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Abstract  
  
In this study, we suggest and analyze a new and wide general class of Jarratt’s method for 
solving systems of nonlinear equations. These methods have fourth-order convergence and do 
not require the evaluation of any second or higher-order Fréchet derivatives. In terms of 
computational cost, all these methods require evaluations of one function and two first-order 
Fréchet derivatives. The performance of proposed methods is compared with their closest 
competitors in a series of numerical experiments. It is worth mentioning that all the methods 
considered here are found to be effective and comparable to the robust methods available in the 
literature. 
 
Keywords:  Numerical analysis; systems of nonlinear equations; iterative methods; order of 
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1. Introduction 
 
This paper addresses the problem of finding real roots of nonlinear system of the form  
 

0,=)(xF                                                                                        (1) 
 
where  
 

T
n xfxfxfxF ))(,),(),((=)( 21  , T

nxxxx ),,,(= 21    

 
and nnF RR :  is a sufficiently differentiable vector function. 
 
Many problems about finding a root of (1) have emerged in many sciences and engineering 
applications. The zeros of a nonlinear system can not in general be expressed in closed form, 
thus iterative methods for approximating solutions of systems of nonlinear equations are the 
most frequently used techniques. Therefore, finding a root of (1) has become one of the most 
important and challenging problems in computational mathematics. Many robust and efficient 
methods for solving (1) are already engaged. One of the most basic procedures for 
approximating solutions of the nonlinear system 0=)(xF , is the quadratically convergent 
Newton’s method Traub (1964) and is given by 

 
 1, 0,= ),()}({= )(1)()(1)( nxFxFxx nnnn    ,                                                                         (2) 

 
 where 1)}({  xF  is the inverse of first Fréchet derivative )(xF   of the function )(xF . 
 
In order to improve the local order of convergence of Newton’s method, a number of methods 
have been proposed in the literature. For a system of k  equations in k  unknowns, the first-order 
Fréchet derivative is a matrix with 2k  evaluations while the second-order Fréchet derivative has 

2

1)(2 kk
 evaluations. This implies that a huge amount of computational work is required to 

evaluate every iteration Amat et al. (2003). Third order iterative methods like Halley’s method 
Amat et al. (2003), Gutierrez and Hernandez (1997) and Chebyshev’s method Amat et al. (2003), 
Gutierrez and Hernandez (1997) are close relatives of Newton’s method. These methods require 
the evaluation of the second-order Fréchet derivative per iteration. Therefore, despite their cubic 
convergence, they are considered less practical from the computational point of view. 

 
Multipoint iterative methods for solving nonlinear systems play a significant role in the field of 
iterative processes since they circumvent the drawbacks of one-point iterations, such as 
Newton’s method. Such constructions occasionally possess a better order of convergence and 
efficiency index for solving the systems of nonlinear equations. In recent years, some new higher 
order iterative methods have been developed and analyzed to solve the nonlinear systems 
without using the second-order Fréchet derivative  cf.  Homeier  (2004),  Grau-S a nchez et al.  
(2011),  Sharma et al. (2013), Cordero et al. (2009), Darvishi and Barati (2007) and Nedzhibov 
(2008). 
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In this paper, our main objective is to develop a wide general class of fourth-order Jarratt’s 
method Jarratt (1966) for solving nonlinear systems without using the second or any higher-order 
Fréchet derivatives. For this purpose, we extend the scheme of Behl et al. (2013) to the k-
dimensional case in a simple way. We also perform different numerical tests that confirm the 
theoretical results and allow us to compare the methods with some other recently published 
methods. 
 
 
2. Description of New General Class of Jarratt’s Method 
 
More recently, Behl et al. (2011) have proposed a new optimal family of Jarratt’s method for 
solving scalar nonlinear equations.  This is given by  
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              (3) 

 
where R21,  such that neither 21 =  nor 21 3=    (otherwise these families of methods 
have a third -order of convergence).   
 
In this section, we intend to develop an iterative scheme of higher order for solving systems of 
nonlinear equations without using second-order Fr e chet derivative. For this purpose, we 
introduce the following modification over the family Error! Reference source not  found. for multi-
dimensional case: 

 




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)()(1)()()(
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
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 where  
 

)],()5103()2722[(=)( )(2
221

2
1

2
221

2
1

)( nn xBIx                                           (3) 
 

],)5()())][3((3[=)( 21
)(

21
)(

21
)( IxBxBIx nnn                                                  (4) 

                      ),(=)(=  ),()(=)( )()()()()()( nnnnnn xhxxyyyFxHxB   

                      ,)}({=)(  and  )()(=)( 1)()()()()(  nnnnn xFxHxFxHxh  
 

and where I  denotes the kk   identity matrix and R21,  where R21,  such that 

neither 21 =  nor 21 3=   . 
 

3

Kanwar et al.: Several New Families of Jarratt’s Method for Solving Systems

Published by Digital Commons @PVAMU, 2013



704                                                                                                                                                          V. Kanwar et al.                             

3. Convergence Analysis 
 
In order to explore the convergence properties of scheme (2), we recall the following results of 
Taylor’s series expression on vector functions [see Örtega and Rheinboldt (1970)] and lemma 
proved by Nedzhibov [(see Nedzhibov (2008)]. 
 
Lemma 3.1.  
 
Let nnVF RR :  be a pC  function defined on }||<:||{= )( raxxV n  ; then for any ,|||| rv   
the following expression holds:  
 

,),)((
1)!(

1
)(

3!

1
)(

2!

1
)()(=)( 1)(

p
p vvaF

p
vvvaFvvaFvaFaFvaF R


                   (5) 

 where  
 

.||)()(||
!

||||
sup|||| )()()( aFxF

p

v pnp
p

Vx
p 


R                                                                     (6) 

 
 Lemma 3.2.  
 
Let nnVF RR :  is a 4C  function, and has a locally convergent unique root .V  Further, 

suppose that the Jacobian )( )(nxF  is invertible in a neighborhood of  , then the following 
expressions hold: 
 

.))()(()()()(1)()()2(1)()(=)(
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        (9) 

 
 Theorem 3.1.   
 
Let nnVF RR :  is a 4C  function in an open convex set .nV R  Assume that there exits an 

V  such that 0=)(F  and 1)(  F  exits. Then there exits an 0>  such that for every initial 

guess ),( (0) Ux  , the sequence of iterates generated by )(= )(1)( nn xx   is well defined, 

converges to  , and has fourth-order convergence when .
3

2
=  

Proof:  
 
From equation (2), we get 
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).()()}({
2

1
=)( )()(1)()()( nnnnn xhxxxx                                                                   (7) 

  
We introduce the following notations 
 

,=)( )(  nx                                                                                                                   (8) 
 

.=)( nx                                                                                                                   (9) 
 
Now, equation (7) can be rewritten as 
  

)].()()([2)}({
2

1
= )()()(1)( nnnn xhxexx                                                                     (10) 

 
Using  Lemma 3.1, we can represent )( )(nxh  by using the following Taylor’s series expansion 
  

).||(||)(
6

1
)(

2

1
)()(=)( 4)( eOeeeheehehhxh n                                             (11) 

 
Since   is a root of system (1.1), therefore, 0=)()(=)(0=)(  FHhF   and Ih =)(  
by  Lemma 3.2. Therefore, equation (11) further gives 
  

).||(||)(
6

1
)(

2

1
=)( 4)( eOeeeheehexh n                                                                     (12) 

 
Similarly, we express 
  

).||(||)(
2

1
)()(=)( 3)( eOeeBeBBxB n                                                                     (13) 

 
 Using  Lemma 3.2 and equation (13) in (3), we obtain  
  

( ) 2 2 2 2
1 1 2 2 1 1 2 2

2 2 3
1 1 2 2

( ) = 4( 2 3 ) 3 ( )( 10 5 )

3
( )( 10 5 ) (|| || ).

2

nx I h e

B ee O e

          

    

    

        
                              (14) 

 
Using (12) and (14), we have 
   

( ) ( ) 2 2 2 2
1 1 2 2 1 2 1 2

2 2 2 2
1 1 2 2 1 1 2 2

2 2 2 4
1 1 2 2
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Using (13) in (4), we obtain 
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Substituting Error! Reference  source not  found. and Error! Reference  source not  found. in (10), we 
have 
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For 
3

2
= , equation (15) becomes  

).||(||)}(4)(6)(){932(
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1
)}({= 422

221
2

1
1)( eOeeehhBx n         (16) 

 
 According to Lemma 3.2 and substituting the expressions of )( and )( ),(  Bhh   in (16), we 
have 
  

).||(||)}()(
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 Let us differentiate twice the equation IxFxH nn =)()( )()(  ; we thereby obtain 
  
       0.=)()()()(2)()( )()()()()()( nnnnnn xFxHxFxHxFxH                                                 (17) 
 
 Using equation (17) in Error! Reference source not found., finally we get 
  

).||(||= 4eO                                                                                                                (18) 
 
 This completes the proof of the theorem.  
 
3.1. Special Cases 
 

Finally, by using different specific values of 1  and 2 , which are defined in Theorem 3.3, we 
get the various methods from formula (2) as follows: 
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(i) For 0=1 , family (2) reads as  
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 This is a new fourth-order family of methods for solving systems of nonlinear equations. 
 
Sub special cases of family Error! Reference source not found. 
 

(a) For 0=2 , family Error! Reference source not found. reads as  
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 This is the well-known Jarratt’s method [Nedzhibov (2008)] for solving systems of nonlinear 
equations. 
 

(b) For 2=2  , family Error! Reference source not found. reads as  
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This is a new fourth-order method for solving systems of nonlinear equations. 
 

(ii) For 1=2 , family (2) reads as 
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This is another new fourth-order family of methods for solving systems of nonlinear equations. 
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Sub special cases of family (19) 
 

(a) For 0=1 , family (19) reads as 
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This is a modification over the well-known Jarratt’s method Jarratt (1966) for solving systems of 
nonlinear equations. 
 

(b) For 5=1 , family (19) reads as 
  

       
     












).()(60)(28)(9)(5)(3)(5=

),()}({
3

2
=

)()()(1)()()()()(1)(

)(1)()()(

nnnnnnnnn

nnnn

xFyFxFyFxFyFxFxx

xFxFxy
           (30) 

 
 This is a new fourth-order method for solving systems of nonlinear equations. 

(iii) For 
10

1
= and 50= 21  , family (2) reads as  
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)(505)(1503)(3)(5002=

),()}({
3

2
=

)()()(

1)()()()()(1)(

)(1)()()(

nnn

nnnnnn

nnnn

xFxFyF

xFyFyFxFxx

xFxFxy

                  (21) 

 
  This is again a new fourth-order method for solving systems of nonlinear equations. 
 
 Note that family (2) can produce several new multipoint families of Jarratt’s method without 
using second-order Fréchet derivative for simple roots of nonlinear system by fixing one of the 
disposable parameters namely, 1  or 2 .  
 
 
5.   Computational Efficiency 
 
The traditional way to obtain an assessment of the efficiency index Ostrowski (1973) of iterative 

methods is given by CE
1

=  , where   is the order of convergence and C  is the computational 
cost per iteration. For the system of k  non-linear equations in k  unknowns, the computational 
cost per iteration is given by [see Grau-Sánchez et al. (2011)]  
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),(10=),,( 2

1010 kPkaukaukuuC                                                                                (22) 

 
 where a0 and a1 represent the number of evaluations of )(xF  and )(xF   respectively, )(kP  is 

the number of products per iteration and 0u  and 1u  are the ratios between products and  

valuations required to express the value of ),,( 10 kuuC  in terms of product. 

 
Now, let us compare the efficiency index of the proposed methods namely 
Error!  Reference  source  not  found. )( 1MJM  )( 1  and Error!  Reference  source  not  found. 

)( 2MJM )( 2  with that of Newton’s method )( 3 )(NM , third order method by Homeier (HM) 

)( 4  [Homeier (2004)] and harmonic mean Newton’s method )(HMNM  )( 5  [Grau-S a nchez 

et al.  (2011)], fourth-order methods by Sharma et al. (WNM) )( 6  [Sharma et al. (2013)], 

Cordero et al. (CM) )( 7 [ Cordero et al. (2009)] and Darvishi (DM) )( 8  [Darvishi and Barati 

(2007)]. 
 
The HM  is given by  
 

( ) ( ) ( ) 1 ( )
1

( 1) ( ) ( ) ( ) ( ) 1 ( )
4 1 1

1
= { ( )} ( ),

2
= ( , ) = { ( )} ( ).

n n n n

n n n n n n

y x F x F x

x x y x F y F x



 

 

 

                                                          (23) 

 
 The HMNM  is given by  
     

( ) ( ) ( ) 1 ( )
2

( 1) ( ) ( ) ( ) ( ) 1 ( ) 1 ( )
5 2 2

= { ( )} ( ),

1
= ( , ) = { ( )} { ( )} ( ).

2

n n n n

n n n n n n n

y x F x F x

x x y x F x F y F x



  

 



      

                              (24) 

  
The WNM  is given by  
 

 

( ) ( ) ( ) 1 ( )

( 1) ( ) ( )
6

1( ) ( ) 1 ( ) ( ) 1 ( ) ( ) 1 ( )

2
= { ( )} ( ),

3
= ( , )

1 9 3
= { ( )} ( ) { ( )} ( ) { ( )} ( ).

2 4 4

n n n n

n n n

n n n n n n n

y x F x F x

x x y

x F x F y F x F y I F x F x







  


 



          

            (35) 

 
The CM  is given by     
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( ) ( ) ( ) 1 ( )
2
( 1) ( ) ( )

7 2

( ) ( ) 1 ( ) 1 ( ) ( ) 1 ( )
2 2 2

= { ( )} ( ),

= ( , )

= 2{ ( )} { ( )} ( ){ ( )} ( ).

n n n n

n n n

n n n n n n

y x F x F x

x x y

y F x F x F y F x F y







  




        

                  (25) 

 
 The DM  is given by  
       

( ) ( ) ( ) 1 ( )
2

( ) ( ) ( ) 1 ( ) ( )
4 2

( 1) ( ) ( ) ( )
8 2 4

1
( ) ( )

( ) ( ) ( ) ( )4
4

= { ( )} ( ),

= { ( )} ( ) ( ) ,

= ( , , )

1 2 1
= ( ) ( ) ( ).

6 3 2 6

n n n n

n n n n n

n n n n

n n
n n n n

y x F x F x

y x F x F x F y

x x y y

x y
x F x F F y F x











 


     




             

                 (26) 

 
In the iterative method 3 , that is Newton’s method, instead of computing the inverse operator 

we solve a linear system, where we have 1)/61)(2(  kkk  products and 1)/2( kk  quotients in 
the LU  decomposition and 1)( kk  products and k  quotients in the resolution of two triangular 
linear systems. If we suppose that a quotient is equivalent to n  products, then    

        

.
6

5)31)3((2
=

2

1)(

6

5)1)(2(
=)(

2 


 nknkkkk
n

kkk
kP

         
                  (27) 

 
In general, we denote by the number of scalar products per iteration by p0 and the number of 
complete resolutions of a linear system (LU decomposition and resolution of two triangular 
systems) by p1. We call p2 the number of resolutions of two triangular systems when LU 
decomposition is computed in another step in the same iteration, then total number of products is 
(see Behl et al (2013))  
 

 
.

6

1)2(65)1(3062)61)1((312
=)(

2  npnppkpnpkpk
kP                   (28) 

 
 In Table 1, we present the values of ),,( and  2, 1, 0, 1, 0, 10 kuuCpppaa   for each iterative 

method analyzed in this paper, .81     
 

Table 1.  Coefficients used in (22) and (28), local order of convergence and computational 

cost of iterative methods 
,81         

Method  a0 a1 p0 p1 p2     ),,( 10 kuuC   

1  1 2 5 2 1 4  /310332)3(22 01
2  nuknukk   

2  1 2 7 2 1 4  /316332)3(22 01
2  nuknukk   

3  1 1 0 1 0 2  /65361)3(22 01
2  nuknukk   
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4  1 2 1 2 0 3  /32331)3(22 01
2  nuknukk   

5  1 2 1 2 0 3   /32331)3(22 01
2  nuknukk  

6  1 2 4 2 1 4   /34632)3(22 01
2  nuknukk  

7  2 2 1 1 2 4  /61115125)3(42 01
2  nuknukk  

8  2 3 3 2 1 4   /31662)3(32 01
2  nuknukk   

 
   
5.1.   Comparison Between the Efficiencies 
 

Let us denote the efficiencies of 8, to 1= , ii  by ).,,( 10 kuuMi  Consider the ratio  

 

,
),,()(log

),,()(log
=

),,(log

),,(log
=

10

10

10

10
, kuuC

kuuC

kuuM

kuuM
G

ij

ji

j

i
ji 


                                                                  (29) 

 
 where  
 

.,= 1),(265)(310606)21)(131(612=),,( 11
2

10 jisnpnppaukpnpaukpkuuC sssssssss   

 
It is clear that if 1,>, jiG  the iterative method i  is more efficient than .j  Taking into account 

that border between two computational efficiencies is given by 1,=, jiG  this boundary (using 

(29)) can be expressed by an equation which is written as  [see Grau-S a nchez et al. (2011)] 
  

,= 43
2

2110   kkkuu                                                                                           (30) 
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In order to compare the efficiency index of the iterative method ,1  that is ,1M  with the 

efficiency indices of the other methods in Fig. 1 in the plane),( 01 uu  for 3,5,11=k  respectively, 

for n=1, we present the boundary 1=1,3G  between 1M  and 3M  by dotted line 1S , the boundary 

1=1,4G  between 1M  and 4M  by dashed line 2S , the boundary 1=1,7G  between 1M  and 7M  by 

dot-dashed line 3S , the boundary 1=1,8G  between 1M  and 8M  by solid line 4S . The point is  

that we can’t compare the efficiency indices of the iterative methods 21  &   and 61  &   since 

the condition 00)(log0)(log  ijji aa   is violated here. Line 1S  divides the maximum 

efficiency region between , & 31   being that 31 > EE  is above 1S . Similarly, line 2S  divides the 

maximum efficiency region between , & 41   being that 41 > EE  is above 2S , line 3S  divides 

maximum efficiency region between , & 71   being that 71 > EE  is above 3S , line 4S  divides 

maximum efficiency region between , & 81   being that 81 > EE  is above 4S . 

 

 
Figure. 1. (Boundary Lines in (u1, u0)- plane for k=3,5,11 respectively, for n=1) 

 
 
The above results concerning efficiency indices are summarized in the following theorem: 
 
 Theorem 5.1.  
 
For all 3k , we have  
 

(a)  31 > MM  for 5,>0 ku   

 

(b)  41 > MM  for ,
)

3
4

(log

(3)log8)(3
2

3

5
2

3

2
> 1

2
0




k
kukku   

(c)  71 > MM  for ,
3

11
>

2

0

k
u   

 
(d)  81 > MM  for 2.> 10 kuu   
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On similar lines, we can also compare the efficiency index of the proposed method 
Error! Reference  source  not  found. )( 2MJM  )( 2  with that of Newton’s method )( 3  )(NM , the 

third order method by Homeier (HM) )( 4  Homeier (2004) and harmonic mean Newton’s 

method )(HMNM  )( 5  Grau-S a nchez et al. (2011), the fourth-order methods by Sharma et al. 

(WNM) )( 6  Sharma et al. (2013), Cordero et al. (CM) )( 7 Cordero et al. (2009) and Darvishi 

(DM) )( 8 Darvishi and Barati (2007). 

 
6.  Numerical Experiments 
 
Now, we present some numerical examples to illustrate the comparison of the performance of the 
newly developed methods namely, method Error!  Reference  source  not  found. ( 1MJM ) , method 

Error!  Reference  source  not  found. ( 2MJM ) and method (21) ( 3MJM ) with that of classical 

Newton’s method )(NM , third order method by Homeier (HM) 
Error! Reference  source  not  found. and the fourth-order methods by Cordero et al. (CM) Cordero 
et al.  (2009), Darvishi (DM) Darvishi and Barati (2007), Sharma et al. (WNM) Sharma et al. 
(2013) and Jarratt’s method (JM) Nedzhibov (2008) respectively for solving systems of 
nonlinear equations given in Table 2. Computations have been performed using MATLAB  
version )20077.5( bR  in double precision arithmetic. We use 1510=   as a tolerance error. 
Following stopping criteria are taken for computer programs:  
 

(i) ||<|| )(1)( nn xx  ,         (ii) .||<)(|| )( nxF  
 
We analyze the number of iterations needed to converge to the required solution. 
 
Consider the following systems of nonlinear equations 
    
Example 6.1. 
      

2
1 1 2
2 2
1 2

2 0.5 = 0,

4 4 = 0.

x x x

x x

  


  
 

 

Solution is .5419294)0.31121856 26367066,(1.9006767 T   
 
Example 6.2. 
 

1 2 2

1 2 2

exp( ) cos( ) = 0,

3 sin( ) = 0.

x x x

x x x

  
  

 

 
Solution is .0) (0, T
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Example 6.3. 
 

2 2
1 2 1

2
1 1 2 1

3log( ) = 0,

2 5 1 = 0.

x x x

x x x x

 


   
 

 

Solution is .5187415)1.60355655 03329892,(1.3192058 T  
 
Example 6.4. 
 

1 1 2

1 2 1 2

exp( ) 1 = 0,

sin( ) 1 = 0.

x x x

x x x x

  
   

 

 
Solution is .1) (0, T

 
 
Example 6.5. 
 

2 2
1 2
3 2
1 2

1 = 0,

1 = 0.

x x

x x

 


 
 

 

Solution is .2232063)0.72728698 03393025,(1.2365057 T  
 
Example 6.6. 
 

2 2 3
1 2 3

1 2 3
2

1 2 3

= 9,

= 1,

= 0.

x x x

x x x

x x x

 


  

 

 
Solution is .2825272)1.58370761 4072938,0.28388497 28847784,(2.2242448 T  

 
Example 6.7. 
 

2 1

1
3

2

2
1 3

cos( ) sin( ) = 0,

1
= 0,

exp( ) = 0.

x

x x

x
x

x x



 

 

 

 

Solution is .3906999)1.57583414 2274852,0.66122683 94520044,(0.9095694 T  
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Table 2. (Total number of iterations) 
Example 

no. 
Initial guess NM HM CM DM WNM JM 

1MJM  2MJM  3MJM  

 
6.1 

(1.7, 0) 
(3.5, 2.5 ) 

(3, 2) 

4 
5 
5 

4 
5 
5 

2 
3 
3 

2 
2 
2 

2 
2 
2 

2 
2 
2 

2 
2 
2 

2 
2 
2 

2 
2 
2 

6.2 (0.3, 0.5) 
(1.7, 2.2) 

4 
5 

4 
4 

2 
3 

2 
2 

2 
2 

2 
2 

2 
2 

1 
2 

2 
2 

 
6.3 

(0.91, -2) 
(1.7, -2.2) 
(1.8, -2.1) 

4 
4 
4 

4 
4 
4 

2 
2 
2 

2 
2 
2 

2 
2 
2 

2 
2 
2 

2 
2 
2 

2 
1 
1 

2 
2 
2 

 
6.4 

(0.7, 0.9) 
(-0.5, 0.5) 
(-0.1, 2) 

4 
4 
3 

4 
4 
3 

2 
2 
1 

2 
2 
1 

2 
2 
1 

2 
2 
1 

2 
2 
1 

2 
1 
1 

2 
2 
2 

6.5 (1.5, 1) 
(1.3, 0.4) 

4 
3 

4 
3 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
1 

2 
2 

6.6 (2, 0.6, 1.5) 
(3, 0.05, 2) 

3 
4 

3 
4 

2 
2 

2 
2 

2 
2 

1 
2 

2 
2 

1 
2 

2 
2 

6.7 (1, 0.5, 5) 
(1, 1, 2) 

4 
5 

4 
4 

2 
5 

2 
4 

2 
4 

2 
2 

2 
4 

2 
2 

2 
2 

 
7.  Conclusions 
 
Evidently, we have proposed and analyzed a wide general class of Jarratt’s method for solving 
nonlinear equations in the multivariate case. This class is a generalization over the family of 
Jarratt’s method proposed by Behl et al. (2013) and depends on two disposable parameters. 
These methods have a fourth-order convergence and do not require the second-order Fréchet 
derivative. In terms of computational cost, all these methods require evaluations of one function 
and two first-order Fréchet derivatives. Finally, the computational results verify that the family 
of methods are efficient and exhibit equal or better performance, compared to other well-known 
methods available in literature. 
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