666 research outputs found

    Bounds on List Decoding of Rank-Metric Codes

    Full text link
    So far, there is no polynomial-time list decoding algorithm (beyond half the minimum distance) for Gabidulin codes. These codes can be seen as the rank-metric equivalent of Reed--Solomon codes. In this paper, we provide bounds on the list size of rank-metric codes in order to understand whether polynomial-time list decoding is possible or whether it works only with exponential time complexity. Three bounds on the list size are proven. The first one is a lower exponential bound for Gabidulin codes and shows that for these codes no polynomial-time list decoding beyond the Johnson radius exists. Second, an exponential upper bound is derived, which holds for any rank-metric code of length nn and minimum rank distance dd. The third bound proves that there exists a rank-metric code over \Fqm of length n≤mn \leq m such that the list size is exponential in the length for any radius greater than half the minimum rank distance. This implies that there cannot exist a polynomial upper bound depending only on nn and dd similar to the Johnson bound in Hamming metric. All three rank-metric bounds reveal significant differences to bounds for codes in Hamming metric.Comment: 10 pages, 2 figures, submitted to IEEE Transactions on Information Theory, short version presented at ISIT 201

    Interpolation-Based Decoding of Folded Variants of Linearized and Skew Reed-Solomon Codes

    Get PDF
    The sum-rank metric is a hybrid between the Hamming metric and the rank metric and suitable for error correction in multishot network coding and distributed storage as well as for the design of quantum-resistant cryptosystems. In this work, we consider the construction and decoding of folded linearized Reed-Solomon (FLRS) codes, which are shown to be maximum sum-rank distance (MSRD) for appropriate parameter choices. We derive an efficient interpolation-based decoding algorithm for FLRS codes that can be used as a list decoder or as a probabilistic unique decoder. The proposed decoding scheme can correct sum-rank errors beyond the unique decoding radius with a computational complexity that is quadratic in the length of the unfolded code. We show how the error-correction capability can be optimized for high-rate codes by an alternative choice of interpolation points. We derive a heuristic upper bound on the decoding failure probability of the probabilistic unique decoder and verify its tightness by Monte Carlo simulations. Further, we study the construction and decoding of folded skew Reed-Solomon codes in the skew metric. Up to our knowledge, FLRS codes are the first MSRD codes with different block sizes that come along with an efficient decoding algorithm.Comment: 32 pages, 3 figures, accepted at Designs, Codes and Cryptograph

    Fast Decoding of Interleaved Linearized Reed-Solomon Codes and Variants

    Full text link
    We construct s-interleaved linearized Reed-Solomon (ILRS) codes and variants and propose efficient decoding schemes that can correct errors beyond the unique decoding radius in the sum-rank, sum-subspace and skew metric. The proposed interpolation-based scheme for ILRS codes can be used as a list decoder or as a probabilistic unique decoder that corrects errors of sum-rank up to t≤ss+1(n−k)t\leq\frac{s}{s+1}(n-k), where s is the interleaving order, n the length and k the dimension of the code. Upper bounds on the list size and the decoding failure probability are given where the latter is based on a novel Loidreau-Overbeck-like decoder for ILRS codes. The results are extended to decoding of lifted interleaved linearized Reed-Solomon (LILRS) codes in the sum-subspace metric and interleaved skew Reed-Solomon (ISRS) codes in the skew metric. We generalize fast minimal approximant basis interpolation techniques to obtain efficient decoding schemes for ILRS codes (and variants) with subquadratic complexity in the code length. Up to our knowledge, the presented decoding schemes are the first being able to correct errors beyond the unique decoding region in the sum-rank, sum-subspace and skew metric. The results for the proposed decoding schemes are validated via Monte Carlo simulations.Comment: submitted to IEEE Transactions on Information Theory, 57 pages, 10 figure

    Upper Bounds on the Number of Errors Corrected by the Koetter–Vardy Algorithm

    Get PDF

    Decoding and constructions of codes in rank and Hamming metric

    Get PDF
    As coding theory plays an important role in data transmission, decoding algorithms for new families of error correction codes are of great interest. This dissertation is dedicated to the decoding algorithms for new families of maximum rank distance (MRD) codes including additive generalized twisted Gabidulin (AGTG) codes and Trombetti-Zhou (TZ) codes, decoding algorithm for Gabidulin codes beyond half the minimum distance and also encoding and decoding algorithms for some new optimal rank metric codes with restrictions. We propose an interpolation-based decoding algorithm to decode AGTG codes where the decoding problem is reduced to the problem of solving a projective polynomial equation of the form q(x) = xqu+1 +bx+a = 0 for a,b ∈ Fqm. We investigate the zeros of q(x) when gcd(u,m)=1 and proposed a deterministic algorithm to solve a linearized polynomial equation which has a close connection to the zeros of q(x). An efficient polynomial-time decoding algorithm is proposed for TZ codes. The interpolation-based decoding approach transforms the decoding problem of TZ codes to the problem of solving a quadratic polynomial equation. Two new communication models are defined and using our models we manage to decode Gabidulin codes beyond half the minimum distance by one unit. Our models also allow us to improve the complexity for decoding GTG and AGTG codes. Besides working on MRD codes, we also work on restricted optimal rank metric codes including symmetric, alternating and Hermitian rank metric codes. Both encoding and decoding algorithms for these optimal families are proposed. In all the decoding algorithms presented in this thesis, the properties of Dickson matrix and the BM algorithm play crucial roles. We also touch two problems in Hamming metric. For the first problem, some cryptographic properties of Welch permutation polynomial are investigated and we use these properties to determine the weight distribution of a binary linear codes with few weights. For the second one, we introduce two new subfamilies for maximum weight spectrum codes with respect to their weight distribution and then we investigate their properties.Doktorgradsavhandlin

    Integer sequences that are generalized weights of a linear code

    Full text link
    Which integer sequences are sequences of generalized weights of a linear code? In this paper, we answer this question for linear block codes, rank-metric codes, and more generally for sum-rank metric codes. We do so under an existence assumption for MDS and MSRD codes. We also prove that the same integer sequences appear as sequences of greedy weights of linear block codes, rank-metric codes, and sum-rank metric codes. Finally, we characterize the integer sequences which appear as sequences of relative generalized weights (respectively, relative greedy weights) of linear block codes.Comment: 19 page
    • …
    corecore