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Abstract

Animals and humans are remarkable in their ability to flexibly adapt to changes in

their surroundings. Navigational flexibility may take many forms and in this thesis

we investigate its neural and behavioral underpinnings using a variety of methods

and tasks tailored to each specific research aim. These methods include functional

resonance magnetic imaging (fMRI), freely moving virtual reality, desktop virtual

reality, large-scale online testing, and computational modelling.

First, we reanalysed previously collected rodent data in the lab to better under-

stand behavioural bias that may occur during goal-directed navigation tasks. Based

on finding some biases we designed a new approach of simulating results on maze

configurations prior to data collection to select the ideal mazes for our task. In a

parallel line of methods development, we designed a freely moving navigation task

using large-scale wireless virtual reality in a 10x10 space. We compared human

behaviour to that of a select number of reinforcement learning agents to investigate

the feasibility of computational modelling approaches to freely moving behaviour.

Second, we further developed our new approach of simulating results on maze

configuration to design a novel spatial navigation task used in a parallel experiment

in both rats and humans. We report the human findings using desktop virtual reality

and fMRI. We identified a network of regions including hippocampal, caudate nu-

cleus, and lateral orbitofrontal cortex involvement in learning hidden goal locations.

We also identified a positive correlation between Euclidean goal distance and brain

activity in the caudate nucleus during ongoing navigation.

Third, we developed a large online testing paradigm to investigate the role of

home environment on wayfinding ability. We extended previous reports that street



network complexity is beneficial in improving wayfinding ability as measured using

a previously reported virtual navigation game, Sea Hero Quest, as well as in a novel

virtual navigation game, City Hero Quest. We also report results of a navigational

strategies questionnaire that highlights differences of growing up inside and outside

cities in the United States and how this relates to wayfinding ability.

Fourth, we investigate route planning in a group of expert navigators, licensed

London taxi drivers. We designed a novel mental route planning task, probing 120

different routes throughout the extensive street network of London. We find hip-

pocampal and retrosplenial involvement in route planning. We also identify the

frontopolar cortex as one of several brain regions parametrically modulated by plan-

ning demand.

Lastly, I summarize the findings from these studies and how they all come to

provide different insights into our remarkable ability to flexibly adapt to naviga-

tional challenges in our environment.
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Impact Statement

This thesis investigates flexible navigation using functional magnetic resonance

imaging (fMRI) and an array of behavioural and computational methods. How

our brains are capable of supporting planning and goal-related processes is still

unknown. We use state-of-the-art methods including freely moving virtual reality

technology to increase the richness of the behavioural data we are able to acquire in

a lab setting.

We also develop new navigation tasks that can seamlessly be implemented for

large online testing. During the Covid-19 pandemic, we have seen increased use

of online platforms to conduct experiments. However, some technological devel-

opments were required to adapt our on-site experiment tasks to operate on a large

scale. These results of these developments are reported in this thesis and will benefit

future large-scale online experiments.

We also report initial findings from our ongoing route planning study on Lon-

don taxi drivers. These are a unique group of professionals who all share the same

detailed information of the London street network. This is an ideal test-bed for

many theories of spatial navigation that are usually constrained to be test on a stu-

dent population where time and monetary constraints means we cannot train them

to even a fraction of the proficiency level of a Licensed taxi driver as it takes on

average 3-4 years to complete full-time.

Adult brain plasticity as observed in London taxi drivers could also provide

with a wealth of insights into brain diseases such as Alzheimer’s disease. The same

brain areas afflicted, the hippocampus, is the same brain area that changes struc-

turally with years of experience as a London taxi driver. In this thesis, we try to



better understand how taxi drivers are able to mentally plan routes in a short period

of time, a process that is thought to be supported by the hippocampus.
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Chapter 1

Introduction

Much of our success as a species could be argued to depend on our ability to adapt

to changes in the environment. From changes in climate, to ice ages, to nomadic

lifestyles in search of greener pastures, the human species spread rapidly over mul-

tiple continents soon after our arrival in Africa (Bronowski, 1973). The behavioural

flexibility required for such adaptation is remarkable, and can be considered a hall-

mark of our intelligence. Other mammals are also capable of impressive behaviour

flexibility, including laboratory rats (Tolman, 1943). The overall aim of this thesis

is to better understand the neural underpinnings of flexible behaviour in the face of

navigational complexity.

We will begin with a review summarising the neurobiology supporting flex-

ible spatial navigation. Thereafter, we discuss the application of computational

modelling to understanding behavioural flexibility in spatial navigation. Lastly, we

present four studies that address flexible navigation in complex environments using

a variety of perspectives and methodologies. The first study applies reinforcement

learning models to study human freely moving behaviour. The second study uses

a revised version of the same task to look at the neural codes of flexible navigation

using fMRI. The third study uses large-scale online testing to investigate spatial be-

havioural strategies and the role of lived environments on wayfinding ability. The

last study investigates the neural underpinnings of route planning in London Taxi

drivers, a group of professionals whose daily life is based around flexibly updating

their spatial behaviour in the ever-changing, complex environment of the London



street network.

1.1 Striatal and hippocampal contributions to flexi-

ble navigation

The hippocampus has been firmly established as playing a crucial role in flexible

navigation (O’Keefe & Nadel, 1978; Ekstrom et al., 2018). Recent evidence sug-

gests that dorsal striatum may also play an important role in such goal-directed

behaviour in both rodents and humans (see Gahnstrom & Spiers, 2020). Across

recent studies, activity in the caudate nucleus has been linked to forward planning

and adaptation to changes in the environment. In particular, several human neu-

roimaging studies have found the caudate nucleus tracks information traditionally

associated with that by the hippocampus (Javadi et al., 2019a). In this chapter, we

examine this evidence and argue the dorsal striatum encodes the transition structure

of the environment during flexible, goal-directed behaviour. We highlight that fu-

ture research should explore the following: 1) Investigate neural responses during

spatial navigation via a biophysically plausible framework explained by reinforce-

ment learning models; and 2) Observe the interaction between cortical areas and

both the dorsal striatum and hippocampus during flexible navigation.

Flexibility during goal-directed behaviour

Flexible adaptation in response to unexpected changes in the environment is a cen-

tral challenge of navigation. Tolman adeptly illustrated this in his seminal work

exploring the capacity of rodents to accommodate detours and adopt shortcuts in

complex mazes (1948). This work led to the proposal of the cognitive map hypoth-

esis for flexible behaviour, by which the brain constructs an internal representation

of the environment to support navigation (Tolman, 1948). Subsequent neurosci-

entific research led O’Keefe & Nadel (1978) to propose that the hippocampus is

primarily responsible for supporting this cognitive map. Particularly central to this

proposal is the existence of ‘place cells’ in the hippocampus that show spatially

localised activity patterns linked to boundaries and landmarks in an environment
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(O’Keefe & Dostrovsky, 1971). This was followed by the discovery of a variety

of other spatial coding cells supporting navigation (see Grieves and Jeffery, 2017

for review). Given the ubiquity of spatial representation in the hippocampus and

neighbouring parahippocampal structures, several essential questions arise: 1) How

is information used during flexible navigation, as suggested by the hypothesis of the

cognitive map?; 2) What information does the hippocampus code for downstream

regions during navigation?; and 3) What contributions might other regions of the

brain’s navigation systems, such as the dorsal striatum, have for flexible naviga-

tion?

Rodent studies lesioning dorsal striatum and hippocampus provide strong ev-

idence for dissociable behavioural strategies related to intact function of these re-

gions during spatial navigation (Andersen et al., 2006; White & Donald, 2002).

‘Place learning’ is a flexible process by which an animal learns associations be-

tween distal cues and goal locations in the environment; while response learning

is an inflexible process whereby an animal learns a series of actions or responses

necessary to reach the goal. Place learning can be investigated using the Morris

water maze, a task that targets behavioural flexibility and spatial memory (Morris

et al., 1982; McDonald & White, 1994; Pearce et al., 1998; Devan & White, 1999;

Whishaw et al., 1987). By the original task protocol, a rat is placed at a pseudo-

random location within a cylindrical arena filled with opaque water. No local cues

other than distal landmarks and boundary distance are provided. Safety is achieved

by swimming to a fixed platform located just below the opaque surface, hidden

from view. Escape latencies record time to reach the platform during training as

well as during probe trials (when the hidden platform is removed). Lesion or inac-

tivation of the hippocampus impacts place learning by increasing escape latencies

compared to that of non-lesioned controls (Sutherland et al., 1983; Morris et al.,

1982). However, lesions in dorsal striatum impair simple approach behaviour when

the platform is visible, and instead, rats will swim to previously learned platform

location (McDonald & White, 1994).

A paradigm called Delayed-Matched-to-Place further extended the Morris wa-
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ter maze by investigating one-shot learning, a hallmark of behavioural flexibility

(Steele & Morris, 1999). In this version of the task, the location of the hidden plat-

form changes each day. This results in a substantial drop in escape latency between

the first and second trial. The subsequent trials exhibit latency improvement, but to

a much smaller extent. This concept of one-shot learning is an impressive quality

of cognitive flexibility difficult to capture by biophysically plausible modelling of

place cells (Foster et al., 2000). However, reinforcement learning can capture this

behavioural phenomenon by further simulation of cells which estimate real world

coordinates (Tessereau et al., 2020; Foster et al., 2000). Together, these simulated

cells form an allocentric coordinate system receiving input from the place cells.

This coordinate system lacks a biological basis, although this may be analogous

to information represented by grid cells in the entorhinal cortex (Hafting et al.,

2005). Likewise, simulated deep reinforcement learning agents endowed with grid-

like representation can perform flexible spatial navigation tasks such as the Morris

water maze (Banino et al., 2018). Additionally, inactivation of the hippocampus

by bilateral lesions to the fornix impairs performance in an eight-arm radial maze

task, in which rats are trained to revisit certain arms consistently baited with food

(Packard et al., 1989). Intact hippocampal function is necessary for place learning in

a cross-maze task as well (Packard & McGaugh, 1996). Evidence from neuroimag-

ing studies of humans and patients with hippocampal damage further implicates the

hippocampus’ role for both place learning and flexible navigation of novel routes

and environments (Spiers et al. 2001a,b; Hartley et al., 2003; Bohbot et al., 2007;

Iaria et al., 2004; Spiers & Maguire 2006; Xu et al., 2010; Howard et al., 2014;

Javadi et al., 2019a; Javadi et al., 2019b; Patai et al., 2019).

In addition to place learning, animals also utilize ‘response learning’, i.e. learn-

ing based on the responses required to reach the goal (Packard & McGaugh, 1996).

Such response learning is shown to depend on the functional integrity of the dorsal

striatum (Packard & McGaugh, 1996; Packard et al., 1989). Differences in acquisi-

tion time of place and response learning, with the latter taking longer to form, also

suggest that these behavioural strategies instantiate in the brain as dissociable neural
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mechanisms (Packard & McGaugh, 1996). Subsequently, human neuroimaging re-

search has provided convergent evidence for the involvement of the dorsal striatum

in such response strategy navigation (Iaria et al. 2004; Voermans et al., 2004; Hart-

ley et al., 2003). Response learning is not traditionally considered flexible because

it is tied to the specific features of the environment (e.g. always turn right at the

crossroad). By contrast, place learning is thought to be flexible since it is possible

to use place-based information from the environment to accommodate detours and

identify shortcuts.

Recent studies have begun to explore how different types of spatial information

may be tracked by specific brain regions during navigation. Two important metrics

for flexible navigation are vector-to-goal and path-to-goal (Bicanski & Burgess,

2020; Spiers & Barry, 2015; Chadwick et al., 2015). Using in situ learning experi-

ence and film simulation of Soho in London (UK), Howard et al. (2014) identified

neural correlates of path distance to goal in the right posterior hippocampus. Such

correlates of distance to goal have also been observed in dorsal hippocampal record-

ings in rats (Spiers et al., 2018) and bats (Sarel et al., 2017). During detour events,

the human posterior right hippocampus was also found to track the increase in path

distance when a forced detour occurred (Howard et al., 2014). Based on this find-

ing and other evidence from rats (e.g. Pfeiffer & Foster, 2013; Gupta et al. 2010;

Olafsdottir et al. 2015), it has been hypothesised the hippocampus simulates future

paths through the environment at key events during navigation, such as at detours

(Spiers & Gilbert, 2015). Consequently, detours requiring simulation of a much

larger future route will evoke greater demands on the hippocampus than simulation

of shorter routes.

In order to test the prediction of Spiers and Gilbert (2015), a recent study

by Javadi and colleagues (2019a) examined hippocampal response to respectively

small and large changes in distance to goal at forced detours (see Fig. 1a). In this

task, participants navigated a virtual desert island riven with lava which blocked

certain movements across it. Participants first learned the layout and location of

several hidden objects, which later served as cued goal locations. During the test
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phase, when participants actively navigated the maze, shifts in the location of lava

pools either opened up new paths or blocked old paths, resulting in possible short-

cuts and detours, respectively. In contrast to the predictions of Spiers and Gilbert

(2015), posterior hippocampus did not index the change in distance to goal at de-

tours, but rather prefrontal regions and bilateral caudate nucleus tracked the change

in path distance to goal (Javadi et al., 2019a). Notably, in the work from Howard

and colleagues (2014), the hippocampal response to distance changes at detours

was also accompanied by a similar response in the dorsal striatum (Fig. 1b). Taken

together, these results indicate the dorsal striatum is more consistent in tracking the

change in distance at detours than the hippocampus. This suggests it is timely to

reconsider the role of dorsal striatum during flexible navigation and understand how

the hippocampus interacts with these regions in corticostriatal loops (Goodroe et al.,

2018; Brown et al., 2012).
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Figure 1.1: Dorsal striatum activity is correlated with the change in distance to goal at
detours.

A) Replotted data from Javadi et al., (2019a) in which fMRI and virtual reality desert island
riven with lava was used to examine the brain regions responsive to the change in distance
to the goal at detours. Top row shows a zoomed in schematic from the larger virtual envi-
ronment used and the transition that occurs when the path is unexpectedly blocked. Bottom
row: the same change but from the first person perspective. Brain image shows bilateral
activity in medial caudate nucleus (dorsal striatum) cluster-corrected for activity correlated
positively with the change in distance. B) Replotted data from Howard et al., (2014). In this
study a film simulation of Soho in London was used to test navigation, including accommo-
dating detours. The amount of change in distance caused by forced detours was correlated
with dorsal striatal activity. Red regions show regions activations thresholded at p < 0.005
uncorrected, shown on the mean structural image.

How might the striatum contribute to flexible navigation be-

haviour?

Despite the traditional role of response learning attributed to striatal function, the

striatum has been implicated in studies investigating behavioural flexibility in both

rodents and humans, suggesting a more nuanced functionality beyond contributing

to a less flexible response system (Johnson et al., 2007). Lesions and inactivations

in different areas of striatum produce varied behavioural deficits, indicating a disso-

ciation of respective functional roles (Sharpe et al., 2019; Ragozzino et al., 2002).
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The striatum is commonly divided up into two anatomically separated regions: the

dorsal striatum, composing of the caudate and putamen, and the ventral striatum,

composed mainly of the nucleus accumbens, although no clear cytoarchitectonic or

histochemical boundary between ventral and dorsal striatum exist (Haber & Knut-

son, 2010). Furthermore, rodent caudate-putamen is segmented into dorsomedial

striatum (homologous to primate caudate) and dorsolateral striatum (homologous

to primate putamen) (Cox & Witten, 2019). Early rodent studies did not include

strict separation of these regions when using large lesions, which leads to interpre-

tation difficulties (Yin & Knowlton, 2006).

Reinforcement learning models provide a normative framework to investigate

neural mechanisms that give rise to flexible and inflexible behaviour (Corrado et

al., 2009). Within the reinforcement learning literature, flexible and goal-directed

behaviour is often described by a family of algorithms classified as ‘model-based.’

This is commonly contrasted with habitual behaviour described by a separate family

of algorithms classified as ‘model-free’ (Dolan & Dayan, 2013; Rusu & Pennartz,

2020). These computational models ‘learn’ states and rewards in the environment

by using a component referred to as reward prediction error, i.e. the difference be-

tween expected and experienced reward. The goal of a reinforcement learning agent

is to take actions which maximise long-term future reward (Sutton & Barto, 2018).

Single neurons of the ventral tegmental area in the brainstem of macaques were

found to encode reward prediction errors, a region which has direct dopaminergic

projection to the nucleus accumbens in ventral striatum (Schultz et al., 1997; Haber

& Knutson, 2010). Since then, human fMRI studies on multi-step decision making

tasks have identified ventral striatum as a primary region for the processing of re-

ward prediction errors (Gläscher et al., 2010; Daw et al., 2011). Daw and colleagues

also found the striatal underpinnings of habitual model-free prediction errors and

model-based prediction errors overlap in ventral striatum, suggesting the same neu-

ral circuitry is involved in both computations (2011). A recent meta-analysis found

correlates for reward prediction errors in both ventral striatum and caudate nucleus

(as well as overlapping areas) in model-based and model-free computations (Huang
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et al., 2020).

Beyond the classic divisions of model-free and model-based literature in

decision-making tasks, there are other families of reinforcement learning (RL) al-

gorithms that provide alternative accounts, including hierarchical RL, linear RL,

and successor representation (Tessereau et al., 2020; Botvinick et al., 2009; Piray

& Daw, 2019; Dayan, 1993; Stachenheld et al., 2017; Russek et al., 2017; Ger-

shman, 2018). In particular, successor representation can account for flexible be-

haviour of rats and humans in complex mazes (de Cothi et al., 2020) and humans

in reward devaluation (Momennejad et al., 2017). Interestingly, components of the

successor representation during simulations show similarities to properties of place

cells and grid cells, including the influence of goal locations on place field over-

representation and the influence of environmental geometry on grid field integrity

(Stachenfeld et al., 2017; Krupic et al., 2015; Ekstrom et al., 2020). It is an in-

teresting future direction for studies to investigate the relationship between neural

responses and the internal computations of successor representation shown to ac-

count for behaviour flexibility, particularly in some spatial navigation tasks (Russek

et al., 2017; for review see Momennejad, 2020). Recent work with rats navigating

between four interconnected rooms has revealed that during initial adaptation to ob-

structed pathways , place cells in CA1 did not adapt their firing fields to accompany

the changing behaviour (Duvelle et al., 2020) as might have been predicted by a

model in which place cells support successor representation coding (Stachenfeld et

al., 2017). It may be that more stereotyped trajectories are required for shifts in

place fields as a result of topological manipulations.

The dorsal striatum has commonly been linked to stimulus-association, or

habits, in spatial navigation tasks using human fMRI. Doeller and colleagues (2008)

employed a virtual object-memory task inspired by the Morris water maze. They

found activity in the caudate nucleus to be parametrically modulated by the influ-

ence of intramaze landmarks on goal locations, while the right posterior hippocam-

pus correlated with boundary-related influence on goal locations (Doeller et al.,

2008). In another study in which participants navigated a virtual town, caudate
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activity was preferentially active during route following trials, while anterior hip-

pocampus was preferentially active during wayfinding trials (Hartley et al., 2003).

Likewise, Iaria et al. (2003) found place strategy use in an eight-arm radial maze

task was associated with increased right hippocampal activity while non-spatial re-

sponse strategy use was associated with increased activity in caudate nucleus. These

studies suggest a dissociation between the roles of dorsal striatum and hippocam-

pus for habitual and flexible behaviour, respectively. However, contextual demands

may elucidate a more nuanced role for the striatum in multiple behavioural control

circuits (Rusu & Pennartz, 2020; Balleine et al., 2015; Ferbinteanu, 2019).

In rodents, the involvement of dorsal striatum in both flexible and habitual be-

haviour could be resolved by considering the functional distinction of dorsolateral

and dorsomedial regions (Regier et al., 2015; Thorn et al., 2010; van der Meer et al.,

2010). Studies investigating the homologous regions in humans are made difficult

by the lack of spatially precise recordings of neuronal activity. One account sug-

gests dorsal striatum performs the role of an ‘actor’ while ventral striatum performs

the parallel role of a ‘critic’ in the ‘actor-critic’ reinforcement learning framework

(Sutton & Barto, 2018). In support of this idea, such a division in computational

roles was found during an instrumental learning task using fMRI (O’Doherty et

al., 2004). Investigation of functional distinction in dorsal striatum found putamen

involvement in habit-based processing from extensive training versus caudate in-

volvement in forward planning (Wunderlich et al., 2012). The role of forward plan-

ning at detours could be considered in the task by Javadi and colleagues (2019a)

wherein distance changes were tracked by bilateral caudate nucleus (Fig. 1). In a

virtual navigation task, Simon and Daw (2011) also found forward planning tracked

by striatum using predictions from ‘model-based’ reinforcement learning.

In a more recent virtual navigation task, Anggriani et al. (2018) identified

model-free correlates in dorsal striatum. Model-based correlates were found in

the parahippocampus and overlapped with model-free correlates in the retrosple-

nial cortex. In contrast to Simon and Daw (2011), this study did not utilise vi-

sual goal cues and also did not include changes in the maze configuration, more
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akin to classical spatial navigation paradigms. The different accounts of striatal in-

volvement in prediction errors can perhaps be reconciled by considering that the

behavioural strategies and neural mechanisms are not so easily dissociable as previ-

ously thought. One spatial planning task found striatal activity related to the differ-

ence in path distance between the shortest path and unchosen longest path to goal as

a proxy for exhaustive search or forward planning (Kaplan et al., 2017). This indi-

cates that striatal subregions may be involved in planning, which may be the reason

these regions are active in different studies. Perhaps a mixed use of strategies is

also an underlying reason for this result. Brown and colleagues (2012) showed that

caudate is important for disambiguating context during spatial navigation, together

with orbitofrontal cortex and hippocampus. We suggest these findings are in line

with a new perspective of these regions. In this view, the caudate encodes learned

transition structures, however, the current active transition structure at any point in

time is based on the current state of the animal and context within the task, which

is proposed to be modulated through cholinergic interneurons between dorsome-

dial striatum and orbitofrontal cortex (Sharpe et al., 2019). Hippocampus, on the

other hand, is involved in learning the structure of the environment (incidental to

the task), and also the accompanying association-based learning.

Instrumental learning paradigms in rodents reveal a model-based influence on

model-free prediction errors (Langdon et al., 2018). As such, the classical role of

dopaminergic prediction errors are more nuanced and can incorporate signals re-

lated to behavioural flexibility and the current state of the task in ventral tegmental

area (Starkweather et al., 2017; Keiflin et al., 2019) as well as dorsomedial striatum

(Stalnaker et al., 2016). Using causal methodology by optogenetically stimulat-

ing dopaminergic neurons in ventral tegmental area (the putative cells encoding

reward prediction errors), rats could learn associations between cues without en-

dowing them with cached-value, as would be expected based on pure model-free

temporal-difference learning models (Sharpe et al., 2020). Another instrumental

learning task found an increasing number of neurons encoding task-relevant infor-

mation in dorsolateral striatum more so than dorsomedial, suggesting the former
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may be encoding the development of a habit-based response (Kimchi et al., 2009).

Recordings in rats navigating a T-maze found that neurons in dorsomedial striatum

were primarily active while choosing between alternative actions after cue-onset,

in contrast with neurons in dorsolateral striatum which were primarily active dur-

ing action execution (Thorn et al., 2010). Stalnaker and colleagues (2016) found

that cholinergic interneurons in rodent dorsomedial – and not dorsolateral striatum

– represented information about the current state of the choice task. Additionally,

this state information was not present in rats with lesions to the orbitofrontal cor-

tex. Taken together, there appears to be shared neural circuitry for model-free and

model-based behaviours, and prediction errors may convey more information than

the difference between experienced and expected reward (Doll et al., 2012). Per-

haps the aforementioned human studies can be reconciled with the notion that cau-

date can support a mixture of model-free and model-based computations dependent

on the task and context at hand. Caudate nucleus activity can be expected in re-

sponse to changes in transition structure if it also encodes model-based information

regarding the task environment.

These recent findings pose a new question: What is the human dorsal stria-

tum coding that drives these observed changes in activity during navigation? Ro-

dent work on dorsomedial striatum suggests this region is necessary for execution

of flexible goal-directed behaviour (Rusu & Pennartz, 2020). Similarly, dorsome-

dial lesions have demonstrated similar behavioural deficits to that of hippocampal

lesions in terms of deficiencies in goal-directed flexible behaviour (Sharpe et al.,

2019). For effective flexible behaviour, work from Sharpe and colleagues (2019)

suggests the hippocampus provides information about the environmental structure,

while dorsomedial striatum incorporates information about the transition structure

into one’s overall world model. In human navigation, novel forced detours are a

classic example of a change in the transition structure. If the caudate updates rep-

resentations of the transition structure, with greater transitional change resulting

in greater demand on caudate activity, then this may explain the results of both

Javadi et al. (2019a) and Howard et al (2014), see Fig. 1, where a larger change in
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distance at detours is associated with greater evoked caudate activity. In contrast,

hippocampus may be required to construct simulations of journeys through the en-

vironments (Bendor & Spiers 2016). Such simulations may have been much richer

in the navigation of London’s Soho (Howard et al. 2014), compared with a desert

island (Javadi et al., 2019a), explaining the difference in hippocampal engagement.

Entorhinal cortex may also be involved in representing low-dimensional features of

environments by extracting basis sets (or eigenvectors of the successor representa-

tion), some of which look visually similar to the iconic hexagonal nature of grid

fields (Behrens et al., 2018; Stachenfeld 2017). Lesions during the Morris water

maze have shown the entorhinal cortex to be involved in flexible behaviour, as an-

imals have similar behavioral deficits to those of hippocampal lesions in terms of

increased swimming latencies to the hidden platform (Hales et al., 2014). One idea

is that the entorhinal cortex supports the ability to form general transition structures

of any environment and store information about how distant states or locations are

related to each other (Behrens et al., 2018; Constantinescu et al., 2016). However,

the unique dorsal striatum contribution may be more closely related to how action-

outcome associations are represented and which state is transitioned to as a result

of a given motor action (Sharpe et al., 2019).

In conclusion, evidence suggests the dorsomedial striatum / caudate nucleus

plays a key role in flexible navigation by representing the transition structure of the

environment for guiding future actions (Sharpe et al., 2019). This may explain ob-

served responses at detours where transition structure changes (Howard et al., 2014;

Javadi et al., 2019a). Future research will be useful to observe dorsomedial striatal

activity in rodents during dynamic changes to the environment’s transition structure

and variations in update demands (e.g. detours that require larger or smaller shifts

in the route to the goal). It would also be important to examine the interplay be-

tween the striatum, hippocampal/parahippocampal structures, and prefrontal cortex

during such updating and representation for the structure of the environment (see

Momennejad, 2020). The entorhinal cortex has also been proposed to play a role

in coding the transition structure of the layout of the environment or stimulus set
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(Behrens et al., 2018). Understanding how such a code relates to striatal coding

of transition structure would be useful for advancing models of the neural systems

supporting flexible navigation behaviour.

1.2 Computational view of reinforcement learning

modelling in flexible navigation
There is a longstanding lack in our understanding of generalizable mechanisms un-

derlying cognition. At the same time, the subfields of neuroscience investigating

rodents invasively, and humans noninvasively, are seriously divided (Badre et al.,

2015). This section of the introduction will suggest ways to investigate both of

these topics through the implementation of interactionist neuroscience and compu-

tational modelling. Specifically, the research paradigm outlined in this chapter com-

bines spatial navigation tasks across species with models of reinforcement learning.

However, spatial navigation is just one of many fields this paradigm may be applied

to for investigating general mechanisms of information processing during cognition

(Behrens et al., 2018).

This part of the introduction will focus on spatial navigation as a test-bed for

computational hypotheses underlying cognition for the following reasons: 1) Navi-

gation is ecologically sound. Humans and animals alike navigate daily through their

respective environments; 2) Neurobiological representation of spatial information

is well established from cellular single-unit recordings in the hippocampus and sur-

rounding brain regions; and 3) Navigation tasks are generalizable across species.

The approach described will investigate neural mechanisms which intimately links

different levels of understanding, from low-level neural circuits to the overarching

computations carried out by the brain.

The first question we consider in this section is: Does the hippocampus sup-

port coding of goal information? Studies using real world stimuli have identified

correlates of hippocampal activity with distance and direction to goal using fMRI

(Howard et al., 2014; Javadi et al., 2017). Similarly, the presence of egocentric

goal coding has been found in bats which take long trajectories around the goal
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potentially allowing enough angular sampling to be detected (Sarel et al., 2017).

Additional evidence also suggests a small subpopulation of reward cells in the hip-

pocampus of mice during virtual navigation (Gauthier et al., 2018). However, it

remains to be seen if the same goal coding as identified in the bats is present in rats.

The lack of evidence brings up the second question: Do rats and humans use neural

mechanisms testable through reinforcement learning to flexible navigate? We hy-

pothesize that a subclass of reinforcement learning models, the successor represen-

tation, is best at accounting for the flexible behaviour in the spatial navigation tasks

tested in both rodents and humans in this thesis. This is based on recent theoreti-

cal work by Stachenfeld et al., (2017) suggesting that the hippocampus instantiates

a predictive map which can explain findings such as the influence of reward onto

place fields. Other researchers have also identified that successor representation can

account for behaviour such as reward revaluation in value-based decision making

by utilising mechanisms of offline replay (Momennejad et al., 2018).

Space and the brain

Early behavioural studies with rats navigating through mazes gave rise to the idea

that mammals have an internal map-like representation of their environment (Tol-

man, 1948). Tolman’s experiments showed that rodents extrapolate beyond simple

stimulus-response mappings during navigation, and he hypothesized that they cre-

ate a so-called cognitive map. This theoretical map is what allowed the rodents to

choose previously unseen and more efficient paths (i.e., shortcuts) in a learned envi-

ronment. Interestingly, Tolman viewed this cognitive map as a generalized mecha-

nism of cognition, one which is used for rational behaviour (Tolman, 1948; Behrens

et al., 2018). He further suggested that behavioural changes caused by disease or

brain injury results from damage or narrowing in these cognitive maps. A few

decades later, single-unit recordings in the hippocampus of rodents revealed cells

which fire in specific spatial locations of the environment – known as place cells

(O’Keefe and Dostrovsky, 1971; O’Keefe and Conway, 1978). Each of these so-

called place cells has a place field associated with it, a spatial region in the 2D

environment where the cell fires most often. The accuracy of these cells are such
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that only a few need to be analysed to accurately determine the location of freely

moving animals from the recordings alone (Moser et al., 2017). Place-dependent

firing of single cells have also been discovered in bats (Ulanovsky and Moss, 2007),

mice (Harvey et al., 2009), humans (Ekstrom et al., 2003), and non-human primates

(Ludvig et al., 2004; Mao et al., 2021).

Following the discovery of place cells, another set of cells were discovered

which further advanced our understanding of encoded spatial information critical

for navigation. Head direction cells were found in the dorsal presubiculum and

anterodorsal thalamic nucleus and encoded the current heading direction of the ani-

mal, irrespective of other behaviour (Ranck Jr, 1984; Taube, 2007; McNaughton et

al., 1991). Unlike place cells which encoded environmentally-bound spatial infor-

mation these head direction cells encoded egocentric information.This information

was believed to be important for navigation in conjunction with the allocentric place

cells, e.g. for path integration (McNaughton et al., 1991). Path integration is a cen-

tral aspect of spatial navigation. It is the process by which information about current

speed, position, and heading direction allows the organism to precisely calculate

their current and future position (McNaughton et al., 2006). One well known issue

of path integration is the accumulation of sensory errors due to the poor accuracy of

heading direction and/or speed, resulting in, for instance, a case where people can

walk in circles despite trying to walk in a straight line (Souman et al., 2009).

In the early 2000s, a new class of spatially selective cells, grid cells, were iden-

tified in medial entorhinal cortex, a brain region adjacent to the hippocampus (Fyhn

et al., 2007; Hafting et al., 2005), and later in the pre- and parasubiculum (Boccara

et al., 2010). In contrast to place cells, these cells encode multiple place fields that

span the whole explorable environment in a symmetrical, hexagonal pattern (Moser

et al., 2017). Grid cells also adapt to changes in environmental cues, suggesting a

role of anchoring in navigation. When cue cards positioned on the inner walls of a

box environment were rotated, the firing pattern of the present grid cells followed

the same rotation (Hafting et al., 2005). In contrast to place cells, the place fields

of grid cells remain constant across changing environments (Bostock et al., 1991;
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Fyhn et al., 2007). Grid cells have also been identified in bats, non-human primates,

and in mice (Yartsev et al., 2011; Killian et al., 2012; Fyhn et al., 2008). Recently,

the presence of rewarding goal locations has been shown to alter the pattern of the

grid field around the goal (Boccara et al., 2019; Butler et al., 2019).

Even more recently, cells encoding a boundary vector were discovered in the

subiculum of freely moving rats (Lever et al., 2009), and in the entorhinal cor-

tex (Savelli et al., 2008; Solstad et al., 2008), amongst other regions (Grieves and

Jeffery, 2017). These cells fire when the animal is positioned at a preferred dis-

tance from an environmental boundary. Interestingly, these cells were hypothesized

to exist as inputs to place cells based on the influence changes in environmental

boundaries have on place field patterns and were also predicted by computational

models (Barry et al., 2006). Neurons in the medial entorhinal cortex have also been

identified that specifically encode the speed of freely moving rats (Kropff et al.,

2015). These cells appear to be solely responsible for encoding speed, unlike many

other conjunctive cells that encode speed along with grid fields or heading direction

(Wills et al., 2012). An additional subpopulation of cells in medial entorhinal cortex

were discovered to encode the vector to objects in the environment (Høydal et al.,

2019).

The question remains how this encoded spatial information helps with navi-

gation. For instance, spatial information can be used to execute several different

distinct navigational strategies. Two of them are path integration and landmark nav-

igation. Path integration, or dead reckoning, is a process whereby an agent uses self-

motion cues like changes in velocity and egocentric heading direction to keep track

of their position over time (Mittelstaedt and Mittelstaedt, 1980; Gallistel and King,

2011). Landmark navigation is navigation through the use of external cues like

distance between objects in the environment (Yoder et al., 2011). Two other strat-

egy domains are goal-directed and habitual behaviour (Dolan and Dayan, 2013).

Goal-directed behaviour is considered a deliberate process requiring future plan-

ning based on information beyond immediate sensory cues (Pezzulo et al., 2014).

Habitual behaviour constitutes previously learned stimulus-response associations
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which may be disassociated from current value outcomes (Dickinson, 1985).

Goal-directed and habitual behaviour in rodents

A longstanding goal in the study of navigation, and of decision-making in general,

has been to investigate the extent to which actions are chains of stimulus-response

mappings, or whether actions depend on an abstract representation of a goal. The

idea being that this goal representation allows the agent to act beyond current or

past reinforcement of actions, for example by planning out and executing a shortcut

(Tolman, 1948). Another important question is how goal locations are represented

in the brain. Studies have shown that place cells will shift their place fields over time

to encode reward at goal locations (Komorowski et al., 2009; Dupret et al., 2010;

Hok et al., 2007). Using optogenetic stimulation, one study artificially activated

dopaminergic neurons projecting to place cells after spatial learning (McNamara

et al., 2014). They found an increase in place cell reactivation. Moreover, in the

Morris water maze task, place fields were found to be over-represented around the

goal location (Hollup et al., 2001). These findings of goal location encoding in

place cells demonstrate that they encode more than a collective spatial code of the

environment.

Rats exhibit vicarious trial and error behaviour, which means that they halt at

a decision point and appear to be considering their options (Tolman, 1938; Redish,

2016). It was recently discovered that during this behaviour, place cells generate

brief sequences of spatial trajectories which predict subsequent behaviour even in

novel environments (Pfeiffer and Foster, 2013). These generated sequences occur

during so-called sharp-wave ripples and consist of sudden high frequency activity in

the local field potential during inactive wakefulness and sleep (Buzsáki, 2015). Pro-

nounced theta oscillations in the hippocampus have been established since the ear-

liest recordings of local field potentials (O’Keefe and Conway, 1978). Within each

extracellular theta oscillation, populations of place cells have also been found to

fire in forward succession of each other, referred to as a theta sequence (Foster and

Wilson, 2007). This theta sequence has recently been found to encode goal-related

information (Wikenheiser and Redish, 2015). Wikenheiser and Redish (2015) mea-
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sured hippocampal place fields of rats during a foraging task. They found that the

theta sequences reflected the subsequent rat path trajectories up until goal locations.

Moreover, the sequences were longer during longer behavioural trajectories.

During sleep or resting, place cells have been found to fire in a sequence

that predicts the following place cell activity while running on a novel linear track

(Dragoi and Tonegawa, 2011). This phenomenon of preplay suggests that the cur-

rent state of the hippocampus pre-configures the future encoding of state represen-

tations (Dragoi and Tonegawa, 2014). The activity of place cells in hippocampus

also encodes trajectories to regions that have never before been visited (Ólafsdóttir

et al., 2015). Rodents were shown rewards positioned at unreachable regions of the

environment. The firing of place cells reflected trajectories both towards and away

from these reward locations. Another well-established finding in the hippocampus

is that of replay. Place cells will fire in a pattern sequence which re-enacts the fir-

ing patterns from previous active behaviour during sleep (Wilson and McNaughton,

1994; Skaggs and McNaughton, 1996). Moreover, these replay periods were found

to also be present quickly following spatial navigation while the animal was awake

but not moving (Foster and Wilson, 2006).

Goal-directed and habitual behaviour in humans

Research into understanding the human brain has drastically increased in the past

few decades with the advance of non-invasive brain imaging Making it suddenly

possible to map out cognitive functions associated with specific brain areas. One

primary imaging modality is functional magnetic resonance imaging (fMRI), a

research technique successfully used to detect fluctuations in levels of blood-

oxygenation as a function of increased metabolic demands (Poldrack et al., 2011).

This setup still allows for navigational processes to be engaged despite being con-

strained and immobile (Epstein et al., 2017; Huffman & Ekstrom, 2019).

The division of goal-directed (map-based) vs. habitual behaviour (route-based)

in humans has often been supported by studies of behaviour in humans and rodent

(Iglói et al., 2009; Tolman, 1948). This division is also implicated to recruit sepa-

rate neural circuits (Wolbers and Hegarty, 2010). One study found that participants

31



who used spatial landmarks when navigating had increased hippocampal activity,

while participants who used a habit-based (non-spatial) strategy had increased cau-

date nucleus activity (Iaria et al., 2003). The same disassociation was found with

participants virtually navigating around a town (Hartley et al., 2003), and during a

route-recognition task with early-stage Huntington’s disease patients (Voermans et

al., 2004). One interesting line of MRI research has focused on expert navigators in

the form of London taxi drivers (Woollett and Maguire, 2011). An early study found

that the posterior hippocampus of London taxi drivers was larger than that of control

groups, while vice versa for anterior hippocampus (Maguire et al., 2000). The level

of experience, i.e. years as a taxi driver, was also correlated with grey matter vol-

ume in the posterior hippocampus as compared to bus drivers and controls (Maguire

et al., 2003; Spiers & Maguire, 2006). That the size of the hippocampus is variable

suggests that the anatomy of the hippocampus adapts to the requirements of every-

day spatial navigation. Recent work on hippocampal volume and navigation ability

in the normal population has found contradictory evidence where in several large

sample studies there is no such association between hippocampal volume and nav-

igation ability (Weisberg et al., 2019; Clarke et al., 2020; although see Brunec et

al., 2019). It is possible the correlation observed in taxi drivers is due to being ex-

treme outliers in terms of navigational ability (Weisberg & Ekstrom, 2021). Some

more recent findings suggest the hippocampus encodes the path distance to goal,

while the entorhinal cortex encodes Euclidean distance to goal. Howard and col-

leagues (2014) designed a task where participants navigated real-world routes and

were later shown movies of the same routes. The task was structured so that the

Euclidean distance and path distance to goal location varied separately. Posterior

hippocampus was found to be associated with the path distance and the change in

path distance during detours, while anterior hippocampus and entorhinal cortex was

associated with Euclidean distance during passive navigation or when a new goal

was presented, respectively. The posterior parietal cortex reflected the egocentric

angle to goal direction.

Another set of experiments further investigated brain regions involved in goal
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proximity and detour planning. One task had participants first view the position

of a figure in a virtual environment and later used mental navigation to calculate

the nearest route to the previously shown figure from a random starting position

(Viard et al., 2011). They found that the hippocampus, medial prefrontal cortex and

parahippocampus tracked goal proximity. Moreover, a subset of detour trials was

associated with medial and ventromedial prefrontal cortex activity. Earlier studies

have also identified medial prefrontal, subiculum, and entorhinal cortex associated

with goal proximity during virtual navigation (Spiers and Maguire, 2007). Recently,

the retrosplenial cortex was found to encode goal proximity when navigation famil-

iar virtual environments, while hippocampus encoded goal proximity within novel

virtual environments (Patai et al., 2017).

The finding that place cells encode future trajectories to goal locations (Wiken-

heiser and Redish, 2015) has also been investigated in humans using fMRI and vir-

tual navigation. Brown et al. (2016) designed a task where participants learned goal

locations associated with fractal images positioned along a circular maze. They

were later prompted with one of the fractal cues before planning and following a

route to an encoded location. The hippocampus encoded the location of future goals

during the planning stage, and the same hippocampal encoding was present after

navigation to that goal. Another recent study using virtual maze navigation also

found hippocampal regions to reflect goal-specific planning (Kaplan et al., 2017).

One study investigated future planning (Horner et al., 2016) using the previously

described process of measuring grid cell-related activity in the entorhinal cortex

in humans with fMRI (Doeller et al., 2010). They identified the same signal be-

ing present during virtual navigation and during imagined navigation, suggesting

its role in route planning. Entorhinal grid cell-like activity also extends beyond

navigation and represents locations in visual space (Julian et al., 2018).

The above review of how the rodent and human brain represents space still

lacks a computational perspective to explain this wealth of generated data investi-

gating goal-directed navigation across species. By using simulations and through

the implementation of reinforcement learning models and freely moving virtual re-
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ality technology, one chapter in this thesis attempts to bring these two research

domains closer together through consideration of task design.
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Chapter 2

Reinforcement learning in freely

moving behaviour

The past decades have seen a rapid increase in the number of studies leveraging

the power of cognitive computational modelling (Palminteri et al., 2017). These

methods could be important tools in understanding and explaining latent variables

and building blocks of cognition that may be unattainable through more traditional

summary statistics approaches (Corrado et al., 2012). Methods leveraging com-

putational modelling of choice behaviour can also help to bridge the gap between

cognitive fields such as decision-making and spatial navigation (Kriegeskorte &

Douglas, 2018; Summerfield & Tsetsos, 2012; Gahnstrom & Spiers, 2020).

This chapter describes two projects where the advancement lies in the meth-

ods used as data collection was limited due to the Covid-19 pandemic. The first

study involves maze simulations for improved decoding of goal-related informa-

tion. Good experimental design is crucial for advancing the science of any research

field. As computational power has risen substantially in the 21th century, new ways

to approach good experimental design have also gained popularity (Palminteri et

al., 2017). There are many possible parameters that can be tweaked in any given

experiment and it is much too costly for any experimental lab to pilot a large subset

of these possibilities. This is where simulating experiments can play an important

role in discovering a more optimised design to test your experimental hypothesis.

This is especially important when utilising computational modelling of choice be-



haviour as you can simulate choice behaviour using your computational models

prior to data collection (Wilson & Collins, 2019). If you discover that, for instance,

parameter recovery is too noisy, then you may decide to change the design in terms

of number of trials, conditions, or any other variable. You can then keep iterating

on your experimental design until a desirable paradigm is reached. We utilise part

of this approach in designing an experiment enabling us to investigate goal-related

information in a complex navigation task for both rats and humans.

2.1 Study 1: Maze simulations for unbiased be-

haviour in a spatial navigation task.
The main research goal of this project is to find an experimental design capable of

investigating goal coding in the rodent and human hippocampus. For this specific

purpose we re-analysed rodent data from a land-based modified version of the Mor-

ris water maze task (de Cothi et al., 2020). In this task, rats trained in an open-field

environment with a single hidden goal that stayed constant throughout all experi-

mental sessions. The rats had one large distal cue placed directly outside the maze

to assist with place-learning and orientation. Chocolate milk reward was delivered

through a tube connected to a well at the hidden goal location. After reaching a

learning criterion during training, the testing sessions began. The testing sessions

imposed barriers in the environment which could take a wide variety of geometric

shapes (Figure 1B). This was done by removing parts of the flooring, forcing the

animal to use new routes to find the optimal trajectory to a learned location of the

hidden goal. Each trial consisted of placing the animal in a new starting location,

for a total of 10 trials per maze configuration (Figure 1B). The animal only had 45

seconds to reach the goal for a trial to be considered a success after which the an-

imal would get picked up and placed in the next starting location to begin the next

trial.

Our first aim was to find a task set-up which resulted in long and unbiased

trajectories to the goal without being too difficult for the animals to complete. Our

second aim was to ensure uniform sampling of the environment so future neural
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recordings would be able to pick up encoding of egocentric goal information (simi-

lar to that of bats in Sarel et al., 2017). We found an indication the sampling of the

environment in the rodent experiment may be too biased to detect goal-relation in-

formation. To address this problem, we made several experimental design changes

and further simulated a vast range of possible mazes. This method was later used

in subsequent experiments comparing neural recordings and behaviour in rats and

humans performing the same complex navigation task (the human fMRI results are

described in chapter 3).

2.1.1 Methods

Subjects:

A total of 6 Lister Hooded rats completed 10 trials for each of 25 distinct mazes (for

a sample of these mazes, see Figure 1B). The trajectories were analysed to provide

a basis for the biases in the sampling of the environment. The rats were trained and

housed communally in batches of 3 with slight variations to the training protocol.

The rats were food-restricted which was set to still maintain 90% of free-feeding

weight. All procedures were according to UCL ethical guidelines and licenses is-

sued by the UK home office according to the Animal Scientific Procedures Act of

1986.

Stimuli and task design:

The physical maze consists of 100 movable wooden modules organised in a 10 by

10 grid (Figure 2c). Every module measures at 20cmx20cm, making the total arena

size 2m x 2m, and placed at a height of 52.5cm. The centre of each module was

fitted with a sunken well. A tube was connected from the well to an experimenter-

controlled syringe filled with the reward (chocolate milk). The goal location was

always placed at the same location 4 tiles from the north edge and 4 tiles from the

west edge of the maze. Every day a new randomly selected module was used for

the reward delivery and placed at the goal location.

The maze was surrounded by a circular white curtain, obscuring all surround-

ing walls and the experimenter’s computer. A single large black distal cue was used
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on the north side of the curtain. However, for every day of testing the goal location

and distal cue were rotated to reduce navigational strategies that did not rely on the

black curtain as a landmark.

Training:

After familiarisation with handling and the maze environment, the rats started the

training protocol. The rats were placed in an open field environment and had to

fulfil a set of criteria before moving on to the testing stage. First, they were placed

on immediately adjacent modules to the goal location. If successfully locating the

reward, they were then placed on a module successively further away from the goal.

If the rats could complete this from each cardinal direction (south, east, west, and

north) and from up to 6 tiles away from the goal, then they were ready for the next

stage.

Testing:

All six rats were tested on three different maze configurations per day. Each of

the maze configurations consisted of 10 trials with starting locations at increasingly

difficult positions as determined by increases in the ratio of path distance over Eu-

clidean distance between the start and goal location.

Simulations:

New mazes were simulated to arrive at a principled way of selecting mazes instead

of manually selecting mazes that may or may not give unbiased sampling of the

environment. Given that we wanted to investigate goal-coding of single cell firing

rates, we also included a second goal location for these simulations to be used in

subsequent experiments. The second goal was to enable cells encoding the position

of the goal to change their tuning in response to change in goal location during the

same session of recording.

The number of possible permutations in a 10x10 binary two-dimensional array

is

210x10
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or

1.26x1030

. Given this computationally intractable number of possible maze configurations in

our task environment, we decided to use a heuristic approach. In order to constrain

the space of possibilities, we created nine vectors with the dimensions of 3x1 mod-

ules. These vectors were randomly allocated to a position on the 10x10 grid with

the possibility of overlap.The orientation of the vectors (vertical or horizontal) was

determined using uniform probability (random coin toss). A total of 30,000 maze

simulations were performed (Figure 3).

Metrics of unbiased sampling:

In order to investigate egocentric goal coding in the CA1 cells of the hippocampus,

a uniform sampling of the egocentric head direction of the animal is crucial. Large

biases due to the way maze configuration constrain the possible trajectories to the

goal may result in inconclusive results. We investigated the uniformity of egocentric

angles using the Kullback-Leibler Divergence (Kullback & Leibler, 1951):

DKL = (P‖Q) =−∑
xεX

P(x)log(
Q(x)
P(x)

)

Where P and Q are the probability density functions of two distributions. The

KL divergence gives an information-theoretic metric of the amount of information

lost (in bits) when trying to approximate one distribution P given a different dis-

tribution Q. If these two distributions are identical then DKL = 0. In our case, the

distribution of observed egocentric angles in our maze simulations is compared to

a perfectly uniform distribution of angles. The closer the observed distribution is to

0, the less biased we argue those observed angles to be.

Calculating the optimal path to goal:

Two different algorithms were used to calculate the optimal paths to goal from all

starting locations. For analysing the rodent data, the A* algorithm was used which

is a type of best-first search (Russell & Tolvig, 2010) and implemented in Matlab

(Mathworks Inc.). However, when comparing all of the maze simulations, Dijk-
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stra’s algorithm was used and implemented in Python. Both approaches are very

similar with the only difference that A* uses an additional heuristic function which

estimates the cost of a solution.

Maze similarities:

One concern for the maze simulation was that the best simulations would all result

in the same or similar mazes. In order to test for the similarity across the top ranked

maze configurations, we computed a range of similarity measurements including the

following: Cosine Similarity, Euclidean Distance, Sum Similarity, Pairwise Man-

hattan, Pairwise Linear, and Structural Similarity Index (SSIM). The SSIM is the

most likely candidate for us to group together similar mazes because it is based

on the perceptual similarity between two images and was originally developed to

assess image quality (Wang et al., 2004).

2.1.2 Results

Rodents approach optimal trajectories during the course of naviga-

tion:

Before analysing the task design in terms of sampling for the detection of goal-

related information, we wanted to better understand the behaviour. Specifically,

we wanted to investigate the relationship between observed rodent trajectories and

how an optimal agent would perform. In order to make the trajectory length of the

rodents and of the optimal agent comparable, we normalised both by the euclidean

distance from the starting point for each trial. In the first batch of rats (n=3) we

found a significant correlation between path length and optimal path length (Rat 1:

Pearson’s r = 0.5, p < 0.001; Rat 2: Pearson’s r = 0.4, p < 0.001; Rat 3: Pearson’s

r = 0.6, p < 0.001).
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Figure 2.1: Goal-directed navigation associated with optimal path trajectories

Egocentric bias in sampling across maze configurations:

The experimental data was collected across two batches with 3 rodents in each

batch (total n = 6). We compared the performance of both batches to check if the

behaviour was comparable. The two batches were concluded to have similar perfor-

mance in terms of path distance travelled during successful trials given the overlap

in error bars (Figure 2A). However, there were still some important differences such

as the time taken on successful trials was non-overlapping, where the first batch of

rats were on average slower than the second batch (Figure 2B). Overall, the egocen-

tric angle sampled for each of the 6 rats was fairly consistent when averaged across

all maze configurations (Figure 2C).

We investigated the uniformity of egocentric angles by calculating the

Kullback-Leibler divergence (see methods for definition). Over the course of the

25 mazes, there was considerable variability in this uniformity and large deviations
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from zero (Fig. 3A), as zero would indicate perfect uniformity. Moreover, inspect-

ing the mean egocentric angle of each rat per maze configuration also indicated

bias in the sampling of egocentric angles to goal (Fig. 3B). We used this observed

variability to motivate that a different set of mazes were necessary in order to ensure

a more uniform sampling of the egocentric angles in our upcoming experiments.

The most important aspect was to design maze layouts which maximised our ability

to detect goal-related information in the firing of hippocampal place cells.
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Figure 2.2: Comparing behaviour across batches and across rats

Maze simulations of a new task design:

We made one major design modification with the introduction of a second goal

location in the environment. We wanted to be able to show clear switching of goal-

related information in spiking activity within a session. In the previous version

of the task, there was one constant goal location throughout the entire experiment

which could possibly explain part of the bias in egocentric angles to goal. By adding

a second rewarded location, we also faced more difficulties in manually construct-

ing maze configurations that would fit all our criteria for a well designed experi-

ment. Below we describe the initial mazes simulated using this approach. However,

the final version of our maze simulations and the final task design is described in

chapter 3 where we investigate goal coding in humans using fMRI. The final mazes

described there are also being used in a parallel rodent experiment which is outside

the scope of this PhD thesis.

For the new version of the task we simulated optimal agents on 30,000 mazes

(Fig. 4A). In short, the optimal trajectories were computed with Dijkstra’s algo-

rithm from each starting location to the position of the two separate goals. These

were then up-sampled and smoothed using Savitzky–Golay filtering to get more re-
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Figure 2.3: Biased sampling across maze configurations

alistic trajectories (Savitzky & Golay, 1964). We aimed to select mazes that best

allowed for the separation of Euclidean and path distance coding. To do so, we

subsequently ranked all generated mazes according to the average of three metrics

using all optimal trajectories:

1. The egocentric heading angles with respect to the goal locations.

2. The path distance divided by the Euclidean distance between the starting

position and goal location.

3. The number of tiles removed from the environment.
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Each metric was given an equal weight in the ranking. We prioritised mazes

that provided uniform sampling of angles, a large path distance over Euclidean ratio

to give long trajectories, and a large number of tiles available for the humans and

rats to explore. The top 16 mazes selected are shown in Figure 4B.
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Figure 2.4: Maze simulations, maze similarity, and final ranking

2.2 Study 2: Reinforcement learning and freely mov-

ing navigation during changing environments.

The main goal of this study was to train reinforcement learning agents on the same

spatial navigation task in order to compare navigational strategies used in freely

moving behaviour in both rats and humans. As covered in the introduction, many

aspects of allocentric and egocentric spatial information are encoded in the hip-

pocampus and neighbouring brain areas. However, the question remains how this

encoded information enables the computational processes necessary for success-
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ful navigation of the environment. Looking back to the different levels of analysis

approach suggested by Marr (1982), several questions arise: 1) What are the com-

putational goals used in navigation?; 2) Moreover, what are the algorithms of infor-

mation processing of those goals?; and 3)What is the biophysical implementation

of the algorithms? This section will focus on reinforcement learning algorithms

currently suggested to be implemented by the brain during navigation. These algo-

rithms cover two levels of Marrs of the computational goal (reward optimization)

and the algorithmic level (Niv, 2009). This study aims to suggest the ways we will

investigate these algorithms (and others) by combining research methods across

computational modelling, rodent electrophysiology, and human neuroimaging.

The distinction between goal-directed and habitual behaviour goes back to the

early days of behaviour research and was investigated as stimulus-response map-

pings and Tolman’s cognitive map hypothesis, respectively (Tolman, 1948; Dolan

and Dayan, 2013). In more recent years, these distinctions have crossed over into

computational modelling of behaviour in the form of model-based algorithms for

goal-directed behaviour and model-free algorithms for habitual behaviour (Daw et

al., 2005; Foster et al., 2000). Moreover, this division is demonstrated in both

rodents and humans but may be interacting instead of competing (Balleine and

O’Doherty, 2010). The model-based algorithms use experience to construct an in-

ternal model of the environment, while model-free algorithms learn the value of the

stimulus response mappings of available states and actions or policies (Dayan and

Niv, 2008). Importantly, these different classes of algorithms can be used to test

specific hypotheses about neural activity and lead us to identify neural mechanisms

of behaviour (Daw et al., 2011). Again, the aim of this chapter is to provide the

theoretical grounds for investigating generalizable mechanisms of cognition, and

the framework of reinforcement learning is central to this approach.

We investigate three reinforcement learning models: (1) model-free algorithm

(Q-learner) which is successful at reaching human-level performance in a range of

tasks from a suite of ATARI games when combined with deep learning (Mnih et al.,

2015); (2) Successor representation (SR) which is more flexible at adapting to en-
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vironmental changes than the model-free algorithm and internal components show

similarities to findings in place and grid cells (Stachenfeld et al., 2017; Russek et

al., 2017); and (3) Monte-Carlo tree search which can achieve superhuman perfor-

mance compared to professional chess and Go players when combined with deep

neural networks (Silver et al., 2018). We hypothesise that successor representation

is best at capturing human flexible navigation in our task in line with recent evi-

dence from de Cothi et al. (2020). However, in that study, the human trajectories

were also well captured by the A* model-based algorithm. Our MCTS model-based

algorithm may have different predictions from the A*implementation. Neverthe-

less, we expect that model-based trajectories are more similar to human behaviour

than model-free trajectories.

2.2.1 Methods

Participants:

A total of eight healthy human participants (two male, M = 23.6, SD=4.72) com-

pleted a wireless and freely moving immersive virtual reality task (in either 6mx6m

or 10mx10m space). A different set of mazes were used than those from the rodent

mazes and maze simulations from Study 1 in this chapter. All participants were

recruited on SONA, the UCL undergraduate channel, or through word-of-mouth.

Participants were compensated with £10/hour. All participants had normal or cor-

rected to normal vision. Ethical approval was granted by the UCL Department of

Psychology Ethics Committee. Each session took approximately one hour.

Virtual Reality Set-Up:

The HTC Vive Pro Eye was used together with four 2.0 lighthouse base stations

from Valve Inc. These were each placed in the corners of a 10x10m area cleared

from any physical obstacles in a large lecture hall (Figure 1A). When piloting in

an area larger than 10x10m, the head-mounted display lost connection near the

centre of the environment, enforcing a strict upper limit on the bounds of the space.

A wireless transmitter was placed on top of the computer monitor next to one of

the corners in the walkable arena. A wireless receiver was attached to the head-
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mounted display to enable freedom of movement. A windows PC with a GTX 1060

Ti graphics card was used for rendering the virtual environment in real-time.

The environment was designed and implemented in the Unity3D games engine

(Fig. 1B, C). Custom scripts in C Sharp enabled the dynamic changes in maze

configuration and goal locations. The data organisation and scripts were based on

the Unity Experiment Framework (UXF: Brookes et al., 2019) which reduced frame

rate drops by using separate CPU threads for saving data.

49



Figure 2.5: Freely moving virtual reality task set-up

Stimuli and task design:

The human participants experienced six mazes during one experimental session,

taking around 60 minutes to complete. The human task was implemented using

fully-immersive virtual reality. The participants freely navigated within a 10x10m

room, using a wireless HTC Vive Pro Eye™ head-mounted display to see the

task environment (Figure 1). The task was modelled after a rodent experimental

paradigm (Pfeiffer & Foster, 2013) with a primary design deviation being that we

perturbed the possible routes one can take to a goal location through careful manip-

ulation of the environment (Figure 2A). There were two types of trials: Exploratory

trials, where the goal would be hidden at a random location in the environment and
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Homing trials, where the goal would be in one of two possible locations. This was

to facilitate full exploration of the environment and to have a way of controlling

the next starting location without the need to physically move the participant (either

human or rat).

To force participants to take new routes to successfully locate the goal, we re-

moved parts of the walkable arena in virtual space. All participants completed 70

trials in total, with the first 20 trials included as training within an open-field envi-

ronment (no modules removed). This training period was designed for participants

to learn the location of two consistent Homing goals – similar to the training proto-

col used for the rats. The goal locations were hidden from participants until moving

near enough to trigger goal consumption when a spinning golden crystal appeared

with the text “You got the reward!”.

The maze configurations used for this experiment were manually designed

based on a few heuristics. We did not use the maze simulation approach described in

the previous study because this data collection was part of a pilot project as a proof-

of-concept. We designed the mazes on the basis of blocking off previous routes that

would result in successful navigation. For instance, if your starting location is in the

top right of the first maze, you can reach the goal by going west, south, then east. In

the subsequent maze, you will face a barrier if you take that same path. Instead, you

need to continue south, turn east, and lastly north to reach the goal. We followed

this simple approach throughout the design of the first four mazes. For the final two

mazes we also wanted to add the possibility of traversing the space in between the

two goal locations.
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Figure 2.6: Freely moving human trajectories

Metrics for behavioural analysis of observed trajectories:

We used four behavioural metrics to quantify all the trajectories: tortuosity, diffu-

sivity, linear displacement to goal, and angular displacement to goal. These metrics

have been used previously to quantify and compare RL agents with rodent and hu-

man behaviour (de Cothi et al., 2020). We define these metrics in detail below.

Tortuosity: The amount of curviness of a trajectory. We calculated tortuosity

by computing the total path distance travelled on each trial and divided that distance

with the Euclidean distance from the starting location to the goal location.

Diffusivity: The amount of dispersion within an event horizon where a low

value indicates a random walk. We calculated diffusivity by taking the average

Euclidean distance travelled within three time-steps.

Linear displacement to goal: The amount of deviation from a Euclidean direct

path to goal. We calculated the linear displacement by taking the average Euclidean
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distance to goal for each time-step measured.

Angular displacement to goal: The mean egocentric angle to goal where value

of 0 indicates that the agent is always heading toward the goal, on average. We

calculated the angular displacement by calculating the egocentric heading angle per

time point, and then averaging across all time points.

Mahalanobis distance to compare multiple trajectory features of RL

agents against the human trajectories:

We used the Mahalanobis distance metric to get a sense of the deviation of trajec-

tories observed with RL agents to those of the human participants. We chose this

metric because it accounts for correlation between the different metrics and outputs

the distance of a point from a multivariate distribution in terms of number of stan-

dard deviations (de Maesschalck et al., 2000). Mahalanobis distance is defined as

follows:

D =
√

(x−µ)T ×C−1× (x−µ)

Where x consists of our metrics from the RL agents, and µ consists of the

mean of the behavioural metrics from the human trajectories and C is the covariance

matrix of the human trajectory metrics.

Reinforcement Learning models:

There are a range of reinforcement learning models that can be trained and com-

pared against each other in our task. Along the continuum of model-free and

model-based algorithms, two models were implemented: a Q-learner and a succes-

sor representation (SR) learner using the SARSA algorithm. An analysis pipeline

for investigating the behavioural trajectories was developed using the Python Gym

framework with custom scripts for environments (Brockman et al., 2016). This

framework allows for comparing not only real trajectories but also those of simu-

lated artificial agents. These agents each use a specific implementation of a rein-

forcement learning (RL) algorithm.

All reinforcement learning agents make use of three quantities to estimate a
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value function of all states: the current action from the set of possible actions, the

current state from the set of all possible states, and the rewards encountered (Sutton

et al., 1998, 1999). Additionally, it is necessary for computational tractability that

these agents fall under the definition of a Markov Decision Process (MDP), and can

therefore be said to possess the Markov property. This means that the next state and

expected reward of the agent can be predicted based on the current state and action.

The past states and actions can be ignored. Furthermore, the reinforcement learning

agents considered here have a set of hyper-parameters which define the degree of

discounting onto future rewards (gamma), the degree of learning which takes place

given each experience (learning rate) and the trade-off between exploiting what you

have learned and choosing to randomly explore the environment (epsilon).

Model-free agent:

The Q-learner agent infer stimulus-response mappings based on previous history

of interactions within the environment. These mappings are updated based on the

difference (prediction error) between what was expected, the predicted reward, and

what was experienced, the actual reward. The model-free agent trained on our task

used a Q learning algorithm which is part of the Temporal Difference approach.

The Q-based agent learns the value function of the environment in terms of all

possible state-action pairs:

Q(s,a) = Q(s,a)+αδ

Where the prediction error is defined as:

δ = R(s,a)+ γQ(s′,a′)−Q(s,a)

The Q(s,a) essentially functions as a look-up table for all possible actions in

all possible states. While the agent is learning the environment this look-up table

is updated until eventually it can converge on the optimal (Barto and Mahadevan,

2003). Each action is then taken using an epsilon-greedy policy. This means that

the agent will take the highest value of the look-up table in each state and use that
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to determine its action. However, the epsilon parameter (often tuned to 0.1 or 10%)

will choose to take a random action at some threshold decision points.

Successor Representation agent:

The successor representations (SR) algorithm uses a different approach to estimat-

ing the value function to both model-free and model-based agents. The SR is orig-

inally an extension of the TD and was shown to improve the flexibility of behavior

during navigation (Dayan, 1993). The SR decomposes the value function into two

components, the successor states matrix M and a vector of the future state reward

R.

Vs = ∑
s′

M(s,s′)×R(s′)

The successor states are defined as the cumulative discounted future state oc-

cupancies:

Mπ(s,s′) = E[
∞

∑
t=0

γI(St = s′)|s0 = s]

Where I(St = s′) is one if a state can be transitioned into; otherwise, it is zero.

Parameter y is the discount factor gamma. The successor representation updates its

representation of M using a similar process to temporal difference updating. How-

ever, instead of a reward prediction error, it uses a successor state prediction error

(Stachenfeld et al., 2017).There are several approaches to implementing a successor

representation agent, including using off-line policy updating which is a future di-

rection of this work (Russek et al., 2017). In our current case, we used the on-policy

TD method SARSA which stands for state-action-reward-state-action to update M.

The agent is moving from state-action pair to state-action pairs instead of from state

to state. Moreover, the SARSA method is policy-based which is the fundamen-

tal difference between Q-learning. SARSA may also be applied to model-free RL

agents.

The SR-SARSA is defined in the following equation, where the additional pa-

rameter αM controls the learning rate:
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M(st ,st+1,at) = M(st ,st+1,at)+αM[Ist=st+1 + γM(st+1,st+2,at+1)−M(st ,st+1,at)]

The key advantage with SR is the separation between the long run future oc-

cupancy map (the SR) and the reward function. A change in goal location can be

easily accounted for without the need to completely relearn the SR.

Model-based agent:

We implemented a Monte-Carlo Tree Search (MCTS) algorithm which uses an ex-

plicit model of the environment to make action selections (Sutton & Barto, 2018).

The MCTS algorithm generally consists of four separate steps (Browne et al., 2012):

(1) Selection of child nodes through already explored states, according to some se-

lection policy, in our case using Upper Confidence Bound (UCB; Auer et al., 2002),

until you reach an unexplored state; (2) Expansion of nodes according to available

actions; (3) Run simulation from the newly expanded state(s) and choose actions

according to a random policy until the goal is reached; and (4) Backpropagation,

using the outcome of the simulation in step (3) to update the statistics of each node,

for instance the average reward of each state.

In summary, we ran simulations per trial, where the agent chose actions leading

to highest rewarding end state based on it’s previous simulations of the environment.

We limited the number of time steps to 100 and the number of simulations to 200.

Random and optimal agents:

We implemented two non-RL agents that did not take into account any learning

across trial episodes or across mazes. These were used for sanity checks and to

create an upper and lower bound on performance. For the lower bound, we imple-

mented a random walk agent which for each state it visited would take a random

selection from the available actions possible. There was no time limit and so it

could take a very long time for this agent to find the hidden reward location. For the

upper bound, we implemented an optimal agent that had perfect knowledge of each

maze configuration. We used Dijkstra’s algorithm to compute the optimal actions to
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take in each state of the environment resulting in optimal path trajectories (Dijkstra,

1959).

2.2.2 Results

We only completed a marginal part of the planned data collection for this project

due to the Covid-19 pandemic. As such, instead of analysing each participant in

isolation we appended all the human trajectories together even though this ignores

individual variability which is in large part why computational modelling can be

a useful tool to begin with (Wilson & Collins, 2019). We treated this project as

a proof-of-concept where most of the advancement lay in the methods developed,

more so than the results and final analyses. We also perform no statistical tests

to identify significant differences in trajectories of models and humans but instead

rely on inspecting qualitative differences to draw tentative conclusions and future

suggestions from the data.

Comparing trajectory characteristics between humans and RL agents:

We pooled together all the experimental data from the freely moving participants

resulting in 390 trajectories. In order to compare with the simulated agents, we

similarly extracted 390 trajectories from each of them (Q-learner, MCTS, SR, Opti-

mal, Random Walk) based on the order of starting locations and maze configuration

experienced by the participants. For each RL model where learning was involved,

we reset the learned parameters (e.g. cached state-values) after each matched hu-

man session.

We found clear differences between the trajectory metrics of the models and

human trajectories. For instance, the tortuosity for humans was much lower than

that of the SR agent, while the same metric was much higher than that of the MCTS

agent, indicating that the tortuosity of human trajectories lay somewhere in between

these two RL agents (Figure 3A). Interestingly, for the angular displacement about

the goal (or mean egocentric angle per trial), we saw a large variability in values

across trials for both human and MCTS trajectories, while the distribution of other

agents’ trajectories were more stereotyped (Figure 3B).
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Lasly, we calculated the mahalanobis distance as a measure of the multivariate

deviation for all the different agents from the observed human trajectories (Figure

3C). We observed that there was overlap in the distribution of several agents, espe-

cially the Q-learner and MCTS, while the SR appeared further away from human

trajectories. Overall, the SR agent seems to be close in multivariate space to the

random walk and optimal agents (see Figure 3).
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Figure 2.7: computational modelling comparisons across RL agents and human trajectories

2.3 Discussion

In this chapter, we have presented two studies that advance methods in spatial nav-

igation in separate but complementary ways. The first study suggests a principled

way for improved design of complex task environments. In the future, we can add

additional metrics of interest to create a new set of maze configurations. For the

second study, we created a test-bed for different reinforcement learning agents on

the simulated mazes which in future studies can be used to identify the mazes best

at dissociating different types of learning algorithms. In fact, this might be an im-

portant way to demonstrate our experimental set-up is capable of identifying which
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reinforcement learning agents most closely align with rodent and human behaviour.

In the second study, we found that in our task we were unable to confidently

dissociate the different candidate reinforcement learning models when comparing

human trajectories to the combined trajectory similarities across multiple metrics.

However, two metrics, the tortuosity and angular displacement of a trajectory, indi-

cate that the model-based algorithm may result in more similar behaviour, on aver-

age, to the human participants compared to either a model-free Q-learner or to the

successor representation. We did not find support for the hypothesis that participant

behaviour was best fit to the successor representation algorithm.

Our analysis depends on the assumption that a given participant retains the

same behavioural strategy throughout the whole experiment. However, it is likely

participants may switch between strategies on a trial-by-trial basis depending on

contextual demands. For instance, early in learning, participants may rely on ran-

dom walk exploration of the environment. Later after initial discovery of the maze

layout and hidden goal location, they may rely on a model-based algorithm to effi-

ciently plan and navigate (more equivalent of a place strategy) and later in learning

switch to a computationally less demanding algorithm such as the Q-learner (more

equivalent of a response strategy). Given the difficulty of assigning clear roles to

brain regions (as independent modules) such as the caudate and hippocampus to

response vs. place strategy, respectively, reframing these strategies as behaviorally-

fitted computational models can better explain the findings. This method may exist

as complementary to treating brain regions as part of circuits or networks involved

in flexible navigation (Ekstrom et al., 2017).

Another likely explanation for the difficulty in dissociating models is that the

metrics extracted from the model trajectories were too similar indicating the task

may not sufficiently discriminate between different learning strategies. Participants

may also employ other strategies to solve the task based on optic flow or path in-

tergration. To remedy this, one could combine the approaches utilised in study 1

and study 2 and simulate task paradigms that should, in theory, separate different

learning strategies as implemented through reinforcement learning models before
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collecting behavioural data from human participants. Originally we planned to col-

lect a full dataset of human participants, but the start of the Covid-19 pandemic

stopped any in-person testing which our freely moving paradigm required. It is

also possible that with more behavioural data we could have sufficient power to

differentiate predictions from different reinforcement learning models.

The implementation of freely moving virtual reality opens up a world of pos-

sibilities in terms of the kinds of tasks we can use to investigate human cognition

and has already been successfully used in studying boundary-related information

in human medial temporal cortex (Stangl et al., 2021). It remains to be seen how

precisely these behavioural data in freely moving participants can be applied to

compare navigational strategies across species, but we now have the tools to do

so at our disposal. Beyond testing humans and rats on the same task protocol, we

can test reinforcement learning models, such as successor representation, against

human and rodent behavior. Beyond behaviour, we can expand these models to fit

signatures in the neural activity of single-units in the rat hippocampus as well as in

the BOLD time series of human fMRI.

Limitations of current approach

Several of our analyses compared observed trajectories to that of an optimal agent.

However, it is unclear the extent to which we should expect humans or rodents to

approximate optimal performance in spatial navigation tasks especially where reg-

ularities in the environment are unstable, such as changing the hidden goal location

or altering the traversable space. Known biases in relative distance estimates such

as forward facing bias may also be important to account for as seen in judgment of

relative direction tasks (Huffman & Ekstrom, 2019). One recent study found that

rats form subgoals at the edges of environmental barriers during escape behaviour

and during food-seeking to a learned goal location (Shamash et al., 2021). These

subgoals also remained in use after the removal of the barrier, if only for a lim-

ited time. This suggests that rodents are neither optimal nor habitual and instead

rely on a hybrid process more akin to hierarchical representations of the state space

(Botvinick et al., 2009). The use of optimal performance can still be informative
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as an upper bound on what is physically feasible in a given task, and the specific

instances where performance deviates from the optimal upper bound can be used to

inform important behavioural criteria for future models.

One major challenge in spatial navigation is the interpretation of behaviour as

showing evidence to the formation of a cognitive map. One of the central tenets of

cognitive map hypothesis is the ability of rats and humans to undertake novel short-

cuts (Tolman, 1948). However, this behavioural phenomenon has proven difficult

to replicate in the absence of maze cues (Benhamou, 1996; Olthof, et al., 1999; Pra-

dos, et al., 1999; Grieves et al., 2013) and it has been suggested that use of the term

be abandoned completely (Bennett, 1996). In one of the original studies Tolman et

al. (1946) trained 56 rats on a circuitous path through a maze. After blocking the

learned path and opening 18 alternative paths, the most commonly chosen alterna-

tive was on a direct line towards the learned goal location. Importantly, the goal

location was located near an overhead light that allowed the use of beaconing, con-

founding the experiment and calling into question its conclusions. One experiment

replicating the Tolman maze in humans also failed to find evidence for novel short-

cutting in the absence of a beacon light cue near the goal (Wilson & Wilson, 2018).

More recently, real-world tracking of bats suggests evidence for novel shortcuts in

mammals (Harten et al., 2020).

Reinforcement learning models have generated a wealth of theoretical accounts

of experimental findings in neuroscience (Stachenfeld et al., 2017). However, it is

important to consider the limitations of such models and the assumptions which

they make (Eckstein et al., 2021). The inferences regarding underlying relationship

between parameters of a particular model may only be informative for the current

task at hand and not translate to other tasks with differing regularities. It is therefore

relevant to interpret the parameter of a cognitive model within the context in which

it is fit to participant behaviour.

Moreover, reinforcement learning models are built upon the mathematical no-

tion of states satisfying the Markov property. States of the environment function

as a signal which may be constructed, changed or learned in some way (Sutton &
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Barto, 2018). For instance, a state signal is Markovian if it encompasses all of the

relevant past sensory history of the agent. A concrete example would be a 2-D co-

ordinate point in a maze, as there is no need to know the previous position to know

which actions are currently possible. Another example of a state signal which is

Markovian are the current positions of all chess pieces on a chess board. If the rules

of chess necessitates knowing previous positions of chess pieces, then the state of

the environment would be non-markovian. Importantly, the Markovian state signal

is all that is necessary to be able to predict subsequent states and reward. Even

non-markovian processes such as weather which may depend on additional factors

beyond the current state, can still be considered as an approximation to a Markov

state within reinforcement learning (Sutton & Barto, 2018).

Much of this chapter centres around the promises of combining rodent and hu-

man approaches in spatial navigation despite known physiological differences, for

instance in how we process visual information (Zhao, 2018; Ekstrom, 2015). A

significant challenge remains in relating the neural activity of single-cells to that of

fMRI BOLD response commonly measured in humans (Ekstrom, 2020). The under-

lying neurophysiological processes that give rise to changes in blood oxygenation

are still debated and not fully known. Prior work in monkeys comparing the similar-

ities of BOLD responses in visual cortex to multi-unit activity, local field potentials,

and spiking activity, suggest a complex relationship but one where BOLD activity

is generally more similar to neuronal input to a regions, as measured via LFP rather

than spike activity reflecting output (Logothetis et al., 2001; Logothetis & Wandell,

2004; Ekstrom, 2020). One solution to relating cross-species and cross-modality

brain signals to one another could be to investigate the information content present.

Techniques such as representation similarity analysis (RSA) provide an integrative

approach to analyse neural information content (Kriegeskorte & Bandettini, 2008).

Moreover, RSA of neural responses can be extended to compare these to computa-

tional predictions, for instance to representational similarities extracted from rein-

forcement learning models (Barron et al., 2021).
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Future directions

In the search for generalizable mechanisms of cognition, there is an impressive

range of computational models one could consider. These range from attractor

networks, to neural networks, to sequential sampling, to drift-diffusion, to Heb-

bian models, to integrate-and-fire models, and many more (Dayan & Abbott, 2001;

Gerstner et al., 2012). This chapter argues the case for the use of reinforcement

learning when investigating underlying strategies of navigation. Additionally, it is

suggested that the successor representation might be a candidate for a generalizable

mechanism of cognition (Russek et al., 2017; Momennejad et al., 2017; Behrens et

al., 2018). In order to test the generalizability of successor representation, or any

other algorithms that could apply to several cognitive domains, there is a promis-

ing experimental framework that explicitly investigates hypotheses across different

levels of analysis. We are at an interesting point in time where advances in human

neuroimaging, rodent invasive recording technology, and computational techniques,

can simultaneously be utilized to understand the information processing capabilities

of the human brain.

There are many examples of interdisciplinary research between neural data and

computational modelling, especially in decision making and navigation. However,

these studies rarely explicitly and simultaneously spanned all three research modali-

ties of rodent neural recording, human neuroimaging, and computational modelling.

For instance, Barron and colleagues (2020) investigated inference using single-unit

recording and optogenetics in mice as well as 7T fMRI neuroimaging in humans

using comparable tasks. Another study, by Akrami and colleagues (2018), com-

bined single-unit recordings and optogenetics in rats with computational modelling

of behaviour in rats and humans to investigate the role of posterior parietal cortex

on sensory history in choice behaviour. These studies demonstrate the strength of

combining methodological approaches across species to gain deeper insight into

cognitive phenomena.

Recent experiments have tested the model-free vs. model-based spatial naviga-

tion behaviour and the neural correlates thereof using virtual navigation and fMRI
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(Anggraini et al., 2018; Simon & Daw, 2011). In Anggriani and colleagues’ work

(2018), trial-specific model-based behaviour was associated with parahippocampal

and medial temporal lobe activity while model-free behaviour was associated with

striatal and ventromedial prefrontal cortex activity. Importantly, a hybrid model

incorporating both model versions best explained overall behaviour. The question

remains if successor representation would have outperformed these models in ac-

counting for behaviour and neural activity.

There have been studies in perceptual decision-making that use computational

modelling and behavioural data from both rats and humans to study optimal ev-

idence accumulation (Brunton et al., 2013) and working memory (Fassihi et al.,

2014). However, there is still an underdeveloped frontier of combining these ap-

proaches with translational human neuroimaging techniques. Deep reinforcement

learning algorithms have shown to be able to capture spiking neural activity during

spatial navigation in the form of grid cells, with many similar properties in different

layers of the convolutional neural network (Banino et al., 2018).

Information necessary for spatial navigation is encoded and processed in a

wide variety of brain regions in humans and rodents (Epstein et al., 2017; Grieves

and Jeffery, 2017). The specific (or algorithmic) ways in which this spatial informa-

tion is processed, manipulated, and transmitted throughout cortical and subcortical

brain regions and finally used in behaviour, remains undiscovered. By formulating

our hypothesis about the information processing of spatial navigation in the form of

testable computational models, we might be able to shed light on our lack of under-

standing about the different hierarchical spatial and temporal timescales the brain

operates.

One danger of the division of human and non-human research is that the chasm

separating the two will only keep widening, and develop separate vocabularies and

practises, ultimately hindering progress for neuroscience (Badre et al., 2015). We

are currently witnessing a massive growth of technology for invasive rodent record-

ings, similar to the explosion of human neuroimaging developments in the 1990s

and early 2000s. It is important to combine these advances alongside advances in
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human neuroscience in order to accelerate our understanding of the basic mecha-

nisms underlying cognition.

2.4 Conclusion
In this chapter we consider and apply new methods for investigating neural un-

derpinnings of flexible navigation. In the first part, we investigate and identify

behavioural sampling biases in a rodent goal-directed navigation task and suggest

methodological advances to remedy these through simulation and evaluation of ran-

domly generated maze layouts. In the second part, we approach the problem of un-

derstanding navigation behaviour through the use of computational modelling. We

implement three candidate reinforcement learning models, each representing differ-

ent putative navigation strategies of place learning, response learning, and future

planning. The models are compared against freely moving human behaviour and

we show the difficulty in separating model predictions in the task with our limited

data, although suggestive that model-based and successor representation are most

similar to observed human trajectories consistent with recent evidence (de Cothi et

al., 2020).
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Chapter 3

Goal coding during flexible

navigation

Mammals are capable of solving challenging navigation tasks using remarkable be-

havioural flexibility. The neural mechanisms that support this flexibility is thought

to form a common system that underlie multiple cognitive domains including so-

cial networks (Tavares et al., 2015), hierarchical segmentation (Peer & Epstein,

2021; Balaguer et al., 2016), perceptual- and economic decision-making, and con-

ceptual knowledge (Barron et al., 2020; Summerfield & Tsetsos, 2012; Shadlen &

Shohamy, 2016; Mok & Love, 2019; Bellmund et al., 2018). Brain regions sup-

porting this flexibility including the hippocampus have been studied extensively in

humans and rodents. However, and perhaps surprisingly, we lack a unified under-

standing about how goals are represented in the brain, especially during complex

navigation tasks where accurate goal representation is an essential component of

successful navigation (Juechems & Summerfield, 2019). This poses two questions:

1) What is the nature of goal-related information?; and 2) What would a goal-like

representation in the brain look like?

Compelling evidence of goal representation comes from work in bats which

demonstrated goal-vector cells in the hippocampus that preferentially fire at a cer-

tain distance and egocentric angle to goal (Sarel et al., 2017). Other work in rats

found that hippocampal place cells simulated future trajectories to goals (Pfeiffer &

Foster, 2013). Similarly, fMRI studies have found hippocampal BOLD activity cor-



related with distance in tasks based on real-world navigation (Howard et al., 2014)

and entorhinal activity correlated with angle to goal in a virtual reality task (Chad-

wick et al., 2015). Hippocampal BOLD activity was also found to index the path

distance to both familiar and recently learned real-world environments (Patai et al.,

2019). However, to date, the task environments used across species to investigate

goal coding in spatial navigation vary considerably. It is the purpose of the current

study to bring the fields closer together in a translational experiment.

Trajectories in most human spatial navigation experiments are highly stereo-

typed. Participants are constrained to binary or categorical alternatives to choose

their path through the environment. In some cases, their choices have no impact

on the subsequent navigation (Howard et al., 2014). We decided to model our task

after a rodent experiment by Pfeiffer & Foster (2013) for the following reasons: 1)

To allow for continuous exploration of the environment; 2) To observe a clear con-

trast in navigational goals and strategies across trials; and 3) Use non-overlapping

starting locations, forcing the participant to take novel routes to the goal each time.

We added one significant change to the task structure which was the introduction of

barriers, creating a variety of complex mazes. The purpose of the barriers was to in-

crease the variation in Euclidean distance to goal, increase the length of trajectories,

and increase the sampling of egocentric goal directions necessary to successfully

navigate. We designed the goal locations to change over the course of a session

instead of once per day as was the case with the original task design. We wanted

to maintain the hippocampal-dependent navigation components. Participants had to

continuously re-learn not only the goal locations but also the placement of barriers

as they would also change throughout the session. A closely-matched experiment

was also run in rats with bilateral hippocampal implants but the findings from this

experiment will not be reported in this thesis.

In the current study, we are investigating correlates of goal-related information

in a spatial navigation task requiring constant updating of behavioural strategy and

long trajectories to learned goal locations. We are also interested in brain regions

involved in learning and updating learned goal locations. Based on recent litera-
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ture, we hypothesise that the caudate nucleus is especially important for tracking

distance-to-goal metrics (Javadi, Patai et al., 2019; Gahnstrom & Spiers, 2020),

while the hippocampus is important for tracking goal-vector information including

egocentric goal direction (Sarel et al., 2017). We also hypothesise that the hip-

pocampus is involved in updating associations between learned rewards and their

associated spatial locations.

3.1 Methods

Participants:

The study was approved by the ethics committee for UCL Division of Psychology

and Language Sciences (fMRI/2021/001). For online testing, ethics approval was

received from UCL Department of Experimental Psychology (EP/2018/008).

Twenty-five participants (age ranging from 19-36, mean age: 23.9, 15 female

and 11 male) completed the full experiment including two training sessions and one

fMRI session. Two participants were rejected due to excessive head motion and

failure to reach a performance criterion of 90% (1 male, 1 female).

Maze Generation:

Each maze consisted of a 10x10 grid selected from a total set of 180,000 generated

mazes. Mazes were generated in batches of 10,000 and used to select one maze per

experimental block. Each subsequent batch of 10,000 mazes was non-overlapping

with the previously selected maze to ensure that the same mazes were not being

selected across blocks. In other words, any non-traversable tile in the current maze

had to be traversable in the subsequent maze. We also wanted to make sure that

each block pair was non-overlapping so that participants had to take novel routes

and explore the whole environment.

Barrier creation:

Nine barriers were created on the grid-world of each maze by the removal of three

adjacent tiles. The orientation of each barrier was determined by a random coin toss

and the position was determined by 2-dimensional uniform random sampling. The
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barriers were allowed to overlap meaning the removal of less than 27 (3 x 9) tiles

was possible. The barriers could also create “islands” where direct paths to either

goal location was impossible. The tiles of these “islands” were removed meaning

more than 27 tiles could also be removed.

An edge detection algorithm identified any mazes with “edges”. These were

instances of the removal of two tiles along a diagonal. These were simply discarded

and new mazes were created to replace them until the full set of 10,000 mazes con-

tained 0 edges. The same mazes are used in a parallel series of rodent experiments

and edges could be traversed by the rats if they make a diagonal movement resulting

in an undesirable shortcut.

Maze Selection:

In short, optimal trajectories were computed using Dijkstra’s algorithm from each

possible starting location to the position of the one or two separate goals (Figure

1). The trajectories were up-sampled and smoothed using Savitzky–Golay filter-

ing to get more realistic trajectories (Savitzky & Golay, 1964). The mazes were

subsequently ranked according to the average of three metrics using all optimal tra-

jectories: (1) The egocentric heading angles with respect to the goal locations; (2)

The path distance divided by the Euclidean between starting position and goal loca-

tion; and (3) The number of tiles removed from the environment. Each metric was

given an equal weight in the ranking. We prioritised mazes that provided uniform

sampling of angles, a large path distance over Euclidean ratio to give long trajecto-

ries, and a large number of tiles available for exploration. The final 16 mazes were

plotted and manually inspected.

Starting location selection:

Each maze had either one or two Home goal locations. Twenty starting locations

were randomly selected by dividen the 10x10 grid into four 5x5 quadrants. Each

quadrant sampled 5 locations that were not already occupied by a removed tile or

a Home goal location. All starting locations were manually inspected per maze

and if the starting locations formed large clusters, the process was repeated until
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the coverage was even across all quadrants. To reduce the total time taken per

experimental block, we further selected only 10 out of the 20 starting locations by

disregarding starting locations near the goal location. For the rat experiments all 20

starting locations were used as they require longer sessions with higher degree of

spatial sampling of the environment.

Follow trial creation:

We added one additional element to the human version of the task. Every fifth trial

for the first 15 trials in each block was designated a Follow trial (i.e. trial number 5,

10 and 15). Participants were instructed to follow a purple line on the floor for these

trials, however, the general order of the task was kept the same. The different trial

types of Home goal and Explore goal alternated from one trial to the next, starting

with an explore trial.

The Follow trials were designed to match the distance of Home goal trials, with

varying lengths and tortuosity, i.e. the amount of curvyness. The Follow trials kept

the same order of the general task structure, meaning they used the goal location of

the trial type they replaced. The first Follow trial occurred during an Explore trial

(trial number 5), the second Follow trial occurred during a Home trial (trial number

10) and the final Follow trial occurred during an Explore trial (trial number 15).

Participants were therefore aware of the place where the goal was located on trial

number 10 even though it was a Follow trial, the goal was still located in the Home

position.

Online task:

Participants completed two behavioural sessions at home during the two prior days

to coming into the fMRI scan. First behavioural session also included filling out

questionnaires including Santa-Barbara Sense of Direction Scale (n = 21, avg =

4.35, min = 2.27, max = 7, std = 1.03) and Navigational Strategies Questionnaire

(n = 25, avg =-1.58, min = -10, max = 9, std = 4.86). The behavioural task was

developed in the games engine Unity3D with custom scripts modified from Unity-

Experimental-Framework (UXF: https://github.com/immersivecognition/unity-
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experiment-framework). Additional software include Bitwig Studio for soundtrack

creation and Blender for 3D modelling. We modelled the task after Pfeiffer &

Foster (2013) with a hidden goal location similar to a land-based Morris water

maze (Morris et al., 1983). One major difference is that we removed parts of the

environment in order to perturb the possible routes one can take to any given goal

location (Figure 1). The environment consisted of a 10x10 (100m by 100m in

virtual space) grid of one hundred independently movable modules, each module

being 10x10 meters in size. Removal of any given module constrains the navigable

area and the removal of several modules creates a maze where changes in the maze

layout forces participants to update their navigational strategies over time. Each

side of the environment was fixed with a distinct distal landmark so that participants

were able to correctly orient themselves and remember the location of the hidden

goals. The view of the environment floor was obfuscated by fog centered on the

participant. The fog was removed in a diameter of 15m around the participant to

allow visual information about the maze layout in their immediate local area. We

tried to emulate the poor visual acuity of rodents compared to that of humans by

the addition of fog (Meier & Renagel, 2013; Keller et al., 2000).

There were three trial types aimed at investigating different navigational strate-

gies and providing important controls. 1) Exploratory trials where the goal is hidden

at a random location in the environment; 2) Homing trials where the goal is in the

same location throughout one block of the task; and 3) Follow trials where you

follow a purple line on the ground leading you to the goal. Another advantage of

our trial structure is that it facilitates complete exploration of the environment and a

priori determines the next starting location without the need to physically move or

teleport the participant. The trial structure alternated between explore and homing

trials. Trial numbers 5, 10, and 15 from the start of each block were Follow trials.

Importantly, the navigation was always continuous throughout each block of the

task. For example, an Explore trial goal location became the starting location for

the Home trial. The current trial type was displayed on the bottom of the screen in

the full name for session 1 (Same for Home, Random for Explore and Follow for
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Follow) and in only the first letter in session 2 (indicated by R for Random (i.e. Ex-

plore), S for Same (i.e. Home) / and F for Follow). Participants could also see the

current trial number in the bottom left of the screen during the first two behavioural

training sessions.

Participants completed 140 trials for the first online session and 160 trials for

the second online session with an increase in difficulty. A failed trial is triggered

after 60s in the first session and after 45s in the second session. A failed trial causes

the hidden goal in either Explore or Home trials to turn visible and change colour

from purple to black. The first block in the first session was considered a training

block. There were no removed modules and instead an open-field foraging environ-

ment where the hidden goal was visible instead for the first 14 trials. Moreover, for

the first block of the first session, the distance necessary to catch the goal was 15

meters and after that it was 11 meters, including for all subsequent sessions.

Each block consisted of 20 trials. Each pair of blocks was considered to belong

to either phase 1 or phase 2. Phase 1 meant that the pair of blocks will have the same

maze but a different homing goal location. Phase 2 means that the pair of blocks

will have different maze layouts but the same Home goal location. We had two

phases in order to separate the influence of changing a maze layout vs. changing

the goal location. However, after each pair of mazes, both the goal location and the

maze layout change irrespective of the phase.
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fMRI task:

The third session of the task was the fMRI session where participants went in the

scanner (see Figure 2 for first-person view). The task was identical to the second

session except that the trial number was no longer displayed in the corner. All three

sessions had a different set of mazes for the participants (see maze generation for

methods). The order of the phase 1 and 2 was alternated across each behavioural

session. Each block of the task corresponded to one fMRI run for a total of 8 runs

and blocks. The fMRI acquisition time for each session took an average of 55

minutes (or 405.7s per run). Participants were asked questions about the purpose

of the task and reminded about the three different trial types prior to going in the

scanner. They were also shown the button box and instructed on its use, including

the option to move backwards.
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Figure 3.1: Schematic of the complex fMRI navigation task
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Figure 3.2: First person view of navigation task

MRI acquisition parameters:

Scanning was conducted at the Birkbeck-UCL Centre for Neuroimaging (BUCNI)

using a 3-T Siemens Prisma MRI scanner with a 32-channel head coil. Each scan-

ning session lasted around 1 hour and was separated into a maximum of eight runs

(each approximately 5 - 7 minutes with 20 trials per run). Approximately 280 func-

tional scans were acquired during each run, depending on participant performance

(time taken per trial). A multi-band sequence was used (repetition time [TR] = 1450
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msec, echo time [TE] = 35 msec, acquisition time (average) = 3276 seconds, flip

angle = 70°). The scans were whole-brain (72 slices) with a multi-band acceleration

of 4, slice thickness of 2 mm, spacing between slices of 2 mm, resolution / voxel

size of 2x2x2 mm, field of view of 212 mm, and phase encoding A >> P. A top-up

sequence was also performed at the end of the scanning session with reverse-phase

encoding. A fieldmap was acquired after the first run. A standard T1-weighted

high-resolution structural scan (MPRAGE) was acquired about half-way through

each scanning session (TR = 2300 msec, TE = 30 msec, 1x1x1 mm resolution). Ear

plugs and foam padding on each side of the head were used for noise reduction and

to reduce head movements. Task stimuli were projected on a rear projector screen

and mirrored for the participant’s view. The mirror was adjusted for each participant

to see full screen.

Experimental Design:

An event-related design with 160 trials, and 20 trials per block for a total of 8 blocks.

There were three trial conditions, Explore, Home, and Follow. We had 8 Explore

trials, 9 Home trials, and 3 Follow trials, per block for a total of 64 Explore trials, 72

Home trials, and 24 Follow trials per fMRI scan session. For each trial, the starting

location was set to the previous trial’s end location, with the only exception of the

first trial of the session.

Each block had a specific maze layout which was the same for all participants,

and all blocks were presented in the same order (Figure 3B). Each maze configu-

ration was designed to allow for long trajectories with uniform sampling of ego-

centric goal directions (see maze generation methods). Within each block, starting

locations were randomised (5 per quadrant of the environment) and presented to the

participants in the same order. Each pair of mazes were non-overlapping in terms of

tiles removed to allow for the entire environment to be explorable. The same mazes

were used for a parallel rodent experiment where coverage of the environment is

important for certain place cell analyses.
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Behavioural analysis:

Our primary behavioural metrics were total path distance, euclidean distance to

goal, egocentric angle to the goal, and number of crystals collected. We calculated

these metrics either per frame or per trial. To test for session-effects and within-

block effects, we ran repeated-measures ANOVAs on path distance as an index of

performance. We also ran post-hoc t tests (Bonferroni-corrected) to make individual

block and session comparisons.

For within-session path distance comparison, we normalised the path distance

per trial by the optimal path distance on each respective trial using Dijkstra’s algo-

rithm. This allowed us to compare trials from different starting locations across and

within task blocks.

MRI preprocessing and analysis:

Preprocessing was performed using fMRIprep (Esteban et al., 2018) with default

settings (see Appendix for additional preprocessing details). First- and second-level

GLM analysis was performed using SPM12. The first three dummy scans per run

were automatically discarded before acquiring volumes.

For the full GLM we entered the following regressors of interest: Euclidean

distance to goal, egocentric angle to goal, trial onset (split by trial type: Explore,

Homing, and Follow), inter-trial-interval between adjacent trials, button presses

(right/left/forward), and reward (goal) consumption (split by trial type: explore,

homing, and follow). Path distance was not included as a regressor due to high

collinearity with euclidean distance to goal once you are near the goal location.

The parametric regressors for euclidean distance to goal and egocentric angle

to goal were entered separately into parametric GLMs. Further work beyond the

scope of this thesis will also explore parametric modulation of optimal path dis-

tance. We only analysed the Home trials for our parametric GLMs as we were

interested in neural responses related to learned goal locations in the environment.
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3.2 Results

Behavior

The fMRI session consisted of 8 separate blocks where each new block contained

either a change in maze layout or change in Home goal location or both. To test

for the effect of block change, we ran a rm-ANOVA on the average path distance,

normalised by the optimal distance, within each block separately (F(1,22)=7.08, p

< 0.001***). We found a significant changes in path distance between several block

pairs: block 1 (mean = 2.24m, std = 2.14) and block 3 (mean = 3.16m, std = 3.08)

(t-stat = -4.57, p < 0.05); block 1 and block 7 (mean = 3.43m, std = 4.49) (t-stat

= -5.03, p < 0.001***); block 2 (mean = 2.30m , std = 2.31) and block 8 (mean =

1.81, std = 1.22) (t-stat = 2.66, p < 0.01**); block 3 (mean = 2.79, std = 2.49) and

block 5 (mean = 2.24, std = 2.02) (t-stat = 2.68, p < 0.01**); block 3 and block 8

(t-stat = 5.16, p < 0.001***); block 4 (mean = 2.52, std = 1.80) and block 8 (t-stat

= 2.52, p < 0.05*); block 5 and block 7 (t-stat = -4.08, p < 0.05*); block 6 (mean

= 2.81, std = 3.42) and block 8 (t-stat = 4.08, p < 0.01**); and block 7 and block

8 (t-stat = 4.87, p < 0.001***). All post-hoc results were Bonferroni-corrected, see

Table 1 for exhaustive results.

To test one-shot learning, we ran a rm-ANOVA on the average normalised

path distance per trial within a single block (Block 1: F(1,22)=30.5, p < 0.001***;

Figure 3A). All even trials were Homing trials during the experiment, and the

first Homing trial began with the second trial. We found the following significant

changes in path distance between trial pairs during the first block of the fMRI ses-

sion: trial 2 and all other trials (T4: t-stat = 4.94; T6: t-stat = 5.70; T8: t-stat = 5.56;

T12: t-stat = 6.47; T14: t-stat = 5.61; T16: t-stat = 5.90; T18: t-stat = 5.23; T20:

t-stat = 5.91; all p < 0.001***). (See appendix for full post-hoc results. See Table 2

for post-hoc results, block 1 only). The only significant difference between all trial

pairs was found for the first Homing trial compared to the following eight Homing

trials (Figure 3C).

To investigate any improvements over the sessions, we ran a rm-ANOVA on

the average path distance per session for all the homing trials (F(1,22)=22.1, p <
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Table 3.1: Post-hoc t Tests Path Distance per Experimental Task Block (Normalised,
Bonferroni-corrected)

0.001***). We found significant change in path distance for all session pairs: ses-

sion 1 (mean = 230.8, std = 64.4) and session 2 (mean = 174.0, std = 13.2) (t-stat

= 4.80, p < 0.001***); session 2 and session 3 (mean = 156.2, std = 4.12) (t-stat =

8.83, p < 0.001***); and session 1 and session 3 (t-stat = 5.59, p < 0.001***). See

Table 3.
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Figure 3.3: One-shot learning during flexible spatial navigation

fMRI Results

Arriving at a hidden goal location drives hippocampal, caudate and

prefrontal cortex activity

To investigate the processing of goal information we constructed a categorical con-

trast GLM between the onsets of goal arrival during Home trials vs. during Explore

trials. The onsets began once the goal was reached and with duration of 2s for

both trial types. After correction (whole-brain family-wise error rate p < 0.05 , and

for display purposes minimum voxel extent of fifty), we found significant bilateral
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Table 3.2: Post-hoc t Tests Path Distance per Trial in Task Block 1 (Normalised,
Bonferroni-corrected)

Table 3.3: Post-hoc t Tests Path Distance per Session (Bonferroni-corrected)

activation in hippocampus (left: t-stat = 8.96, p < 0.05; right: t-stat = 8.32, p <

0.001***) during Home trial reward consumption. We also found significant acti-

vation in prefrontal brain areas including lateral OFC (left: t-stat = 10.94, p < 0.05;

right: t-stat = 8.65, p < 0.05), bilateral ACC (left: t-test = 9.03, p < 0.05; right:

t-test = 9.44, p < 0.05), right dmPFC (t-test = 7.93, p < 0.05) during Home trial

goal arrival (Figure 4).
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Figure 3.4: Network of brain areas involved in Home Goal consumption

Bilateral Precuneus, Parietal, and lateral Prefrontal Brain Areas Pref-

erentially Active During Navigation vs. Follow Episodes

We contrasted episodes navigating to a learned hidden goal location (Home trials)

with the Follow trials to investigate brain areas selectively activated by goal-directed

navigation. To do so, we constructed a GLM contrasting the onset and duration of

Home trials with that of Follow trials. After correction (family-wise error rate,

minimum voxel extent of five), we found significant bilateral activation in posterior

intraparietal sulcus (left: t-stat = 8.51, p < 0.05; right: t-stat = 9.09, p < 0.05),

bilateral activation in lateral PFC (left IFG: t-stat = 9.28, p < 0.05; right IFG: 8.18,

p < 0.05), bilateral precuneus (left: t-test = 11.44, p < 0.05; right: t-test = 11.73, p

< 0.05), and bilateral activation in frontal eye fields (left: t-test = 7.31, p < 0.05*;

right: t-test = 7.43, p < 0.05).

83



Figure 3.5: Brain regions activated in contrast Homing vs. Follow trials

Caudate Tracks of Euclidean Distance To Home Goal

The tracking of goal-related information was tested. We constructed a GLM with

parametric regressors for distance to goal calculated at each frame during all Home

trials. After correction (family-wise error rate, minimum voxel extent of five), we

found significant bilateral caudate (right: t-test = 8.45, p < 0.05; left: 8.12, p <

0.05). We also found significant activation in inferior parietal lobule (left: t-test:

8.22, p < 0.05; right: 10.61, p < 0.05), bilateral lateral PFC (IFG), (left: t-test 8.77,

p < 0.05; right: t-test = 8.29, p < 0.05).
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Figure 3.6: Caudate nucleus, insula, and parietal cortex respond to changes in Euclidean
distance to goal

MTL, Hippocampal, and Prefrontal cortex tracking of egocentric goal

direction

Previous research has shown a subpopulation of hippocampal cells which fire ac-

cording to the relative heading direction of bats to hidden goals in their environment

(Sarel et al., 2017). We constructed a GLM with parametric regressors for egocen-

tric goal direction to investigate this finding in our data (Figure 7). We restricted the

absolute angular values from 0 to 180, instead of ranging from -180 to 180, because

we wanted to investigate the modulation in relation to a one-dimensional deviation

in direction towards the learned Home goal. We found significant activation in the

left hippocampus (t-test = 5.557, p < 0.0001, uncorrected) and the right parahip-

pocampus (t-test = 5.42, p < 0.0001, uncorrected). We also find significant bilateral

lateral temporal lobe (whole-brain family-wise error corrected) (left: t-test = 9.03,

p < 0.05; right: t-test = 10.52, p < 0.05). We also found significant dorsomedial
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PFC activation (whole-brain family-wise error corrected, right: t-test = 11.05, p <

0.05; left: t-test = 7.34, p < 0.05), as well as medial OFC (t-test = 7.07, p < 0.05).
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Figure 3.7: Hippocampal and prefrontal response to changes in egocentric goal direction

3.3 Discussion

Humans and rodents demonstrate remarkable behavioural flexibility during spatial

navigation tasks (de Cothi et al., 2020). We investigated goal representation during

a flexible navigation task in humans using fMRI. Our task demonstrated the abil-

ity to update learned goal information as well as update behavioural strategies over

time. Participants exhibited clear one-shot learning where one exposure to a new

hidden Home goal was enough to learn the location for subsequent Home trials. We

hypothesised hippocampal involvement with the updating of newly learned goal lo-

cations. We found supporting evidence for this hypothesis along with a network of

other brain regions including, OFC, ACC, right dmPFC, and caudate nucleus. We
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also found evidence for dynamic tracking of euclidean distance to goal in bilateral

caudate nucleus, a finding consistent with recent work (Javadi et al., 2019) as the

region is suggested to play a role in representing the transition structure of the en-

vironment (Gahnstrom & Spiers, 2020; Sharpe et al., 2019). Lastly, we show that

facing a hidden goal modulates activity in hippocampus/parahippocampus, lateral

temporal lobes, medial OFC, and dmPFC with implications for goal representation

during ongoing flexible navigation.

Rapid learning of goals in spatial navigation

We show rapid learning and re-learning of goal locations throughout the experimen-

tal session, where participants are able to approximate the shortest path to goal after

one exposure to a new goal location (Fig. 3A). This rapid learning is faster than ex-

pected based on canonical one-shot learning of a novel spatial environment which

normally takes several trials to asymptote, for instance with rodents in the Morris

water maze and for humans in a taxi driver task (Morris et al., 1984; Newman et

al., 2006). Our participants already learned the relative position of the distal land-

marks during two previous behavioural sessions leading up to the scanner sessions

which may have resulted in schematization of the spatial environment leading to

an ability to incorporate new goal information on a faster timescale (Squire et al.,

2015). In future analyses, we can investigate the within-session improvement and

observe the difference in learning time-scale as a function of experience in the maze

environment.

We calculated the shortest path based on approximations of the real shortest

path by reducing the original in-game coordinate space to a 10-by-10 grid. These

sometimes lead to incorrect estimations where some path lengths end up shorter

than the approximated shortest path. Moreover, the grid calculations of shortest

path are based on cardinal directions (up, down, left, righ). Future analysis will

include diagonal movement and a larger grid 100-by-100 which will result in more

accurate shortest path calculations and eliminate the impossible cases where path

distance is shorter than the optimal path.
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Path following in navigation

The idea of separate subsystems of spatial memory is supported by findings in hu-

man fMRI using virtual navigation paradigms. Several studies have identified hip-

pocampal activation during wayfinding or place strategy and striatal activation dur-

ing route following or response strategy (Hartley et al., 2003; Iaria et al,. 2003).

Hartley et al. (2003) tested participants in three separate conditions, wayfinding,

route-following, and trail-following. Although they did not report brain regions

preferentially activated during trail-following, they do report the contrast wayfind-

ing condition against the trail-following. Similar to our reported findings, they iden-

tify increased BOLD activation in insula, precuneus, calcarine gyrus, right fusiform,

and dorsolateral prefrontal cortex. We also find medial prefrontal cortex activation

although more posterior than reported by Hartley et al., (2003). These precise coor-

dinates of these effects were not reported and so direct comparisons are limited.

Theories of OFC subregions in value-based decision making:

Value learning in lateral OFC and ongoing decision making in

medial OFC

Our task identified several key regions involved during flexible spatial navigation in-

cluding lateral orbitofrontal cortex (lOFC) and medial orbitofrontal cortex (mOFC).

The OFC has been studied extensively in reversal learning, devaluation, value-based

decision-making, and inference tasks (Gardner & Schoenbaum, 2021; Banerjee et

al., 2020 Nature; Rich & Wallis, 2016). Although orbitofrontal responses have been

lacking in spatial navigation studies (but see Wikenheiser et al., 2021; Dahmani &

Bohbot, 2015; Busu et al., 2021) There are multiple competing account as to its

functional role ranging from a role in forming a cognitive map of task space (Wil-

son et al., 2014) to credit assignment (Noonan et al., 2010), to economic choice

(Padoa-Schioppa & Cohen, 2017).

Our task identified two anatomically separate BOLD activations in OFC that

are broadly consistent with theories of these regions in value-based decision making

tasks. We identified lateral OFC activation when arriving at a hidden goal location
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and collecting the reward. Critically, the hidden goal required constant updating

and re-learning for each block during the course of the experimental session. The

lOFC is suggested to be especially important during value-based learning (Walton

et al., 2010; Boorman et al., 2016). In one study, lOFC was shown to be important

in switching behaviour based on hidden task state (Vertechi et al., 2020). Mice

and humans were tasked with inferring hidden states during a foraging task, and

optogenetically silencing lateral OFC reduced the mice ability to perform inference-

based decisions and reverted to model-free, or stimulus-based, responses. In our

task, participants need to continuously switch between task states. Although these

are not hidden, participants need to switch between different strategies depending

on current task state, i.e. trial type, which may lead to the observed lateral OFC

BOLD activation. Should be noted that it’s been proposed that OFC is not involved

in driving task context but rather represents current location within and across the

trials (Sharpe et al., 2019).

The medial OFC response was negatively correlated with egocentric direction

to a hidden goal during the Home goal trials, i.e. more activation while facing

towards the hidden goal location. Interestingly, one study contrasted the influence of

lesions in lateral vs. medial OFC in macaques during value-guided decision-making

(Noonan et al., 2010). Lateral OFC lesions resulted in option values being weighted

to the recent average across multiple options, an indication of inability of assigning

the correct outcome to the correct option. In other words, an impairment of credit

assignment, which is a central problem in classic reinforcement learning (Sutton &

Barto, 2018). The unique contribution of lateral OFC to credit assignment has also

been observed in macaques who displayed increased choice switching following

lesions (Walton et al., 2010). However, they also observed that lesion to medial OFC

resulting in impairments of the ongoing decision-making, as opposed to learning

value associations. A more recent suggestion is that medial OFC represents terminal

states in the task environment while lateral OFC represents initial states (Bradfield

& Hart, 2020). Lastly, lateral OFC has also been implicated during ongoing learning

of stimulus-outcome associations (Walton et al., 2010; Boorman et al., 2016) and
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decision confidence (Lak et al., 2014). Consistent with medial OFC involvement

in ongoing value-based decision making, we also find medial OFC involvement

in ongoing flexible navigation in tracking the egocentric direction to hidden goal

location. Lastly, several recent studies hypothesise that medial OFC tracks your

current position within the task space (Wilson et al., 2014; Sharpe et al., 2019;

Schuck et al., 2016).

Orbitofrontal cortex during spatial navigation

The unique contribution of OFC during spatial navigation tasks is still unclear but

combining ideas from value-based decision making might provide insights (Patai

& Spiers, 2021). One navigation study investigated the future goal representation

during a prospective planning task in a virtual environment. They found prospec-

tive representation of navigational goals in the hippocampus and the strength of this

relationship was also reflected in medial OFC (Brown et al., 2016). Another study

investigating brain network correlations during spatial navigation suggests that OFC

is a brain region which facilitates goal-directed navigation through bilateral projec-

tion to both caudate and hippocampus (Brown et al., 2012). Neural responses in

the hippocampus along with medial OFC has also been activated by early learning

and spatial strategy use (as compared to response strategy) during a virtual radial

maze task (Dahmani & Bohbot, 2015). They also found supporting evidence that

grey matter volume in OFC is correlated with spatial strategy use and propose as

others have that OFC is involved in stimulus-reward associations contrasted with

hippocampal involvement in stimulus-stimulus associations (Dahmanu & Bohbot,

2015; Bohbot et al., 2007; Sharpe et al., 2019). Our results support the idea that

both OFC and hippocampus are involved in flexible navigation (Brown et al., 2016;

Brown et al., 2011; Dahamnu & Bohbot, 2015).

Interestingly, the lack of OFC activation in some studies may be due to

methodological issues (Spiers & Patai, 2021). Some prior fMRI studies may have

been more susceptible to signal drop-out in prefrontal regions, especially the OFC

(Weiskopf et al., 2007). Our current methods use susceptibility correction proce-

dures to correct for the signal distortion in these regions. However, this will not
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recover any lost signal but correct for the anatomical distortions that arise. We also

use multi-band sequencing which allows us to comfortably collect whole-brain im-

ages, where previous single-band sequences may have had to leave out certain brain

regions in favour of other ones due to a more narrow field of view.

One recent study explicitly investigated the ability of neurons in the OFC to

represent future goal locations (Busu et al., 2021). In their linear maze task, ro-

dents alternated between two different goal locations within each block, and these

two goals also changed locations across blocks. They found that the OFC neurons

represented the future goal location prior to the start of navigation until reaching

the goal location, where they would start to represent the following goal location.

Using optogenetics, they also found that silencing OFC neurons prior to the start

of navigating resulted in navigation errors. In our data, we found that medial OFC

represented hidden goal direction which is consistent with the proposed importance

OFC in representing future goal (Busu et al., 2021).

Caudate involvement in distance to goal computation

In spatial navigation tasks, the caudate has long been attributed with stimulus-

response or inflexible behaviour (Dahmani & Bohbot, 2015; Hartley et al., 2003;

Iaria et al., 2003; Doeller et al., 2008). Recently, caudate is considered to have a

role to play to facilitate behavioural flexibility in navigation tasks, mirroring find-

ings in instrumental learning (Sharpe et al., 2019). In the current task, we find that

bilateral caudate is dynamically tracking the euclidean distance to a hidden goal in

the environment. Interestingly, recent studies have also identified caudate tracking

distance to goal, specifically during detour events. One study used real-world learn-

ing of street networks later probed using video of the same area of central London

(Howard et al., 2014). Another study used a virtual environment (lava world) specif-

ically designed to parametrically change the magnitude of degree in detour (Javadi,

Patai et al., 2019). A difference in the current study is that the maze layout of the

environment was obscured by fog, a clear difference from the lava world where the

maze layout is visible. Participants therefore needed to explore the environment in

each block to learn the maze layout and could not simply visually inspect the layout
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and plan accordingly.

Taken together, the caudate (i.e. dorsomedial striatum in rodents) involvement

during flexible spatial navigation has been proposed to encode the state transitions

of the environment (Sharpe et al., 2019; Gahnstrom & Spiers). Our findings could

be consistent with this view as bilateral caudate tracked the euclidean distance to

goal. Perhaps one interpretation could be that our participants activate their rep-

resentation of the transition structure of the environment while far away from the

hidden goal. If nearby the hidden goal location you no longer need to remember

the transition structure (or maze layout) since it is unlikely you have a barrier in the

way.

Hippocampal contributions to flexible navigation

We find uncorrected hippocampal involvement during egocentric goal direction ro-

tations where greater involvement occurs while looking directly towards the learned

hidden goal during Home trials. Future analysis will investigate if the hippocampal

activity survives region of interest small volume correction. However, this finding

could support the idea of goal-vector cells in hippocampus that preferentially fire at

an angle towards the goal, as has been found in bats (Sarel et al., 2017; although

recently suggested to be an artifact based on simulation analysis approach by Car-

penter and colleagues, 2021). Our task requires long trajectories around the learned

goal location, perhaps more similar to the kind of long trajectories of bats as they

fly circling towards the goal location. This could explain how we are able to detect

such a signal while other studies have not. Previous reports have found positive

correlates as distance to goal increase the posterior hippocampus using real-world

stimuli (Howard et al., 2014; Patai, Javadi et al., 2019) while negative correlates as

distance to goal increase in virtual environments (Sherrill et al., 2013; Viard et al.,

2011). One recent rodent study found that place cells increased the in-field firing

rates as an animal approached a goal location which may result in a goal-direction

sensitive signal (Aoki et al., 2019). Gauthier & Tank (2018), also identified a sep-

arate population of reward-predictive cells in the hippocampus that would fire im-

mediately preceding the goal location. Further analysis of our data may be able to
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identify if the goal-direction signal is more strongly activated near the goal as op-

posed to further away, which would be more consistent with these two recent rodent

studies (Aoki et al., 2019; Gauthier & Tank, 2018). Analysing single-cell record-

ings in human epileptic patients, Kuhn et al. (2021) also identified neurons coding

egocentric bearing to locations during a goal-directed navigation task. Although,

these bearing cells did not code for egocentric goal-related information.

Interestingly, we also find bilateral hippocampal activation after reaching the

hidden Home goal. It is possible that the hippocampal response is related to form-

ing a new spatial association of the location and the hidden goal as these need to be

re-learned periodically at the start of each block. Research in rodents has shown ev-

idence of multiple possible mechanisms of spatial learning and planning processes

in the hippocampal formation (Foster, 2017), and recent theoretical work has ex-

plained these using a normative model based on a reinforcement learning architec-

ture (Mattar & Daw, 2018). For example, upon reaching a goal location, hippocam-

pal place cells have been shown to replay in the reverse sequence (Ambrose et al.,

2016; Shin et al., 2019; Bhattarai et al., 2020), which in itself suggests a process of

assigning proper credit to actions and states, i.e. temporal credit assignment (Sutton

& Barto, 2018). The relationship between goal-directed behaviour and sharp-wave

ripples and replay is still under active investigation (Dupret et al., 2010; Pfeiffer &

Foster, 2013; Shin et al., 2019; Xu et al., 2019). Forward planning is another mech-

anism proposed by findings in rodent hippocampal replay (Pfeiffer & Foster, 2013).

For instance, one study by Igata and colleagues (2021) found replay of an optimal

path to subgoal in an open field environment prior to choosing that path during sub-

sequent trials. Other work has found that replay is more akin to a brownian motion

process and reactivating random trajectories instead of the observed behaviour dur-

ing a random foraging task suggesting replay mechanisms are tied to task demands

(Stella et al., 2019). It is possible that the hippocampal involvement we identified

is related to a similar replay event occurring after reaching a goal. Recent work

in humans has suggested that similar replay mechanisms are at play in the human

hippocampus in non-spatial tasks (MEG: Kurth-Nelson et al., 2016; fMRI: Schuck

94



& Niv, 2019; Vaz et al., 2020), although this has not been studied in spatial tasks.

Future work will need to further understand how the different replay mechanisms

suggested in rodents may translate to flexible navigation in humans.

Limitations in analysis

Our approach described in this chapter to investigate goal coding in the human

hippocampus has important limitations in the underlying analysis. We have used

voxelwise inference where statistical significance is evaluated at the level of each

voxel. One problem for parametric voxelwise inference is conservative estimates

while nonparametric methods can provide nominal results for both voxelwise and

clusterwise inference (Woo et al., 2014; Eklund et al,. 2016). We corrected for

multiple comparisons by setting a family-wise error rate to 0.05 and for display pur-

poses a voxel extent of 5 voxels. However, choosing a different voxel extent number

may mislead the visualisation as the statistical mask appears less spurious. A future

approach that may alleviate this issue is the use of nonparametric approaches such

as cluster-based bootstrapping where randomly permuting the data creates the null

distribution (Eklund et al., 2016).

3.4 Conclusions
Our study shows an engagement of prefrontal regions, with hippocampus and cau-

date nucleus to support flexible spatial navigation. We find a subdivision of the

orbitofrontal cortex between lateral and medial between learning and on-going goal-

directed behaviour similar to evidence in macaques (Walton et al., 2010; Gardner &

Schoenbaum, 2021). We find evidence of hidden goal processing in the hippocam-

pus supported by previous work in humans and in bats (Sarel et al., 2017; Javadi

et al., 2019; Howard et al., 2014). The dichotomy of hippocampal versus caudate

involvement in flexible versus inflexible behaviour, respectively, may need a revi-

sion as the results of this chapter (in line with other evidence) suggest the caudate

to be involved in a task requiring flexible navigation within an ever-changing en-

vironment. This task would stereotypically require hippocampal involvement, yet

we report evidence of caudate modulation with Euclidean distance to goal in the
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absence of hippocampal modulation. As such, this chapter provides some evidence

for a rethinking of this dichotomy as well as the cognitive map theory as strictly

hippocampal-dependent.
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Chapter 4

City Hero Quest

So far in this thesis, we have investigated human behavioural flexibility in spatial

navigation tasks following a long tradition starting with Tolman’s rodent experi-

ments in the 1940’s (Tolman, 1948). He posited that the remarkable ability of ro-

dents to form novel shortcuts implied the use of an internal map, or cognitive map

as he called it. Recent work has questioned Tolman’s findings, for instance, by sug-

gesting that the shortcut behaviour is due to a light positioned near the goal location

facilitating the use of a homing strategy (Grieves et al., 2013). More controlled

maze setups have failed to show novel shortcut behaviour in both rats and humans

(Grieves et al., 2013; Wilson & Wilson, 2018). Nevertheless, mammals in the wild

can display remarkable behavioural flexibility as evidenced by shortcut behaviour

in real-world bat flight after translocation to rarely visited locations (Toledo et al,.

2020).

The cognitive map hypothesis posit that rodents and humans could execute

behaviours that went beyond simple stimulus-response association. At the time,

stimulus-response associations were touted as the only mechanism necessary to ex-

plain all of human behaviour (Newcombe, 2018). Many groundbreaking discoveries

have identified the hippocampus as a central brain region for memory (Scoville &

Milner, 1957) and spatial navigation (O’Keefe & Dostrovsky, 1971; Wilson, 1978).

The hippocampus is also suggested to be an instantiation of Tolman’s cognitive

map (O’Keefe & Nadel, 1978). Despite decades of work, it still remains unclear

exactly how the brain instantiates a cognitive map based on Euclidean distances



and to what extent the hippocampus or a network of brain regions implements it,

with some suggestions that a cognitive graph better explains experimental findings

(Peer et al., 2021; Warren et al., 2017; Warren, 2019).

Perhaps the difficulty in reconciling the idea of a cognitive map in a clear

neurobiological framework comes from the individual variability inherent in spatial

navigation tasks (Weisberg et al., 2014; Weisberg & Ekstrom, 2021). It has been

suggested that perhaps some participants do not form cognitive maps (Weisberg

& Newcombe, 2016) or that Euclidean cognitive maps do not exist at all (Warren,

2019). Many research paradigms build on the idea of a classification of navigational

strategies that can be either place-based (i.e. allocentric) or response-based (i.e.

egocentric) to explain individual variability (Hartley et al., 2003; Igloi et al., 2010;

Iaria et al., 2003; Anggriani et al., 2018). One further idea in this line of research

is that the brain supports multiple memory systems but that different people have

learning biases resulting in a preference for one navigational strategy over another

(Marchette et al., 2011).

The origin of the bias in navigational strategy preference and, moreover, nav-

igation ability is still unknown. Recent work has begun to investigate the role of

home environment on navigational ability (Coutrot et al., 2020). One study directly

compared navigational ability and strategy use between a city in the United States

(Salt Lake City, Utah) with a city in Italy (Padua, Veneto) with age- and education-

level matched participants. They found that participants in the United States, living

in a city with a stereotyped, grid-like street pattern, self-reported a higher use of

cardinal direction and a higher self-score of sense of direction. Nevertheless, these

participants performed worse in a virtual environment task relative to the partici-

pants in Italy, whose city is highly irregular in comparison (Barhorst-Gates et al.,

2021). The participants in Padua, Italy, were also more likely to use shortcuts com-

pared to participants in Salt Lake City, Utah – an indication of a higher propensity

towards cognitive map formation.

In this chapter, we will extend previous work described in Coutrot et al. (2020)

by large-scale online behavioural testing using both mobile and desktop virtual nav-
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igation tasks designed to investigate the role of home environment and self-reported

navigational strategy use on navigational ability. The original study found evidence

from 38 countries that the street network entropy, i.e. the regularity of street layout,

was correlated with navigational ability. Specifically, growing up in a less grid-

like environment was beneficial to navigational performance (measured as reduced

distance travelled in the virtual task Sea Hero Quest). We used six wayfinding lev-

els from Sea Hero Quest with the highest effect size on the relationship between

navigational ability and street network entropy to design a new study that directly

investigated this relationship. We created a new virtual environment task using a

city-themed landscape and directly replicated the Sea Hero Quest layouts and task

structure of the selected wayfinding levels. In this chapter, we will present the find-

ings and discuss the generalisability of wayfinding ability across task contexts as

well as the consequences of growing up in grid-like environments on wayfinding

ability.

4.1 Methods

Participants

Participants were recruited using the online platform Prolific (Palan & Schitter,

2018; www.prolific.co). We divided the data collection into separate batches to be

able to manage technical difficulties that could arise. We collected 8 batches total

and each batch was prescreened using the same set of restrictions: United States as

‘current country of residence’, United States as ‘Nationality’, ethnicity provided by

the user (not screened for any specified ethnicities), Prolific approval rate of greater

than or equal to 90%, and Mac OS / Ubuntu / or Windows as ‘Computer Operating

System’. Finally, participants from previous batches were excluded from all sub-

sequent batches to ensure we did not sample the same participants multiple times.

Prolific approval was manually inspected by experimenter after confirming the up-

load of both sets of data – Sea Hero Quest and City Hero Quest – to an anonymous

OneDrive server. Partial datasets were approved but excluded from analysis. All

approved participants were paid at a standard rate of £7.50 per hour. Average time
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to complete the study was around 2 hours.

Sea Hero Quest

Sea Hero Quest is a mobile virtual reality game designed by researchers at Univer-

sity College London and University of East Anglia in collaboration with Deutsche

Telekom and Alzheimer’s Research UK. The game was built in Unity 3D by Glitch-

ers Games Company and initially released on both Apple and Android app stores

(Coutrot et al., 2018). The initial version of the game has since been removed from

public download but an unlocked version is available for research purposes. This

unlocked version was used for this experiment and provided to participants via a

URL download link. We selected a set of levels targeted at testing wayfinding abil-

ity. Within each level, players move around within a water environment (e.g. river,

lake, sea), sailing a virtual boat. Movement is restricted to left, right, and forward

movement with a baseline velocity from the start of each level.

For each Sea Hero Quest level, participants are first shown a map of the maze

layout with a series of goals indicated by numbers on the map (Figure 1). This

map is viewed for any duration of time chosen by the player. The level starts when

‘Start’ at the bottom of the screen is pressed by the player. Once the map is removed

and the player has initiated the start of the level, the goals must be located in the

corresponding numbered order for the level to be successfully completed. Once a

goal is travelled through within the collider radius, the collider mesh around the goal

turns green, indicating the sub-goal or goal has been completed. Player position and

rotation are logged at regular intervals.

The full Sea Hero Quest game has 75 levels. We carefully selected a subset of

5 levels to reduce the time taken to complete the game while still maximising our

ability to detect effects on wayfinding ability. The first level was level one in the

full game and designed to control for video game experience (Coutrot et al., 2018).

The second level was chosen as an intermediary difficulty level and was level 11 in

the full game. The third to fifth level was chosen as levels with the largest effect

size of the correlation between the street network entropy of the environment where

you grew up and performance measured as distance travelled in that level (Coutrout
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et al., 2020).

City Hero Quest

City Hero Quest is a desktop virtual reality game designed to directly mimic Sea

Hero Quest within a city landscape. The game was built in Unity 3D physics games

engine (https://unity.com/) with all virtual structures modelled in Blender 3D mod-

elling software (https://www.blender.org/). To control the back end and log exper-

imental variables, we used Unity Experimental Framework (UXF), an open source

set of packages for Unity 3D designed for human behavioral research. The game

consists of five levels: one training level and four wayfinding levels. Each level in

City Hero Quest was modelled from a corresponding Sea Hero Quest map, with

the levels chosen matched along difficulty, entropy, and level effect size. Prior to

building each structural model for City Hero Quest, a model city environment was

built with urban panels designed to wrap around any 3D polygon. To build the

model for each level, we extracted the base map for the corresponding Sea Hero

Quest level (1, 16, 52, 56, or 67) and constructed 3D polygons similar in height to

the sea environment. After constructing these polygons for each isolated structure

within the base map, we tessellated the urban panels on each equally split face of

each polygon. These panels were subsequently textured using urban textures (e.g.

brick, marble) sourced from Poliigon (https://www.poliigon.com/) and baked for

scene lighting to reduce the runtime demand on player platforms. This process was

repeated for all levels.

Once built and baked, each model was imported to Unity 3D within separate

scenes corresponding to each level and scaled up by 50 units. For the player, we

imported a basic Unity car model (pre-fab), as this model contained the features

needed for the game baked in. We edited the features of the car to mimic that of

the boat in Sea Hero Quest, i.e. turn right, turn left, and accelerate, and de-activated

additional features, i.e. lights, engine sounds. For each level, the car [player] was set

at an initial position and pointing direction similar to that of the corresponding Sea

Hero Quest level such that, at runtime, all players viewed the same perspective of

the environment. In addition to the wayfinding component of each level, we added
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a pointing task to each City Hero Quest level (not featured in the corresponding

Sea Hero Quest versions). On each level, once players reached the final goal, three

things happened: (1) Acceleration on the car [player] was reduced to zero, inhibiting

forward and backward movement; (2) An arrow appeared extruded from the front

of the car; & (3) Players were directed to rotate the car until the arrow was pointing

in the direction of their starting location for that level. For both the wayfinding

and pointing components of each level, player position and rotation variables were

logged at each frame (0.036 seconds, frames per second were locked at 30 Hz)

using the UXF position tracking package. This data was subsequently saved to

each player’s computer, split according to level.

Navigational Strategies Questionnaire (NSQ)

All participants completed a series of questionnaires prior to downloading the two

virtual wayfinding tasks. We only analysed one of these, i.e. the navigational strate-

gies questionnaire, for this chapter. The NSQ asks participants to rate themselves on

14 separate questions regarding their propensity to use maps – providing researchers

with a ‘mapping score’ for each participant. Each question has a map-based answer

and a non-map-based answer; some have a third alternative which is not coded as

either (Brunec et al., 2018). This ‘mapping score’ has been previously found to

correlate with navigational efficiency and posterior-anterior hippocampal ratio in

humans (Brunec et al., 2019). For the NSQ in its entirety, please see the appendix.

Experimental design

We used a mixed task design as we looked at hypotheses both within and between

subject-level. For the within-subject analyses we looked at the generalisability of

wayfinding performance across our two virtual task environments, City Hero Quest

and Sea Hero Quest, using Pearson’s correlation. We further investigated the rela-

tionship between mapping propensity from the NSQ score and wayfinding perfor-

mance using Pearson’s correlation. For the between-subjects group-level analysis,

we split the data into participants who grew up in cities and participants who grew

up outside cities. These two groups had unequal variances and so we used Welch’s
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t-test to investigate differences in the means of wayfinding performance.
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Figure 4.1: Overview of both virtual navigation tasks (mobile: SeaHeroQuest; desktop:
CityHeroQuest)

4.2 Results

Generalisability of wayfinding ability

The wayfinding ability of participants quantified as distance travelled in Sea Hero

Quest (SHQ) is predictive of real-world wayfinding ability (Coutrout et al., 2019).

We were interested if wayfinding performance in SHQ would generalise to a second
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novel virtual environment set in a different context. The SHQ virtual game is set

in a water-themed world of rivers and lakes and played on a smartphone or tablet.

To contrast this rural setting, we designed an urban city-themed replica titled City

Hero Quest (CHQ) using the same maze layouts as in levels from SHQ and which

can only be played on a desktop computer. The first two levels of both SHQ and

CHQ were identical and used to control for video game ability and baseline visuo-

spatial skill (Coutrot et al., 2018). Importantly, the subsequent three levels of each

game were used to test participants’ wayfinding ability for each virtual world. In

total, there were three different level layouts for SHQ and three for SHQ-replicated

levels in CHQ. The distance travelled in the first level of each game was used to

normalise via division of the distance travelled in all other levels within the same

game. Lastly, each normalised distance metric was z-scored for comparison across

tasks. We found a significant correlation between the normalised distance travelled

in SHQ with the normalised distance travelled in CHQ (Pearson’s r = 0.42, p <

0.001; figure 2A).

Wayfinding ability associated with mapping propensity across

task contexts

People vary greatly in their wayfinding abilities. Performance on wayfinding tasks

is related to the ability to form an accurate mental map of the environment (Weis-

berg et al., 2014; Weisberg et al., 2016). We analysed participants’ self-rating on

the navigational strategies questionnaire (NSQ) which is designed to score ones’

propensity to utilise a mental map of your environment in daily life (Brunec et al.,

2018; see appendix A for the questionnaire). We found a significant correlation be-

tween mapping score and normalised distance travelled in both SHQ (Pearson’s r =

-0.13, p < 0.001; Figure 2B) and CHQ (Pearson’s r = -0.19, p < 0.001; Figure 2B).

Advantage of growing up in rural environments on navigational

ability

Recent evidence showed that street network entropy has a positive impact on

wayfinding ability (Coutrot et al., 2020). Given that US cities tend to follow a
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grid layout (and therefore a low street network entropy), we hypothesised that US

participants who grew up in cities would have lower wayfinding ability than people

who grew up outside of cities. We compared the normalised distance travelled of

our city and non-city groups and found significant differences in both of the virtual

wayfinding tasks, for City Hero Quest (Welch’s t-stat = -3.4, p < 0.001) and for

Sea Hero Quest (Welch’s t-stat = -2.17, p = 0.031). We also tested the difference of

mapping propensity from the navigational strategies questionnaire in our city and

non-city groups and found a significant difference where the latter scored lower

(Welch’s t-stat = -1.97, p < 0.05; Figure 2D).

Generalisability of wayfinding ability across context for non-city

people and relationship with mapping propensity

We found that people who grew up in cities perform worse on both of our virtual

wayfinding tasks, even one which was designed in a city-themed landscape. We

also found that mapping propensity negatively correlated with normalised distance

travelled in both of our virtual wayfinding tasks. In other words, participants who

self-report the use map-based strategies perform better in our virtual wayfinding

tasks. Our next step was to investigate how mapping propensity could modulate

wayfinding ability in people who grew up in cities vs. people who grew up out-

side of cities. We performed additional analyses after splitting the participants into

groups of non-city (n = 643) and city (n = 175).

For the first group, we found a significant correlation for the participants who

grew up outside cities between their wayfinding ability in City Hero Quest and

mapping propensity (Pearson’s r = -0.21, p < 0.001; Figure 2E). Similarly, we also

found a significant correlation for participants who grew up outside cities between

their wayfinding ability in Sea Hero Quest and mapping propensity (Pearson’s r =

-0.19, p < 0.001; Figure 2F). In other words, there is an advantage to self-reporting

map-based strategies in both of our virtual environments if you grew up outside

cities.

For the second group, we found a significant correlation for the participants

who grew up in cities between their wayfinding ability in City Hero Quest and
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mapping propensity (Pearson’s r = -0.19, p = 0.012; Figure 2E). However, we found

no significant correlation between their wayfinding ability in Sea Hero Quest and

mapping propensity (Pearson’s r = -0.026, p = 0.74; Figure 2D), suggesting that the

advantage on wayfinding ability of a having high mapping score does not generalise

across contexts for people who grew up in cities as they do for people who grew up

outside of cities. Lastly, we found that the correlations between wayfinding ability

and mapping score for people who grew up in or outside cities were significantly

different (Fisher’s z = 1.87, p = 0.03; tested using cocor R package, Diedenhofen &

Musch, 2015).
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Figure 4.2: Growing up outside city benefits navigation ability across virtual task environ-
ments

4.3 Discussion

Recent evidence using data collected from 38 countries suggests that street irregu-

larity, quantified using street network entropy, of where you grew up is important

for developing one’s wayfinding ability (Coutrot et al., 2020). We recruited a new
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group of participants (n = 818) from the United States where city streets in cer-

tain large and populous cities very regular resulting in low street network entropy

and therefore potentially detrimental to wayfinding ability. We tested these partic-

ipants using the same virtual navigation task called Sea Hero Quest (first reported

in Coutrot et al., 2018) as well as a novel virtual navigation task called City Hero

Quest modelled after a subset of levels from the original game. We replicated the

original finding finding that growing up in a city negatively impacts your wayfind-

ing ability in the virtual environment Sea Hero Quest. We also show new supporting

evidence that the impact of growing up in a city on navigation ability extends to a

novel wayfinding game, City Hero Quest. Moreover, despite modelling City Quest

within a city-theme, participants who grew up in cities still performed worse than

people who grew up outside of cities.

Intriguingly, we also find that participants who grew up in cities self-report a

higher degree of map-like strategy use. This finding is supported by other studies

where participants who report living in cities that follow a grid-like pattern, also

self-report a higher reliance on cardinal directions and is considered one aspect of

an allocentric or map-like ability (Lawton, 2001). In a more recent study, Barhorst-

Cates and colleagues (2021) also report that participants in a regular grid-like city

(United States) self-reported more allocentric strategy use compared to participants

living in an irregular non-grid-like Italian city. Moreover, the latter study also found

that participants who grew up in the city with an irregular layout had improved

wayfinding ability in a virtual environment task compared to the participants who

grew up in the city with a regular layout – consistent with the results reported in this

chapter.

We also identified a new potential advantage for participants who grew up in

irregular environments. We found that participants who grew up outside cities and

self-report use of map-like strategies have performance boosts in two wayfinding

tasks with greatly different contexts (city vs. non-city water environments). How-

ever, participants who grew up in a city and self-reported use of map-like strategies,

only had performance boosts in the similar city-like environment and not in the
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water-based virtual environment task. Perhaps this indicates that people who grew

up outside cities are more flexible in their wayfinding ability but also more flex-

ible in their ability to switch between contexts and still maintain a high level of

performance.

Limitations

The study reported in this chapter is limited by several aspects. First; the number of

participants we were able to recruit differed markedly between the two groups, non-

city (n = 643) and city (n = 175). The groups are still high-powered on their own to

investigate association with self-reported measures, and this recruitment bias was

expected based on the initial sample collected using Sea Hero Quest (Coutrot et al.,

2020). We wanted to attempt to prescreen participants based on their geographical

location but this was not allowed on our recruitment platform. We used Welch’s

t-test where appropriate when comparing means of the two groups since we may

have violated the assumption of equal variance in the two groups.

Second, we did not counter-balance the order of the virtual environment tasks

across participants. Participants received instructions to download the mobile game

Sea Hero Quest prior to the instruction for the desktop game City Hero Quest. The

order in which most participants completed the two tasks most likely followed the

same order. We know from anonymous messaging that at least some participants

completed the navigation tasks in the opposite order. Further investigation into

timestamps of data collection could provide an accurate estimation of the order

in which tasks were completed. One potential problem is that the correlation be-

tween participants who grew up in cities and self-reported map-like strategy use

and wayfinding performance was influenced by first completing Sea Hero Quest.

This would need more work to state whether the order had any influence.

Third, we never explicitly defined for participants what counted as a city vs.

not a city. We gave participants the option to select 4 options about where they

grew up: city, suburbs, rural, or mixed. We considered all categories besides city

to be non-city. We also collected data about the exact street or streets in the US

where they grew up which can be used in future analysis for a more fine-grained
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classification and to exclude additional confounding factors such as growing up in

the west vs. in the east US.

Fourth, the participants we were able to recruit had to overcome some quite

challenging technological hurdles. It is difficult to quantify but some participants

had to return the study being unable to complete one of a number of steps. The most

challenging aspect was correctly installing both virtual environments. At the time

of recruitment, Sea Hero Quest was no longer on the App or Google Play store.

Instead we provided participants with a download link given to us by the games de-

velopment company. Some participants struggled with giving Sea Hero Quest the

proper certificates meaning they were unable to play the game. Sometimes, these

issues could be resolved but they required extensive hands-on technical guidance

which is difficult when dealing with upwards of hundreds of participants each day.

In short, the participants we ended up recruiting may be more technological savvy

and have a higher education level than the general participant pool offered through

prolific which can be important for considering the results we presented here. How-

ever, this may also mean that our results are more likely to replicate in a psychology

student population as usually recruited.

Fifth, the correlations we identified between performance and mapping

propensity, are all of low r values and as such should be interpreted with cau-

tion as biases. One possible explanation is that measurement noise through online

data collection reduced these r values. If true, we could repeat the experiment under

more controlled in-person testing and expect to find larger effect sizes. However,

it is likely the mapping score simply explained a small variance in the wayfinding

performance.

Future Directions

There are several factors we did not control for in this study. These include, age,

gender, education level, and the variation in grid-like layout across US cities. As

we collected this demographic information including the city participants grew up

in, our next steps will investigate if the reported findings hold up. We also collected

additional relevant data regarding daily habits GPS use and commute durations and
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types. One possibility is that participants living outside of cities commute to them

for work and therefore get exposed to a greater variety of environments than partic-

ipants living in cities.

4.4 Conclusions
Utilizing large-scale online recruitment, we investigated the role of home environ-

ment on navigational ability. We identified growing up outside cities as an advan-

tage over growing up inside cities in terms of wayfinding performance across two

different wayfinding tasks. Furthermore, we found that use of map-like strategy

during navigation improved wayfinding performance overall. However, only partic-

ipants who grew up outside cities could generalise the advantage of using map-like

strategies across both of our tasks. One possible interpretation is that growing up

outside cities improves your wayfinding ability and endows you with greater navi-

gational flexibility, allowing you to generalise across tasks and contexts.
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Chapter 5

Route planning in London Taxi

Drivers

Our everyday life is experienced on a much larger scale than what is typically stud-

ied in laboratory experiments. There are a vast number of alternative actions that we

can take in any given situation, and it is unknown how the brain is able to form future

plans in the face of such large-scale complexity (Wu et al., 2018). We employed a

homogenous group of volunteers, who all are faced with learning an identical large-

scale state-space and make multi-step decision plans on how to traverse it, namely

licensed London Taxi Drivers (Woollett et al., 2009).

Prior work show that London taxi drivers have the remarkable feature of

enlarged posterior hippocampi compared to both a normal population sample

(Maguire et al., 2000) as well as a matched sample of London bus drivers (Spiers

et al., 2006). However, evidence for navigational ability correlated with hippocam-

pal size in a normal population is lacking, suggesting taxi drivers are unique in this

regard (Weisberg & Ekstrom, 2021). In a virtual London navigation task, BOLD

activity was identified in the hippocampus during route planning in taxi drivers

(Spiers & Maguire, 2006), along with bilateral frontopolar activation during spon-

taneous route planning. However, the question remains of how these drivers are able

to leverage their extensive knowledge of the London street network to facilitate the

everyday demands of being a London taxi driver.

In this study, we tested whether taxi drivers utilise bottlenecks in the London



street network to facilitate route planning using BOLD fMRI. Specifically, we sug-

gest that taxi drivers initially plan routes across modules, i.e. areas of London that

taxi drivers consider to have defined borders, before planning within these areas.

A recent study demonstrated that during route call-outs, taxi drivers’ response time

changed as a function of encountering bottlenecks in the state-space or street net-

work (Griesbauer, 2021). The use of bottlenecks to facilitate route planning in large

state-spaces is also supported by theoretical consideration to minimize planning de-

mand from an information-theoretic perspective (Mcnamee, 2016).

We designed a novel route planning task which spanned 360 unique locations

around the London street network forming 120 unique routes. Each route contained

a start location, a goal location, and a third probe (target) location. We asked taxi

drivers, for each route, if their mentally planned route included the probe location

or not. By varying the distance of the probe location from bottlenecks in the state-

space, we aimed to better understand the neural code of route planning in London

taxi drivers.

First, we hypothesise that our route choice task activates the hippocampus dur-

ing the mental planning phase given the past literature indicating hippocampal pro-

cesses in planning and spatial memory (Miller & Benditto, 2021; Burgess et al.,

2002; Kaplan et al., 2020). Previous work in Licensed Taxi drivers found bilateral

frontopolar activation during spontaneous replanning (Spiers & Maguire, 2006).

Therefore, we also hypothesise that planning demand, defined using our proxy of

distance from predefined boundaries in the street network of London, parametri-

cally modulates prefrontal regions including frontopolar cortex (Griesbauer et al.,

2021).

5.1 Methods

Participants:

The study was approved by the ethics committee for UCL Division of Psychology

and Language Sciences (fMRI/2021/001). For online testing, ethics approval was

received from UCL Department of Experimental Psychology (EP/2018/008).

114



Twenty-two participants (age ranging from 35 to 67 years, mean age: 52.2,

22 male, 21 right-handed) completed the full experiment including one training

session. All participants were London licensed taxi drivers holding green badges

authorized by Transport for London. The average years of taxi driver experience

was 17.5 years (min = 1, max = 38, std = 10.6).

Task:

We designed a novel route planning task using 450 distinct locations scattered

around London. Google street view images were extracted from Google Earth

(high-resolution 4800x2643 pixels) at specific longitudes and latitudes for each

location. Images were compressed to reduce loading delays during stimulus pre-

sentation, average compression from 6MB to 300KB while maintaining the same

resolution. The 450 locations consisted of 150 starting locations, 150 goal locations,

and 150 target locations. Images were presented using Psychopy (Pierce, 2007).

The task was divided up into two components (Figure 1). (1) Drivers were

asked to mentally plan the route between a start and goal location just as they would

follow the direct line during a knowledge exam (Griesbauer, 2021). We displayed

the street view image and name of the start location at the bottom of the screen

for 4-8 seconds, uniformly sampled. After the jittered delay, the street view image

of the start location was replaced with the street view image of the goal location,

while the text of the start location remained at the bottom of the screen. Along with

the appearance of the image for the goal location, a text appeared at the top of the

screen stating the location of the image. The street view image of the goal location

was present on screen for 4-8 seconds, uniformly sampled. (2) We introduced an

accept-reject task where each participant evaluated whether a third street, the target

street, formed part of the planned route from start to goal. After the jittered delay

for the goal location, the image was replaced by a street view image of a target

location along with text in the upper third of the screen, showing the name of the

street. The target location image was present until a button press response (yes or

no) was made using a button box placed by the right hand of the participant. The yes

or no response was mapped to either a response made with the thumb or the index
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finger, counterbalanced across participants. Each trial consisted of both components

– mental route planning and accept-reject of target street – and was separated with

an ITI of 3.5-4.5s. The trial order of each route was maintained for all participants.

Online training and Questionnaire:

Each participant completed 30 training trials at home in the week prior to coming in

for the scan. We wanted to familiarise the participants with the mental route plan-

ning and the accept-reject aspect of the task. Participants also completed a question-

naire including the Navigational Strategies Questionnaire (Brunec et al., 2018), a

demographic questionnaire, and a taxi-driver-specific questionnaire regarding their

experience and preferences as a driver.

Routes:

We selected routes which sampled the London street network based on a number

of route characteristics. These included the following characteristics: route path

distance, number of turns, cardinal direction of the route, target distance to start

location, target distance to goal location, detour distance of target, target being on

route, target being off route, target being on an A-road (major roads in United King-

dom), and route crossing the river. The different routes and targets also uniformly

sampled the geographical area of the 3-mile radius around Charing Cross, the center

point for the Knowledge (Figure 1).
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Figure 5.1: Overview of the route planning task

MRI acquisition parameters:

Scanning was conducted at the Birkbeck-UCL Centre for Neuroimaging (BUCNI)

using a 3-T Siemens Prisma MRI scanner with a 32-channel head coil. Each scan-

ning session lasted around 1 hour and was separated into a maximum of eight runs

(each approximately 5 - 7 minutes with 15 trials per run). Approximately 280 func-

tional scans were acquired during each run, depending on participant performance

(time taken per trial). A multi-band sequence was used (repetition time [TR] = 1450
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msec, echo time [TE] = 35 msec, acquisition time (average) = 3276 seconds, flip

angle = 70°). The scans were whole-brain (72 slices) with a multi-band acceleration

of 4, slice thickness of 2 mm, spacing between slices of 2 mm, resolution / voxel

size of 2x2x2 mm, field of view of 212 mm, and phase encoding A >> P. A top-up

sequence was also performed at the end of the scanning session with reverse-phase

encoding. A fieldmap was acquired after the first run. A standard T1-weighted

high-resolution structural scan (MPRAGE) was acquired about half-way through

each scanning session (TR = 2300 msec, TE = 30 msec, 1x1x1 mm resolution). Ear

plugs and foam padding on each side of the head were used for noise reduction and

to reduce head movements. Task stimuli were projected on a rear projector screen

and mirrored for the participant’s view. The mirror was adjusted for each participant

to see full screen.

Experimental Design and Behavioural analysis:

Each trial contained an accept-or-reject response for the question “Did you go via:

X street?”, where X street refers to a street that may or may not lay on the direct

route between a given start and goal location. We collected response times for 120

route planning trials during the fMRI scanning session. Subsequently, we investi-

gated the consistency of responses across participants and factors that may influence

the response times.

We calculated optimal paths between each start and goal location pair by first

extracting the street network graph of Greater London, UK, from OpenStreetMaps

using custom Python code and the osmnx package (Boeing, 2017; Haklay & Weber,

2008). The street network graph contained 568,473 nodes and 1,085,199 edges.

Optimal paths were also calculated from start, to target, to goal location. The detour

deviation was computed as the fractional increase in distance by going through the

additional target street location, and was used in an ordinary least squares, linear

regression model to account for response times.
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MRI preprocessing and analysis:

Preprocessing was performed using fMRIprep (Esteban et al., 2018) with default

settings (see Appendix for additional preprocessing details). First- and second-

level GLM analysis was performed using SPM12. The first three dummy scans

per run were automatically discarded before acquiring volumes. We constructed

general linear models contrasting different stages during the route planning task.

Specifically, we contrasted the onset of the initial starting street with the onset of

the target street, to look at brain regions selectively active during planning. We also

constructed a parametric general linear model to investigate the influence of target

placement with respect to boundaries in the London street network (Griesbauer &

Spiers, 2021). We hypothesized that London taxi drivers segment the London’s

street network into a hierarchy of modules, where each module is separated by

boundaries. We classified each target as being on boundary, near boundary, or far

from boundary, with an assigned value of 1, 2 or 3 in order of increased planning

demands.

5.2 Results

Behaviour

Our route planning task consisted of 120 carefully selected routes that uniformly

sampled across a number of factors. We investigated which of these were be-

haviourally relevant in a linear ordinary least squares model. We found no corre-

lation with number of turns, path distance from start to goal location, or Euclidean

distance. We also categorised the planning demand of each target street in terms of

its location relative to the nearest boundary. A target on a boundary had a low plan-

ning demand (value of 1), a target near a boundary had a higher planning demand

(value of 2), a target far away or near no boundaries had the highest planning de-

mand (value of 3). There was no significant correlation identified between planning

demand and response times.

We further calculated the increase in path distance by the inclusion of the target

street. Path distance is the distance along the shortest path between each starting
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and goal location. To calculate the increase in path distance, we summed the path

distance between start and target street with the path distance between the target

and goal street. We then divided the change in path distance by the original path

distance. We found a negative correlation between response times and the fractional

increase in path distance (r = - 0.56, p < 0.001; Figure 2C). This implies that taxi

drivers were faster at rejecting a target street if it were far away from the optimal

path.

Participants varied substantially in the amount of agreement across different

routes (Figure 2A). We quantified this as a fractional disagreement value per trial,

where 0.5 means maximal disagreement and 0 means complete agreement. Re-

sponse times were found to be positively correlated with the amount of agreement

(r = 0.67, p < 0.001; Figure 2B).
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Figure 5.2: Response times during route planning task

fMRI results

Bilateral hippocampal and bilateral retrosplenial cortex activation

driven by route planning

Our fMRI task was designed to probe taxi drivers’ knowledge of a wide variety of

streets and areas of London (Figure 1). Each trial of the task presented three im-

121



ages in succession, start image, goal image, and lastly target image, and planning

across all three locations was required to solve the accept/reject task. We investi-

gated which brain regions were involved in route planning in our task with a GLM

contrasting the onset of the target locations by the onset and duration of the start lo-

cations from all 120 trials. The start locations served as a baseline where planning

is limited since neither the goal or target location is known. We also modelled the

inter-trial-intervals, and the button responses as separate regressors.

We found that bilateral hippocampus was preferentially activated during the

target vs. start location contrast indicating hippocampal involvement in mental route

planning of London licensed taxi drivers (Figure 3; left: t-stat = 10.93, p < 0.05;

right: t-stat = 9.03, p < 0.05). We also identified bilateral retrosplenial cortex

activation in the same contrast (left: t-stat = 11.85, p < 0.05; right: t-stat = 10.1, p

< 0.05). All results are whole-brain family-wise error-corrected.
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Figure 5.3: Bilateral hippocampal and bilateral retrosplenial cortex driven by route plan-
ning

Boundary-related planning demand elicits frontopolar, preSMA, and

ACC activation

The target streets in our route planning task were specifically selected to probe the

influence of boundaries in the London street network. A previous study by Gries-

bauer & Spiers (2021) identified a number of boundaries that London Taxi drivers

identified although these had varying degrees of agreement. We hypothesised that

the planning demand of each target street would depend on the distance of a target

street from the nearest boundary. Theoretical work on planning in spatial navigation

suggests that the process of planning first occurs over global modules, where each

module is separated by boundaries (McNamee, 2016; Weiner & Mallet, 2003). As

such, target streets that form part of a module boundary should be easier to access

and use in route planning, compared to targets that are further away from a bound-
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ary. These boundaries can also be viewed as bottlenecks in the state-space which

may also coincide with main roads and bridges.

We constructed a parametric GLM, using all 120 trials, with planning demand

varying from low (target street is part of boundary; Figure 4A), to medium planning

demand (target street is adjacent to a boundary street), to high planning demand

(target is far from any boundary). We found significant activation in ACC (right:

t-stat = 6.54, p < 0.05; whole-brain family-wise error corrected). We also identified

significant activation in bilateral frontopolar cortex (right: t-stat = 6.54, p < 0.05;

whole-brain family-wise error corrected).
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Figure 5.4: Boundary-related planning demand influence on ACC, suppl. motor area, and
frontopolar cortex

5.3 Discussion

In this study we investigated the neural code of mental route planning in large state-

spaces, namely the street network of London. We recruited licensed London taxi

drivers, who have extensive knowledge and experience planning within this state

space and had them perform a novel route choice task using a diverse set of street

view locations around London. We identified the joint contribution of retrosplenial

cortex and the hippocampus in the retrieval and usage of target streets during the

process of mental route planning. This finding is consistent with recent evidence of

goal coding in these regions when one is navigating in highly familiar, real-world

environments (Patai, Javadi et al., 2019).
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The hippocampus is implicated in both memory and spatial navigation pro-

cesses (Epstein et al., 2017; Eichenbaum, 2017). Given the proposed structural

changes that occur in the hippocampus of licensed London taxi drivers, an impor-

tant element to understanding its role in spatial navigation may come from human

patient studies where the hippocampi are damaged (Maguire et al., 2000; Maguire

et al., 2006). In one amnesic case study, a former taxi driver sustained bilateral

hippocampal damage and subsequently navigated in a virtual version of London

alongside a group of matched controls (Maguire et al., 2006). Several aspects of the

spatial navigation process were still intact including “general orientation in London,

rich and detailed topographical knowledge of landmarks, and the spatial relation-

ships between them, or even navigating along some routes”. The main impairment

was only apparent when navigating along smaller roads, in the UK known as non-A

roads, as opposed to main roads known as A roads, where the patient would easily

get lost compared to controls. In the current study, we identify hippocampal in-

volvement while taxi drivers imagined travelling 120 routes through London. One

such explanation for this involvement is that the hippocampus is active due to the

nature of the street view images priming discrete memory retrieval, ultimately re-

sulting in a memory task instead of a planning task. However, when contrasting the

onset of the target location with the onset of a start location – in which one would

expect equal engagement of the hippocampus – we find hippocampal and retrosple-

nial activity, suggesting their involvement in imagined routes. Interestingly, a study

of patients with primary damage to their hippocampus bilaterally also reported im-

pairment to their ability to imagine novel experiences (Hassabis et al., 2007). Some

of the routes in our task may be novel for any given participant. As such, the act of

imagining routes may be a possible explanation for hippocampal involvement.

To further understand how taxi drivers are able to seamlessly plan in a large

state-space, we turned to testing the hypothesis that they utilise characteristics of the

street network, specifically the bottlenecks. These bottlenecks were operationalised

as the boundaries separating different regions of London, for instance the bridges

crossing the river Thames which cut through central London, dividing it in two.
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Recent behavioural evidence suggests that taxi drivers use these bottlenecks in their

route planning (Griesbauer, 2021). We went one step further, and manipulated the

distance of target streets from boundaries in our novel route planning task. We

split these distances into three categories: low, medium, and high planning demand

corresponding to the target street existing either on bottlenecks, adjacent to a bot-

tleneck, or far from any bottleneck, respectively.

We identify brain activity in bilateral frontopolar cortex parametrically mod-

ulated by the boundary-related planning demand. This result replicates an earlier

finding by Spiers & Maguire (2006), in which they found bilateral frontopolar cor-

tex was similarly activated compared to a control condition during spontaneous re-

planning of a route while driving in a virtual simulation of London. We also identi-

fied additional brain regions modulated by the planning demand, including the right

ACC and pre-SMA. We found no significant correlation between response times and

planning demand, nor did we find a difference in response between trials with target

street on bottleneck vs. trials with target street away from bottlenecks. This sug-

gests that our results are not driven by differences in response times across trials.

The boundary-related planning demand is our approach at probing a hierarchical

representation of the London street network. Previous work has investigated hierar-

chical representations in the general population using learned state-spaces such as

virtual subway maps (Balaguer et al., 2016),

The planning demand modulation in pre-SMA is similar to another finding

in a multi-step planning task (Balaguer et al., 2016). In their task, participants

navigated along a fictional subway network, separated hierarchically into unique

subway lines. preSMA activity increased with the cost of hierarchical plan and

context switches of subway lines. Kaplan et al. (2017) also identified lateral PFC

along with pre-SMA as brain regions involved in demanding planning. In their

task, participants were shown a map of a maze and asked to choose the shortest

path between alternative routes. Trials with small differences in alternative routes,

and therefore higher planning demand, resulted in the observed increased activity

in preSMA and lateral PFC. Our findings are consistent with this work as our proxy
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of planning demand correlated with activity in preSMA and frontopolar PFC.

We also found dorsal ACC activation in our parametric modulation of

boundary-related planning demand. This brain regions is involved in several cog-

nitive domains including error detection (Carter et al., 1998), conflict monitoring

(Botvinick et al., 2004), model updating (O’Reilly et al., 2013), foraging (Kolling

et al., 2012), and tracking multiple agents in a spatial task (Yoo et al., 2021). Re-

cent evidence from a virtual navigation task also demonstrated the involvement of

dACC in backtracking behaviour (Javadi et al., 2018). Interestingly, the addition of

the target street in our task may sometimes function as mental backtracking where

participants need to think back on the route they already mentally planned to make

the decision whether or not the target street lay along that route. Another plausible

explanation is that ACC is commonly seen in conjunction with task demands and

effortful behaviour (Porter et al., 2019). In our task, we hypothesise that target

streets placed far from boundaries require more planning. If more planning leads

to more effortful behaviour then this could be consistent with our results. How-

ever, we did not find any effect of target distance to boundary on response times as

might be expected if indeed more effort is required for these routes. Exactly which

factors drive response times in our mental route planning task will require further

investigation and detailed analyses on the route characteristics. There may also

be interesting individual variability where some taxi drivers weigh certain route

characteristics as more planning intensive compared to others, for instance number

of turns or distance of a route.

Limitations and Future Directions

We describe our task as route planning; however, we are not able to evaluate the

planning process in terms of each road a given participant would select to navigate

from start to goal location. Instead, our task asks participants to mentally plan the

route and selectively accept or reject the target street we show them. The task could

be rephrased as a route memory task if it was not for the case that some of the routes

from a given start to goal are bound to be completely novel even if the locations are

familiar.
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Our response time analysis has so far focused on the average response time

per trial across participants. It is important that we better understand individual

variability in the response times by also modelling on the level of each participant.

There is substantial variability in the agreement of accept vs. reject on certain trials

which is correlated with response times (Figure 1B). One possible explanation is

that taxi drivers form certain preferences, and analysis on individual level may re-

veal a consistent division where subsets of taxi drivers are consistent amongst each

other. We will be increasing the number of licensed taxi drivers who complete the

behaviour task to help understand the variability in route preference.

We hypothesise that taxi drivers use boundaries and bottlenecks in the state-

space to efficiently plan and reduce the computational demands (McNamee et al.,

2016). The boundaries were quantified using a separate study where a different set

of taxi drivers drew separating lines on a map of London of where they considered

these boundaries to be (Griesbauer et al., 2021). In the current study, we consider

any given point on these boundaries as a bottleneck in the state-space. However,

these boundaries, and therefore bottlenecks, are subjectively defined and some of

the boundaries only had

All of our fMRI route analysis thus far looked at the contribution of all trials.

However, our design inherently includes different trial types including, reject vs.

accept trials, target on appearance run (direct path), and varying degrees of difficulty

based on the deviation of target path from a plausible route. In future analysis we

will investigate the network of brain regions involved in these different trial types

and compare them to predictions based on the literature.

5.4 Conclusions

In conclusion, we investigated route planning in London taxi drivers to understand

the ease at which humans can solve the problem of planning in large state-spaces.

We found that the hippocampus and retrosplenial cortex are activated by route plan-

ning, solidifying a role for these regions for long-term spatial memory in real-world

navigation settings. Furthermore, we found a neural signature of hierarchical plan-
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ning demand parametrically modulated by activity in lateral frontopolar cortex,

preSMA, and dACC. The lateral frontopolar response is consistent with previous

reports of spontaneous route planning during a virtual driving task in London taxi

drivers (Spiers & Maguire, 2006). However, the current findings take this signature

one step further by operationalizing the planning demand as the distance between

streets and bottlenecks in the state-space. We interpret our data to suggest that taxi

drivers exploit these bottlenecks during route planning in order to make the chal-

lenging problem of planning in a large state-spaces solvable (McNamee, 2016).

When considering the theoretical extent of this work, it is important to note that the

findings of this chapter posit a role for regions (e.g. retrosplenial cortex and fron-

topolar PFC) beyond the hippocampus in spatial navigation and, specifically, spatial

planning within large state space. These findings must be considered in terms of the

stereotypically hippocampal-dependent cognitive map theory, as our results suggest

a more nuanced role across additional brain regions in large state-spaces.

130



Chapter 6

General Conclusions

The study of spatial navigation is often based on two strategies: place-based and

response-based. Early rodent lesion work and human fMRI studies suggests that

these map onto neurobiological substructures in the hippocampus for place-based

strategies and in the caudate for response-based strategies. Recent work suggests

this dichotomy may need some revision as the caudate has been implicated in flexi-

ble spatial and non-spatial tasks (Gahnstrom & Spiers, 2020). This thesis suggests

new ways forward including a stronger focus on investigating the computations

underlying different spatial strategies observed in navigation behaviour. We also

design a novel spatial navigation task to investigate dynamic flexible behaviour in

a normal population and a novel route choice task to investigate mental planning

in large state-spaces with a population of expert navigators, licensed London taxi

drivers. Both our fMRI studies implicate a network of brain regions supporting

flexible navigation and mental planning that go beyond hippocampal as the single

locus of a cognitive map (Ekstrom et al., 2017).

The investigation into flexible behaviour is not unique to spatial navigation. In

decision-making, a wide range of studies have tried to understand flexible behaviour

from many perspectives using different classes of rational, normative, descriptive,

aggregate, or mechanistic computational models (Corrado et al., 2009). In recent

years, computational modelling approaches have gained popularity in spatial navi-

gation (de Cothi et al., 2020; Mattar & Daw, 2018), but no study we know of has

yet to fully take advantage of the possibilities (Wilson & Collins, 2019). We review



and pilot the feasibility of some of these possibilities using reinforcement learning

models, task simulations, and freely moving human behaviour in chapter 2 of this

thesis. We suggest successor representation and monte-carlo tree search as better

matched to observed human behaviour compared to a Q-learner algorithm although

caution our interpretation for lack of data collection as a result of the COVID-19

pandemic.

Subsequently, we used some of the lessons learned in chapter 2 to devise a

new study to investigate goal coding in humans using desktop virtual reality and

functional magnetic resonance imaging (fMRI). We simulated agents on 180,000

pseudo-randomly generated maze configurations to create mazes which afforded

ideal circumstances to investigate goal coding in the whole-brain with humans and

in dorsal CA1 with rodents. We present our human findings in chapter 3, demon-

strating that our participants were able to rapidly learn and relearn new hidden goal

locations after a single trial. We identified a network of brain regions involved

in updating these hidden goal locations including bilateral hippocampus, lateral or-

bitofrontal cortex (OFC), bilateral caudate nucleus, dorsal cingulate cortex, and dor-

somedial prefrontal cortex. Recent work has suggested that the caudate nucleus is

involved in representing the transition structure, or the action-outcome associations,

of a task (Gahnstrom & Spiers, 2020; Sharpe et al., 2019). We report evidence con-

sistent with this theory where the caudate nucleus was parametrically modulated by

Euclidean distance to goal in our task. This is consistent with other recent find-

ings by Javadi and colleagues (2019). Lastly, medial OFC, left hippocampus, and

right hippocampus/parahippocampal regions track egocentric hidden goal direction

in our task. Taken together, these results overlap with a suggested dissociation of

OFC subregions, where lateral regions are involved in learning state values (switch-

ing between behavioural goals), while medial OFC is involved in ongoing decision

making (Noonan et al., 2010).

Behavioural flexibility and the formation of cognitive maps in spatial naviga-

tion tasks is surprisingly varied (Weisberg et al., 2014). In light of the neural corre-

lates of flexible navigation we found in chapter 3, we wondered what could cause
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this variation in the general population, as this could possibly limit the generalisabil-

ity of our results. The typical sample size recruited for neuroimaging experiments

makes it next to impossible to investigate this variability in a lab setting. Lever-

aging massive online testing, recent evidence suggests that part of this variability

in behavioural flexibility, measured as wayfinding ability in the mobile navigation

game Sea Hero Quest, was found to be related to the complexity of the street layout

of where you grew up (Coutrot et al., 2020). In chapter 4, we extended this find-

ing by comparing the wayfinding ability of participants in the United States who

grew up in cities with those who grew up outside of cities. We also found that a

navigational strategies questionnaire (NSQ; Brunec et al., 2018) provided a possi-

ble explanation for the difference in wayfinding ability. Participants with a high

mapping score, which indicates more behavioural flexibility during spatial navi-

gation, outperformed participants with a low mapping score in two virtual tasks,

Sea Hero Quest, and a novel city-themed variation, City Hero Quest. Participants

who grew up outside cities, in places with higher street network complexity than in

US cities, had improved wayfinding abilities and improved generalisability of be-

havioural flexibility across task contexts compared to those who grew up in cities.

All our reported mapping score correlation feature low effect sizes so need to be

interpreted with caution as slight biases. Future neuroimaging studies could recruit

participants based on understanding the baseline variability in wayfinding ability

and investigate how that influences neural correlates of flexible behaviour during

complex navigation.

The variability of navigational ability in the general population described in

chapter 4 begs the question: What makes expert navigators, those who have mas-

tered behavioural flexibility during complex navigation tasks, different? Luckily,

we were able to study expert navigators who have spent years learning and plan-

ning within one of the most complex street networks in the world – licensed Lon-

don Taxi Drivers (Griesbauer & Spiers, 2021). We devised a novel task targeting

the aspect of their job that would drive the most planning demand, namely plan-

ning a new route (Spiers & Maguire, 2006). Our route planning task was carefully
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designed to sample locations and routes that spread all across London. We found

bilateral hippocampal and retrosplenial cortex activation during planning across our

120 routes. Rodent studies investigating spatial planning have identified the abil-

ity of the hippocampus to simulate future trajectories which may even translate to

humans but further work is necessary (Pfeffer & Foster, 2013; Kurth-Nelsen et al.,

2016). We also investigated the neural correlates of planning demand. We found

that anterior cingulate cortex, pre-SMA, and bilateral frontopolar cortex was para-

metrically modulated by our proxy of planning demand defined as the distance of

target street from nearby boundary, where London boundaries were defined by a

separate group of licensed Taxi Drivers (Griesbauer & Spiers, 2021). Our find-

ings in ACC and pre-SMA are consistent with other reports of the involvement of

these regions during hierarchical planning of a virtual subway task (Balaguer et al.,

2016). The frontopolar cortex activation is also consistent with a report of spon-

taneous route planning during spatial navigation in a virtual simulation of London

(Spiers & Maguire, 2006).

Overall the body of work presented in this thesis provides evidence for a more

nuanced relationship between stereotypically spatial brain regions and flexible nav-

igation. In chapter 2, we found human trajectories in freely moving tasks mostly

overlap with model-based and successor representation algorithms. In chapter 3, we

found a network of brain regions to include caudate, hippocampus, and PFC regions,

involved in updating goals information in an ever-changing environment. In chapter

4, we found that where you grew up influenced future navigation ability, tested us-

ing two separate video games, and that this effect was moderated by a self-reported

measure of mapping propensity. In chapter 5, we identified hippocampal and retros-

plenial involvement with mental route planning (and frontopolar activity correlated

with variations in planning demand) in a group of expert navigators (London taxi

drivers). Taken together, these results provide evidence for a distributed network

of brain regions supporting flexible navigation and a role for regions beyond the

hippocampus in supporting a cognitive map - if such exists. In addition, the work

considered in this thesis could be further reconciled by appropriate application of
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computational modelling methodologies that, when fit to observed behaviour, can

be used to derive latent decision variables that can be investigated in distributed

neural codes, not only in humans but other species as well.
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