix is 𝑋&;C, after transforming the original state space 

to sequence space based on the empirical within-sequence time lag ∆𝑡D . Each column at 𝑋&;C  is 

sequence state, denoted by 𝑆*), which indicates the strength of sequence i -> j reactivation. The raw 

state i is 𝑋*, and the shifted raw state j is 𝑋)D (by time lag ∆𝑡D). 

In the first level GLM, TDLM ask for the strength of unique contribution of sequence state 𝑆*) to 𝑆E, 

while controlling for original states (𝑋* and 𝑋)D). For each sequence state 𝑖𝑗, at each possible time lag 

∆𝑡, TDLM estimated a separate linear model: 

                                           	𝑆E, = 𝑋*(∆𝑡)𝛽* +	𝑋)D(∆𝑡)𝛽) +	𝑆*)(∆𝑡)𝛽*)(∆𝑡)	                                            (16)      

Repeat this process for each sequence state separately at each time lag, resulting a sequence matrix 

𝛽&;C.  

In the 2nd level GLM, TDLM asks how strong the evidence of sequence of interest is compared to 

sequences that have the same starting state or end state at each time lag. This 2nd level GLM will be the 

same as the equation 5, but with additional regressors to control for sequences that share the same start 

or end state.  

In simulation we demonstrate, applying this method, that TDLM can uncover hierarchical temporal 

structure: state A is temporally leading state B with 40 ms lag, and the sequence A->B tends to repeat 

itself with a 140 ms gap (Figure 2.7c). On real rodent hippocampal electrophysiological recording, we 

replicate the well-known theta sequence - neural sequence repeating itself in theta frequency (Figure 

2.7d, see detailed analysis on this rodent data in Methods). 

In addition to looking for temporal structure of the same sequence, this method is equally suitable when 

searching for temporal relationship between difference sequences in a general form. For example, 

assuming two different types of sequences, one sequence type has a within-sequence time lag at 40 ms; 

while the other has a within-sequence time lag at 150 ms; and there is a gap of 200 ms between the two 

types of sequences (Figure 2.8a) (these time lags are set arbitrarily for illustration purposes. TDLM 

captures accurately the dynamics both within and between the sequences (Figure 2.8b, c), supporting a 

potential for uncovering temporal relationships between sequences in general under the same 

framework. 

 



   40 

 

 

 

Figure 2.7 Extension to TDLM: Multi-step sequences and Sequence of sequences.  

a, TDLM can quantify not only pair-wise transition, but also longer length sequences. It does so by controlling 

for evidence of shorter length to avoid false positive. b, Method applied to human MEG data, incorporating control 

of both alpha oscillation and co-activation for both length-2 and length-3 sequence length. Dashed line indicates 

the permutation threshold. This is adapted from Liu, et al. 541. c, TDLM can also be used iteratively to capture the 

repeating pattern of sequence event itself. Illustration in the top panel describes the ground truth in the simulation. 

Intra-sequence temporal structure (right) and inter-sequence temporal structure (right) can be extracted 

simultaneously. d, On a real rodent hippocampal electrophysiological dataset, TDLM revealed the well-known 

theta sequence phenomena during active spatial navigation. 
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Figure 2.8 Temporal structure between and within different sequences 

a, Illustration of two sequence types with different state-to-state time lag within sequence, and a systematic gap 

between the two types of sequences. b, TDLM can capture the temporal structures both within (left panel) and 

between (right panel) the two sequence types. 

 

2.2.6 Source localization 
Uncovering the temporal structure of neural representation is important, but one might also want to ask 

where in the brain the sequence is generated. Rodent electrophysiology research focuses mainly on 

hippocampus when searching for replay. One advantage of whole-brain non-invasive neuroimaging 

over electrophysiology (despite many known disadvantages, including poor anatomical precision, low 

signal-noise ratio) is its ability to look for neural activity in other brain regions. Ideally, we would like 

a method that is capable of localizing sequences of more abstract representation in brain regions beyond 

hippocampus 54. 

We want to identity the time when a given sequence is very likely to happen. We can achieve this, by 

transforming from the space of states to the space of sequence event. This will be the same computation 

as in section “States as sequence events”. The ∆𝑡 is obtained by availing of the two-level GLMs in 

TDLM to identify the empirical time lag	that gives rise to the strongest neural sequence.  

After obtaining the time course of sequence events, TDLM identifies the sequence onset by thresholding 

the sequence state at its high (e.g., 95th) percentile with a constraint that a sequence onset has a sequence-

free time window (e.g., 100 ms) preceding it. This analysis pipeline gives a temporal stamp on the 

testing time (Figure 2.9a). One can therefore epoch the data based on those sequence onsets and apply 

temporal frequency analysis and source localization, just like on the standard task data. This approach 

is similar to spike-triggered averaging 81,82. Applying this to real MEG data during rest, we can detect 

increased hippocampal power at 120-150 Hz, during replay onset (Figure 2.9b, c). 
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Figure 2.9 Source localization of replay onset 

a, TDLM figures out the onset of sequence based on the identified optimal state-to-state time lag (left panel). 

Sequence onset during resting state from one example subject is shown (right panel). b, There was a significant 

power increase (averaged across all sensors), in the ripple frequency band (120-150 Hz), at the onset of replay, 

compared to the pre-replay baseline (100 to 50 ms before replay). c, Source localization of ripple-band power at 

replay onset revealed significant hippocampal activation (peak MNI coordinate: X = 18, Y = -12, Z = -27). Panel 

b and c are adapted from Liu, et al. 54. 

 

2.3 Discussion 
TDLM is a general analysis framework for capturing sequence regularity of neural representations. We 

described the application of TDLM mostly during off-task state. However, the very same analysis can 

be applied to on-task data, to test for cued sequential reactivation 58, or sequential decision-making 83. 

It is developed on human neuroimaging data but can be applied to other data sources, including rodent 

electrophysiology recordings. The framework can facilitate cross-species investigations and enables 

investigation of  phenomena that are not readily addressable in rodents 54.   

The temporal dynamics of neural states have been studied previously with MEG 70,84. Normally states 

are defined by common physiological features (e.g., frequency, functional connectivity) during rest, and 

termed resting state networks (e.g., default mode network 3). However, these approaches remain 

agnostic about the content of neural representation.  Being able to study the temporal dynamics of 

representational content permits richer investigations into cognitive processes, as neural states can be 

analyzed in the context of their roles with respect to cognitive tasks.  

Reactivation of neural representations have also been studied previously 85 using approaches similar to 

the decoding step of TDLM, or multivariate pattern analysis (MVPA) 86. This has proven fruitful in 

revealing mnemonic functions77, understanding sleep87, and decision-making88. However, classification 
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alone cannot reveal the rich temporal structures of reactivation dynamics. For example, the ability to 

detect sequences allows us to tease apart clustered from sequential reactivation, where this  may be 

important for dissociating decision strategies 65 and their individual differences 58,65. Furthermore, it 

enables comparisons with the sequential reactivation patterns reported in rodent hippocampus 16,20, and 

may allow tests of neural predictions from process models such as reinforcement learning 89, which 

have been hard to probe previously in humans 83. 

We have mainly discussed the application of TDLM on high temporal resolution neuroimaging data 

(e.g., MEG, see also Appendix 1 on detecting replay using EEG). Recently, sequential replay has been 

reported using fMRI 31. We anticipate it will be useful to combine the high temporal resolution available 

in M/EEG and the spatial precision available in fMRI to probe region - specific sequential computation. 

Whilst related techniques are available 90, TDLM could, in principle, also be applied to fMRI data. For 

fMRI data, it seems it might be better to work on the certain frequency range 90, we have not explored 

the feature selection process so far. In future work, it will be useful to identify decoding features that 

are most suitable in different imaging modality. 

TDLM is based on general linear models. This gives us flexibility to handle potential confounds, but 

only in linear fashion, it also cannot handle uncertainty in the current form. Recent success in applying 

latent state space model, like hidden Markov model, to detect replay in rodents 91, suggesting a Bayesian 

treatment of the neural dynamics may be a promising direction to explore. The ability to handle 

uncertainty in Bayesian treatment is also desirable. Incorporating the uncertainty in the estimate of 

sequenceness, could, for example, allow us to separate process noise (e.g., intrinsic variability within 

sequences) and measurement noise (e.g., noise in MEG recording). This could be done in building a 

generative model (e.g., Karman filter), a direction worth exploring in future.  

TDLM enables neuroscientists to decipher rich temporal structures of neural reactivation. We believe 

TDLM opens doors for novel investigations of human cognition, including language, sequential 

planning and inference in non-spatial cognitive tasks 53,65. It is particularly suited to test specific neural 

prediction from process models. Therefore, we hope TDLM can aid a synthesis between empirical and 

theoretical approaches in neuroscience and in so doing shed novel lights on dynamic neural 

computation. 

2.4 Methods 

2.4.1 Simulating MEG data 
We simulate the data to be similar with the human MEG.  
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We generate ground truth multivariate patterns (over sensors) of the states. We then add random unit 

gaussian noise on the ground truth state patterns to form the task data. We will train a logistic regression 

classifier on the task data to obtain the decoding model of each of the state patterns. Later we will use 

this model to transform the resting-state data from sensor space (with dimension of time by sensors) to 

the state space (with dimension of time by states).  

First, to imitate temporal autocorrelation and spatial correlation that are commonly seen in human 

neuroimaging data, we generate the rest data using an auto-regressive model with multivariate (over 

sensors) gaussian noise and adding dependence among sensors. In some simulation, we will add a 

rhythmic oscillation (e.g., 10Hz) on top of that. 

Second, we inject sequence of the state patterns in the rest data. The sequences follow the ground truth 

of state transitions of interest. The state-to-state time lag is assumed to follow gamma distribution. We 

vary the number of sequences to be injected in the rest data to control the strength of sequences. 

Lastly, we project the rest data to the decoding model of states obtained from the task data. TDLM will 

then work on the decoded state space. 

An example of the MATLAB implementation is called “Simulate_Replay” from the GitHub link: 

https://github.com/yunzheliu/TDLM 

2.4.2 Human MEG dataset 
Task design 

Participants were required to perform a series of tasks with concurrent MEG scanning (see details in 

Liu, et al. 54).  The functional localizer task was performed before the main task and was used to train a 

sensory code for eight distinct objects. Note, the participants were provided with no structural 

information at the time of the localizer. These decoding models, trained on the functional localizer task, 

capture a sensory level neural representation of stimuli (i.e., stimulus code). Following that, participants 

were presented with the stimuli and were required to unscramble the “visual sequence” into a correct 

order, i.e., the “unscrambled sequence” based on a structural template they had learned the day before. 

After that, participants were given a rest for 5 mins. In the end, stimuli were presented again in random 

order, and participants were asked to identify the true sequence identity and structural position of the 

stimuli. Data in this session are used to train the structural code of the objects.  

MEG data Acquisition, Pre-processing and Source Reconstruction 

This is exactly the same procedure that has been reported in Liu, et al. 54. We have copied it here for 

references. 
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“MEG was recorded continuously at 600 samples/second using a whole-head 275-channel axial 

gradiometer system (CTF Omega, VSM MedTech), while participants sat upright inside the scanner. 

Participants made responses on a button box using four fingers as they found most comfortable. The 

data were resampled from 600 to 100 Hz to conserve processing time and improve signal to noise ratio. 

All data were then high pass filtered at 0.5 Hz using a first order IIR filter to remove slow drift. After 

that, the raw MEG data were visually inspected, and excessively noisy segments and sensors were 

removed before independent component analysis (ICA). An ICA (FastICA, 

http://research.ics.aalto.fi/ica/fastica) was used to decompose the sensor data for each session into 150 

temporally independent components and associated sensor topographies. Artefact components were 

classified by combined inspection of the spatial topography, time course, kurtosis of the time course 

and frequency spectrum for all components. Eye-blink artefacts exhibited high kurtosis (>20), a 

repeated pattern in the time course and consistent spatial topographies. Mains interference had 

extremely low kurtosis and a frequency spectrum dominated by 50 Hz line noise. Artefacts were then 

rejected by subtracting them out of the data. All subsequent analyses were performed directly on the 

filtered, cleaned MEG signal, in units of femtotesla.  

All source reconstruction was performed in SPM12 and FieldTrip. Forward models were generated on 

the basis of a single shell using superposition of basis functions that approximately corresponded to the 

plane tangential to the MEG sensor array. Linearly constrained minimum variance beamforming 92, was 

used to reconstruct the epoched MEG data to a grid in MNI space, sampled with a grid step of 5 mm. 

The sensor covariance matrix for beamforming was estimated using data in either broadband power 

across all frequencies or restricted to ripple frequency (120-150 Hz). The baseline activity was the mean 

neural activity averaged over -100 ms to -50 ms relative to sequence onset. All non-artefactual trials 

were baseline corrected at source level. We looked at the main effect of the initialization of sequence. 

Non-parametric permutation tests were performed on the volume of interest to compute the multiple 

comparison (whole-brain corrected) P-values of clusters above 10 voxels, with the null distribution for 

this cluster size being computed using permutations (n = 5000 permutations). 

2.4.3 Rodent hippocampal ephys for detecting theta sequence 
Data description 

The rodent data is collected by Héctor Penagos from Matt Wilson’s lab. 

IACUC statement: Surgical procedures and behavioral testing were approved by the Committee of 

Animal Care at Massachusetts institute of Technology and followed US National Institute of Health 

guidelines (http://dspace.mit.edu/handle/1721.1/58398).  
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Data were collected in a spatial navigation task where the rat ran back and forth on a circular track that 

had a high-wall divider with reward sites on either side. The rat completed 6 rounds of run (both 

clockwise and counterclockwise). Fifty-three Cells were recorded in the CA1 of the hippocampus. 

Spiking activity was recorded at 31,250 Hz /channel. The local field potential was sampled at 2000 Hz. 

The position of the rat was simultaneously recorded with a sampling rate of 30 Hz. The position records 

were linearized for later analysis. 

 

Preprocessing 

The pre-processing steps: 

1) Data are subset based on the running speed - only the time when the running speed is greater 

than 10 cm/s is included. 

2) Putative interneurons are excluded based on their firing field – only neurons with single 

dominate firing field are included. 

3) The running track is first linearized and then discretized into 5 cm spatial bins, for later 

estimation of tuning carves and Bayesian decoding analysis.  

4) The time dimension is discretized into 10 ms time bins for Bayesian decoding analysis. 

 

Theta sequences 

The theta sequence analysis steps: 

1) Estimation of tuning curves/rate map:  The average firing rate of each place cell at each location 

(every 5 cm spatial bins) on the track in each running direction is estimated separately by 

summing the spike counts within each spatial bin and then normalized by position visited 

counts. 

2) Bayesian decoding: We applied the standard one-step Bayesian decoding method 93. This 

method uses an average rate map of each cell to estimate the probability distribution of the 

animal’s position given a spike count vector at given time bin. We don’t care about the specific 

running direction; we want to estimate the posterior location that does not depends on the 

running direction. To achieve this, we stack the two directional tuning curves into one vector 

for the Bayesian decoding, and later marginalized over the directions to get the posterior 

estimation of location probability. We choose to do so, also because it balances out the 

behavioral sampling experience. This will give us a posterior position probability readout at 
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each time bin, i.e., a decoding matrix, times*positions (states). This matrix will be used for later 

sequence analysis.  

3) General pair-wise sequence analysis: TDLM is then run on the raw decoded probabilities (not 

the MAP locations). The results are shown on the left plot, Fig. 5d. This measures the average 

of all pairwise sequences as a function of time lag. This analysis is trying to find the time lag 

that give rise to the strongest sequenceness value, which will be use to change the state space 

from the individual position state (e.g., A, B), to position-pair states based on the lag (e.g., AB), 

for later analysis. 

4) Repetition of sequence (theta sequence) analysis: After we have figured out the time lag give 

rise to the strongest pair-wise sequence, we can time shift the states in decoding matrix based 

on the time lag, for example, if we know position A is always activated 40 ms earlier than 

position B, to obtain the sequence onset probability of A->B, we can time shift the state B time 

course 40 ms earlier and then element-wise multiple it with the raw state A time course. We 

can do that for each successive position pair, and then we end with the position pair matrix A-

>B, B->C, C->D, … etc. Now, we can apply the TDLM again to this matrix. This time we are 

interested in the repeating pattern of the sequence, i.e., how likely will the pairwise sequence, 

e.g., A->B repeat itself at given time lag.  
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3 HUMAN REPLAY BUILDS 
EFFICIENT REPRESENTATIONS 

3.1 Introduction 
Having developed a method to measure replay in humans I turned to my first question – whether replay 

re-organizes experience to build a suitable task representation. Having a suitable task representation is 

crucial for efficient inference and generalization in novel contexts. 

Although AI is making impressive strides, humans still learn orders of magnitude faster 94. Humans are 

adept at making rich inferences from little data by generalizing structural knowledge from past 

experience. A crashed car by the roadside, for example, conjures a detailed sequence of past events that 

were never actually witnessed. It has been theorized that our facility in making correct inferences relies 

on an internal models of the world, and these are conjectured to be supported by the same neural 

mechanisms underpinning relational reasoning in space 10,35,37,42,44. 

The capacity of replay to play out trajectories 36 and even locations 23 that have never been experienced 

suggests that replay might be important for building and sampling internal models of space 16,95. If 

similar mechanisms do indeed apply in non-spatial scenarios, it would provide a substrate for the 

powerful inferences and generalization that characterize cognition in humans, whose non-spatial 

reasoning capacities dwarf those of rodents.  

How might replay build efficient representation for inference and generalization? During hippocampal 

spatial replay events, coherent replay of the same trajectories have been recorded from both medial 

entorhinal (mEC) 26 and visual cortices 25. These anatomically distinct regions differ markedly in the 

nature of their representations. Whilst visual representations encode the sensory properties of a 

particular event, mEC representations encode structural information (such as spatial relationships), 

divorced from their sensory properties 59. One intriguing possibility raised by these observations is that 

a factorised representation may enable prior structural knowledge to constrain the replay of sensory 

experiences, thereby facilitating novel inference. Such a mechanism could allow incoming sensory 

events to be replayed in a new order, consistent with prior structural knowledge. Approaching drivers, 

for example, may see first the crashed car, then the road-ice and then the arriving ambulance, but 

nevertheless replay events the correct order in which these events ensued.   
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3.2 Results 

3.2.1 Unscrambling new objects using a previously learned rule 
First, I wanted to test whether replay-like activity is informed by abstract knowledge that is generalized 

from prior experience. This necessitated a task design wherein learnt sequential structure can be applied 

to novel sensory stimuli in order to infer a new ordering. To accomplish this, we designed a novel 

behavioral task, with links to both sequence learning and sensory preconditioning 43,77. 

On Day 1, we presented objects sequentially to participants in three stages (Figure 3.1a). In the first 

stage, participants observed an object sequence Y, Z, Y', Z', with a 300 ms gap between Y and Z and 

between Y' and Z', and a 900 ms gap between Z and Y'. In the second stage, they observed X, Y, X', Y', 

with analogous timings. In the third stage, they observed W, X, W', X'. These eight objects actually 

formed two sequences: WXYZ and W'X'Y'Z'. Before exposure, participants were instructed on a rule 

that transformed the experienced order into the true underlying order, and after exposure they were 

quizzed as to the true order. 

On Day 2, during MEG scanning, we presented eight new objects, A, B, C, D, A', B', C', D', in a 

scrambled order which adhered to the same rule learnt in Day 1, and with the same timings across the 

three stages. We refer to this phase as "Applied Learning". Participants were quizzed on the true order 

after each run (three runs in total), without feedback. Accuracy at this task stage was 94.44% (vs chance 

50%, p < 0.0001, Figure 3.2a), indicating correct application of a previously learned rule to these new 

objects. After this, participants were shown that the terminal object of one sequence, either D or D', was 

associated with reward, thereby establishing one sequence as rewarding and one as neutral. We call this 

phase "Value Learning". Participants were then shown random objects from the sequences and asked 

whether that object was part of a sequence that would lead to reward. No feedback was provided during 

these questions, to preclude further learning. Overall accuracy in this phase was 98.55%, indicating 

correct application of the learned transition model.  
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Figure 3.1 Task design of Study 1 and sequenceness measurement 

a, Participants were presented with visual stimuli where the correct sequences were scrambled (Study 1). Subjects 

were pre-trained on Day 1 to re-assemble the stimuli into a correct order. On Day 2, participants underwent a 

MEG scan while performing a task with the same structure but different stimuli. b, Using functional localizer 

data, a separate decoding model (consisting of a set of weights over sensors) was trained to recognize each 

stimulus (left). Decoding models were then tested on unlabelled resting data. Examples of forward and reverse 

sequential stimulus reactivations in simulated data (right). c, ‘Sequenceness’, based on cross-correlation, 

quantifies the extent to which the representations decoded from MEG systematically follow a transition matrix of 

interest (left). Evidence for sequenceness (y axis) was quantified at each time lag independently (right), for all 

possible time lags up to 600 ms (x axis). Dashed line indicates a nonparametric statistical significance threshold 

(see Methods). Grey area indicates standard error across simulated participants. Coloured areas mark the lags at 

which the evidence of sequenceness exceeded the permutation threshold in the forward (blue) or reverse (red) 

direction. All data in this figure are from a simulation where sequences were generated with a state-to-state lag of 

50 ms.  
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Figure 3.2 Illustration of sequenceness analysis 

a, The predictor matrix, X, for this regression is the same matrix, Y, but time-lagged by Dt (see inset) to search 

for linear dependencies between state activations at this time-lag.  We constructed separate prediction matrices 

for each Dt. We then performed time-lagged regression by regressing each lagged predictor matrix X(Dt) onto the 

state reactivation matrix, Y, resulting in a regression coefficient matrix, with dimension of s states * s states, at 

each time lag. b, This coefficient matrix was then projected onto the hypothesized state transition matrix P, to 

provide a single measure of sequenceness as a function of time-lag (Dt), and transition structure (P). Evidence of 

sequenceness for transition of interest (ground truth) vs. random transitions were shown on the top and lower 

panel respectively. Notably, this regression approach allowed us to include confound regressors in the analysis. 

We found it helpful to include lagged time-courses at Dt+100ms, Dt+200ms … as confounds to account for 10Hz 

oscillations that are prevalent during resting activity. 

 

3.2.2 Neural activity spontaneously plays out sequences of new stimuli in an 
inferred order  
Between the Applied Learning and Value Learning phases, there was a resting period of 5 minutes with 

no task demands or visual inputs. In this resting period, I looked for spontaneous neural sequences that 

followed either the order of visual experience or an order defined by the previously learned structure. 

The rest period was intended to be analogous to awake resting periods in rodent studies in which 

hippocampal replay has been observed in spatial tasks 13,19,96.  

To look for structure in the spontaneous brain activity during rest, we needed to be able to decode visual 

stimuli from patterns of MEG sensor activity (analogous to decoding location from hippocampal 

cellular activity). Therefore, we included a functional localizer task before the main task. Placing the 

functional localizer before the main task ensured there was no structure or value information associated 
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with these training data. Here participants simply saw the images that would later be used in the task, 

presented in a random order, and prior to acquisition of knowledge regarding which visual object played 

which role in a sequence.  

We trained lasso logistic regression classifiers to recognize patterns of brain activity evoked by each 

visual object. We trained one classifier to recognize each object. Models were cross-validated on 

training data through a leave-one-out approach to confirm they captured essential object-related features 

in the MEG signal. We found that the probabilities predicted by each model on held-out data exceeded 

a significance threshold only when the true stimulus was the same as what that model was trained to 

detect (Figure 3.3a). 

 

 

Figure 3.3 Behavioral performance during training on Day 1 and applied learning on Day 2  

After learning the structure, participants could quickly unscramble the sequences of different images in both 

studies. a, In Study 1, during training on Day 1, the response accuracy on the sequenceness quiz increased 

gradually over runs, and the responses time decreased over runs, while on Day 2, during applied learning with 

different stimuli, most participants understood the correct sequence immediately after first run, and responses 

were already fast in the first run. b, In Study 2, similar effects were found. Note there was a stricter time limit on 

responses in Study 2 (2 s during training on Day 1, and 600 ms during applied learning on Day 2) compared to 

Study 1 (5 s during both Day 1 training, and Day 2 learning), which makes the absolute accuracy values not 

directly comparable. Each circle indicates one unique value. The size of the circle corresponds to the number of 

participants who have the same value.  
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We applied trained classifiers to the resting period following the Applied Learning phase. This produced 

a reactivation probability of each object at each time point during rest (Figure 3.1b). Next, we quantified 

the degree to which these reactivation probabilities systematically followed particular sequences 

(Figure 3.1c), using a measure of "sequenceness" we have developed in section 2. This measure defines 

the extent to which reactivations of object representations follow a consistent sequence defined by a 

transition matrix.   

We considered two transition matrices: the order of visual experience (e.g., C->D->C’->D’), and the 

true sequences defined by the underlying rule (e.g., A->B->C->D). Significance was tested by randomly 

shuffling the transition matrix of interest many times and repeating the same analysis, to generate a null 

distribution of sequenceness. We took the peak of the absolute value of each shuffle across all lags as 

our test statistic, to correct for the multiple comparisons at multiple lags. For a significance threshold 

we used the (absolute) maximum of these peaks across time (dashed line in Figure 3.1b).  

We found evidence of sequential neural activity that conformed to the rule-defined structure (Figure 

3.4b) but not to the visual sequence (Figure 3.4c). These sequences were dominantly in a forward 

direction. The effect exceeded the permutation threshold from 20-60 ms of state-to-state lag (p < 1/24 

≈ 0.042, corrected), peaking at 40 ms. Sequenceness appeared within the first minute of rest, remained 

stable over the next 4 minutes (Figure 3.4c) and was present in the majority of participants (Figure 

3.5a). 

 

Figure 3.4 Replay follows rule-defined sequence and reverses direction after value learning 

In Study 1, examples of sequence events during rests, before and after value learning, are shown from one subject 

for visualization purposes (a, e). Each row depicts reactivation probabilities at a given time point. For statistical 

purposes, data were analyzed using a ‘sequenceness’ measure (see Methods for details). Stimulus representations 

decoded from MEG spontaneously played out sequences following a structure defined by the previously learned 
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rule (b) and not the visually experienced sequence (c). The dotted line is the peak of the absolute value of all 

shuffled transitions, separately at each time lag; the dashed line is the max across all time lags, which we use as a 

corrected threshold. During the first rest period, the rule-defined sequences played in a forward direction. d, 

Forward replay of the rule-defined sequence appeared in the first minute of the resting period and remained stable 

for 4 minutes. e, In the second rest period, the rule-defined sequences reversed direction to play in a backwards 

order. This panel shows an example sequence event. As in the first rest period, there was statistical evidence for 

replay of the rule-defined sequence (f), but not the order of visual experience (g). h, Reverse replay of the rule-

defined sequence after value learning was stable for all 5 minutes of rest. Blue indicates forward sequenceness 

and red reverse.  
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Figure 3.5 Sensor maps, spatial correlation and classifiers performance of trained Lasso logistic 

regression models.  

a, Sensor map for each state decoding model in Study 1 is shown on the left, with a correlation matrix between 

classifiers shown on the right. b, Sensor maps and correlation matrix is shown for Study 2. c, In study 1, leave-

one-out cross-validation results for each classifier in functional localizer task is shown on the left.  Dotted line 

indicates the permutation threshold estimated by randomly shuffling the labels and re-doing the decoding process. 

Classifier performance during applied learning is shown on the right. These plots only use classifiers trained at 

200 ms post stimulus onset. The x-axis refers to the timepoint used for testing the classifiers. The curves therefore 

have a different shape than plots made by varying both the training and testing time. d, Study 2 had a very similar 

pattern. e, Cumulative reactivation probability of each state in Study 2 is shown against null distribution (shuffling 

sensors). 

 

3.2.3 Direction of spontaneous sequences reverses after reward 
In rodents, rewards increase the relative frequency of reverse, but not forward replay 20. Following the 

Value Learning phase, participants had another 5-min resting period. This second resting period allowed 

us to test for reward-induced increases in reverse sequences in humans. Consequently, we performed 

the same sequenceness analysis on the second resting period, after Value Learning. We found the 

direction of spontaneous neural sequences switched from forward to reverse (Figure 3.4d), exceeding 

the permutation threshold from 20 to 70 ms of state-to-state lag, and peaking at 40 ms. Again, there was 

no evidence for sequences corresponding to visual experienced trajectories (Figure 3.4e). The reverse 

sequenceness effect appeared within the first minute of rest, persisted for all 5 minutes (Figure 3.4f), 

and was seen for most participants (Figure 3.6). When we examined rewarded and neutral sequences 

separately, we found evidence that the rewarded sequence alone reversed direction (Figure 3.7a), with 

the neutral sequence remaining dominantly forward (Figure 3.7b). Interestingly, such reverse replay of 

rewarding sequences was already present in the Value Learning phase immediately after seeing the 

rewarding outcome, i.e., money coin (Figure 3.7e). It also continued during online model-based 

decision-making, where a model of the transitions between stimuli was needed for choice (Figure 3.7f).  
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Figure 3.6 Sequenceness distribution across subjects and example data.  

a, From Study 1, during a rest period after applied learning, but before value learning, 16/21 subjects had forward 

sequenceness at 40 ms time lag. b, Following value learning in Study 1, 17/21 subjects showed reverse 

sequenceness. c, Sequenceness plot from examples of one “good” subject and “bad” subject in Study 1 are shown 

both for resting before (left) and after (right) value learning. d, From Study 2, forward replay of the true sequence 

after applied learning was evident in 17/22 subjects. e, The position code was played (in reverse direction) prior 

to experience with the stimuli in 17/22 subjects. f, Sequence plot from examples of one “good” subject and “bad” 

subject in Study 2 are shown both for preplay and replay. g, Examples of three codes: stim, pos, and seq codes 

reactivation from two subjects during applied learning in Study 2 were shown for visualization purpose. These 

plots (and similar ones for the whole group in figure 5a) show results of a multiple linear regression of the 3 sensor 

maps associated with the current image (blue), the current position (red) and the current sequence (green) onto 

the sensor time courses measured after an image is presented during learning. The sensor time courses first 

represent the sequence, then the image, then the position in the sequence.  
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Figure 3.7 Only rewarded sequences reverse direction, and sequences form chains of four objects 

a, In value learning, each participant experienced one rewarded sequence and one unrewarded sequence. In the 

rest period after value learning, the rewarded sequence played backward in spontaneous brain activity. b, The 

unrewarded sequence still trended to playing forward. c and d, All other panels in the main text show a 

sequenceness measure that evaluates single-step state-to-state transitions. Here we report a related sequenceness 

measure that evaluates the extra evidence for multi-step sequences, beyond the evidence for single-step transitions 

(see Methods for details). This measure describes the degree to which, for example, A follows B with the same 

latency as B follows C. Note, the results here is for reverse sequence, i.e., C->B->A, for example. Sequences of 

length 3, following the rule-defined order, played out at a state-to-state lag of approximately 50 ms (c). At 50 ms 

lag, there was significant replay of sequences up to the maximum possible length (D->C->B->A). Dashed line at 

p = 0.05 (d). e, Replay was not limited to the resting period. Reverse replay of the rewarded sequence began 

during value learning. f, Reverse replay of the rewarded sequence was also evident at the decision phase.  

 

3.2.4 Length-n sequences 
Although the transition matrix defined by the order of visual presentation (e.g. C->D->C’->D’) differed 

from the transition matrix defined by the rule (e.g. A->B->C->D), some individual pairwise transitions 



   59 

 

 

were common between the two (like C->D). Therefore, we would expect our sequenceness measure to 

detect some "rule-defined sequenceness" even if the brain replayed only the order of visual presentation. 

The fact that there was more evidence for the rule-defined sequence than the visually observed sequence 

renders this interpretation unlikely. However, to rule out this possibility directly we sought evidence 

for contiguous length-3 or length-4 sequences. We defined a measure of length-n sequenceness that 

controlled for all lengths up to n-1, measuring the additional evidence for sequences of exactly length-

n (see Methods for details).  

In the task, there was no overlap between rule-defined sequences (e.g., B->C->D) and visual-order 

sequences at length-3, meaning length-3 rule-defined sequences could only be reliably observed if 

neural sequences truly followed a rule-defined ordering. Indeed, we found significant evidence for 

length-3 reverse replay of rule-defined sequences (Figure 3.7c), peaking at 50 ms state-to-state lag. The 

additional evidence for length-4 rule-defined sequences was also significant at 50 ms time lag (Figure 

3.7d). Together, these data suggest that rapid sequences of non-spatial representations can be observed 

in humans and have characteristics of hippocampal replay events recorded in rodents. Furthermore, 

these replay events play out sequences in an order that is implied but never experienced.  

3.2.5 Scrambling individual transitions 
In Study 1, we found replay-like activity plays out events in an order that is implied, but never actually 

experienced. However, in that study, participants experienced each individual transition of the implied 

sequence, albeit not contiguously. Thus, one possibility is that the observed ABCD sequence in brain 

activity could have arisen from a Hebbian-like encoding of individual transitions. In other words, if B 

and C were associated, and separately A and B were associated, then ABC could play out through a 

serial Hebbian associative mechanism. To rule out this hypothesis and determine whether replay truly 

incorporates abstract structural knowledge, transferred from previous training, I needed a more rigorous 

test to unambiguously distinguish this hypothesis from a simpler associative mechanism.  

Therefore, in Study 2 I designed a task similar to that of Study 1, but with a new jumbling rule where 

pairwise transitions themselves were disrupted, so that correct sequences could be inferred only using 

structural knowledge alone (Figure 3.8a). In the first stage, participants observed the sequence, for 

example, Z', X, Y', Y, with a 500 ms fixation period prior to each stimulus. In the second stage, they 

observed Z, W', W, X'. These eight objects again formed two true sequences: WXYZ and W'X'Y'Z'. 

The mapping between presentation order and structural position of the eight objects was randomized 

across participants. As in Study 1, participants were extensively trained about this structural rule on 

Day 1. 
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Figure 3.8 Task design of Study 2 and replication of replay following rule-defined sequence 

a, In Study 2, not only were sequences scrambled (as was the case in Study 1), but additionally the pair-wise 

associations were no longer preserved. On Day 1, participants were pre-trained on the rule that defined a re-

ordering between the order of stimulus appearance and the task-relevant order. They were also instructed that this 

same mapping would pertain to novel stimuli on Day 2. On Day 2, participants were shown the novel stimuli 

while undergoing a MEG scan. b, Example of forward replay sequence event from one subject. c, During the 

second rest period there was statistical evidence for forward replay of the rule-defined sequence. d, There was no 

evidence for replay of the visually experienced sequence, as in Study 1. e, Forward replay of the rule-defined 

sequence was stable for all 5 minutes of rest. 

 

Day 2 took place in the MEG scanner, and used the same unjumbling rule as Day 1, but applied now to 

novel objects. Unlike Study 1, in Study 2 participants were given a 5 minute rest period before any 

visual exposure to the objects. Participants then performed a functional localizer task where object 

stimuli were presented in randomized order. Next, these same stimuli were presented in the jumbled 

order described above. This was followed by another 5-minute resting period. At the very end, 

participants were shown the stimuli again in a randomized order and were now asked to perform one of 

two judgments on each stimulus as it appeared. On position judgment trials, they were asked to indicate 

the position (i.e., position 1, position 2, position 3 or position 4) of the stimulus within the sequence it 
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belonged to. On sequence judgment trials, they were asked to indicate which sequence (i.e., sequence 1 

or sequence 2) the stimulus belonged to. Study 2 had no reward component. 

3.2.6 Neural sequences infer a new order, even when pairwise transitions are 
disrupted 
As in Study 1, we again trained a set of classifiers to recognize individual objects from Study 2, using 

data from the functional localizer. We call these representations the "stimulus code". The validity of 

these classifiers was again tested using leave-one-out cross-validation. Cross-validated accuracy 

exceeded a permutation-based threshold for most of the examined post-stimulus epoch, peaking at 200 

ms post stimulus onset (Figure 3.5b, Figure 3.9a).  
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Figure 3.9 Multivariate decoding for sensory and structural representations 

a, Using functional localizer data, we trained decoders for the sensory level representation with a leave-one-out 

cross-validation approach. There was a peak in accuracy at 200 ms post stimulus onset, consistent with previous 

findings. b, To find the peak time point to train position decoders, we trained classifiers on every time point 

relative to the onset of stimuli, and tested at every time bin relative to the same onsets in the sequence testing 

block. Each cell of this grid shows cross-validated prediction accuracy on average (left panel). We used the 

sequence rather than position testing block because of the alignment between the positions and motor responses 

in the task. Right panel shows the diagonal of the left panel matrix. The peak decoding time was 300 ms after 

stimuli onset. Dashed lines show 95% of empirical null distribution obtained by shuffling state labels. Shaded 

area shows standard error of the mean. c, Same procedure applied to find the peak time point for sequence identity 

decoders. This was done on the position testing block to avoid a motor response confound. The peak decoding 

time was 150 ms after stimulus onset. Structure and sensory codes have distinct encoding in the brain. Averaged 

decoding accuracy across subjects with each sensor (bootstrapping, n = 2000, with 50 sensors each time) is shown: 

stim decodes individual stimuli (d); pos decodes order within sequence, invariant to which sequence (e); seq 

decodes which sequence, invariant to which stimulus within sequence (f). 

 

Using these stimulus code classifiers (trained at 200 ms post stimulus, as in Study 1), we first examined 

the data from the resting period following the Applied Learning phase. As in Study 1, we found evidence 

for forward sequenceness following a rule-defined transition matrix (Figure 3.8b), but not the transition 

matrix of visual experience (Figure 3.8c, d). This effect again peaked at a state-to-state lag of 40 ms 

(exceeding the permutation threshold from 30 to 70 ms), appeared within the first minute of rest, 

remained stable for all 5 mins (Figure 3.8e), and existed in the majority of participants (Figure 3.6). 

Unlike Study 1, however, this stimulus order could not have emerged from simple associative 

mechanisms, as no correct pairwise associations were present in the visually experienced sequence 

(Figure 3.8). Therefore, we argue that this reordering implies a transfer of structural knowledge from 

the previous day.  

3.2.7 Neural representations embed structural knowledge in a factorized code 
The impact of structural knowledge on replay order raises a question as to whether structural knowledge 

might itself be a component of the replayed representation. In rodents, entorhinal grid cells replay 

coherently with hippocampal place cells (e.g., Ólafsdóttir, et al. 26,27, but also see O’Neill, et al. 24). 

Unlike place cells, however, grid cells encode position explicitly, with a representation that generalizes 

across different sensory environments 40. In our task, objects do not have positions in space, but do have 

positions within an inferred sequence. Analogously, these positions might be represented explicitly 

during replay. For example, the 2nd items of each inferred sequence would share part of their replayed 
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representations not shared by the 3rd items. Similarly, we wondered whether items belonging to a 

particular sequence (e.g., sequence 1), would share representations absent in the other sequence (e.g. 

sequence 2).  

Therefore, in addition to stimulus code classifiers, we trained two additional sets of logistic regression 

classifiers. One was trained to recognize the position of each stimulus within its respective sequence, 

regardless of which sequence it belonged to. We call this the "position code". The other was trained to 

recognize which sequence each stimulus belonged to, regardless of which position it occupied within 

that sequence. We call this the "sequence code". These classifiers were trained on data from the position 

judgment and sequence judgment trials, respectively (Figure 3.9, see Methods for details). As an extra 

precaution against contamination of position and sequence codes by coincidental common sensory 

features, we regressed out the corresponding stimulus code from each position and sequence classifier 

(Figure 3.9). We observed that the structural and sensory codes were encoded differently in the brain, 

with the stimulus code most strongly represented in occipital sensors, while position and sequence codes 

were reflected more strongly in posterior temporal sensors (Figure 3.9e,f, cf. Hsieh, et al. 97) .  

Next, we asked how representations of structure and sensory information were related. We first used 

the three sets of classifiers (stimulus code, position code, and sequence code) to probe neural 

representations during the Applied Learning phase. We found significant activation of all three codes 

at times closely aligned to their respective training data: the sequence code at 150 ms, the stimulus code 

at 200 ms, and the position code at 300 ms after stimulus onset (Figure 3.10a). Hence, when a new 

stimulus appears, neural activity encodes the unique identity of the object, its sequence position and its 

sequence identity in a factorized representation. This type of representation implies that the same 

position code is used in different sequences with different objects, providing a potential mechanism for 

generalization of structural knowledge to support novel inferences. 
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Figure 3.10 Abstract factorized codes play out in synchrony with replay 

In addition to decoding models trained to detect representations of individual objects (stim code), we also trained 

additional models to detect representations of “position within sequence” (pos code) and “which sequence” (seq 

code). See Methods for details. a, During the applied learning phase of Study 2, representations of seq, stim and 

pos codes for the presented stimulus peaked at distinct times relative to stimulus onset. b and c, During the second 

resting period of Study 2, spontaneous reactivation of both pos and seq codes consistently preceded spontaneous 

reactivation of the corresponding stim code, with ~50 ms lag. d, As a validation, we also directly measured the 

relative timing of pos and seq activation and found a peak at 0 ms of lag; ***, p < 0.001. e, Finally, we examined 

the temporal relationship between replay of stim codes (as shown in Figure 4b) and replay of pos codes (see 

Methods for details). We found that pos code replay preceded stim code replay events by 50 ms. f, Summary of 

results. During each replay event, stimulus representations (green) were preceded 50 ms by abstract sequence 

(red) and position (blue) representations. 

 

3.2.8 Abstract representations of sequence identity and position consistently 
precede object representations during replay events 
Are structural representations spontaneously reactivated at rest? To address this, we applied the trained 

position and sequence code classifiers to the MEG data from the second resting period. As with the 

stimulus code classifiers, each classifier produced a time series of predicted probabilities. We first 

examined the temporal relationships between activations of the stimulus, position, and sequence codes. 

Using the sequenceness analysis described previously, we found that both the position and sequence 
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codes were systematically activated 40-60 ms before the corresponding stimulus code (Figure 3.10b, 

c). This implies that position and sequence codes were co-activated during rest. Indeed, the zero-lag 

correlation between unshuffled position and sequence codes were significantly higher than the shuffled 

correlations (Figure 3.10d; two-tail paired t test, t (20) = 6.47, p < 0.0001). 

These results show that structural representations consistently precede their corresponding object 

representations during rest. This raises the possibility that reactivation of a position code could lead an 

object representation to replay at the correct position within a sequence. To test this idea, we first 

estimated the replay onset of position codes (e.g., position 1 -> position 2) by multiplying the decoded 

probability of the first position (e.g., position 1) by the time-shifted probability of the second position 

(e.g., position 2; see Methods for details). We similarly obtained the time course of the corresponding 

stimulus code replay. After that, we performed sequenceness analysis on the estimated time courses of 

position code replay and stimulus code replay: asking whether replay of position codes has a temporal 

relationship to replay of corresponding stimulus codes. We found that replay of position code 

temporally led replay of stimulus code, with a peak at 50 ms of lag (non-parametric one-sample 

Wilcoxon sign rank test against zero, p = 0.013, Figure 3.10e). These results are consistent with a model 

outlined in Figure 3.10f, where each individual object representation in a replay event is preceded by 

both sequence and position representations. We speculate that these abstract structural representations 

contribute to retrieving the correct object for the current place in a sequence. 

3.2.9 Abstract position representations play in sequences prior to new object 
experience ('transfer replay') 
In rodents, prior to experience with a novel environment, hippocampal place cells play out spontaneous 

trajectories, which later map onto real spatial trajectories when an environment is experienced 18. This 

has been called 'preplay' and is proposed to encode general information about the structure of space. 

Our task allowed us to ask a similar question: whether abstract representations of task structure, defined 

using Day 2 objects, are played before those objects are ever seen.  

For this analysis we took advantage of the first resting period at the beginning of the MEG scan, before 

participants experienced Day 2 objects. Using trained models of position codes, we performed the same 

sequenceness analysis as previously described, using the transition matrix position 1 -> position 2 -> 

position 3 -> position 4. Examples of sequential reactivations of position codes during the first resting 

period are shown in Figure 3.11a. Statistically, we found significant reverse sequenceness, peaked at a 

30 ms position-to-position lag (n = 21, β = -0.036 ± 0.008), exceeding a permutation threshold from 20 

ms to 60 ms time lag (Figure 3.11b). We refer to this phenomenon as 'transfer replay', because it links 

Day 2 objects to previous experience, and to avoid confusion with the complex preplay literature. 
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Transfer replay appeared within the first minute of rest (Wilcoxon signed-rank test, p = 0.011), remained 

stable for all 5 mins of rest (2nd minute, p = 0.011; 3rd minute, p = 0.0006, 4th minute, p = 0.007, 5th 

minute, p = 0.0005, Figure 3.11c), and was evident for most participants (Figure 3.6e; examples of 

individual sequences in Figure 3.6f, right). As a sanity check, we also tested for replay of stimulus codes 

during the first resting period, which should not be possible since stimuli had not yet been experienced. 

Reassuringly, we found no evidence for such sequenceness (Figure 3.11d). 

If transfer replay constitutes a ‘rehearsal’ of structural knowledge, we might ask whether individuals 

with transfer replay are quicker to apply structural knowledge to new objects. Consequently, we 

measured the relationship between transfer replay strength and position code reactivation during each 

run of learning. Participants with greater transfer replay had less overall position code reactivation, and 

this effect was driven by a decrease in position code reactivation over learning in participants with high, 

but not those with low, transfer replay (p = 0.007 interaction term in regression; Figure 3.11e). We 

speculate that this reflects individuals with high transfer replay rapidly learning a position-to-stimulus 

mapping 

 

Figure 3.11 ‘Transfer replay’ of position code before exposure to new stimuli 

On Day 2, participants had a rest period in the scanner before exposure to the novel objects. During this rest 

period, we observed reverse sequences of pos code reactivations (i.e., position 4, position 3, position 2, position 

1). a, Example of a reverse sequence event made up of pos codes. b, Statistically, there was strong evidence across 

subjects for reverse sequences of pos codes. c, This reverse sequenceness was stable for all 5 minutes of rest. d, 

As a sanity check, we also looked for replay of the stim code in the first rest period, which should not be possible 
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because the stimuli have not yet been seen. We found no evidence of such activity. e, Between subjects, the 

strength of positional preplay (from panel a of this Figure) was negatively correlated with the degree of pos code 

activation during applied learning (from Figure 5a, red trace). Subjects with low preplay (by median split) 

expressed the position code more strongly throughout learning. Conversely, subjects with high preplay had a steep 

falloff in position code activation across learning. Each grey dot indicates an individual subject, with error bars 

representing standard error of the mean across subjects.  

 

3.2.10 Power increase in sharp-wave ripple frequencies around replay events 
In rodents, spontaneous offline replay events co-occur with bursts of high frequency (120-200 Hz) local 

field potential power known as sharp wave ripples (SWRs) 98. To see if we could detect a similar 

phenomenon in humans, we performed time frequency analysis in both studies (Figure 3.12a, see also 

Figure 3.13a, b for time frequency analysis in longer epoch and inter-replay-intervals from both 

studies). We evaluated frequencies up to 150 Hz, the maximum allowed by our data acquisition 

methods.  

Individual replay events were defined as moments with high probability of a stimulus reactivation that 

were also followed 40 ms later by high probability of reactivation of the next stimulus in the sequence 

(see Methods for details). At the onset of replay, we found a power increase at 120 - 150 Hz, compared 

to a baseline period 100 to 50 ms before replay events. This increase lasted approximately 100ms and 

was significant in both studies (Figure 3.12a; cluster-based permutation test with cluster forming 

threshold t > 3.1 and number of permutations = 5000).   

To examine this effect in sensor space, we averaged across power changes in the frequency range 120-

150 Hz and then ran permutation-based analysis on the sensors*time map (cluster forming threshold t 

> 3.1, 5000 permutations). The pattern of sensors with increased SWR-band power at replay onset was 

similar in both studies (Figure 3.12b) and strongly resembled the distribution over sensors that 

corresponds to intracranially recorded hippocampal LFP 99.   
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Figure 3.12 Replay coincides with ripple-band power, which source localizes around 

hippocampus 

a, Left, In the ripple frequency band (120-150 Hz), there was a significant power increase (averaged across all 

sensors) at the onset of replay, compared to the pre-replay baseline (100 to 50 ms before replay). Right, a cluster-

based permutation test (cluster forming threshold t > 3.1, number of permutations = 5000) identified a significant 

cluster around 140 Hz. This effect replicated across Study 1 and Study 2. Note, replay events were excluded if 

there was another replay event in the baseline period (see figure S7). b, Sensor distribution of p values (plotted as 

1-p) for ripple-band power increase at replay onset. We found similar sensor patterns in Study 1 and Study 2. c, 

combining data from two studies, source localization of ripple-band power at replay onset revealed significant 

hippocampal activation (peak MNI coordinate: X = 18, Y = -12, Z = -27). d, We also contrasted broadband power 

at replay onset times against the pre-replay baseline. This contrast also found activity in medial temporal lobe that 

encompassed bilateral hippocampus (peak MNI coordinate: X = 16, Y = -11, Z = -21). When performing the same 

contrast but using onsets 30 ms after replay, we found visual cortex (peak MNI coordinate: X = 20, Y = -97, Z = 

-13). Source image thresholded at t > 4.0 (uncorrected) for display purposes. Both the hippocampus (at 0 ms) and 

visual cortex (at 30 ms) survived whole-brain multiple comparison correction based on a non-parametric 

permutation test. e, The time course of hippocampus at its peak MNI coordinate is shown in red, while visual 

cortex at its peak MNI coordinate is shown in green. f, We also examined the contrast of rewarded sequence replay 

onset against unrewarded sequence replay onset, in Study 1. In this contrast we found vmPFC activation. g, We 

trained decoding models to detect representations of reward outcomes and neutral outcomes. Spontaneous 

reactivation of reward outcome representations was correlated with replay of the rewarded sequence. There was 

no correlation between reactivation of the neutral outcome and replay of the neutral sequence.  
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Figure 3.13 Replay events in long epoch, inter-replay-interval, and outcome reactivation 

a, b, Time-frequency maps shown for an extended epoch after replay events in study 1(a) and 2 (b).  0ms is the 

onset of replay events.  Notably these are only replay events which are not preceded by other replay events in the 

previous 100ms.  Note that the increase in ripple-band and low frequency power extends for several hundred 

milliseconds.  This can be explained by the fact that replay events occur in clusters.  Histograms show the inter-

replay intervals across all replay events in all subjects in study 1(a) and study 2(b). The modal replay onset time 

is immediately following the previous replay event.  The heavy tail of the distribution indicates that there are also 

periods with no replay events. c, To find the peak time point to train outcome decoders in the value learning phase 

from Study 1, we trained classifiers on every time point relative to the onset of outcome, and tested at every time 

bin relative to the same onsets. Each cell of this grid shows cross-validated (leave-one-out) prediction accuracy. 

We found the peak decoding accuracy was around 200 ms after the stimuli onset. d, The reward outcome 

reactivated at the same time as the onset of replay of the rewarded sequence during rest, while no such relationship 

was observed for neutral outcome and replay of neutral sequence. 

 

3.2.11 Source localization of replay 
In general, source localizing neural activity measured using MEG is treated with caution due to 

inaccuracies in the forward model and the priors used to invert it 100. With this caveat in mind, we asked 

about the likely anatomical sources of replay using resting state data combined from both studies.   

We epoched the data using replay onset events and beamformed power in different frequency bands 

into source space (see Methods for details). When we considered either ripple frequencies alone (120-

150Hz - Figure 3.12c) or broadband power across all frequencies (0-150Hz - Figure 3.12d left), power 

increases at the onset of replay events were associated with sources in medial temporal lobe. Notably, 
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broadband power increases 30ms after replay events were associated with sources in visual cortical 

regions (Figure 3.12d right). Each of these power increases survived statistical thresholding by 

permutation test (p<0.05 corrected; see Methods). For display purposes, we extracted the peak 

coordinate from hippocampus and visual cortex respectively and plotted the respective time courses of 

their broadband power (Figure 3.12e). In future experiments it will be intriguing to test the idea that 

relational knowledge embedded in medial temporal areas orchestrates replay of sensory representations. 

To localize the neural difference between replay of rewarded and neutral sequences in Study 1, we 

contrasted the onset of the rewarding sequence against the onset of the neutral sequence. We found 

activation in ventral medial prefrontal cortex (vmPFC), extending to the ventral striatum (Figure 3.12f). 

Given vmPFC is known to encode value, we tested whether reward representations were associated 

with the rewarded sequence during rest. As a supplemental analysis, we separately trained a classifier, 

using data from the times of outcome deliveries, to distinguish reward from non-reward outcomes 

(Figure 3.13c). We then applied this classifier to the second resting period in Study 1. We found that 

reward outcome representations were coincident with the onset of a rewarded sequence (two-tail one 

sample t test against zero, t (20) = 3.20, p = 0.005), with no such relationship between neutral outcome 

representation and onset of the neutral sequence (t (20) = 1.17, p = 0.26) (Figure 3.12g, Figure 3.13d). 

We speculate that a reward representation in vmPFC may play a role in initiating replay of a rewarded 

sequence.   

3.3 Discussion  
At rest, the hippocampal-entorhinal system and neocortex spontaneously play out rapid-fire sequences 

of real and fictive spatial trajectories, decoupled from current sensory inputs 16. Here, I provided 

evidence that such replay exists in non-spatial domains and can be measured non-invasively in humans. 

I show that fictive replay does not merely stitch together experienced sub-trajectories, but it also 

constructs entirely novel sequences in an inferred order determined by abstract structural knowledge. 

Finally, we observe that each replayed sequence is comprised not only of representations of the stimuli 

in the sequence, but also of representations of an abstract task structure. We propose that this abstract 

replay is a mechanism for generalizing structural knowledge to new experiences. 

3.3.1 Non-spatial replay  
Spatial replay is a remarkable neural mechanism that bridges between our understanding of circuit 

mechanism and computational function 16,42. If replay is a ubiquitous feature of brain activity that 

extends beyond the spatial domain, it may contribute to learning and inference that relies on arbitrary 

conceptual knowledge. Rapid spontaneous sequences of non-spatial representations have previously 
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been observed in humans 53. Three features of the current study bring these measurements closer to 

rodent hippocampal replay – the sequences are present during rest 13, they reverse direction after rewards 
20, and they coincide with an increase in source-localized hippocampal power in ripple frequency 98. 

Together with the degree of time-compression, these findings provide strong parallels and convergence 

with rodent replay events seen during sharp-wave ripples. 

3.3.2 Factorization and replay of inferred sequences 
In rodents, there is evidence for replay of never-before-experienced sequences that are consistent with 

the geometry of a spatial map 23,36. Here we ask whether, like spatial geometry, learnt arbitrary structures 

impose constraints on replay.  Participants first learned an arbitrary unscrambling rule that defined a 

sequence over a set of objects. After experiencing a novel set of objects, replay immediately sequenced 

the objects according to this rule rather than the order of experience. This can be viewed as “meta-

learning” 101-103, insomuch as previous learning facilitated rapid integration of new knowledge. 

Generalization of learned structures to new experiences may be facilitated by representing structural 

information in a format that is independent from its sensory consequences, as do grid cells in spatial 

experiments. Factorized representations are powerful as they allow components to be recombined in 

many more ways than were actually experienced 10,104,105. The ability to recombine knowledge during 

replay may allow disparate observations to be compiled into meaningful episodes online 95,106. Equally 

important, it may allow simulated experiences to drive cortical learning offline. Using time to bind 

together new combinations 107, is attractive as it avoids the requirement for a combinatorically large 

representational space (see also Kumaran and McClelland 108). 

In rodents, disruption of replay-containing sharp wave ripple events degrades subsequent spatial 

memory performance 109,110, implying a causal role for spatial replay. However, we cannot be certain 

the same causal role exists for the factorized replay described here. Future experiments using online 

detection and disruption of replay events will be needed. 

3.3.3 Anatomy of replay 
Although it is difficult to make confident anatomical statements with MEG, an advantage is 

simultaneous recording from the whole brain. Given the weight maps of our object classifiers, it is most 

likely that the spontaneous sequences we detected were sequences of neocortical representations. At the 

same time as these sequences appeared, there was also a transient increase in power around 140 Hz 

which source localized to the medial temporal lobe. These observations are consistent with the idea that 

replay may be coordinated between hippocampus and neocortical areas 25. Moreover, by taking whole 

brain measurements, we were able to make an observation that has not been reported in rodents. vmPFC 
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activated 10 ms prior to reward-associated reverse replay events, hinting that such events might be 

instructed by the reward system. These results commend simultaneous recordings in rodent prelimbic 

cortex and hippocampus during rest.   

3.3.4 Transfer replay 
On Day 2, abstract representations of position replayed after learning and also played out before applied 

learning (in the first rest period). This raises an interesting analogy to what is termed “preplay” in rodent 

research 18. In our human data, these same position codes were later tied to new stimuli during the 

learning phase and during post-learning replay on Day 2. Furthermore, the degree to which they played 

out before learning predicted the effects seen during applied learning. Therefore, it is plausible that 

transfer replay is used to support learning about new stimuli. In this spirit, transfer replay bears 

resemblance to preplay reported in rodent hippocampus. Indeed, it is also possible that preplay 

sequences reported in rodent hippocampus may have been learnt through experience of other sequences. 

However, we cannot determine if the pre-experience sequences in our data indeed reflect learnt structure 

or a preconfigured neural dynamic as previously suggested in the literature 56,71. An interesting 

possibility is the position codes might not only be abstracted over different sets of objects within this 

particular task, but in fact be common to other transitively ordered sequences 111. In rodents, preplay 

has been suggested to reflect knowledge of a common structure of space 18,112. Similarly, tasks which 

involve inference on linear structures may benefit from representations of their shared underlying 

statistics 10,113. 

3.4 Conclusion 
The ability to measure replay in humans opens new opportunities to investigate its organization across 

the whole brain.  Our data suggest powerful computational efficiencies that may facilitate inferences 

and generalizations in a broad array of cognitive tasks.  

3.5 Methods 

3.5.1 Participants 
Twenty-five participants (aged 19-34, mean age 24.89) participated in the first study. Eleven were male, 

and one was left-handed. Three were excluded before the start of analysis because of large movement 

(>20 mm) or myographic artefacts. Data from another participant was unusable due to missing triggers, 

leaving 21 participants in total for further analyses in Study 1. A separate cohort of twenty-six 

participants (aged 19-34, mean age 25.48) participated in the second study. Ten were male and two 
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were left-handed. Two of these were excluded before the start of analysis due to movement-related (>20 

mm) or myographic artefacts.  Another two participants were excluded due to failure of understanding 

of the task, leaving 22 participants in total for further analyses in Study 2. All participants were 

extensively trained the day before the MEG task and had a mean accuracy of at least 80% on probe 

trials of the sequence representation.  

All participants were recruited from the UCL Institute of Cognitive Neuroscience subject pool, had 

normal or corrected-to-normal vision, no history of psychiatric or neurological disorders, and had 

provided written informed consent prior to start of the experiment, which was approved by the Research 

Ethics Committee at University College London (UK), under ethics number 9929/002. 

3.5.2 Task  
In the Study 1, we exploited a revised sensory preconditioning paradigm (Figure 3.1a). There were eight 

visually distinct objects, each representing a different state in a sequence. Four objects constituted one 

single sequence, providing for two distinct sequences (i.e., A->B->C->D; A’->B’->C’->D’). 

Participants were initially presented with objects shuffled in order (e.g., C->D; B->C; A->B); and were 

subsequently required to rearrange them in a correct sequential order (e.g., A->B->C->D) without ever 

having experienced this full trajectory. Participants were trained a day before scanning and with 

different stimuli, meaning they were trained on the actual structure of the task. Then, on a second day, 

participants underwent MEG scanning doing a similar task but now performed with different stimuli 

(see Appendix I for standardized instructions in Study 1). The task was implemented in MATLAB 

(MathWorks) using Cogent (Wellcome Centre for Human Neuroimaging, University College London). 

In the MEG scanner, participants first completed a “functional localizer” task. This task was designed 

to elicit neural representations of the stimuli, and these were subsequently used to train classification 

models. In brief, the name of a visual object appeared in text for a variable duration of 1.5 to 3 s, 

followed immediately by the visual object itself. On 20% of trials, the object was upside-down. To 

maintain attention, participants were instructed to press one button if the object was correct-side-up, 

and a different button if it was upside-down. Once the participant pressed a button, the object was 

replaced with a green fixation cross if the response was correct and a red cross if the response was 

incorrect. This was followed by a variable length inter-trial interval (ITI) of 700 to 1,700 ms. There 

were two sessions, each session included 120 trials, with 24 correct side-up presentations of each visual 

object in total. Only correct-side-up presentations were used for classifier training. The trial order was 

randomized for each participant and visual object and state mapping was randomized across 

participants. 
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Participants were then presented with the stimuli and were required to unjumble the “visual sequence” 

in their minds into a correct order, i.e., the “structure sequence”. There were three phases in each block, 

where each phase comprised two pairwise associations, one from each structure sequence. In each 

phase, objects from the two associations were presented consecutively (i.e., the “visual sequence”), 

each stimulus was presented for 900 ms, followed by an inter-stimulus interval (ISI) of 900 ms, then 

followed by the other pairwise association. Each phase was repeated three times, then followed by the 

next phase. There were three blocks in total, each block was followed by multiple choice questions 

designed to probe whether participants had learnt the correct sequence (i.e., the “structure sequence”). 

At each probe trial, the probe stimulus appeared for 5 s during which participants need to think about 

which object followed the probe stimulus in the structure sequence, and then selected the correct 

stimulus from two alternatives. No feedback was provided. There was a 33% possibility that the wrong 

answer came from the same sequence but was preceding instead of following the probe stimuli. This 

setup was designed to encourage participants to form sequential rather than clustering representations 

(i.e., which sequence does this object belong to). 

After the Applied Learning, participants had a 5 mins rest period, during which they were not required 

to perform any task. After the 5 min rest period, participants were then taught that the end of one 

sequence led to reward of money, while the end of the other did not, in a deterministic way. In each 

trial, participants saw the object of each end of the sequence (i.e., D or D’) for 900 ms, followed by an 

ISI of 3 s, and then either received a reward (image of a one-pound sterling coin) or no-reward (blue 

square) outcome for 2 s, followed by an ITI of 3 s. Objects appeared 9 times, for a total of 18 trials. 

Participants were required to press one button for the reward, and a different button for non-reward. 

Pressing the correct button to ‘pick up’ the coin led to a payout of this money at the end of the 

experiment (divided by a constant factor of ten), and participants were pre-informed of this. After value 

learning, participants had another rest period, for 5 mins, without any task demands.  

As a final assignment, participants were asked to perform a model-based decision-making task. Here 

they were asked to determine whether presented stimuli led to reward or not. In each trial, an object was 

presented on the screen for 2 s, and participants were required to make their choice within this 2 s time 

window, followed by ITI of 3 s. Each stimulus was repeated 5 times such that there were 40 trials in 

total, 20 for each sequence. The trial order was fully randomized with a constraint that the same stimulus 

would not appear consecutively. No feedback was provided after a response so as to eliminate learning 

at this stage. After the task, participants were required to write down two sequences in the correct order. 

All participants were 100% correct, suggesting they maintained a task structure representation until to 

the end of the task. 
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In the Study 2, not only were sequences jumbled but in addition the pairwise associations were also 

disrupted (Figure 3.8a). We aimed to 1) replicate what we had found in Study 1, and if so, ask whether 

replay follows the structure of a sequence without temporal proximity 2) determine whether the 

structure representation was encoded explicitly, and establish its role in learning and replay.  

We separated neural representations at sensory and structure level and investigated how structure 

representation guided replay of sensory information into correct sequences (Figure 3.8a). On Day 1, 

each participant was given a template for a mapping between visual presentation order of stimuli and 

their positions in the structure sequences. Participants were told this mapping remained the same on the 

second day of MEG experiment, with the sole difference being the stimuli (i.e., a different set of 8 

stimuli were used on Day 2). The visual order of stimuli was now completely jumbled up, not only in 

terms of the order of sequences, but also the relationship of pairwise associations was disrupted in visual 

presentation (see Appendix II for standardized instructions in Study 2). This meant that participants had 

to use structure knowledge to explicitly figure out correct sequences. The mapping between visual order 

and structure order was randomized across participants.  

On Day 2, participants were required to perform a MEG experiment with a different set of stimuli, but 

under the same structure. First, participants were allowed a 5-min rest period at the beginning of MEG 

experiment before any experience of the new stimuli. This was similar to the setting of Dragoi and 

Tonegawa 18, where they found a “preplay” sequence depicting future spatial trajectories in the absence 

of prior experience. If the knowledge of relational structure is explicitly encoded, we predicted we 

would observe preplay depicting this structure representation in sequence.  

After a resting period, participants performed a functional localizer task, as in Study 1. This was then 

used to train classification models of stimuli. Note, the functional localizer task is before Applied 

Learning, such that no structure information is associated with these training data. These decoding 

models therefore capture a sensory level in neural representations of stimuli (i.e., stimulus code).  

Participants were then presented with the stimuli and required to unjumble the “visual sequence” into a 

correct order, i.e., the “structure sequence” based on the template they learnt the day before. There were 

two phases in each block, each phase comprised four images with each stimulus presented for 900 ms, 

followed by an inter-stimulus interval (ISI) of 900 ms. Each phase was repeated three times, then 

followed by the next phase. There were three blocks in total, each block followed by multiple choice 

questions without feedback, similar to the first study. However, differing from the first study, the probe 

stimulus appeared alone (without showing the alternative images) for 5 s, then the two alternatives were 

shown for 600 ms during which participants needed to make a response. This manipulation was to limit 

further any potential associative learning when the stimuli were presented together. 
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After the Applied Learning, participants were given a rest for 5 mins again. We were interested 1) to 

replicate our finding in the first study, i.e., replay stitched together independent events into a sequence 

that is constrained by the relational structure; 2) to understand how structure representations guide 

sensory information into a replay of correct sequences.  

Finally, participants were required to determine the corresponding position or the sequence identity of 

that stimulus in its structure constrained sequence. This testing aimed to elicit the neural representation 

of structure information associated with each stimulus. There were two blocks, one block was for 

position testing, and the other was for the sequence identity testing. The order of the two blocks was 

counterbalanced across participants.  

In each trial, object was presented on screen for 2 s, and participants were required to determine either 

its associated position or the sequence identity within the 2 s time window, followed by ITI of 3 s. Each 

stimulus repeated 10 times in each block with a total of 160 trials, 80 for position testing (20 trials for 

each position) and 80 for sequence testing (40 trials for each sequence). The trial order was fully 

randomized with a constraint that the same stimulus would not appear consecutively. No feedback was 

provided. After the task, as in the first study, participants were required to write down the structure 

sequences in the right order, and all participants were 100% correct with no error.  

3.5.3 MEG Acquisition and Pre-processing  
The same procedures for MEG acquisition and preprocessing were applied to both studies. MEG was 

recorded continuously at 600 samples/second using a whole-head 275-channel axial gradiometer system 

(CTF Omega, VSM MedTech), while participants sat upright inside the scanner. Participants made 

responses on a button box using four fingers as they found most comfortable.  

The data were resampled from 600 to 100 Hz to conserve processing time and improve signal to noise 

ratio. All data were then high pass filtered at 0.5 Hz using a first order IIR filter to remove slow drift. 

After that, the raw MEG data was visually inspected, and excessively noisy segments and sensors were 

removed before independent component analysis (ICA). An ICA (FastICA, 

http://research.ics.aalto.fi/ica/fastica) was used to decompose the sensor data for each session into 150 

temporally independent components and associated sensor topographies. Artefact components were 

classified by the combined inspection of the spatial topography, time course, kurtosis of the time course 

and frequency spectrum for all components, Eye-blink artefacts exhibited high kurtosis (>20), a 

repeated blink structure in the time course and very structured spatial topographies; Mains interference 

had extremely low kurtosis and a frequency spectrum dominated by 50 Hz line noise. Artefacts were 
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then rejected by subtracting them out of the data. After that, all later analyses were performed directly 

on the filtered, cleaned MEG signal, in units of femtotesla.  

3.5.4 MEG Analysis  
Lasso-regularized logistic regression models were trained separately for the sensory and structure level 

representations of stimuli. Only the sensors that were not rejected across all scanning sessions in the 

preprocessing step were used to train the decoding models. A trained model k consisted of a single 

vector with length of good sensors n + 1: slope coefficients for each of the good sensors together with 

an intercept coefficient. 

In both studies, decoding models for the sensory level representation were trained on MEG data elicited 

by direct presentations of the visual objects. These presentations were taken from the functional 

localizer task, specifically the MEG data at 200 ms following stimulus onset. This 200 ms time point 

was selected based on observations from our previous work showing that when object representations 

are retrieved, the reinstated spatial pattern is most similar to that observed 200 ms after onset of direct 

object presentation 57 (see also Figure 3.9a). The decoding models for sensory representation were 

verified on training data through leave-one-out cross-validation approach (Figure 3.9 & Figure 3.5). 

The design of Study 2 enabled us to dissociate between the neural representation of sensory and 

structure level of stimuli. To check whether these classifiers learned abstract information about position 

and sequence, rather than relying on coincidental sensory features of the stimuli, we used a special 

cross-validation approach. Instead of holding out individual trials at random, we held out all the trials 

of one randomly selected object. This meant that a classifier that focused on sensory features would 

result in below-chance accuracy. To perform above chance, the classifier must identify features that 

represent the structural information (position or sequence). Using a permutation-based threshold, which 

corrected for multiple comparisons across time, we found that cross-validated decoding accuracy 

exceeded chance for both position and sequence code classifiers (Figure 3.9b, c). Accuracy peaked at 

300 ms post stimulus onset for the position code, and at 150 ms post stimulus onset for the sequence 

code.  

To explore which MEG sensors contained the most information about object-level and abstract-level 

representations of stimuli, we repeatedly performed the same cross-validation analysis described above, 

but each time using a different random subset of 50 sensors. On each iteration, we found a classification 

accuracy. After performing this analysis 2000 times with different random subsets, we averaged all the 

accuracies that each sensor participated in, to obtain an approximation of that sensor's contribution to 

predicting the labels (Figure 3.9). 
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We then used these trained models to make predictions as to whether unlabelled MEG data 

corresponded to a neural representation of the state (stimulus/position/sequence) k. Each time point was 

treated independently. At each time point in the unlabelled data, the data vector over sensors was 

multiplied by beta estimates over sensors of k. This procedure yielded a matrix X with number of states 

of columns and as many rows as time bins.  

3.5.5 Sequenceness Measure  
We used TDLM described in Section 2 to measure the degree to which decoded human MEG activity 

tends to follow the transition matrix of the task systematically in either a forward or reverse direction. 

First the decoding models were trained to recognize each visual object or position, then they were used 

to decode each stimuli/position reactivation strength during resting/decision-making. For example, state 

A admits a transition to state B. If the resting period contained forward sequences, then the decoded 

probability of state A at time T should be correlated with the decoded probability of state B at time T + 

t, where t defines a lag between neural state representations. This method was validated on simulated 

data and has been successfully applied.  

Evidence of sequenceness was reported as the subtraction between forward and backward direction of 

same transitions at each time lag. Subtraction in this instance circumvents a potential (auto)correlation 

shared by both directions at the same time lag and protected the validity of statistical inference. In the 

current study, the transition matrix was pre-specified based on either the rule-defined order (i.e., 

“structure sequence”) or experienced visual order (i.e., “visual sequence”).  

We also computed the extent to which neural sequences followed longer steps (e.g., length-3, length-4) 

with the same state-to-state time lag, while controlling for evidence of shorter length. In doing so, we 

avoid a possibility of false positives arising out of strong evidence for shorter length. The method is 

largely the same as the GLM approach described above.  In addition, we put shorter length transitions 

into the design matrix as confounding regressors, e.g., if we look for the evidence of A->B->C at 50 ms 

time lag, we will regress state decoding vector A with time lag 100 ms onto C while controlling for 

evidence of state decoding vector B reactivated at time lag 50 ms. This process can be generalized to 

any number of steps. In the current study, we employed a linear track structure, the maximal length is 

4, since the end of sequence did not go back to the start of sequence. 

3.5.6 MEG Source Reconstruction 
All source reconstruction was performed in SPM12 and FieldTrip. Forward models were generated on 

the basis of a single shell using superposition of basis functions that approximately corresponded to the 

plane tangential to the MEG sensor array. We calculated the probabilities of replay happened at each 
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time point during rest by multiplying the decoded probability of the first state by the time-shifted 

probability of the second state. The shifted time is the time lag that was shown to give the peak evidence 

of sequenceness. After that, we epoched the resting data around the time point that has a high probability 

(top 5%) to give rise to replay with a time window from -100 ms to 200 ms after the onset of replay. 

Linearly constrained minimum variance beamforming 92 used to reconstruct the epoched MEG data to 

a grid across MNI space, sampled with a grid step of 5 mm. The sensor covariance matrix for 

beamforming was estimated using data that was bandpass filtered to a broad band, 1-45 Hz, using 0% 

regularization. The baseline activity is the mean neural activity averaged over -100 ms to -50 ms before 

the replay onset. All non-artefactual trials were baseline corrected at source level. We looked at the 

main effect of the initialization of replay. To explore the difference of source between the replay of 

reward and neutral sequence in first study, we applied the above approach separately for reward and 

neutral sequence and performed the contrast between reward and neutral trial at source level.  

All source images were thresholded at t > 4 (uncorrected) for display purposes. Non-parametric 

permutation tests were performed on the volume of interest to compute the multiple comparison (whole-

brain corrected) P-values of clusters above 10 (number of voxels), with the null distribution for this 

cluster size being computed using permutations (n = 5000).  
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4 HUMAN REPLAY AND MODEL-
BASED LEARNING 

4.1 Introduction 
Effective learning requires incorporating new experience into our existing knowledge of the world. 

When you encounter a traffic jam at a crossroads, you learn that the route just taken should be avoided 

in the future, but equally the value in avoiding the alternate paths that converge to this location. Learning 

from direct experience can be straightforwardly achieved via “model-free” mechanisms that detect co-

occurrence between actions, like routes taken, and subsequent rewards 114,115. However, it requires 

additional computation to propagate that experience to more distal situations, as in the example of 

alternate converging roads, where it may have relevance to future action. Despite behavioral evidence 

for this type of indirect value learning, we understand little about how it is achieved in the brain 114,115. 

In reinforcement learning (RL) theory 6, non-local value propagation can be achieved by “model-based” 

methods that rely on a learned map or model of the environment to simulate, or simply retrieve, potential 

trajectories 12. These covert trajectories can stand in for direct experiences and span the gaps between 

actions and outcomes 32, a process referred to as experience replay. A potential neural substrate for this 

process is the phenomenon of hippocampal “replay”, where cells in the rodent hippocampus that encode 

distinct locations in space fire sequentially during rest in a time-compressed manner, recapitulating past 

or future trajectories 13-15. Utilizing methods developed to measure neural sequences noninvasively 116 

(detailed in Section 2), such replay has now been found in humans during rest 31,54,117, with strong 

parallels to observations in rodents 54. Although these events appear appropriate to support value 

learning, there is little evidence in either species about their involvement. 

If experience replay can be shown to support value learning, then its statistics should also bear on a 

second unresolved question. Given limited time, which of the myriad possible future actions should the 

brain prioritize to replay? A reward-maximizing agent should prioritize replay of whichever past 

experiences are most likely to improve future choices and thereby earn more reward. Theoretical 

analysis 34 argues that such rational priority for replay can be further decomposed into the product of 

two factors, namely need and gain. Need captures how frequently a given experience will be 

encountered again in the future, while gain quantifies the expected reward increase from better decisions 

if that experience is replayed. 



   81 

 

 

4.2 Results  

4.2.1 Task design 
I tested hypotheses that neural replay facilitates non-local learning, and that such replay is prioritized 

by its utility for future behavior. To detect human replay, I measured whole-brain activity using 

magnetoencephalography (MEG) while participants performed a novel decision-making task. The task 

explicitly separates learning from direct vs. non-local experience, permitting the measurement of 

unambiguous neural and behavioral signatures of the latter. 

To isolate local and non-local learning the task comprised three starting states (henceforth called 

“arms”), each with two alternative choice paths (Figure 4.1A). A choice then leads to a sequence of 

three stimuli (“path”) followed by a final stimulus. At each trial, participants are presented with one of 

the starting states and asked to make a choice between the two options with the goal of maximizing 

reward. Importantly, the two end states, reachable from each starting state, are shared across all three 

starting states. Each end state leads to a reward with a probability that changes slowly from trial to trial. 

This task structure allows subjects to use reward feedback to inform their choices, including those at 

other states. The use of three-stimulus sequences allows unambiguous measurement of extended 

replayed sequences (vs co-occurrence) and their direction.  

In addition to distinguishing local (the arm just chosen) from non-local experience, the task allows 

testing hypotheses that replay and learning favour the higher priority of the two non-local arms. In the 

design I use, priority differed between arms on the one hand due to need, because each starting arm was 

encountered with a different, but constant, starting probability: rare (17%), occasional (33%), and 

common (50%) respectively. These probabilities were learnt prior to the main task (Figure 4.1B). Since 

rewards were stochastic with fluctuating probability, there is also the factor of gain from propagating 

information about outcomes to different arms, and this fluctuated from trial to trial according to 

individual reward histories. For instance, a reward is more informative in helping to choose actions that 

would otherwise not be favoured, whereas non-reward is conversely more informative for avoiding 

actions that would otherwise have been chosen.  

I was interested in how participants learn efficiently by incorporating new experiences in the task, 

particularly those derived from a different starting state (non-local), into updated choices. To achieve 

this, I first taught subjects a model comprising knowledge of the relations among different elements in 

the task, as well as the different starting probability assigned to each arm. To avoid biased learning of 

the model, I introduced each component of the task carefully at different times (Figure 4.1B).  
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4.2.2 Functional localizer & Model construction 
To index neural representations of states in the main RL task, I first showed participants 18 visual 

stimuli in random order, a task phase called the functional localizer. These stimuli were later reused to 

form distinct states in the RL tasks (e.g., 𝐴1, 𝐴2, 𝐴3 in Figure 4.1A). I constructed a probabilistic 

decoding model for each stimulus based on their evoked neural response in this functional localizer 

task. As before, these decoding models are later used to search for sequential reactivation of states in 

the main RL task. Notably, these classifiers are unbiased to experiences and task structure, because at 

the localizer phase subjects had no knowledge of the relationship among those stimuli, nor their value.  

The experiment then proceeded across distinct phases to ensure knowledge of the task model (i.e., model 

construction, Figure 4.1B). Thus, upon completion of a functional localizer, subjects learned how the 

18 stimuli formed 6 distinct sequences, i.e., the relationship among the 18 stimuli. We refer to this as 

sequence learning. Subjects then learned a mapping between sequences and end states, i.e., end state 

learning and subsequently learned which sequence belongs to which starting arm, i.e., arm learning. 

Up to this point, experience is still unbiased, and participants have learnt the relational structure between 

arms, outcomes, and sequences alone. At the end of this learning stage, subjects learned the starting 

probability of each arm, and that these probabilities remained constant throughout the experiment. 

Subjects also learned the frequency of each starting arm by experience, i.e., frequency learning. We 

ensured that subjects had knowledge of the full task structure with a quiz, where performance was 

always above 85% (see details in Materials and Methods). Upon completion of the entire training 

pipeline, participants then performed the main RL task (Figure 4.1A).  
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Figure 4.1 Experimental design for model-based reinforcement learning task  

(A) The main RL task. At each trial, participants are presented with one of the three starting arms based upon a 

learnt fixed probability. They then select one from the two alternatives paths within this arm. The reward 

probability of outcome states changes slowly and independently over time. A crucial task feature is that outcomes 

(i.e., X and Y) are shared across all three arms, a design feature that enables non-local learning. (B) Each 

experimental task phase is shown. Participants learn a correct task model before commencing the main RL task, 

and at the beginning, are shown stimuli in a randomized order. (C) Behavioral evidence showing exploitation of 

task model to aid learning. Same/diff is defined based on whether the current starting arm is the same or different 

to that of the last trial; r/nr indicates whether subjects were reward or not rewarded at the last trial. P(same) is the 

probability that participants, in current trial, select a path leading to the same outcome state as that in the last trial. 

Error bars shows the 95% standard error of the mean, each dot indicating results from each subject. 

4.2.3 Behavioral evidence of prioritization in non-local learning 
In the RL task, participants need to learn the value of each action at each starting arm, with the aim of 

maximizing reward. We test whether participants exploit a learnt task model, ascertaining whether they 

transfer the value obtained in a chosen path to other nonlocal paths that lead to the same outcome. For 

example, simple model-free learning allows subjects to repeat a previously rewarded action when they 

encounter the same starting state again. Indeed, we found that, when the next starting state was the 

same, the participants were more likely to choose the path leading to the same outcome if rewarded on 

the last trial, compared to no reward (Mixed effects logistic regression, p = 7.5×10-15). However, 

achieving equivalent learning at the other starting states requires additional model-based computation, 

such as replay to propagate the reward. In fact, model agnostic data showed the path leading to a 
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rewarded end state was favoured even when the choice was next presented at a different starting state 

(p = 9.5×10-23), and this effect did not differ between the same and different starting arms (p = 0.90 for 

the main effect of arm, p = 0.46 for the interaction effect between arm and reward, Figure 4.1C). This 

is a hallmark of non-local, model-based learning 118,119.  

Next, I used a more detailed computational modelling of the trial-by-trial learning process to test 

whether this behavioral signature of learning from non-local outcomes was greater for an arm with 

higher priority. I fit behavior to a computational Q-learning model that updates the value of each arm 

from obtained rewards (see Methods for modelling details). I augmented this baseline model with 

additional free parameters measuring the strength of non-local learning as a function of two partial 

proxies for priority, gain (informativeness about choice) and need (arm probability) separately. In the 

task, there are always two nonlocal paths sharing the same end state with the current chosen one, 

allowing us directly to compare learning across these two non-local paths. We calculated the strength 

of learning by estimating separate learning rates for the higher and lower priority paths on each trial, 

with a third learning rate for updating the local (just chosen) arm (𝛼F = 0.63). Numerically, a higher 

learning rate was estimated for both higher-gain (𝛼G= 0.79 vs 𝛼?= 0.37, Table 4.1) and higher-need 

arms (𝛼G= 0.61 vs 𝛼?= 0.54, Table 4.1), but this difference was significant for gain alone (p = 0.020 

gain; p = 0.16 need, Table 4.1). These results provide behavioral support for a hypothesized rational 

prioritization of non-local learning. Figure 4.2A, B, see also Figure 4.3 

4.2.4 Neural decoding & Sequential reactivations 
 

I next turned to neural data and asked how the observed non-local learning is achieved in the brain. 

First, I verified that it was possible to decode all 18 visual stimuli well above chance, showing a peak 

cross-validation decoding accuracy at 47 ± 3 % (vs. chance level, 1/18 ≈ 6%), based on evoked neural 

response in the functional localizer task (Figure 4.2A, B, see also Figure 4.3, and Methods for decoding 

analysis details). I then applied the decoding models of these 18 stimuli to the RL task to test for their 

sequential reactivations at the point of outcome receipt, the time period when new learning occurs. In 

fact, the focus on this period is analogous to the time when rodents consume a reward (but also see 

discussion for connections to rodent sequences). We operationally refer to any reactivation of sequences 

as replay, given we are looking for patterns of spontaneous reactivations off-task.  

We first look for spontaneous replay of all possible transitions consistent with the model, where forward 

sequence expressed the same direction as experience (e.g., 𝐴1 → 𝐴2 → 𝐴3), and backward sequence 

the opposite (e.g., 𝐴3 → 𝐴2 → 𝐴1). Utilizing the previously described advance in MEG decoding of 
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replay, in this experiment I could now assess the evidence for replay in a forward and backward 

direction separately 116, found significant forward replay peaking at 30 ms state-to-state time lag (Figure 

4.2C), and reverse replay that peaked at 160 ms state-to-state lag (Figure 4.2D, see Methods for 

sequence analysis details). Consequently, I focus on this 30 ms forward and 160 ms reverse replay in 

all later analyses. 

 

 Gain model  Need model 

Parameters Mean 5% 𝑅t  Mean 5% 𝑅t 

𝛼F 0.63 0.54 1.00  0.64 0.55 1.00 

𝛼G 0.79 0.65 1.00  0.61 0.53 1.00 

𝛼? 0.37 0.14 1.00  0.54 0.45 1.00 

𝛽 1.40 1.20 1.00  1.40 1.10 1.00 

Table 4.1 Estimates of free parameters from the gain/need model.  

Free parameters: 𝜶𝒅 – learning rate for direct experience,  𝜶𝒉 – learning rate for non-local experience of high gain 

(gain model) or need (need model), 𝜶𝒍 – learning rate for non-local experience of low gain (gain model) or need 

(need model), 𝜷 - inverse temperature. mean, 5% confidence interval and the potential scale reduction factor on 

split chains, 𝑹' . 
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Figure 4.2 Stimuli decoding and neural sequences 

(A) All 18 stimuli classifiers are trained based on their evoked multivariate neural patterns at each time bin, from 

10 ms to 800 ms post stimulus onset, in a functional localizer phase and tested at all time points across 10-800 ms 

in a leave-one-out cross validation scheme. This provides temporal generalization plots, with the Y axis indicating 

time bins the classifiers were trained on, and X axis indicating the test time of classifiers. Accuracy was obtained 

from all 18 stimuli classifiers, and the readout is deemed accurate if the corresponding classifier of the test label 

gives the highest decoding probability, as in previous studies 53,54,117. The diagonal of the temporal generalization 

plots is the decoding accuracy at the same time we trained the classifiers on, peaking at approximately 200 ms 

post stimulus onset. (B) We trained stimuli classifiers based on their evoked neural response at 200 ms,  as in 

previous studies 54,117. The dotted line is the permutation threshold taken as the 95% percentile of peak decoding 

accuracy on randomly permuted labels. (C-D) Applying trained classifiers to time of outcome receipt in the RL 

task. A sequence analysis 116 provided evidence for two distinct sequence signatures, a forward sequence (blue) 

peaking at a 30 ms state-to-state time lag (C), and a backward sequence (red) peaking at 160 ms time lag (D). The 

dotted line is the permutation threshold that controls for multiple comparisons. It was taken as the 95% percentile 

on the peak sequenceness value over all computed time lags in the permutation. This permutation is implemented 

by randomly permutating the transition matrix, which are shown to be statistically robust 54,116,117. The X axis is 

the time lags. Sequence analysis is done separately at each time lag. The Y axis is the evidence of sequenceness, 

i.e., sequence strength.  
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Figure 4.3 Classifiers Performance of the Lasso Logistic Regression Models 

The leave-one-out cross-validation results are shown for each classifier (all 18 in total) trained in functional 

localizer task. Dotted line indicates the permutation threshold estimated by randomly shuffling the labels and 

redoing the decoding process. These plots only use classifiers trained at 200 ms post stimulus onset, which was 

used throughout the study for reactivation and sequence analysis.  

 

4.2.5 Two types of replay: functional and physiological differences 
The 30 ms state-to-state time lag forward replay is similar to what we found previously during post-

task rest 54. The 160 ms reverse replay has not been reported previously, but  is an intriguing finding 

given its direction is consistent with proposals for solving credit assignment via backpropagating 

reward, based on theory 34 and empirical data 13,20,54. Additionally, its slower speed (160 ms state-to-

state lag, roughly 6Hz) might be considered to align with a computation capable of supporting online, 

model-based, cognition. If indeed this 160 ms reverse replay supports non-local updating, then this 

predicts it will represent contents of non-local trajectories. I found this 160 ms reverse replay 

dominantly represents non-local paths (one sample t test, t (28) = 2.92, p = 0.007), and does so to a 

significantly greater degree than local ones (paired t test, t (28) = 2.21, p = 0.03, Figure 4.4A). The 30 

ms forward replay shows an opposite pattern (interaction between replay types and representational 
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content,  F (1,28) = 15.01, p = 0.001), not significantly representing the non-local paths (one sample t 

test, t (28) = -0.09, p = 0.93), but mainly the local path, corresponding to recent experience (t (28) = 

3.37, p = 0.002, Figure 4.4B).  

In addition to a representational difference between the two types of replay, we also tested whether 

these distinct replay signatures differ in terms of their underlying physiological properties. A previous 

study 54 showed that fast human replay (with time lag of 20-50 ms) during rest is associated with an 

increased ripple frequency power (120-180 Hz), akin to sharp wave ripple replay in rodents 22,110,120. I  

replicate this finding again, showing that initialization of a 30 ms forward replay is associated with a 

ripple frequency power increase (one sample t test, t (28) =5.82, p = 2.9×10-6), but this power increase 

is not present for 160 ms reverse replay (t (28) =0.71, p = 0.48). In addition, there is a significant 

difference in the power of ripple frequency between the two types of replay (paired t test, t (28) =2.84, 

p = 0.008, Figure 4.4C). Beamforming results further suggest while both replay types are associated 

with activation in visual cortex and medial temporal lobe, a 30 ms forward replay has higher 

hippocampal activation compared to the 160 ms reverse replay, while the 160 ms reverse replay has 

greater cortical engagement (Figure 4.5).   

 

 

Figure 4.4 Representational and physiological differences between the two types of replay 

(A) A 160 ms reverse sequence encodes non-local as opposed to local experience. (B) A 30 ms forward sequence 

encodes local experience alone, but not non-local. (C) The initialization of 30 ms forward sequence is associated 

with a power increase in a ripple frequency band (120-180 Hz), consistent with previous study 54, but this is not 

the case for 160 ms reverse sequence. These high frequency power signatures are significantly different. The grey 

line connecting results from the same subject. Error bars shows the 95% standard error of the mean, each dot 

indicating results from each subject. 
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Figure 4.5 Whole-brain source localization of the two types of replay 

(A) Source localization of the replay onset for the 30 ms forward replay and 160 ms reverse replay separately, 

revealed significant visual and medial temporal lobe (MTL, including hippocampus) activation (peak Montreal 

Neurological Institute [MNI] coordinate: X = -17, Y = −45, Z = −16 for 30 ms forward replay,  X = 18, Y = −66, 

Z = −16 for 160 ms reverse replay). The activation in visual cortex and MTL belong to a similar cluster, and 

survived whole-brain multiple comparison correction based on a non-parametric permutation test (cluster forming 

threshold, t = 5, n =5000) for both 30 ms and 160 ms replay. (B) Contrast the 30 ms forward replay vs. the 160 

ms reverse replay, which revealed higher activation in the MTL (peak MNI coordinate: X = -26, Y = −10, Z = 

−29) for the 30 ms replay, and higher cortical regions - postcentral gyrus (peak MNI coordinate: X = 49, Y = −27, 

Z = 32) for the 160 ms replay. Both the MTL (higher in 30 ms forward replay) and postcentral gyrus (higher in 

160 ms reverse replay) survived whole-brain multiple comparison correction based on a non-parametric 

permutation test (cluster forming threshold, t =2.1, n =5000). 

 

4.2.6 Nonlocal Replay facilitates non-local learning 
Having identified replay candidates for learning, I then tested whether non-local replay (i.e., the 160 ms 

reverse replay) facilitates non-local learning in the service of choice behavior, and if so, whether such 

replay is competitively prioritized in accord with theoretical accounts 34. I again posed these questions 
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in terms of RL-based computational models of trial-by-trial choice behavior (see Materials and Methods 

for modelling details). 

First, to ask whether replay helps non-local learning, I augmented the Q-learning model with a term 

measuring trial-by-trial neural replay. In particular, having first separated learning rates for local and 

non-local arms (as before), I was in a position to test whether a baseline learning rate for each non-local 

arm was significantly increased on trials when that arm expressed significant neural replay, vs. when 

this was not the case. I found higher learning rates in the presence vs. absence of significant 160 ms 

reverse replay (𝛼!"#$%& = 0.70;	𝛼'()!"#$%& = 0.61; 		𝑝	 = 	0.023, Table 4.2). This was not the case 

when, as a control, we repeated the same analysis for the 30 ms forward replay 

(differce	in	learning	rates	= 0.01, p = 0.457, Table 4.2), consistent with the lack of representation of 

non-local arms in the 30 ms forward replay. 

Finally, we asked whether replay is prioritized to favour more beneficial experiences. Here I  computed 

a net priority score from the product of gain (estimated per-arm, -trial, and -subject from the previous 

behavioral model) and need (17%, 33%, 50%, for paths in rare, occasion and common arm, 

respectively) for each non-local path at each trial, comparing replay across the higher vs. lower priority 

paths on each trial (Figure 4.6A). The priority score is the net product between need and gain. The 

need is assumed to be the starting probability of each arm, the gain is calculated trial-by-trial based on 

reward received and related policy change (assuming perfect learning, see details in the Method section).  

Significantly greater replay was seen for a higher priority path, and this held for reverse replay at 160 

ms but not (as expected, for control) for 30 ms forward replay. (t (28) = 3.30, p = 0.003; for 30 ms 

forward replay, t (28) = -0.34, p = 0.74, Figure 4.6B, C). Decomposing this effect, we found no 

evidence that replay was prioritized according to either need or gain considered alone (high vs. low 

need, t (28) = 0.17, p = 0.87, high vs. low gain, t (28) = 0.27, p = 0.79). 

 

 160ms reverse replay  30ms forward replay 

Parameters Mean 5% 𝑅t  Mean 5% 𝑅t 

𝛼F 0.65 0.55 1.00  0.65 0.55 1.00 

𝛼2;:?#< 0.70 0.56 1.00  0.61 0.50 1.00 

𝛼,502;:?#< 0.61 0.47 1.00  0.60 0.51 1.00 
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𝛽 1.40 1.20 1.00  1.40 1.10 1.00 

Table 4.2 Estimates of free parameters behavioral model 

Free parameters: 𝜶𝒅 – learning rate for direct experience,  𝜶𝒓𝒆𝒑𝒍𝒂𝒚 – learning rate for non-local experience with 

replay, 𝜶𝒏𝒐,𝒓𝒆𝒑𝒍𝒂𝒚 – learning rate for non-local experience without replay, 𝜷 - inverse temperature. mean, 5% 

confidence interval and the potential scale reduction factor on split chains, 𝑹') from the sequence (160 ms vs. 30 

ms). 

 

 

 

Figure 4.6 Prioritization of non-local replay  

(A) Sequenceness differences in high vs. low priority (determined by gain×need) of non-local paths. We use a 

backward minus forward sequenceness to provide a summary replay statistic at each time lag. A positive value 

indicates greater backward sequenceness, while a negative value indicates higher forward sequenceness. The 

above-zero peak at 160 ms time lag suggests a greater reverse replay for a high priority path. The dotted blue line 

denotes result at 30 ms lag, and the dotted red line indicates result at 160 ms lag. (B-C) Breakdown results plotted 

separately for need and gain are shown. The 160ms reverse sequence alone is replayed more in higher priority 

non-local path. Error bars shows the 95% standard error of the mean, with dots indicating results from each 

subject. 

 

4.3 Discussion 
I show that reverse neural replay, with a 160 ms state to state lag, is a neural signature for non-local 

value learning. I show this replay facilitates learning of action values by recapitulating non-local 

experiences that links actions and outcomes across intervening states, evidenced by enhanced learning 
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effects on subsequent choices. I also show that the content of replay, and separately the strength of 

updating as expressed behaviourally, are prioritized according to their utility for future behavior, 

consistent with a proposed RL theory 34.  

The ability to measure fast sequential replay using MEG in humans, and a disassociation between two 

types of replay as a function of local vs. non-local learning in current study, establishes for the first time 

a connection between neural replay and reward learning from non-local credit assignment as expressed 

in behavior. Accordingly, these findings corroborate a long-standing hypothesis about the role of awake 

replay on model-based planning and credit assignment  13,20, and extend previous fMRI result in humans 

linking nonlocal reactivation to planning 118,121.  

The 160 ms reverse replay supporting non-local learning is distinct from the forward 30 ms replay 

reported in previous studies 53,54. Unlike the latter, the 160 ms replay is not associated with a ripple 

frequency increase 54, and this raises an intriguing possibility that 160 ms replay, which has a state-to-

state frequency of around 6 Hz, might be a homologue of rodent theta sequences 17,45,55. However, theta 

sequences generally occur during ongoing behavior in rodents and are forward in direction, akin to a 

“look ahead” signal. The160 ms replay I identify is (more like sharp wave ripples in rodents 20) 

backward in direction and occurs at a trial’s end. Whether it corresponds to either the rodent 

phenomenon is an open question, but the reverse direction and its timing are suited to solve the non-

local temporal credit assignment problem, where an outcome at the end of path impacts on decisions 

made at the beginning.  

I conclude that the findings reveal that a non-local replay supports, what is often referred to, as ‘model-

based learning’ via prioritizing memory access. The findings extend the role of replay to account for 

non-experiential inferential learning and are remarkably consistent with reinforcement learning theory. 

4.4 Methods 

4.4.1 Participants 

31 adults aged 19–31 participated in the experiment, recruited from the UCL Institute of Cognitive 

Neuroscience subject pool and from a mailing list for MSc students. Eighteen are female, three are left-

handed. All participants had normal or corrected-to-normal vision and had no history of psychiatric or 

neurological disorders. Two subjects were excluded for later analysis. Among them, one was a pilot 

subject and had gone through a slightly different procedure of task, the other subject had metals in her 

hair, making her MEG data unusable. This leaves 29 subjects in total for later analyses. All participants 

provided written informed consent and consent to publish prior to start of the experiment, which was 
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approved by the Research Ethics Committee at University College London (UK), under ethics number 

1825/005. 

4.4.2 Details of the task design 

The task comprises three phases: functional localizer, model construction and a 3-armed reinforcement 

learning (RL) task. It is designed specifically to avoid bias in state decoding and ensure correct model 

of the relational structure has been built before the RL task. The task was implemented in MATLAB 

(MathWorks) using Cogent (Wellcome Trust Centre for Neuroimaging, University College London).  

 Functional localizer task 

All 18 distinct visual stimuli were shown in a randomized order. Those stimuli indicated intermediate 

states in the main RL task, which form 6 sequences with no overlapping representation (e.g., 𝐴1 →

𝐴2 → 𝐴3; 𝐵1 → 𝐵2 → 𝐵3). Note, the mapping between stimuli and states are randomized among 

subjects. Participants do not know which stimuli will indicate which state at this time. We will train a 

classifier for each stimulus based on their evoked neural response in this task and use it to decode state 

reactivations in later RL task. 

At each trial, a visual stimulus (e.g., house) was presented at the centre of the screen for 800 ms, 

participants were asked to think about its semantic meaning, i.e., this is a house. After that, a text (e.g., 

“house” or “face”) will appear, and the subjects were asked to make a yes or no response within 1000 

ms using a response box (mean accuracy: 97.3 ± 0.4%, Mean ± SE). This is followed by a jittered 500-

700 ms inter-trial interval (ITI). There are 50 trials for each stimulus presentation, resulting in 900 trials 

in total. This task is designed to encourage semantic representation of the stimuli, which we have found 

useful in previous studies 54,117.  

 Model construction task 

We want to study model-based learning. We need to make sure the participants have learnt the correct 

model first. We teach subjects the knowledge of task structure in the following order: 1) sequence 

learning: stimuli-sequence mapping, 2) outcome learning: sequence-outcomes mapping; 3) arm 

learning: sequence-arms mapping, 4) frequency learning: frequency of the three different arms. 

In the sequence learning, participants learnt how the 18 stimuli form 6 distinct sequences. Each 

sequence comprises 3 stimuli. The 3 stimuli appeared on the screen in the right order (e.g., 𝐴1 → 𝐴2 →

𝐴3), with each stimulus lasting for 1000 ms, and followed by the next one. There are 3 learning blocks. 
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Each sequence was presented 10 times within each block. To test whether participants have learnt the 

transitions within sequences, we probed their knowledge in the end of each learning block. At probe 

trial, all three stimuli from the same path were presented, but in a scrambled order. The subjects were 

required to select those stimuli in the order of true sequence. The mean accuracy is 98.0 ± 0.8%. This 

was to test their knowledge within sequence. We have also tested their knowledge between sequences. 

This time, only one stimulus was presented on the screen, and participants were asked to think about 

which path does it belong to, for 1000 ms. After that, two alternative stimuli were presented, one from 

the same path, another was drawn from different paths. Subjects were required to choose the one that 

belong to the same path. The mean accuracy is 92.1 ± 0.9%. These results suggest the participants have 

learnt the mapping between stimuli and sequences.  

In the outcome learning, participants learnt which sequence leads to which outcome. It is crucial that 

subjects understand the outcome was shared so that the half of all paths leading to the same outcome 

state, 𝑋, while the other half end up in outcome state, 𝑌. During learning, stimuli in each sequence were 

shown sequentially, and followed by the outcome state. Each sequence and outcome mapping were 

repeated 10 times. After that, we tested their knowledge. At the probe trial, one sequence (consists of 

three stimuli) was shown on the screen, and the subject was required to think about which outcome state 

does it lead to for 1000 ms. Two outcome sates were then shown on the screen, they needed to select 

the correct outcome state within 1000 ms. The mean accuracy is 97.1 ± 0.8%. This was to test the 

mapping from sequence to outcome. We have also tested the mapping other way around, i.e., from 

outcome to sequence. In this probe, the outcome state was shown on the centre of screen for 1000 ms 

and the subjects were required to think about which sequences can lead to this outcome. After that, two 

sequences were shown on the screen, these two sequences were associated with different outcomes, the 

participants were asked to select the one that lead to the same outcome within 1000 ms. To avoid 

participants only relying on single stimulus in the sequence to make the choice, one out of three stimuli 

in the sequence was randomly blocked at each prob trial, so that participants were encouraged to think 

about the sequence as a whole. The mean accuracy is 94.1 ± 0.9% on this probe. These results suggest 

the participants have learnt the mapping between sequences and outcomes.  

In the arm learning, participants learnt which sequences belong to which arms. There were three starting 

arms, each arm has two sequences. The three starting arms also have different encountering frequency 

in the main RL task, but for now, all arms were experienced equally. The participants did not know 

which arm they would encounter often or rare, this will be learnt in the next phase. 
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In this phase, the learning procedure were similar to outcome learning phase. After learning, the 

participants were tested on both the mapping from sequence to starting arms (mean accuracy is 95.4 ± 

1.0%), and from starting arms to sequences (mean accuracy is 92.2 ± 1.0%), suggesting they have also 

learnt the mapping between sequences and starting arms.  

In the frequency learning, participants learnt the encountering frequency associated with each starting 

arm. This was fixed and not chosen by the subjects. The mapping between arms and frequency was 

randomized across subjects but fixed within subjects. It indicated how likely each trial might start in 

given arm. These different starting probabilities aimed to create different need level in the RL task. This 

is like successor representation in reinforce learning literature 122. I told the participants explicitly the 

staring probability of each arm, i.e., rare - 17%, occasion - 33%, common - 50%. I also let participants 

experience the probability differences of the three arms by showing the three arms according to their 

encountering frequency in the later RL task. After that, participants were quizzed on the mapping 

between arms and their starting probabilities. The mean accuracy is 87.9±2%, suggesting they have 

learnt the frequency differences among the three starting arms.  

 Three-armed RL task 

After the subject have learnt all the necessary knowledge about the task structure, they can finally 

preform the main RL task. There are 5 blocks in this task, each block contains 60 trials, resulting in 300 

trials in total. At each trial, a stating arm was shown first, based on its starting probability. The arm 

picture appeared for 2500 ms, during which, the participants were required to think about which path 

in this arm they want to choose. After that, the first stimulus of two paths in this arm were shown on 

the screen (e.g., 𝐴1	&	B1), participant had up to 1000 ms to make the choice. After decision, the chosen 

path was played out, with each stimulus in that path appearing sequentially on the centre of the screen 

for 500 ms. The sequence presentation was followed by the outcome state, participants were asked to 

press the “advance” key to reveal the value (£1 or 0) associated with the outcome. This is to disassociate 

visual offset of the outcome picture from the credit assignment period. The value display lasted for 2500 

ms and followed by a jitter 500-700 ms ITI. The output of the two outcome states was binary and 

independent from each other. The reward probability for each outcome state follows a Gaussian random 

walk, with zero mean and 0.2 standard deviations, bounded between 0.25 and 0.75, similar with 

previous studies 119,123.  

At the end of each block, I also tested their knowledge about transitions within sequences to see whether 

they have forgotten those transitions along the experiment. Participants were shown with three stimuli 

from the same sequence, but in a scrambled order, and they were required to select the stimuli in the 
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right order of sequence. They were tasked to do so for each sequence twice after each RL block. The 

mean accuracy is 96.2±0.5%, and it does not change as a function of blocks (F (4,112) = 0.89, p = 0.46), 

suggesting the sequence knowledge was preserved and remained the same across the whole RL task. 

4.4.3 MEG Acquisition and Pre-processing 

Whole brain neural activity was recorded using magnetoencephalography (MEG) throughout the 

experiment, except the time when the participants were experiencing the frequency of different starting 

arms prior to the RL task. MEG was recorded continuously at 1200 samples/second using a whole-head 

275-channel axial gradiometer system (CTF Omega, VSM MedTech), while participants sat upright (3 

sensors not recorded due to excessive noise in routine testing). The task was projected onto a screen 

suspended in front of participants, and participants made responses on three buttons of a MEG-

compatible button box, indicating “up/left,” “down/right,” and “advance” respectively. 

Preprocessing was conducted separately for each scanning session, identical  to our previous study 54. 

Sensor data were high-pass filtered at 0.5 Hz using a first order IIR filter to remove slow-drifts. Data 

were then resampled to 100 Hz (decoding, reactivation and sequenceness analysis) and 400 Hz (time-

frequency analysis), and excessively noisy segments and sensors removed before independent 

component analysis (ICA). ICA (FastICA, http://research.ics.aalto.fi/ica/fastica) was used to 

decompose the sensor data for each session into 150 temporally independent components and associated 

sensor topographies. Artefact components (e.g., eye blink and mains interference) were classified by 

automated inspection of the spatial topography, time course, kurtosis of the time course and frequency 

spectrum for all components. Artefacts were rejected by subtracting them out of the data. All analyses 

were performed on the filtered, cleaned MEG signal at whole-brain sensor level.  

4.4.4 Behavior Analysis 

To test whether participants have learnt in a model-based way in the RL task I analysed choice behavior 

as a function of reward in last trial, and same/different starting arm at current trial. The choice at current 

trial is defined as “same” if the chosen path is leading to the same outcome state (e.g., 𝑋) as last trial. 

We calculate the probability, 𝑃(𝑠𝑎𝑚𝑒), as the number of “same outcome” choices divided by the 

number of all choices minus one. I ask whether it differs based on reward received on last trial (£1 or 

0), and the starting arm on current trial (same or different compared to last trial). 𝑃(𝑠𝑎𝑚𝑒) under the 

same starting arm indicate learning from direct experience, while 𝑃(𝑠𝑎𝑚𝑒) in the different starting arm 

measures learning from non-local experience. If the participants have behaved in a pure model-free way, 

they would not be able to use the outcome in last trial to inform decision in the current trial if it is in a 



   97 

 

 

different stating arm, as a result, 𝑃(𝑠𝑎𝑚𝑒) under a different starting arm on the current trial would be 

indifferentiable to reward information at last trial, while the opposite would happen if the participants 

indeed use the model to learn action and outcome. The results are shown in Figure 1c, consistent with 

model-based learning account. This logic is the same with similar analysis on two-step decision-making 

task that set out to test model-based vs. model-free choices 118,119. We have also simulated the choice 

behavior following the same reward schedule and starting arms set up in the RL task, by using a model-

free vs. model-based Q learning model 118,119. The simulation results support this reasoning. 

The formal statistical analysis is done by fitting a generalized linear mixed-effects model on binary 

choice behavior (coded as 1, if it leads to the same outcome state, or 0, if that leads to a different 

outcome, relative to the previous trial), which assume to be binominal distribution. For each trial, the 

dependent variable – behavioral choice (coded as 1, if it leads to the same outcome state, or 0, if that 

leads to a different outcome, relative to the previous trial) was explained in terms of reward and starting 

arm: whether reward was received in the last trial, whether current starting arm was the same with that 

in the last trial, and the interaction of these two factors. The intercept, and the regression coefficients 

for reward, arm, and their interaction were all taken as random effects (allowed to vary across 

participants). 

4.4.5 Behavior Modelling 

To test whether prioritization happens during model-based learning, I built computational models based 

on RL theory 34. At each trial of this task, there is one direct experienced path, and two non-local paths 

that leading to the same outcome. In the model, I wanted to test whether learning from non-local 

experiences was elevated in higher need/gain path compared to low need/gain path. I therefore set up 

three free parameters in the model for the updating rule: learning rate for direct experience, 𝛼F; learning 

rate for non-local path of high need/gain, 𝛼G; and learning rate for non-local path of low need/gain, 𝛼?. 

Following Q learning, the updating rules are: 

              local learning:                         𝑄(𝑠F , 𝑎6)	+=	 𝛼F(𝑟 − 𝑄(𝑠F , 𝑎6))                                                 (1) 

nonlocal learning (high need/gain):      𝑄(𝑠G , 𝑎6)	+= 𝛼G(𝑟 − 𝑄(𝑠G , 𝑎6))                                                 (2) 

nonlocal learning (low need/gain):        𝑄(𝑠? , 	𝑎6)	+= 𝛼?(𝑟 − 𝑄(𝑠? , 𝑎6))                                                  (3) 

where the 𝑠F, 𝑎6 is the starting arm and action taken at current trial, respectively. Here the action is 

defined in terms of the outcome state it leads to, so that, if one takes the same action, i.e., 𝑎6 in other 
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nonlocal arms (e.g., 𝑠G or 𝑠?), they will end up in the same outcome state. The updating only happens 

in paths that leading to the same outcome state, because the reward schedule for each outcome is 

independent, getting reward (or not) at 𝑋, does not tell us anything about 𝑌.  

The 𝑠G is a nonlocal arm where it contains the higher need or gain path, and 𝑠? is the other non-local 

arm. In the prioritization based on need, this calculation is straightforward because the starting 

probability for each arm is fixed and known to the participants, therefore 𝑠G is the arm that has higher 

starting probability than 𝑠?. In prioritization based on gain, this has to be calculated trial-by-trial because 

the reward probability for each outcome state is changing gradually over trials. The gain is defined as 

the policy gain in replaying a given piece of experience. This can be written based on Mattar and Daw 
34: 

																								𝐺𝑎𝑖𝑛(𝑠+ , 𝑎6) 	= �𝑄H!"#(𝑠+ , 𝑎)𝜋,;D(𝑎|𝑠+) −
#∈%

�𝑄H!"#(𝑠+ , 𝑎)𝜋5?F(𝑎|𝑠+)																(4)
#∈%

 

Where 𝑠+ indicate the non-local arms, 𝜋,;D(𝑎|𝑠+) represents the probability of selecting action 𝑎 in 

state 𝑠+ after the Bellman backup, and 𝜋5?F(𝑎|𝑠+) is the same quantity before the Bellman backup. In 

this task, there are only two actions available in 𝐴: 𝑎6 and 	¬𝑎6, where 	¬𝑎6 indicate the action that 

leads to different outcome state. 

Assuming perfect learning and a SoftMax policy rule, the above Equation (4) can be re-written based 

on reward information in the current trial: 

Reward:         𝐺𝑎𝑖𝑛(𝑠+ , 𝑎6) 	= 1 − [𝜋5?F(	𝑎6|𝑠+) 	+	𝑄H!"#(𝑠+ , 	¬𝑎6)𝜋5?F(	¬𝑎6|𝑠+)]                             (5) 

No Reward:  𝐺𝑎𝑖𝑛(𝑠+ , 𝑎6) 	= 𝑄H!"#(𝑠+ , 	¬𝑎6) − [0	 +	𝑄H!"#(𝑠+ , 	¬𝑎6)𝜋5?F(	¬𝑎6|𝑠+)]                  (6) 

Where 𝑄H!"#(𝑠+ , 	¬𝑎6) is the same as 𝑄H$%&(𝑠+ , 	¬𝑎6) given no updating happen at the action leading 

to a different outcome. We can therefore use compare 𝐺𝑎𝑖𝑛 in two non-local arms and assign 𝛼G to 

higher gain path, and 𝛼? to lower gain path. In the end, we are interested whether 𝛼G > 𝛼?. 

The decision rule follows a SoftMax policy, with another free parameter, 𝛽, that quantify how much 

the choice is determined based on Q value. Subjects were assumed to generate actions stochastically, 

according to a sigmoidal probability distribution:  
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																																					𝑃(𝑠+ , 𝑎6) =
1

1 + exp(−𝛽	[𝑄(𝑠+ , 𝑎6) − 𝑄(𝑠+ , ¬𝑎6)]	)
																																												(7) 

To estimate the model, we utilized Markov Chain Monte Carlo (MCMC) methods, implemented in the 

Stan modelling language (Stan Development Team). We produced 4 chains of 10,000 samples each. 

The first 2500 samples from each chain were discarded to allow for equilibration. We verified the 

convergence of the chains by visual inspection, and additionally by computing for each parameter the 

‘potential scale reduction factor’, 𝑅t 124. For all parameters, we verified that 𝑅t = 1.0, consistent with 

convergence range 125. As a sanity check, we have also run parameter recover to ensure the modelling 

results are not biased due to certain reward schedule, etc.  

The model was specified hierarchically, so that the participant-specific parameter estimates were 

assumed to be drawn from a population-level distribution. The prior for all group parameters are 

assumed unit normal, with mean 𝜇 = 0 and standard deviation 𝜎 = 1. For learning rate, the parameter 

fitting was done in the untransformed space (−∞,+∞) and transformed to [0, 1] for model-based 

calculation.  

4.4.6 Multivariate MEG Analysis: Stimuli Decoding and Sequences 

Sequenceness analysis relies on the ability to quantify transient spontaneous neural reactivations of task 

stimuli. For each stimulus (𝑘 ∈ [1: 18] ) indicating intermediate states in the RL task (e.g., 

𝐴1, 𝐴2, 𝐴3, 𝐵1, 𝐵2, 𝐵3, etc.), I trained a separate lasso-regularized logistic regression model based on 

their evoked neural response from Functional localizer task, at each 10 ms time bin from 0 ms to 800 

ms post-stimulus onset. Each model 𝑘 discriminated between sensor patterns pertaining to stimulus 𝑘 

compared to all other stimuli plus an equivalent amount of ‘null’ data from the inter-trial interval. 

Inclusion of null data reduces the spatial correlation between classifiers, and help sequence detection 
54,116. To quantify classifier accuracy, the models were trained in leave-one-out cross-validation and 

prediction accuracy estimated as the average proportion of test trials where the classifier reporting the 

highest probability corresponded to the trial label (Figure 4.2.A and Figure 4.3). The cross-validation 

accuracy peaked around 200 ms, which similar to our previous studies 54,117, and was also the time bin 

reported to give the strongest semantic representation 57. I confirmed that decoding accuracy was 

significantly greater than chance level using nonparametric permutation test. Specifically, I permuted 

the labels of test trials 500 times per participant, and for each permutation identified the maximal mean 

accuracy over participants from 0 to 800 ms post-stimulus onset (controlling for multiple tests over 
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time). Accuracy in the unpermuted data was deemed significant it exceeded 95% of within-permutation 

maximal accuracies (i.e., dotted line in Figure 4.2 A and Figure 4.3). 

I trained the stimuli classifiers based on the whole brain multivariate sensor patten at 200 ms post-

stimulus onset (Figure 4.3). These classifiers were used to decode state reactivations in later RL task 

for sequence analysis. L1 regularization, 𝝀, was used to encourage sparsity and enhance sensitivity for 

sequence detection 54,116. To ensure the results were not overfit to the regularization parameter, we fixed 

𝝀 = 0.005 for all subjects, based on sequence results from a pilot subject (data which was not included 

in formal analysis). On the pilot data, this 𝝀 value maximize an average sequenceness value across 10 

ms to 200 ms state-to-state time lags. 

I applied the trained stimuli classifiers to the end of each trial in the RL task, after outcome value receipt, 

this gave us a time*state decoding matrix. I then used Temporally Delayed Linear Modelling (TDLM) 

to quantify evidence for sequential reactivations in this decoding matrix 116. This is the same analysis 

approach applied in my previous studies, and quantifies sequenceness in a forward and backward 

direction separately, while controlling for auto-correlation 54,117. I quantified sequenceness for all 

possible transitions permitted by the task. Evidence of replay in all 6 paths were estimated at the same 

time, thereby controlled for common variance. I calculated sequenceness from time lag 10 ms to 500 

ms.   

Statistical significance was assessed using state-identity based permutation test 116. The null hypothesis 

is that the state identities are exchangeable. In these permutations, I measure sequenceness of random 

transitions that are not consistent with the task structure, e.g., 𝐴1 → 𝐵3, also from 10 ms time lag to 

500 ms. The permutations were run 1000 times. We determined the significant threshold by first taking 

the maximum sequenceness in the permutations across all computed time lags (to control for multiple 

comparisons), and then the 95% percentile on that peak across samples. Any true sequenceness that 

exceed this threshold is deemed significant. This approach has been validated in previous work, 

including my own, in both simulation and empirical data 54,116,117. 

4.4.7 Sequence - Behavior Modelling  

To test whether non-local replays facilitate model-based learning. We again built a computational model 

to ask does inclusion of replay of given non-local path accelerate learning on that path? 

First, we identified significant replay events in each path and at each trial. The significance is 

determined in the same way as before, except we assess significance separately for each path and each 
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trial, rather than relying on a grand average. We do that separately for 30 ms forward sequence and 

160ms reverse sequence. A significant replay event is coded as 1, and non-significant event is coded as 

0. We call this variable, 𝑠𝑒𝑞. 

Following the Q learning model, the updating rule is: 

local learning:                 𝑄(𝑠F , 𝑎6)	+=	 𝛼F(𝑟 − 𝑄(𝑠F , 𝑎6))                                                                          (8) 

nonlocal learning:           𝑄(𝑠+ , 𝑎6)	+= [𝛼, + 𝛼2𝑠𝑒𝑞(𝑠+ , 𝑎6)](𝑟 − 𝑄(𝑠+ , 𝑎6))                                          (9) 

Where the 𝑠F, 𝑎6 is the starting arm and action taken at current trial, respectively, 𝑠+ indicate the non-

local arms, same with the behavioral modelling described above. 𝛼F  is the learning rate for direct 

experience, 𝛼, is the baseline learning rate for nonlocal experience, and 𝛼2 is the replay modulated 

learning rate. Other than the updating rule, the decision rule, model prior and fitting procedure were 

exactly the same with the behavioral modelling described above. In this modelling analysis, we are 

interested in whether 𝛼2 > 0. 

 

4.5 Supplementary Analysis 

4.5.1 Sequenceness as a function of reward and starting arms 

In addition to model-based analysis, I also examined how replay differs when responding to receipt of 

reward, and whether it is modulated by starting arm probability. I reasoned that if replay is indeed 

sensitive to gain of informing policy, rather than just prediction error, replay should be stronger in trials 

when subjects get no reward vs. reward, because with everything else being equal, no reward is more 

informative. No reward suggests a change of action in the next trial might be desirable, while getting a 

reward means the subject is already doing the right thing. This reasoning is also supported by modelling 

results, the probability of higher gain paths in non-local experience is higher for trials when a subject 

does not get reward ( 𝑃(ℎ𝑖𝑔ℎ	𝑔𝑎𝑖𝑛|𝑁𝑜	𝑟𝑒𝑤𝑎𝑟𝑑) = 0.73 ), compared to when getting a reward 

(𝑃(ℎ𝑖𝑔ℎ	𝑔𝑎𝑖𝑛|𝑟𝑒𝑤𝑎𝑟𝑑) = 0.32). I found the 160 ms reverse replay of non-local paths are indeed 

higher for no-reward trials compared to reward trials (Figure 4.7). This reward modulated replay is also 

stronger in high need (common) arm, compared to low need (rare) arm (Figure 4.7). Those results were 

specific to replay of nonlocal paths leading to the same outcome, with no significant difference evident 
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for paths leading to a different outcome (Figure 4.7). Although alternative explanations might exist, one 

possible account is that this reward modulated replay is also prioritized based on need. 

 

    

Figure 4.7 Non-local Replay is modulated by reward and need during credit assignment  

(A) Stronger reverse replay at 160 ms time lag in non-local paths that leading to the same outcome, if this outcome 

provided no reward vs. reward. This reward modulated replay is greater for nonlocal path that belong to a high vs. 

low need arm. The X axis is time lag, and the Y axis is the difference between backward (bkw) sequence and 

forward (fwd) sequence, where positive value indicates higher bkw than fwd replay, and vice versa. The dotted 

line indicates results at 160 ms time lag, the lag focus in the paper, and also provides the peak evidence for reward 

modulation. (B) This modulated replay is not evident for non-local paths that leading to different outcomes. (C) 

Local replay is also not modulated by reward.  

 

4.5.2 Reactivation analysis  

In addition to a sequence analysis, I also examined reactivation alone. In theory, subjects can reactivate 

the first stimuli of a path during credit assignment time for updating the value, because the current RL 

task does not entirely depend on sequencing. Recall choice is made on the first state of a path under 
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each arm. This reactivation account has been suggested in previous studies, using a sensory 

preconditioning paradigm 57,77. We did not find this effect in our data. Reactivation of the first stimuli of a path 

did not facilitate learning, nor was it modulated by either reward, choice, or arm (Figure 4.8). I also looked at 

reactivation of arm pictures during credit assignment time and again did not find reactivation of an arm facilitated 

learning, nor was it related to reward or choice (Figure 4.8), albeit I can decode all three arms pretty well (with a 

peak cross-validation accuracy around 54±1.3%, Figure 4.8). I used the same training time (200 ms) and L1 

regularization as we have used throughout out the paper (results shown in Figure 4.8). I also tried both L1 and L2 

regularization and a wide range of regularization values for the reactivation analysis, but none of these resulted 

in significant results. It is possible that different types of representation were reactivated. Note here I  

have not tried training classifiers at different time bins, or with combinations of regularization value 57. 

But the null results here indicate my sequential replay results cannot be explained by reactivation alone. 

It is also possible that although the RL task itself does not require sequencing, the prior extensive 

learning of task structure and a requirement to always remember relational structure (i.e., sequences) 

throughout the experiment, constrained subjects to choose a sequential mechanism, rather than a simpler 

reactivation alone. 

 

Figure 4.8 Reactivation of the non-local arms and starting stimuli during credit assignment 

(A) Temporal generalization and decoding accuracy (leave one-out cross validation) for three arms. We trained 

the arms classifiers based on the evoked neural response in the quiz of arm learning task where only one arm 

picture was presented on the centre of screen and the participants were required to think about which two paths 

belong to this arm. We see a similar neural dynamic of the arm representation. We trained the arm classifiers in 

exactly the same way as the 18 stimuli classifiers. The dotted line the permutation threshold. (B) Apply the trained 

arm classifiers to the outcome receipt time in the RL task, we see the reactivation alone of the non-local arms is 

not modulated by reward or need. (C, D) We have also looked the reactivation alone of the two starting stimuli 
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which the participants choosing from. They are also not modulated by reward, leading to same/different outcome, 

or need. 

 

4.5.3 Reactivation and sequence analyses in the decision time 

In theory, this task can be solved by planning at decision time using either reactivation or sequential 

replay. The latter mechanism was suggested in a previous fMRI study 118. At decision time, one can 

prospectively reactivate the desired outcome state, or sequentially replay the path leading to the outcome. 

If this is the case, reactivation or replay content should predict what subjects are going to choose in that 

same trial. I did not find evidence to support these notions. Although I can decode outcome states pretty 

well (with a peak cross-validation accuracy around 65±1.1%, Figure 4.9), I did not find it predict 

behavior, nor was it modulated by reward (Figure 4.9). I found no evidence of sequential replay in 

general at decision time (Figure 4.9), something that might be expected based on Mattar and Daw 34. 

There is nothing special in terms of the aims of replay during credit assignment and during planning 

time and the aim is always to learn an optimal behavioral policy in the most efficient way. Given the 

whole task here can be solved at credit assignment time alone, i.e., figure out the best action under each 

starting arm, there is little cognitive imperative as decision time to invoke replay. A difference between 

Doll, et al. 118 and current results might be due to the fact the current study has distinct representational 

contents for each path, and it is a one-step decision task, which makes the planning easier to achieve, 

thereby making this process harder to capture in the data. 
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Figure 4.9 Replay and reactivation results in the decision time 

(A) No reliable neural sequence effect is seen at decision time. The only sequenceness that just pass the 

permutation threshold is a 20 ms lag forward replay. It is consistent with a faster replay we found during the credit 

time, and within a previous study 54. But it is not modulated by either reward, need or choice. (B) Decoding results 

(leave one-out cross validation) for the two outcomes were shown. We trained the outcome classifiers based on 

the evoked neural response at the quiz during the outcome leaning task, where the one outcome picture presented 

in the centre of screen at a time, and subjects were asked think about which paths lead to this outcome. The dotted 

line is the permutation threshold. We again trained the outcome classifier in the same procedure as the arm and 

stimuli classifiers. (C) Apply the outcome classifiers to the decision time, we show the outcome reactivation is 

not modulated by reward or choice. (D) Likewise, reactivation alone of the two staring stimuli in the current arm 

was not modulated by choice, reward, as well as whether the arm is high or low need. 
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5 HUMAN REPLAY SUPPORTS 
MODEL-BASED PLANNING 

5.1 Introduction 
Humans are remarkable at adapting their behavior to ever changing situations. We plan to take a detour 

if we know in advance our usual route is blocked. We mentally navigate complicated problem spaces 

and decide the next best move when playing a board game like chess or go. Yet we know little about 

how this can be achieved in the brain 89.  

In rodents, theta sequence is hypothesized as important for route planning in space 42,126. Theta sequence 

is defined as sequential firing of place cells that are nested within theta rhythm in the local field potential 

of hippocampus 45 and plays a key role in planning or look-ahead during active spatial navigation. It 

runs in a forward direction; sometimes predicting the path an animal will run in the immediate future 
126. This is in contrast to typical replay found during rest in rodents, which is associated with sharp-

wave ripple (SWR), and can be either forward or backwards 13,110. Although replay is thought to be part 

of a mechanism for memory consolidation or learning during rest, evidence suggests it can also play a 

role during active spatial navigation 17. In either case, the fast-sequential reactivations are thought to be 

important. In this final study I test this, again using magnetoencephalography (MEG). 

5.2 Results 

5.2.1 Task design 
MEG is used to detect fast spontaneous neural sequence in humans when subjects are planning 

sequentially (4-steps) in a non-spatial state space, where states are defined by decodable visual objects. 

The state space consists of six states where each state transits to, and can be transited from, two different 

states (Figure 5.1A). The task is designed specifically to encourage sequential planning on a trial-by-

trial basis as crucial new information needs to be taken into consideration at each trial (Figure 5.1B, C). 

Firstly, at the beginning of each trial, two (randomly selected) states are assigned to be ‘‘neg’’, meaning 

that reaching either of these states multiplies the trial’s cumulative reward by -1 (Figure 5.1B); secondly,  

the reward amount of each state changed by -1p, 0p, or 1p randomly at each trial (Figure 5.1C). Detailed 

task description and behavioral analysis can be found in Kurth-Nelson, et al. 53 This project is a re-

analysis of the data reported from Kurth-Nelson, et al. 53 but now using the newly developed method - 
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TDLM described in Section 2. Specifically, in this instance I am looking for sequenceness at the 

planning time. Before scanning, all participants learnt the task transition structure. They have reached 

100% accuracy on a set of automated quiz questions that probed knowledge of the transition structure 

(e.g., “if you start at cat, and press up, where will you be?”). In post-scanning debriefing, all participants 

reported a subjective experience of deploying knowledge of transitions for planning, which is also 

supported by modelling results on behavioral choice data during MEG scan (see details in Kurth-

Nelson, et al. 53). 

 

Figure 5.1 Planning task design and forward and backward sequence strength of all valid 

transition 

(A) Participants navigated between six states (S1–S6), each corresponding to a visual object. The transitions 

between states are fixed, but the visual objects assigned to each state number were randomized across participants. 

(B) On each trial, participants began in a random state and were permitted four moves. They had up to 60 s to 

plan these four moves. The four moves were then entered rapidly with no feedback. After rapidly entering their 

chosen sequence of moves, participants were required to play out this sequence. While playing out the sequence, 

the objects and their associated reward were visible. (C) The reward associated with each state drifted slowly over 

trials. The total reward earned in each trial was the cumulative reward collected along the path. When a ‘‘neg’’ 

state was reached, it caused the sign of the cumulative collected reward to flip (negative to positive and vice 

versa).  (D)There was no significant evidence for sequencing in forward direction when assessing sequence 

strength at each time lag independently from 10 ms to 600 ms (x axis). The sequence strength is defined as the 

unique predictability of given state to its successive state in the task. The dashed line shows the 95th percentile of 
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state shuffles over all lags, which corrects for multiple lags. Red line indicates the mean forward sequence across 

subjects. Shading indicates stand error of the mean. (E) There is significant sequence strength in a backward 

direction, peaking at 40 ms time lag. This is a similar result to that obtained using a cross-correlation approach 

from Kurth-Nelson, et al. 53. Comparison Results using cross-correlation was shown in Figure 5.3. Blue line 

indicates the mean forward sequence across subjects. Shading indicates stand error of the mean. 

 

5.2.2 Sequence decoding: Policy vs. Non-Policy 
To test for neural sequences that following the transition structure of the planning task, we trained a 

multi-class classifier on the MEG data recorded 200 ms post-stimulus onset in a different task - 

functional localizer task. Similar decoding accuracy was obtained as our previous report (Figure 5.2, 

cf. Figure 2 from Kurth-Nelson, et al. 53). I then applied the trained decoding models to MEG data 

collected at the planning phase of each trial. This transformed the MEG data to a state reactivation 

probability time series. I then choose to apply temporal delayed linear modelling (i.e., TDLM) approach 

on the state reactivation matrix, which has the advantage of assessing forward and backward sequence 

separately compared to our previous cross-correlation approach (cf. Figure 5.3 for comparison results). 

This sequence analysis controls for non-specific dynamics and asks whether on average and to what 

extent does state i at time lag Dt uniquely predict state j, compared to the evidence for all other 

transitions. No significant forward sequence of permitted transitions (valid) was found (Figure 5.1D), 

while a significant backward sequenceness of all permitted transition was observed (Figure 5.1E), 

peaking at 50 ms state-to-state time lag (between-subject sign flip permutation test, p = 0.030), 

consistent with a previous report using cross-correlation (cf. Figure 3 from Kurth-Nelson, et al. 53). 

 

 

Figure 5.2 Multivariate decoding model 

(A) Prediction accuracy is estimated by treating the index of the model with highest probability output as the 

predicted object in leave-one-out cross-validation scheme. The classifier is trained on 200 ms post-stimulus onset 
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and tested from -150 ms to 500 ms in a leave-one-out cross-validation scheme. The prediction accuracy reached 

42.2% ± 2.3%, where dashed lines show 95% of empirical null distribution obtained by shuffling state labels. 

Shading indicates SEM. L1 = 0.6 is selected given it gives the highest decoding accuracy and it is used throughout 

the analysis for all subjects. (B) Spatial correlation between beta weights among all six states, except for 

correlation with itself (which is always 1). (C) Beta weights distribution over sensors separately for all six states. 

 

 

To look for neural sequences related to planning, at each trial, we estimated sequenceness of transitions 

that are part of the behavioral planning trajectory (only those steps that were ultimately chosen) – 

“policy” sequence, versus sequenceness of  transitions that are valid but not part of the planning  path 

– “non-policy” sequence, looked at separately in a forward and backward direction (Figure 5.4). We 

see only a policy sequence that was played in a forward direction, peaking at 150 ms state-to-state time 

lag (Figure 5.4A, p = 0.031, see Figure 5.5 for sequenceness breakdown of each pair-wise policy 

sequence), in addition to backward sequencing of both policy, and non-policy sequence peaking at 50 

ms (Figure 5.4C, D, policy sequence, p = 0.026; non-policy sequence, p = 0.041). The forward policy 

sequence is intriguing, given both in its speed (150 ms ≈ 7 Hz) and direction as these are consistent with 

theta sequence reported in rodent during active spatial navigation. Further separating the behavioral 

policy sequence based on whether the transitions belong to optimal policy path or not, revealed this 

150ms peak is stronger for a sequence of optimal path (p = 0.004), and is specific to those behavioral 

policies as no sequence effect was found for transitions that are part of an optimal policy but were 

unchosen, suggesting the forward 150 ms sequence is a signature of actionable plan. 

 

 

Figure 5.3 GLM vs. Cross-correlation results 

(A) Sequenceness calculated using the current GLM approach. Sequenceness is defined as the difference between 

forward and backward sequenceness for the same transitions, as with my previous work. It is assessed 



   110 

 

 

independently at each time lag, negative value indicates more backward than forward sequence, and vice versa. 

The dashed line is permutation threshold, given as the two-tail 95th percentile of the absolute value of shuffles 

over all lags (10-600 ms). Shading indicates stand error of the mean. The sequenceness is significant from 40-70 

ms, peaked at 50 ms. (B) Sequenceness calculated using the original cross-correlation approach. The sequenceness 

is significant from 20-70 ms, peaked at 50 ms. (C) Scatter plot of sequenceness at 50 ms lag calculated from GLM 

approach vs. cross-correlation approach. Each dot indicates a trial, it is pooled over all trials across subjects. The 

red line is the best least-square linear fit. 

 

 

Figure 5.4 Sequence strength of policy-related vs. non-policy but still permitted transitions 

(A) There is significant forward sequence strength of policy-related transitions peaking at 150 ms lag. The 

permutation threshold (dashed line) here controls for multiple comparison over 100 to 600 ms time lag, given we 

are interested in sequence information with state-to-state time lag larger than the 20 -70 ms previously reported. 

Red line indicates the mean forward sequence strength across subjects. Shading indicates stand error of the mean. 

(B) No significant forward sequence strength of permitted transitions was detected that are not part of a policy 

trajectory (i.e., non-policy). (C) There is significant backward sequence strength of policy-related transitions that 

peaked at 50 ms lag. Blue line indicates the mean forward sequenceness across subjects. Shading indicates stand 

error of the mean. (D) Similarly, significant backward sequence strength of non-policy transitions peaked at 50 

ms lag. Note, while the dashed line indicates permutation threshold over 100 to 600 ms time lag, the backward 

sequence strength (policy or non-policy) at 50 ms lag can also pass the permutation threshold defined as 95th 

percentile over all time lags (10-600 ms). (E) Forward sequence strength of policy transitions at 150 ms lag is 

significantly stronger compared to that of non-policy transitions, while the backward sequence strength of policy 

transitions at 50 ms is not different compared to that of non-policy transitions. Here each dot indicates each 

scanning session. Error bar indicates stand error of the mean across scanning sessions. This is for visualization 

purpose. The statistical inference is done by linear mixed model.  * indicates statistically significant, p < 0.05. 
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Figure 5.5 Sequence strength of each transitions within the planning trajectory.  

(A) At each trial, participants need to plan 4 moves ahead. Sequenceness of each move during planning time is 

plotted stepwise for each scanning session, separately for 50 ms (left panel) and 150 ms time lag (right panel). For 

instance, the 1st step is the transition from the starting state to second state of the planning path; the 4th step is the 

transition from the 4th state to the end state of the whole planning trajectory. Each dot indicates the trial-by-trial 

correlation in each scanning session. Error bar indicates stand error of the mean across scanning sessions. (B) 

Policy sequenceness at 50 ms and 150 ms time lag, separated based on whether including “neg” states in the 

transitions or not. There is no significant difference between sequence strength of transitions contains vs. not 

contains the “neg” state. 

 

5.2.3 Policy sequence is related to behavioral performance 
If the forward policy sequence is indeed related to planning, it should also support behavior. Here I test 

whether the strength of neural sequenceness is related to behavioral planning performance on a trial-

by-trial basis. The planning performance is defined as the rank of money earned under the current policy 

comparing to all possible policies at this trial. First, we found no relationship between averaged 

sequenceness of all valid transitions at either 150 ms or 50 ms time lag and planning performance, 

consistent with previous observations 53. But interestingly, after separating policy and non-policy 

sequence and their directionality, I found the strength of a forward 150 ms policy sequence positively 

correlated with planning performance (Figure 5.6A, p = 0.04). In other words, the stronger the forward 

policy sequence is, the better the behavioral performance at the current trial, while no relationship was 

found for a backward 50 ms policy sequence (p = 0.18). Further separating the behavioral policy 

sequence based on whether the transitions are part of an optimal policy path, revealed this positive 

correlation with behavior is stronger with optimal policy path (p = 0.007). No effect was observed for 
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backward replay of policy sequences at 50 ms time lag. These findings suggest a specific role for the 

forward 150 ms policy sequence in planning. On the other hand, the strength of backward non-policy 

sequence at 50 ms lag (but not 150 ms forward) is negatively correlated with planning performance 

(Figure 5.6A, p = 0.02), suggesting distinct behavioral functions for the 50 ms non-policy and 150 ms 

policy sequences. 

The opposing relationship between forward policy and backward non-policy sequence during planning 

implies there could be neurophysiological differences between them that, of a type that map to 

differences in theta and SWR sequences in rodents. We have reported rodent SWR sequence like 

phenomenon in humans during rest in Section 3. The fast-backward sequence (with 50 ms state-to-state 

time lag) reported here resemble what we have found previously during rest. I hypothesised we would 

see a SWR power increase at the onset of a fast-backward sequence, but not at onset of a forward slower 

sequence. Indeed, I found SWR power increase only at the onset of 50 ms backward sequence (Figure 

5.6C, p = 0.02), and not the 150 ms forward sequence (p = 0.38). In rodents, theta sequence and SWR 

sequence happens at macroscopically different times, and consistent with this I found an onset of fast 

50 ms non-policy sequence is temporally anti-correlated with the forward 150ms policy sequence 

(Figure 5.6D,  p = 0.002, this is also true for sequence strength, cf. Figure 5.6B). This implies that 

whenever a non-policy sequence happens then it is unlikely one will see a forward policy sequence. 

Together, the results suggest distinct neurophysiological features between fast non-policy sequence and 

forward policy sequence in humans, which might map to rodent SWR and theta sequences. 
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Figure 5.6 Opposing behavioral function and neurophysiological features between policy and 

non-policy sequences  

(A) Sequence strength of a policy related transition at 150 ms (but not 50 ms) is positively related with the amount 

of money earnt (i.e., planning performance) on a trial-by-trial basis, while the sequence strength of non-policy 

(but still valid) transition at 50 ms is negatively correlated with planning performance. Here each dot indicates 

each scanning session. Error bar indicates stand error of the mean across scanning sessions. * indicates statistically 

significant, p < 0.05, - indicates non-significant. (B) Sequence strength of policy related transition at 150 ms is 

negatively correlated with that of non-policy transitions at 50 ms in the same trial, but positively correlated with 

that of policy related transitions at 50 ms. Here each scatter point is a trial, with all trials pooled over participants 

shown together. The red line indicates the best least-square linear fit across all trials. (C) Scatter plot of SWR 

frequency power increase at the onset of sequence events. Only 50 ms non-policy sequence event has significant 

SWR power increase at the sequence onset relative to sequence event time, and it is significantly higher than that 

of 150 ms policy sequence. Here each dot indicates each scanning session. Error bar indicates stand error of the 

mean across scanning sessions. * indicates statistically significant, p<0.05, - indicates non-significant. (D) 150 

ms policy sequence event is anti-correlated with the 50 ms non-policy ones in planning time, and such anti-

correlation is strongest in the early planning time within trial (the first one third of planning time). 

 

5.2.4 Policy sequence is not a function of experience  
Despite the similarity between a forward policy sequence and theta sequence in terms of 

neurophysiological features and relationship to behavior, it remains unclear how plans are formed in 
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the first place. One idea is that they are related to past experience and involve replaying past experience 

in general. I tested the relationship between prior experience and strength of sequenceness. At each trial, 

for each state, I calculated when was the last time this state was visited, and the strength of sequenceness 

involving this state (at either 50 ms or 150 ms time lag). I found no systematic relationship between 

sequenceness and experience (Figure 5.7), suggesting neural sequenceness observed here is not just a 

replaying of past experience.  

 

 

Figure 5.7 Trial-by-trial correlation between sequence strength and experience 

To determine if the sequence strength is modulated by experience, at each trial, for each state, I calculated when 

was the last time this state is visited, and the strength of sequenceness involving this state. I do this separately for 

all valid transitions (left panel), transitions that are policy related (middle panel) alone and other non-policy but 

still valid transitions (right panel). I found no correlation between sequenceness (either at 50ms or 150ms time 

lag) that related to experience. Each dot indicates the trial-by-trial correlation in each scanning session. Error bar 

indicates stand error of the mean across scanning sessions.  

5.2.5 Forming policy sequences 
I observed two types of policy sequence during planning: a fast (with 50 ms state-to state time lag) 

backward one, and a slower (150 ms time lag) forward one. This suggests there might be a systematic 

relationship between the two type of policy sequences that inform how planning is formed. To test this, 

I first demonstrate it is methodological possible and valid to quantify temporal structure, not only 

within, but also between sequences in simulation (Figure 5.8A). Then, I applied the same method to 

quantify the gap between fast-backward policy sequence and its forward counterpart. I found the fast-

backward policy sequence is temporally leading its forward slower counterpart, with a systematic gap 

that peaked at 240 ms time lag (Figure 5.9A, C). This temporal structure is specific to a policy sequence 

of the same transitions (Figure 5.9B, p = 0.01), and not to a non-policy sequence (p = 0.76) nor a policy 
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sequence of difference transitions (p = 0.43). This is most evident at an early time of planning (Figure 

5.8B, C). We speculate that one possible explanation might be that planning is formed by sampling 

from a transition model (with fast generated reverse sequences), where useful samples are incorporated 

into the forward sequences in a low theta frequency (240 ms ≈ 4 Hz). 

 

        

Figure 5.8 Temporal structure between the two policy sequences (simulation + breakdown) 

(A) To validate our method, we simulated two sequences in the synthetic data (n=24), one is in a forward direction 

(e.g., A->B), with an optimal state-to-state time lag 150 ms; another is in a reverse direction (e.g., B->A) with an 

optimal state-to-state time lag 50 ms. Crucially, we specified their temporal structure in the same way as we have 

discovered in the real MEG data during planning, i.e., the fast reverse sequence (50 ms stare-to-state time lag) is 

temporally transiting to the same, but slow and forward self (150 ms stare-to-state time lag), with a gap of 240 ms 

between the two sequence events. Our method can successfully uncover temporal structure between sequences. 

The dashed line is a permutation threshold, given as the two-tail 95th percentile of the absolute value of shuffles 

over all lags (10-600 ms). Purple line indicates the mean sequenceness between two policy sequences across 

subjects. Shading indicates stand error of the mean. (B) Temporal structure between the two policy sequences in 

the early, middle and late planning time within each trial. The dashed line is the two-tail 95th percentile of the 

absolute value of shuffles over all lags (10-600 ms), computed separately for different portions of planning time. 

The only significant time lag is at 240 ms in early planning time. (C) Scatter plot of sequenceness between the 

two policy sequences at 240 ms gap, separately calculated for early, middle and late planning time. The temporal 

relationship is the strongest during the early time of planning. 
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Figure 5.9 Temporal structure between two policy sequences 

(A) Fast reverse policy sequence (50 ms state-to-state time lag) is temporally transiting to the slower and forward 

policy sequence (150 ms state-to-state time lag) of itself, with a gap, peaked at 240 ms between the two sequence 

events. Purple line indicates the mean sequenceness between two policy sequences across subjects. The dotted 

line is the two-tail 95th percentile of the absolute value of shuffles over all lags (10-600 ms). Shading indicates 

stand error of the mean. (B) Scatter plot of sequenceness between the two policy sequences vs. non-policy 

sequences at 240 ms for each scanning session. It is further separated for same vs. different transitions following 

the first one in the policy sequence. Such temporal structure only exists between the same transitions. (C) 

Illustration of the temporal structure of the same transition in two policy sequences. 

 

5.3 Discussion 
Utilizing the new methods advance (detailed in section 2), I am able to model forward and backward 

sequence direction separately, and separate policy-specific transitions from all valid transitions trial-

by-trial. As a result, I expand on previous finding53, and report the existence of two types of sequences 

related to planning: 50 ms backward and 150 ms forward sequences 

The 50 ms backward sequence and 150ms forward sequence have distinct neurophysiological features, 

and an opposing behavioral function related to planning. I found the forward 150 policy sequence 

positively supports planning performance in a non-spatial space, while a 50 ms nonpolicy sequence is 

negatively correlated with behavior. The rapid 50ms sequence plays out the general statistics of 

problems independent of the current behavior, whereas the slower 150 ms sequence preferentially plays 

out the behavioral trajectory an agent is about to act out.  These are potentially equivalent to theta and 

SWR replay as reported in rodents. It is also intriguing to note, the similarity between results in this 

planning project compared to project 3 on model-based learning. It is possible the same neural 

mechanisms underpin both model-based learning and planning, where the direction of a sequence 

depends on its function, e.g., reverse for value backup/credit assignment and forward for planning. I 
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will discuss these results from all three experimental projects in the “general discussion” section and 

speculate on the function and relationship of human replay/sequences to that seen in rodents. 

In this project, the transition between fast 50 ms backward sequence to its slower (150 ms) forward self 

in forming a policy sequence is particular interesting, and novel to this project. This is suggestive that 

possible plans are sampled using rapid sequences and a transition to the slower mode only occurs when 

there is an actionable plan. If this holds true, this is suggestive of a sampling-based planning model, one 

consistent with the general idea of planning as inference 106.  

 

5.4 Methods 

5.4.1 Participants 
12 adults aged 18–31 participated in the experiment, recruited from the UCL Institute of Cognitive 

Neuroscience subject pool and from a mailing list for MSc students. Six were female and two were left-

handed. All participants had normal or corrected-to-normal vision and had no history of psychiatric or 

neurological disorders. Eight of the 12 participants underwent two scanning sessions, for a total of 20 

recorded sessions. Two of these sessions were excluded before the start of analysis owing to large 

artifacts, leaving 18 analyzed sessions. All participants provided written informed consent and consent 

to publish prior to start of the experiment, which was approved by the Research Ethics Committee at 

University College London (UK), under ethics number 1825/005. 

5.4.2 Task 
In the MEG scanner, participants performed a 6-state sequential reasoning task, inspired by Huys, et al. 
127,128, but designed with the additional criterion of encouraging mental representation of the visual 

objects that identified each state. The task was implemented in MATLAB (MathWorks) using Cogent 

(Wellcome Trust Centre for Neuroimaging, University College London). Each trial began with 

participants placed at a randomly selected state within the maze. From this state, they were permitted 

four sequential moves with the instructed aim of maximizing their earnings. From each state, a move 

constituted one of two possible choices, called “up” and “down” (so-called for simplicity of button 

pressing, although there was no meaningful spatial relationship between the states). Each of these 

choices deterministically led to a different next state. Only one state was ever viewed at a time, and 

participants never saw an overall bird’s-eye view of the maze. 
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Each state provided a monetary outcome of between −5 and +5 pence. The reward for each state drifted 

independently at random by −1, 0, or +1 pence on each trial. Upon reaching a state, the state’s current 

reward value was added to the participant’s running total for that trial. This running total was also 

displayed on the screen while moves were being executed. Finally, in each trial, two randomly selected 

states were designated as “neg” states. When a neg state was reached, first its reward value was added 

to the running total for the trial as usual, but then the sign of the running total for the trial was flipped 

(e.g., −9 became +9 and vice versa). The identities of the neg states were signalled in text at the 

beginning of each trial. In many trials, the optimal strategy involved the use of one or two neg states. 

Two neg states could be used within a trial to reach a positive total reward, or a single neg state could 

be used in conjunction with negative state reward. 

On each trial, participants were first shown in text the names of the starting state and the two neg states 

and allowed up to 60 s to plan. After the end of the planning period, participants were faced with a blank 

screen upon which they could pre-enter their chosen sequence of four moves. They were allowed up to 

3 s to enter the first move and 1 s for each of the last three moves. As they pre-entered each move, a 

corresponding up or down arrow appeared on the screen for confirmation, but no visual objects were 

shown. After pre-entering all four moves, the visual object corresponding to the starting state of this 

trial appeared. Participants were then required to repeat the sequence of moves they had pre-entered. 

As they executed each move, the visual object shown on the screen changed to reflect the corresponding 

state transition. Up to 10 s was permitted to execute each move. Executing each move was followed by 

350 ms of animated cross-fade transition between visual objects, followed by 500 ms pause, followed 

by the current reward amount of the new state displayed for 1,000 ms, followed by the total trial 

earnings being updated and displayed for 1,000 ms, followed by a neg and corresponding change to 

total trial earnings, if any, being displayed for 1,000 ms. If this was the final move of the trial, the final 

reward for the trial was then displayed for 3,000 ms; otherwise, the next move could be entered. 

The task design was motivated by a wish to encourage participants to learn and exploit the transition 

structure of the task, instead of relying on simple choice strategies like repeat reinforced actions. I 

reasoned that engaging participants with the transition structure would afford the best chance of 

detecting neural sequences reflecting this structure. Two other features of the task design were also 

intended to meet this purpose. First, trials were generated such that simple choice strategies would yield 

much lower payout than optimal planning strategies. Second, pre-entry of the four sequential moves on 

each trial was made in the absence of feedback about the consequences of those moves until all four 

had been entered. This meant that participants had to anticipate where move m would lead to in order 

to make a good decision on move m + 1. 
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Each of the six states in the maze was a unique visual object. For each participant, the six objects were 

drawn randomly from a set of ten objects (bird, bread, cat, chair, garlic, hammer, hand, horn, tree, water), 

and the six chosen objects were randomly assigned to the six states of the maze. 

After the 6-state reasoning task, participants completed a secondary task while still in the scanner. This 

task was designed to elicit neural representations of known stimuli, which could be used to train 

classification models. In this secondary task, the name of a visual object appeared in text for a variable 

duration of 1,500 to 3,000 ms, followed immediately by the visual object itself. On 20% of trials, the 

object was upside-down. To maintain attention, participants were instructed to press one button if the 

object was correct-side-up, and a different button if it was upside-down. Once the participant pressed a 

button, the object was replaced with a green fixation cross if the response was correct and a red cross if 

the response was incorrect. This was followed by a variable length inter-trial interval of 700 to 1,700 ms.  

Each session included 125 trials of the secondary task, with approximately 16 correct side-up 

presentations of each visual object. Only correct-side-up presentations were used for classifier training. 

The trial order was randomized for each participant. Per participant, the visual objects used were the 

same six objects used in the main task. 

5.4.3 MEG Acquisition and Pre-processing 
MEG was recorded continuously at 600 samples/second using a whole-head 275-channel axial 

gradiometer system (CTF Omega, VSM MedTech), while participants sat upright inside the scanner. 

Participants made responses on three buttons (called “up,” “down,” and “advance”) of a button box 

using the fingers they found most comfortable. 

The data were resampled from 600 Hz to 100 Hz to conserve processing time and improve signal to 

noise ratio. Thus, data samples used for analysis were spaced every 10 ms. All data were then high pass 

filtered at 0.5 Hz using a first order IIR filter to remove slow drift. All analyses were performed directly 

on the filtered, cleaned MEG signal, consisting of a length 134 vector of samples every 10 ms, in units 

of femtotesla. 

5.4.4 Multivariate MEG Analysis 
A multi-class lasso-regularized logistic regression models were trained on MEG data elicited by direct 

presentations of the visual objects. These presentations were taken from the secondary task that 

succeeded the 6-state reasoning task in the scanner, specifically the data 200 ms following stimulus 

onset. The model is trained by adding the same amount of null data (with label “0”) and treating the 

null data as the reference category.  
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We select the L1 hyperparameter that gives the highest decoding accuracy on average. The accuracy is 

estimated by treating the index of the model with highest probability output as the predicted object in a 

leave-one-out cross-validation scheme. We then used the trained model with the chosen L1 to make 

predictions as to whether unlabelled MEG data corresponded to a neural representation of visual 

object k. Each time point was treated independently. At each time point in the unlabelled data, the data 

vector over sensors was multiplied by classifier weights and transformed by a sigmoid to obtain a 

predicted probability for visual object k. This procedure yielded six probabilities at each time point 

(excluding the null class). For each trial, we obtained a matrix X with six columns and as many rows 

as time bins in the trial. 

5.4.5 Sequenceness Measure 
Previously, we have relied on the asymmetry between forward and backward cross correlation to 

account for general correlation between states. In the current method, we tried to account for general 

correlation between states by constructing two-level GLMs. We call this approach: “temporal delayed 

linear modelling” (TDLM). This is described in detail in Section 2. Briefly, at first level, all decoded 

states with same time lagged copies are included in the design matrix and regressed onto all raw state 

time series separately. This controls for covariance among states and result in a pairwise sequence 

matrix at each time lag. At second level GLMs, non-specific general dynamics, and auto-transitions are 

controlled while looking for the sequenceness of transition of interest. In sum, the two-level GLMs is 

asking, on average, to what extent does the state i at time lag Dt uniquely predict state j, compared to 

evidence of all other transitions.  

5.4.6 Sequence of Sequence 
The same approach is capable of quantifying not only the state-to-state transitions, but also sequence-

to-sequence dynamics after a change of state space. To quantify sequence of sequence, TDLM needs to 

construct the design matrix to carefully control for state-to-state effects. In the linear model, this is 

effectively asking for the interaction effect of A and B, one should therefore control for main effect of 

A and B alone. Similar with quantifying state-to-state transitions, TDLM operate in two-level GLMs to 

measure the sequence-to-sequence transitions, but with extra control of state-to-state effects.  

Let’s assume the sequence state is 𝑋&;C , after transforming original state to sequence based on the 

optimal state-to-state time lag ∆𝑠𝑡. Each entry at 𝑋&;C is sequence state, denoted by 𝑖𝑗∆&4, which means 

the sequence i -> j with the optimal state-to-state time lag ∆𝑠𝑡. In the first level GLM, TDLM ask the 

extent of unique contribution of sequence of sequence (i.e., interaction effect), while controlling for 
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sequence of states (i.e., main effects). For each sequence state 𝑖𝑗∆&4, at each possible time lag ∆𝑡, TDLM 

estimated a separate linear model: 

𝑌*)∆() = 𝑋*(∆𝑡)𝛽*(∆𝑡) +	𝑋)∆()(∆𝑡)𝛽)(∆𝑡) +	𝑋*)∆()(∆𝑡)𝛽*)∆()(∆𝑡)	 

The predictors 𝑋*)∆()(∆𝑡) is the time-lagged copies of the sequence state 𝑖𝑗∆&4 reactivation timeseries. 

The model predicted 𝑌*)∆(), the reactivation of sequence state 𝑖𝑗∆&4. The nuisance regressors are 𝑋*(∆𝑡) 

- the time-lagged copies of the original state 𝑖; and 𝑋)∆()(∆𝑡) - the time-lagged copies of the lagged state 

𝑗.  Repeat this process for each sequence state separately at each time lag, resulting a sequence matrix 

𝛽&;C(∆𝑡) . In the 2nd level GLM, TDLM asks how strong the evidence of sequence of interest is 

compared to sequences that have the same starting state or end state at each time lag. 

5.4.7 Statistical Test 
For all statistical testing of sequenceness in this paper, we only tested if the peak sequenceness across 

all time lags (from 10 to 600 ms) is significantly different compared to zero. This is done by between-

subject sign flip permutation test, with 5000 permutations. I did not perform the same statistical test as 

in my previous paper because here I am interested in the question - do we have significant sequenceness 

of certain transitions (e.g., policy related transitions) compared to zero, rather than is this sequenceness 

the strongest compared to any other transitions. There is no multiple comparison problem as only the 

peak point is tested against zero. For the participants who had two sessions, regression models were 

trained separately for each session to account for a possibility of different head position, and 

sequenceness measures from the two sessions were averaged together before computing group-level 

statistics. 

5.4.8 Stepwise Policy Sequence 
In addition to measure the average evidence of sequenceness for policy related transitions, we have also 

reported the strength of evidence for each step of policy trajectory in the same order as a behavioral 

readout at 50 ms (backward) and 150 ms (forward) separately (Figure 5.5). The evidence of 

sequenceness for each state pair of permitted transitions is shown in Supplementary Figure 5 from 

Kurth-Nelson, et al. 53. We have also reported evidence of policy sequence including versus not 

including “neg” state, given the importance of “neg” state in this task (the accumulated earning will flip 

sign when encounter the “neg” state). There is no significant difference between transitions including 

“neg” state and ones of only non-neg (i.e., normal) states. 



   122 

 

 

5.4.9 Sharp Wave Ripples (SWR) and Non-policy Sequence 
In rodents, spontaneous offline replay events co-occur with bursts of high frequency (120-200 Hz) local 

field potential power known as sharp wave ripples (SWRs). I have found similar power increases (120-

150Hz) at replay onset during rest in humans (Section 3 and 4). Here, I tested whether there is a 

difference in terms of SWR power between policy and non-policy sequences onset, as with previous 

projects (Section 3 and 4). The individual sequence events were defined as moments with high 

probability of a stimulus reactivation that were followed by high probability of reactivation of the next 

stimulus in the sequence with given time lag (50 ms for non-policy sequence, 150 ms for policy 

sequence). I calculated this sequence onset using a “shift and multiply” approach described above to 

identify the sequence time series, then thresholding it at its 95th percentile with an additional constraint 

that it has 100 ms of sequence-free time preceding them. This constraint ensures we identify the onset 

rather than middle of a sequence (if it is multi-length). To control for general difference between policy 

and non-policy sequence, the SWR power is demeaned within each sequence event before the 

comparison. 
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6 GENERAL DISCUSSION 
6.1 Is spontaneous neural activity useful? 
Based upon the evidence presented in this thesis, it seems the answer to this question is yes. I have 

found that internally generated neural activity – replay, is richly structured.  It is not just an “echo” of 

past experience. In the service of efficient inference and learning in humans, I have found human replay 

reorganize past experience (Section 3) and prioritize non-local experience (Section 4). During decision 

time, human replay supports sequential multi-step planning, delineating the path a subject is about to 

take in a non-spatial space (Section 5).  

In reinforcement learning (RL) terminology, non-local replay can be seen as neural correlate of a model-

based computation 32. The model is a mental model, describing what states are, and how they are 

connected to each other. This concept is similar to schema, or a situational model in psychology 

literature 129. But for consistency, I will stick with RL terminology. The computation is model based, 

because it is unrelated to direct experience, it relies an internal model to generate novel experience 

(Section 3), samples a distant experience (Section 4) or plans in multi-steps (Section 5). So far, I have 

not considered what specific algorithm replay might correspond to functionally. In the following 

section, I will allow some speculations on this.  

6.1.1 Building efficient representation for inference and generalization 
First, there is the question of how an efficient task representation can be built through replay. This is 

perhaps the most difficult question for RL. RL mostly concerns about learning and control on a defined 

state space, but discusses little about how to build one in the first place 6. The only requirement of state 

space in RL is that it has be Markovian, meaning the future state depends, and only depends, upon the 

present state and not on any past state. There are countless alternative state spaces that can satisfy this 

requirement. The question is how to build and/or select one that is best for the current task. This is most 

relevant for a novel environment where scarce direct experience is available. To recapitulate an 

example, what do we do when we land at a new airport? 

One design principle of this efficient representation, as suggested from Section 3, is factorization 130. 

We can factorize the representation of sensory and structural knowledge, so that the abstract structural 

knowledge can be learnt from the past and re-used in a novel environment 10. When encounter a novel 

environment, this structural knowledge then combines with new sensory information to form a 
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representation of the task at hand. This is efficient because we do not need to re-learn everything anew. 

We can generalize past experience to infer the appropriate behavior in the current task. 

Our results suggest replay helps this process, in a sense that we have observed replay of both structural 

and sensory representation, where structural replay guides sensory replay into its correct template. But 

for now, we can only say replay is a neural correlate of this process and, as yet we don’t know why and 

how it is useful. 

Recent RL theory suggests replay might be explained as a prioritization of memory access that  helps 

maximize future reward within an environment, by extending a one-step Bellman backup to multi-steps 
34. This theory does not help us here, however, because it cannot explain how replay helps generalization 

across environments.  

How should we approach this question? One interesting idea comes from recent success in building 

deep neural network to explain cellular activity in the hippocampus and entorhinal cortex (the same 

cells where replay occurs). One type of model, termed “Tolman Eichenbaum Machine” (TEM) 131  is of 

particular interest. TEM learns an abstract representation of the relational structure that has similarities 

to cellular activity seen in entorhinal cortex, e.g., border cell, object vector cell, and the famous grid 

cell, when combined with sensory information, TEM can infer what will be seen next.  

One can plug replay into this model, under the same objective function, and ask whether the inclusion 

of replay facilitate the learning process of the model. Perhaps, more interestingly, one can use a different 

objective function, e.g., not only maximize the predictive ability in novel contexts, but optimize the 

speed of doing so. This will require an abstract representation to be learnt in the most efficient way and 

will, in turn, pressure replay to prioritize memories that are most informative for abstracting task 

structure. This gives an opportunity to examine novel replay that addressed this aim, e.g., an alternative 

path, the one that is not taken, but can be inferred from past experience, may be preferentially replayed 

because “seeing” the same thing from different angles is useful for extracting the underlying structure.  

6.1.2 Bridging space and time to solve credit assignment 
Credit assignment has long been an important problem in RL 132 where the credit is mostly a synonym 

for value. The problem occurs because the RL agents try to maximize the future cumulative reward, not 

just the current one. In fact, in most cases where reward is sparse, the outcome might only occur at the 

end of a trial. For example, in the game of GO the reward is win or loss at the very end. How to assign 

this final outcome to earlier actions is an extreme example of a temporal credit assignment problem. 

This problem also occurs in the spatial domain. For example, actions at different states can have the 

same outcome effect, how to update value of non-local states based on the outcome received from local 
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experience is a spatial credit assignment problem. To solve credit assignment, we need a mechanism 

that can link distant space and time. Replay is an ideal candidate, given it is an internally generated, 

sequential pattern of neural activity. The results from section 4 provide the evidence that neural replay 

is used to solve the credit assignment problem. Note, unlike most rodent studies 20, I did not look for 

replay of direct past experience but instead focus on replay of non-local experience. This is because 

while local learning can be explained by other mechanisms, e.g., eligibility trace133, non-local learning 

must be based on a model (or a memory pool, we don’t separate them here). In fact, I find this non-

local replay solves credit assignment in a similar way to that predicted by a RL theory, where replay is 

seen to prioritise a memory access according to its utility in maximizing future reward 34. 

6.1.3 Forming plans through sampling 
The section 5 provides an intriguing insight into how planning is formed. I observed a fast, presumably 

SWR replay based, sampling process, where actionable plans were encoded in a forward slower 

sequence. This slower sequence had a state-to-state time lag of 150 ms, roughly 6-7Hz, within the theta 

frequency. It is possible this captures a theta-like sequence in rodents. Although we do not have further 

evidence to support this idea, it remains a speculation.   

This sampling account was not an original hypothesis. Originally, I thought of  human planning as akin 

to tree search 134, which has been suggested from behavioral studies (with certain heuristics, e.g., 

“pruning” 127, “plan-until-habit”135), and shown to be an effective algorithm in solving complicated 

planning problems in deep neural network models, e.g., GO 12. Instead, I found no evidence to support 

this. For example, one would expect a structured sequence to sequence transitions in behavior trajectory, 

e.g., A->B, leads to B->C, in a systematic way, if tree search like computation is true. Although one 

might argue the fact, we see replay strength correlates with behavioral performance could be a sign of 

Monte Carlo Tree Search (MCTS) like computation, i.e., transitions are favoured in model-based 

reasoning to the extent that they are good. This requires more evidence.  

It is interesting to speculate that the brain chooses to use a different implementation for a good reason. 

One idea is that sampling is easier and a relatively simple computation to implement. Recent theoretical 

work suggests fast sampling may be a universal computation that the brain implements for inference 
136. This remains a speculative guess as to the role of replay and an idea that needs to be thoroughly 

tested in future. 

6.2 What is replay in humans? 
The question here relates to the physiology of spontaneous neural activity in humans. For simplicity, I 

have named all spontaneously generated sequences of neural reactivations - replay. I consider it to be 



   126 

 

 

internally generated, i.e., not caused by current sensory input, and sequential activity, not mere 

reactivation.   

But is this equivalent to rodent replay? I have tried to answer this in section 3. Across two studies I have 

shown these spontaneous sequences of cortical events, as detected in human MEG recordings, in a non-

spatial space have strong parallels to hippocampal replay observed in rodents during sharp-wave ripple 

epochs in spatial tasks. Like rodent replay (i) they appear spontaneously during rest, (ii) they compress 

time from seconds to tens of milliseconds, (iii) they reverse in direction after reward and (iv) they 

involve coordination between hippocampus and sensory cortex, and (v) they are associated with power 

increase in ripple frequency (120 Hz -150 Hz), source localized to hippocampus. I have also replicated 

these same findings in section 4 and 5. Furthermore, in a recent study, with colleagues I have applied 

the hidden markov model to  the same resting state data to infer the dynamics of resting state networks 
137, and shown that such sequence events temporally correspond to the activation of the default mode 

network. This work provides a powerful linkage between human replay and whole brain network 

activity 137.  

In addition to this fast 20-50 ms SWR like replay, I have also identified a slower type of replay, with a 

time lag of 150 – 160 ms, as detailed in both section 4 and 5 on model-based learning and planning. 

What does this signature correspond to? The short answer is we, as yet don’t know. I have speculated 

it might relate to theta sequence, given its speed is roughly in a theta frequency, its onset is not 

associated with a power increase in ripple frequency and its strength is related to an on-task 

computation, e.g., model-based learning (section 4), and sequential decision-making (section 5). But it 

is also possible that this 150ms (ish) human replay does not have rodent equivalent either due to the 

species related differences or due to the fact that MEG is measuring neural activity at population level, 

rather than measuring activity in cell ensembles.  

In addition to speed, the direction of replay remains an intriguing subject that deserves more work and 

attention. In rodent literature, SWR replay during rest can be either forward or reverse120, where  reverse 

replay seems to be uniquely modulated by reward 20. This contrasts with a theta sequence which is 

dominantly forward, akin to a look ahead signal 42,45,66. We found similar signatures in human replay, 

that it can be either forward or reverse, including a flipping of directions after reward. But the picture 

becomes complex when we look at the slower speed (150-160 ms) replay, which is reverse for model-

based reward learning and forward for planning. It is intriguing to speculate that the direction of replay 

might be functional meaningful and can be modulated by task demand. For example, the 150-160 ms 

replay plays out in a backward direction during outcome receipt because it need backpropagate the 

prediction error signal from the final state to the initial state. The same replay goes in the forward 

direction during decision time because it needs to think from local (i.e., state state) to the final states 
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(e.g., in section 5). Relatedly, in one of our recent studies, we have shown by simply changing the probe 

question shifts the direction of replay in memory retrieval 117.  

In sum, I have found ripple related replay in humans. It bears a lot of interesting properties as in rodent 

replay. There is also suggestive evidence of theta-like sequences in humans, especially during active 

planning or flexible model-based learning. Unlike theta sequence in rodents which is dominantly 

forward (but see Wang, et al. 138), and encodes local information, the theta-like human sequences I have 

identified in this thesis can go either forward (in planning) or backward (in value leaning), and it 

encodes mostly non-local information. This could be due to the reported difference in theta oscillation 

(both in term of frequency range and continuity) between human and rodents 49.  

In future work, it will be interesting to delineate this picture in more detail and clarity. Notably, the 

method (TDLM) we have developed is a general sequence detection method that can be used on 

different data modalities (e.g., MEG or electrophysiology), and on any graph, rather than a one-D space 

map. I hope this method will help bridge results between humans and rodent research on this topic. 

6.3 A new paradigm 
As a final statement I would like to address the underlying philosophy behind the line of research I have 

presented. 

In my mind, the outlined research is possible because of two changes emerging in the field. One of these 

is the emergence of a new conceptual paradigm. It is hard to think about studying spontaneous neural 

activity within the framework of an information processing metaphor, where cognition is considered a 

responsive process. There are studies looking at internal oriented cognition, especially on episodic 

memory, e.g., imagination 139, consolidation 85, though they rarely relate to on-task cognition and 

behavior.  It remains unclear how internal and external oriented cognition are related, and what goal 

they are serving.  

In this thesis, adopting views from RL, I consider spontaneous neural activity as a means to realize 

model-based computation. In this view, external and internal oriented cognition serve the same goal, 

i.e., they enable adaptive behavior. This idea has rich links to the idea of a “cognitive map” – as 

addressed in research on hippocampus in both humans and rodents. A cognitive map can be 

conceptualised as a model in RL terms, describing how elements or states are linked to each other, i.e., 

𝑇 = 𝑝(𝑠!|𝑠, 𝑎). In the neuroscience literature, the study of episodic memory and spatial navigation 

(where the cognitive map concept is mostly used) rarely makes links with the terminology of RL 140,141. 

It is interesting therefore that in recent realizations of model based RL,  two separate domains of enquiry 

in cognitive neuroscience: decision-making (dopaminergic system, e.g., ventral tegmental area), and 
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episodic memory (e.g., hippocampal-entorhinal system) have been unified 77,142. I consider that this 

makes much sense for the model based RL framework outlined in this thesis.  

In a model based RL framework, it is easy to appreciate the importance of studying spontaneous neural 

activity (or internal oriented cognition) when it comes to processing non-local information. But how to 

achieve this is the hard question. By definition, spontaneous neural activity need not be tied to current 

stimuli. We can study the rich dynamics of the spontaneous neural activity, which has been an active 

research field, with links to resting state networks. But this approach renders it hard to make links with  

task related cognition 143. To link spontaneous neural activity and task -related cognition, we need to be 

able to decipher the representational content of neural activity. 

This brings us to the second change, which pertains to experimental paradigm. The TDLM method is 

designed to first decode the representation of spontaneous activity, and then study the regularity of 

patterns during reactivation. This is consistent with a broader paradigm shift in recent years 31,65,83,88, 

from “representation-less” to the “representation-rich”. In the past, we have studied decision-making in 

relatively abstract terms, for example, by invoking quantities such as decision variables, value or utility. 

To examine their neural correlates, we typically perform a “model-based” analysis where we first derive 

the value of these decision variables based on computational models, and then correlate a variation in 

these variables with fluctuations in neural activity 144. This is an entirely appropriate strategy if we only 

care about mapping decision variables on to the brain. But this type of analysis will tell us little about 

the computational processes.  

To understand the computational processes, we need to track the representation of objects (e.g., decision 

variables) over time. To do this, we need to first decode what “constitutes” the relevant variable in the 

brain. This is especially true when studying computation of non-local information, the focus of this 

thesis. To do so I, and others, devote a separate task to obtain a neural representation of these abstract 

constructs54,65,83,117. We call this a “representation rich” paradigm, because we are looking for neural 

patterns evoked by these representations. This “representation rich” paradigm is the methodological 

reason why we can study spontaneous neural activity - we can transform the measured dynamics of 

neural activity to patterns of reactivations of task-related variables.  

These two sources of change, conceptual and experimental, also remind us of the importance of the 

language of a discipline. This speaks to a recent debate in neuroscience and psychology 145,146, which  

asks whether neuroscience research is served best by a dependence on psychology terms. Buzsáki 146 

has argued that neuroscience needs to build its own vocabulary based on brain mechanisms, i.e., 

physiology, an approach termed “inside-out”. Others, such as Poeppel and Adolfi 145,  think the opposite 

holds true and that neuroscience needs psychology. In my view, this relates to a wider debate regarding 
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which level of description should be the first focus of neuroscience. Borrowing concepts from Marr and 

Vaina 147, there are arguably three potential levels of analysis: 1) computation: what problem is a system 

trying to solve 2) algorithmic: how does it do in terms of computation; and 3) implementational: how 

this his realized physically in the brain. While Buzsáki 146 favours an implementational-first strategy 

Poeppel and Adolfi 145 advocate a computational guided approach.  

I argue for a more middle ground approach. I think neuroscience research should be computation 

guided, but importantly it must also provide a concrete hypothesis on the nature and realisation of such 

computation i.e., a specification of the algorithm as well as its physical realization, i.e., implementation. 

In the domain of learning and decision-making, RL provides a powerful framework. It covers all three 

levels of analysis and, more importantly, it enables us to express an hypothesis in formal mathematical 

language, which leaves little room for ambiguity inherent in folk psychology, a main criticism of  

Buzsáki 146. An analogy can be made with physics. Arguably, it is only with Isaac Newton, who 

described physical phenomena in precise mathematic language, that physics became a rigorous science. 

An interesting observation in decision-making research is that in grounding in RL term, Dolan and 

Dayan 148 have successfully predicted that the next generation of enquiry should relate to the realization 

of model-based computation in the brain, 7 years ago.  

Undoubtedly, as a theory, RL is limited.  For example, the definition of reward is hard to define in real 

life (e.g., wealth? well-being? or social status?). But as a formal theory, it makes both its predictions 

and limitations precise and clear. I consider it as a good starting point in forming a unified language for 

the field. 
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APPENDIX 1: Apply TDLM to human whole-brain EEG data 

TDLM is developed with autocorrelation in mind. The autocorrelation is a common place in 

neuroimaging data, including EEG and fMRI. TDLM approach is designed to specifically taking care 

of this confound and should be able to work directly with EEG and fMRI data. 

We do not have the suitable fMRI data at hand to test TDLM, it seems it is better to work on the data 

within certain frequency range (cf., Wittkuhn & Schuck 2020). We are interested to investigate this in 

more depth in future work.  

We did have collected EEG data from one participant to test whether TDLM would *just* work. The 

task is designed to look for online sequential replay in a decision-making task by Toby Wise. It is a ‘T-

maze” like task, the participant needs to choose left or right based on the value received in the end of 

the path. We can decode 7 objects well on the whole-brain EEG data using just the raw amplitude (same 

with our MEG-based analysis), and we can detect fast backward sequenceness (peaked at 30 ms time 

lag) during choice/planning time, similar with our previous MEG findings 53. It is result from one 

subject, we are cautious to make serious claim, nevertheless we think it is promising.  

 

Sequence detection in EEG data (from one participant). a, Task design. At each trial, the participant starts at sate 

A, and he/she will need to select either “BDF” or “CEG” path, based on the final reward receipt on state F and G. 

All seven states are indicated by pictures. b, The leave-one-out crossed validated decoding accuracy is shown, 

with peak around 200 ms after stimulus onset, similar with our previous MEG findings. c, TDLM method is 

applied on the decoded state time course and find a fast backward sequenceness following task structure. This is 

subtraction between forward and backward, therefore the negative sequenceness indicate stronger backward 

sequence. The dotted line is the peak of the absolute state-permutation at each time lag, the dotted line the max 

over all computed state time lags, for controlling multiple comparison. This is the same statistical method we have 

used in previous empirical work and this method paper. This sequence results in EEG replicates our previous 

MEG-based finding during planning/decision time (see Figure 3 in Kurth-Nelson et al., 2016, and also see Figure 

3f in Liu et al., 2019). 
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APPENDIX 2: Pseudocode of cross-validations  

In the consideration of the formatting, we have attached the Latex-based algorithm box in picture form. 

 

Algorithm 1: hold one out cross validation to compute classification accuracy. Here N is

number of trials, D is number of data dimensions, and P is number of classes:

Algorithm 1: Hold one out cross validation

input : Data set D = {Xi, Yi}Ni=1(Xi 2 RD
;Yi 2 ZP

2 )

output: Cross validated classification accuracy {a 2 R : 0  a  1}
Randomly split D into K =

N
P equally sized subsets, D = {D1,D2, . . .DK} such

that each Di contains a single random sample from each class in Y ;

for k in K do
Create a training dataset Tk = {Di : i 6= k} ;

Train a logistic regression classifier �k on Tk ;

Compute classification accuracy ak of �k on Dk ;

end

Compute mean accuracy a =
1
K

PK
k=1 ak

Algorithm 2: test a classifier’s abstraction ability across di↵erent datasets with some com-

mon structure.

Algorithm 2: Classifier Abstraction

input : Data set D = {Xi, Yi}Ni=1(Xi 2 RD
;Yi 2 {A,B,C,D,A0, B0, C 0, D0})

output: Abstraction accuracy {a 2 R : 0  a  1}
Partition D into two subsets each of which exclusively contain trials from one or

other structure sequence: D1 = {Xi, Yi}Ni=1(Xi 2 RD
;Yi 2 {A,B,C,D} and

D2 = {Xi, Yi}Ni=1(Xi 2 RD
;Yi 2 {A0, B0, C 0, D0} ;

for k in { 1,2 } do
Train a logistic regression classifier �k on Dk ;

Compute classifier predictions pk of �k on D3�k ;

Compute abstraction accuracy ak as proportion of samples for which the

prediction pk correctly identifies the sequence location (eg A predicted for A0
) ;

end

Compute mean abstraction accuracy a =
1
2

P2
k=1 ak

1


