119 research outputs found

    A Higher Order Chebyshev-Halley-Type Family of Iterative Methods for Multiple Roots

    Full text link
    [EN] The aim of this paper is to introduce new high order iterative methods for multiple roots of the nonlinear scalar equation; this is a demanding task in the area of computational mathematics and numerical analysis. Specifically, we present a new ChebyshevÂżHalley-type iteration function having at least sixth-order convergence and eighth-order convergence for a particular value in the case of multiple roots. With regard to computational cost, each member of our scheme needs four functional evaluations each step. Therefore, the maximum efficiency index of our scheme is 1.6818 for Âż = 2,which corresponds to an optimal method in the sense of Kung and TraubÂżs conjecture. We obtain the theoretical convergence order by using Taylor developments. Finally, we consider some real-life situations for establishing some numerical experiments to corroborate the theoretical results.This research was partially supported by Ministerio de Economia y Competitividad under Grant MTM2014-52016-C2-1-2-P and by the project of Generalitat Valenciana Prometeo/2016/089Behl, R.; MartĂ­nez Molada, E.; Cevallos-Alarcon, FA.; Alarcon-Correa, D. (2019). A Higher Order Chebyshev-Halley-Type Family of Iterative Methods for Multiple Roots. Mathematics. 7(4):1-12. https://doi.org/10.3390/math7040339S11274GutiĂ©rrez, J. M., & HernĂĄndez, M. A. (1997). A family of Chebyshev-Halley type methods in Banach spaces. Bulletin of the Australian Mathematical Society, 55(1), 113-130. doi:10.1017/s0004972700030586Kanwar, V., Singh, S., & Bakshi, S. (2008). Simple geometric constructions of quadratically and cubically convergent iterative functions to solve nonlinear equations. Numerical Algorithms, 47(1), 95-107. doi:10.1007/s11075-007-9149-4Argyros, I. K., Ezquerro, J. A., GutiĂ©rrez, J. M., HernĂĄndez, M. A., & Hilout, S. (2011). On the semilocal convergence of efficient Chebyshev–Secant-type methods. Journal of Computational and Applied Mathematics, 235(10), 3195-3206. doi:10.1016/j.cam.2011.01.005Xiaojian, Z. (2008). Modified Chebyshev–Halley methods free from second derivative. Applied Mathematics and Computation, 203(2), 824-827. doi:10.1016/j.amc.2008.05.092Amat, S., HernĂĄndez, M. A., & Romero, N. (2008). A modified Chebyshev’s iterative method with at least sixth order of convergence. Applied Mathematics and Computation, 206(1), 164-174. doi:10.1016/j.amc.2008.08.050Kou, J., & Li, Y. (2007). Modified Chebyshev–Halley methods with sixth-order convergence. Applied Mathematics and Computation, 188(1), 681-685. doi:10.1016/j.amc.2006.10.018Li, D., Liu, P., & Kou, J. (2014). An improvement of Chebyshev–Halley methods free from second derivative. Applied Mathematics and Computation, 235, 221-225. doi:10.1016/j.amc.2014.02.083Sharma, J. R. (2015). Improved Chebyshev–Halley methods with sixth and eighth order convergence. Applied Mathematics and Computation, 256, 119-124. doi:10.1016/j.amc.2015.01.002Neta, B. (2010). Extension of Murakami’s high-order non-linear solver to multiple roots. International Journal of Computer Mathematics, 87(5), 1023-1031. doi:10.1080/00207160802272263Zhou, X., Chen, X., & Song, Y. (2011). Constructing higher-order methods for obtaining the multiple roots of nonlinear equations. Journal of Computational and Applied Mathematics, 235(14), 4199-4206. doi:10.1016/j.cam.2011.03.014Hueso, J. L., MartĂ­nez, E., & Teruel, C. (2014). Determination of multiple roots of nonlinear equations and applications. Journal of Mathematical Chemistry, 53(3), 880-892. doi:10.1007/s10910-014-0460-8Behl, R., Cordero, A., Motsa, S. S., & Torregrosa, J. R. (2015). On developing fourth-order optimal families of methods for multiple roots and their dynamics. Applied Mathematics and Computation, 265, 520-532. doi:10.1016/j.amc.2015.05.004Behl, R., Cordero, A., Motsa, S. S., Torregrosa, J. R., & Kanwar, V. (2015). An optimal fourth-order family of methods for multiple roots and its dynamics. Numerical Algorithms, 71(4), 775-796. doi:10.1007/s11075-015-0023-5Geum, Y. H., Kim, Y. I., & Neta, B. (2015). A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics. Applied Mathematics and Computation, 270, 387-400. doi:10.1016/j.amc.2015.08.039Geum, Y. H., Kim, Y. I., & Neta, B. (2016). A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points. Applied Mathematics and Computation, 283, 120-140. doi:10.1016/j.amc.2016.02.029Behl, R., Alshomrani, A. S., & Motsa, S. S. (2018). An optimal scheme for multiple roots of nonlinear equations with eighth-order convergence. Journal of Mathematical Chemistry, 56(7), 2069-2084. doi:10.1007/s10910-018-0857-xMcNamee, J. M. (1998). A comparison of methods for accelerating convergence of Newton’s method for multiple polynomial roots. ACM SIGNUM Newsletter, 33(2), 17-22. doi:10.1145/290590.290592Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.06

    Numerically stable improved Chebyshev-Halley type schemes for matrix sign function

    Full text link
    [EN] A general family of iterative methods including a free parameter is derived and proved to be convergent for computing matrix sign function under some restrictions on the parameter. Several special cases including global convergence behavior are dealt with. It is analytically shown that they are asymptotically stable. A variety of numerical experiments for matrices with different sizes is considered to show the effectiveness of the proposed members of the family. (C) 2016 Elsevier B.V. All rights reserved.This research was supported by Ministerio de Economia y Competitividad MTM2014-52016-C2-2-P and by Generalitat Valenciana PROME-TEO/2016/089.Cordero Barbero, A.; Soleymani, F.; Torregrosa SĂĄnchez, JR.; Ullah, MZ. (2017). Numerically stable improved Chebyshev-Halley type schemes for matrix sign function. Journal of Computational and Applied Mathematics. 318:189-198. https://doi.org/10.1016/j.cam.2016.10.025S18919831

    Several New Families of Jarratt’s Method for Solving Systems of Nonlinear Equations

    Get PDF
    In this study, we suggest and analyze a new and wide general class of Jarratt’s method for solving systems of nonlinear equations. These methods have fourth-order convergence and do not require the evaluation of any second or higher-order FrĂ©chet derivatives. In terms of computational cost, all these methods require evaluations of one function and two first-order FrĂ©chet derivatives. The performance of proposed methods is compared with their closest competitors in a series of numerical experiments. It is worth mentioning that all the methods considered here are found to be effective and comparable to the robust methods available in the literature

    Semilocal Convergence Analysis of an Iteration of Order Five Using Recurrence Relations in Banach Spaces

    Full text link
    [EN] Semilocal convergence for an iteration of order five for solving nonlinear equations in Banach spaces is established under second-order Fr,chet derivative satisfying the Lipschitz condition. It is done by deriving a number of recurrence relations. A theorem for the existence-uniqueness along with the estimation of error bounds of the solution is established. Its R-order is shown to be equal to five. Both efficiency and computational efficiency indices are given. A variety of examples are worked out to show its applicability. In comparison to existing methods having similar R-orders, improved results in terms of computational efficiency index and error bounds are found using our methodology.The authors thank the referees for their valuable comments which have improved the presentation of the paper. The authors thankfully acknowledge the financial assistance provided by Council of Scientific and Industrial Research (CSIR), New Delhi, India.Singh, S.; Gupta, D.; MartĂ­nez Molada, E.; Hueso Pagoaga, JL. (2016). Semilocal Convergence Analysis of an Iteration of Order Five Using Recurrence Relations in Banach Spaces. Mediterranean Journal of Mathematics. 13(6):4219-4235. doi:10.1007/s00009-016-0741-5S42194235136Cordero A., Hueso J.L., Martinez E., Torregrosa J.R.: Increasing the convergence order of an iterative method for nonlinear systems. Appl. Math. Lett. 25, 2369–2374 (2012)Chen, L., Gu, C., Ma Y.: Semilocal convergence for a fifth order Newton’s method using Recurrence relations in Banach spaces. J. Appl. Math. 2011, 1–15 (2011)Wang X., Kou J., Gu C.: Semilocal convergence of a sixth order Jarrat method in Banach spaces. Numer. Algorithms 57, 441–456 (2011)Zheng L., Gu C.: Semilocal convergence of a sixth order method in Banach spaces. Numer. Algorithms 61, 413–427 (2012)Zheng L., Gu C.: Recurrence relations for semilocal convergence of a fifth order method in Banach spaces. Numer. Algorithms 59, 623–638 (2012)Proinov P.D., Ivanov S.I.: On the convergence of Halley’s method for multiple polynomial zeros. Mediterr. J. Math. 12, 555–572 (2015)Ezquerro, J.A., HernĂĄndez-VerĂłn M.A.: On the domain of starting points of Newton’s method under center lipschitz conditions. Mediterr. J. Math. (2015). doi: 10.1007/s00009-015-0596-1Cordero A., HernĂĄndez-VerĂłn M.A., Romero N., Torregrosa J.R.: Semilocal convergence by using recurrence relations for a fifth-order method in Banach spaces. J. Comput. Appl. Math. 273, 205–213 (2015)Parida P.K., Gupta D.K.: Recurrence relations for a Newton-like method in Banach spaces. J. Comput. Appl. Math. 206, 873–887 (2007)Hueso J.L., MartĂ­nez E.: Semilocal convergence of a family of iterative methods in Banach spaces. Numer. Algorithms 67, 365–384 (2014)Argyros, I.K., Hilout S.: Numerical methods in nonlinear analysis. World Scientific Publ. Comp., New Jersey (2013)Argyros, I.K., Hilout, S., Tabatabai, M.A.: Mathematical modelling with applications in biosciences and engineering. Nova Publishers, New York (2011)Argyros I.K., Khattri S.K.: Local convergence for a family of third order methods in Banach spaces. J. Math. 46, 53–62 (2004)Argyros I.K., Hilout A.S.: On the local convergence of fast two-step Newton-like methods for solving nonlinear equations. J. Comput. Appl. Math. 245, 1–9 (2013)Kantorovich, L.V., Akilov G.P.: Functional analysis. Pergamon Press, Oxford (1982)Argyros I.K., George S., Magreñån A.A.: Local convergence for multi-point-parametric Chebyshev-Halley-type methods of higher convergence order. J. Comput. Appl. Math. 282, 215–224 (2015)Argyros I.K., Magreñån A.A.: A study on the local convergence and the dynamics of Chebyshev-Halley-type methods free from second derivative. Numer. Algorithms 71, 1–23 (2015)Amat S., HernĂĄndez M.A., Romero N.: A modified Chebyshev’s iterative method with at least sixth order of convergence. Appl. Math. Comput. 206, 164–174 (2008)Chun, C., St a˘{\breve{a}} a ˘ nic a˘{\breve{a}} a ˘ , P., Neta, B.: Third-order family of methods in Banach spaces. Comput. Math. Appl. 61, 1665–1675 (2011)Ostrowski, A.M.: Solution of equations in Euclidean and Banach spaces, 3rd edn. Academic Press, New-York (1977)Jaiswal J.P.: Semilocal convergence of an eighth-order method in Banach spaces and its computational efficiency. Numer. Algorithms 71, 933–951 (2015)Traub, J.F.: Iterative methods for the solution of equations. Prentice-Hall, Englewood Cliffs (1964

    A Note on the “Constructing” of Nonstationary Methods for Solving Nonlinear Equations with Raised Speed of Convergence

    Get PDF
    This paper is partially supported by project ISM-4 of Department for Scientific Research, “Paisii Hilendarski” University of Plovdiv.In this paper we give methodological survey of “contemporary methods” for solving the nonlinear equation f(x) = 0. The reason for this review is that many authors in present days rediscovered such classical methods. Here we develop one methodological schema for constructing nonstationary methods with a preliminary chosen speed of convergence

    Extending the applicability of a fourth-order method under Lipschitz continuous derivative in Banach spaces

    Get PDF
    We extend the applicability of a fourth-order convergent nonlinear system solver by providing its local convergence analysis under Lipschitz continuous Fréchet derivative in Banach spaces. Our analysis only uses the first-order Fréchet derivative to ensure the convergence and provides the uniqueness of the solution, the radius of convergence ball and the computable error bounds. This study is applicable in solving such problems for which earlier studies are not effective. Furthermore, the convergence region for the scheme to approximate the zeros of various polynomials is studied using basins of attraction tool. Various computational tests are conducted to validate that our analysis is beneficial when prior studies fail to solve problems.The first author has been supported by the University Grants Commission, India.Publisher's Versio

    Domain of Existence and Uniqueness for Nonlinear Hammerstein Integral Equations

    Full text link
    [EN] In this work, we performed an study about the domain of existence and uniqueness for an efficient fifth order iterative method for solving nonlinear problems treated in their infinite dimensional form. The hypotheses for the operator and starting guess are weaker than in the previous studies. We assume omega continuity condition on second order Frechet derivative. This fact it is motivated by showing different problems where the nonlinear operators that define the equation do not verify Lipschitz and Holder condition; however, these operators verify the omega condition established. Then, the semilocal convergence balls are obtained and the R-order of convergence and error bounds can be obtained by following thee main theorem. Finally, we perform a numerical experience by solving a nonlinear Hammerstein integral equations in order to show the applicability of the theoretical results by obtaining the existence and uniqueness balls.This research was partially supported by Ministerio de Economia y Competitividad under grant PGC2018-095896-B-C22.Singh, S.; MartĂ­nez Molada, E.; Kumar, A.; Gupta, DK. (2020). Domain of Existence and Uniqueness for Nonlinear Hammerstein Integral Equations. Mathematics. 8(3):1-11. https://doi.org/10.3390/math8030384S11183HernĂĄndez, M. A. (2001). Chebyshev’s approximation algorithms and applications. Computers & Mathematics with Applications, 41(3-4), 433-445. doi:10.1016/s0898-1221(00)00286-8Amat, S., HernĂĄndez, M. A., & Romero, N. (2008). A modified Chebyshev’s iterative method with at least sixth order of convergence. Applied Mathematics and Computation, 206(1), 164-174. doi:10.1016/j.amc.2008.08.050Argyros, I. K., Ezquerro, J. A., GutiĂ©rrez, J. M., HernĂĄndez, M. A., & Hilout, S. (2011). On the semilocal convergence of efficient Chebyshev–Secant-type methods. Journal of Computational and Applied Mathematics, 235(10), 3195-3206. doi:10.1016/j.cam.2011.01.005Hueso, J. L., & MartĂ­nez, E. (2013). Semilocal convergence of a family of iterative methods in Banach spaces. Numerical Algorithms, 67(2), 365-384. doi:10.1007/s11075-013-9795-7Zhao, Y., & Wu, Q. (2008). Newton–Kantorovich theorem for a family of modified Halley’s method under Hölder continuity conditions in Banach space. Applied Mathematics and Computation, 202(1), 243-251. doi:10.1016/j.amc.2008.02.004Parida, P. K., & Gupta, D. K. (2007). Recurrence relations for a Newton-like method in Banach spaces. Journal of Computational and Applied Mathematics, 206(2), 873-887. doi:10.1016/j.cam.2006.08.027Parida, P. K., & Gupta, D. K. (2008). Recurrence relations for semilocal convergence of a Newton-like method in Banach spaces. Journal of Mathematical Analysis and Applications, 345(1), 350-361. doi:10.1016/j.jmaa.2008.03.064Cordero, A., Ezquerro, J. A., HernĂĄndez-VerĂłn, M. A., & Torregrosa, J. R. (2015). On the local convergence of a fifth-order iterative method in Banach spaces. Applied Mathematics and Computation, 251, 396-403. doi:10.1016/j.amc.2014.11.084Argyros, I. K., & Hilout, S. (2013). On the local convergence of fast two-step Newton-like methods for solving nonlinear equations. Journal of Computational and Applied Mathematics, 245, 1-9. doi:10.1016/j.cam.2012.12.002Argyros, I. K., George, S., & Magreñån, Á. A. (2015). Local convergence for multi-point-parametric Chebyshev–Halley-type methods of high convergence order. Journal of Computational and Applied Mathematics, 282, 215-224. doi:10.1016/j.cam.2014.12.023Wang, X., Kou, J., & Gu, C. (2012). Semilocal Convergence of a Class of Modified Super-Halley Methods in Banach Spaces. Journal of Optimization Theory and Applications, 153(3), 779-793. doi:10.1007/s10957-012-9985-9Argyros, I. K., & Magreñån, Á. A. (2015). A study on the local convergence and the dynamics of Chebyshev–Halley–type methods free from second derivative. Numerical Algorithms, 71(1), 1-23. doi:10.1007/s11075-015-9981-xWu, Q., & Zhao, Y. (2007). Newton–Kantorovich type convergence theorem for a family of new deformed Chebyshev method. Applied Mathematics and Computation, 192(2), 405-412. doi:10.1016/j.amc.2007.03.018MartĂ­nez, E., Singh, S., Hueso, J. L., & Gupta, D. K. (2016). Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces. Applied Mathematics and Computation, 281, 252-265. doi:10.1016/j.amc.2016.01.036Kumar, A., Gupta, D. K., MartĂ­nez, E., & Singh, S. (2018). Semilocal convergence of a Secant-type method under weak Lipschitz conditions in Banach spaces. Journal of Computational and Applied Mathematics, 330, 732-741. doi:10.1016/j.cam.2017.02.042Singh, S., Gupta, D. K., MartĂ­nez, E., & Hueso, J. L. (2016). Semilocal Convergence Analysis of an Iteration of Order Five Using Recurrence Relations in Banach Spaces. Mediterranean Journal of Mathematics, 13(6), 4219-4235. doi:10.1007/s00009-016-0741-

    A numerically stable high-order Chebyshev-Halley type multipoint iterative method for calculating matrix sign function

    Get PDF
    A new eighth-order Chebyshev-Halley type iteration is proposed for solving nonlinear equations and matrix sign function. Basins of attraction show that several special cases of the new method are globally convergent. It is analytically proven that the new method is asymptotically stable and the new method has the order of convergence eight as well. The effectiveness of the theoretical results are illustrated by numerical experiments. In numerical experiments, the new method is applied to a random matrix, Wilson matrix and continuous-time algebraic Riccati equation. Numerical results show that, compared with some well-known methods, the new method achieves the accuracy requirement in the minimum computing time and the minimum number of iterations

    Two New Predictor-Corrector Iterative Methods with Third- and Ninth-Order Convergence for Solving Nonlinear Equations

    Get PDF
    In this paper, we suggest and analyze two new predictor-corrector iterative methods with third and ninth-order convergence for solving nonlinear equations. The first method is a development of [M. A. Noor, K. I. Noor and K. Aftab, Some New Iterative Methods for Solving Nonlinear Equations, World Applied Science Journal, 20(6),(2012):870-874.] based on the trapezoidal integration rule and the centroid mean. The second method is an improvement of the first new proposed method by using the technique of updating the solution. The order of convergence and corresponding error equations of new proposed methods are proved. Several numerical examples are given to illustrate the efficiency and performance of these new methods and compared them with the Newton's method and other relevant iterative methods. Keywords: Nonlinear equations, Predictor–corrector methods, Trapezoidal integral rule, Centroid mean, Technique of updating the solution; Order of convergence
    • 

    corecore