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exists v € B1(y) C Bz(x) with v # u and E(v) odd. Now, since
E(B:(x)) is odd, there must exist w € Bs(x) with F(w) odd, w #
u and w # v. Since E(u), E(v) and E(w) are odd, nonnegative
integers adding to at most 3, at least two of them must equal one. [J

‘We now may complete the proof of Theorem 1. As stated in [2] or
[1] we have B C (J, ¢, B(x). Thus by (4) we get
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which by (2), Lemma 2, and Lemma 3 imply
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Moreover, E := F(F") =
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By Lemma 1 a), we have
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Substituting (5), (3) and (6) on the right-hand side yields
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By Lemma 4 for n
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This inserted in (7) yields
82"

) )

and Theorem 1 follows by E = (n + 1)|C| — 2".
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Upper Bounds on the Number of Errors Corrected
by the Koetter—Vardy Algorithm

Jorn Justesen, Member, IEEE

Abstract—By introducing a few simplifying assumptions we derive a
simple condition for successful decoding using the Koetter—Vardy algo-
rithm for soft-decision decoding of Reed-Solomon codes. We show that
the algorithm has a significant advantage over hard decision decoding
when the code rate is low, when two or more sets of received symbols have
substantially different reliabilities, or when the number of alternative
transmitted symbols is very small.

Index Terms—Reed-Solomon (RS) codes, soft-decision decoding.

1. INTRODUCTION

In [1] Koetter and Vardy studied an extension of the Sudan—Gu-
ruswami algorithm [2] for decoding Reed—Solomon (RS) codes. The
interpolating polynomial is required to have certain multiplicities of
zeros for several likely symbols in each position. In particular, they an-
alyzed the case where the multiplicities are chosen to be approximately
proportional to the conditional probabilities of the symbol values. In
general, it is difficult to interpret the condition for successful decoding.
In Section III, we derive a much simpler condition for decoding by
considering a typical distribution of received symbols and errors. How-
ever, in order to describe the decoding problem in this way we have to
assume that for each symbol in the code alphabet there is a received
symbol that can be considered ‘correct’, and that the errors can be di-
vided into in a relatively small set of equivalence classes. In Section IV,
we obtain bounds on the performance of the Koetter—Vardy (KV) algo-
rithm using these assumptions. In Section V, we consider a few special
cases, which lead to very simple bounds. Many channels of interest
can be reduced to one of these special cases or to a combination of
such cases. Finally, we consider decoding of concatenated codes as a
particularly important application of the KV algorithm. We show that
the algorithm has a significant advantage over hard-decision decoding
when the code rate is low, when two or more sets of received symbols
have substantially different reliabilities, or when the correct symbol is
on a small list of possible transmitted symbols. However, the perfor-
mance is far from maximum likelihood.
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II. THE CONDITION FOR SUCCESSFUL LIST DECODING

We consider decoding of an (N, K') RS code over the field F(g). The
list decoding algorithm developed in [2] is based on a two-variable in-
terpolating polynomial with the received symbol values and positions
as roots of a given multiplicity. In the KV algorithm, the concept is
extended by allowing a list of input symbols corresponding to roots of
variable multiplicity. When the sum of the multiplicities for each posi-
tion is upper bounded by a constant, the result of the KV algorithm is a
list which is polynomial in /V. Decoding is considered to be successful
if the transmitted codeword is on the list, and thus all codewords satis-
fying the condition for successful decoding are found on the list.

In [1], the input to the decoder is a ¢ by N matrix, 1I, called the
reliability matrix, which has entries

mi; = Plaily;]

where «; is a symbol from the code alphabet, A, and y; is the received
symbol, which may belong to a bigger alphabet, B. The multiplicities
corresponding to the input lists are entries in the multiplicity matrix,
a ¢ by N matrix, M = [m;;]. As discussed in [1], the entries in M
should be chosen to approximate II after a suitable normalization.

If the transmitted word is ¢ = [¢(j)], where we let ¢(j) = ¢ indicate
that the transmitted symbol is a;, the condition for successful decoding
is

Do Me(i)

>VE -1
\/Z” mi(mij+ 1)

(O]

Koetter and Vardy refer to the numerator of (1) as the score, and
the denominator as the cost. They argue that a suitable choice of the
multiplicities can be obtained as a matrix of integers which are approx-
imately proportional to the conditional probabilities for the ¢ symbols
given the received value. We shall simplify this condition by assuming
that the integer entries of M are large enough to allow an accurate
approximation to these probabilities, and also neglect smaller terms.
Thus, if the sum of the multiplicities is the same in all positions, we
can normalize them to obtain a set of weights, w,;, and the condition
can be expressed in terms of these weights as

i We(i), s VK
2

V2 W

In general, the set of weights can be different for each position, and
it is difficult to describe the set of received vectors that satisfy (2).

We are interested in the situation where there are few different
weights, and the conditional probabilities may be approximated to
reduce this number. In particular we assign a weight of () to all symbols
with low conditional probability, and for this reason the normalized
sum of the multiplicities may be less than one. The use of such
approximated values is justified by the need to keep the sum of the
multiplicities limited, but also by the observation that the performance
of the algorithm is rather insensitive to small changes in the weights.

(@)

III. TYPICAL ERROR PATTERNS AND SYMMETRIC ALPHABETS

In this correspondence, we analyze the situation where the received
symbols and the errors can be placed in a small number of equivalence
classes, and each type of error is expected to occur several times in a
codeword.

On the average each symbol appears NP[b;] times in a re-
ceived block, and of these cases the transmitted symbols was a;
in NP[b;]P[a;|b;] instances. Following a standard terminology in

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 8, AUGUST 2007

information theory we refer to such an error pattern as typical. With
this assumption (2) becomes

Zi‘j .ZVP[Dj]U)%j
Zi,j NP[Z’J’]“’?]

> VK 3)

or

> Ppjlwi; > K/N )

We use this simplified condition for decoding as a basis for deriving
bounds on the performance of the KV algorithm. However, since each
symbol on the average appears less than once in a received vector, we
have to make some assumptions about the alphabets and the channel.

In the simplest case, the received alphabet equals the code alphabet
and all transmitted symbols are equivalent in the sense that they have
the same set of distances to other symbols. A set of orthogonal sig-
nals on a Gaussian channel (a ¢-ary symmetric channel) would satisfy
this assumption, but in this case the improvement of the KV algorithm
disappears with the approximations introduced above. However, other
modulation formats like MPSK could be of interest, since transitions to
neighboring symbols are much more likely than other types of errors.
For modulation formats like QAM, certain symbols have fewer neigh-
bors, but for large alphabets it may be an acceptable approximation to
consider only the more common symbols and transitions to the nearest
symbols in each direction. In this case the denominator in (2) is a con-
stant, D, and we can collect the terms in the numerator that correspond
to errors of the same magnitude. Let r; indicate the number of errors of
type ¢ in a received block and w; the corresponding weight. The con-
dition (2) then becomes

Zl',‘wi > D\/E (5)

z

If we move the term corresponding to correctly received symbol to the
right side, this relation indicates that a received vector is decoded when-
ever a linear function of the number of errors of various types does not
exceed a given limit. Thus (5) is a generalization of the square-root
bound in [2] for the fraction of errors, 7, corrected by the Sudan—-Gu-
ruswami algorithm

r<1-+/K/N

Example 1: QAM can serve as an example of a channel with a large
alphabet, but only a few types of likely errors. The alphabet is assumed
so large that we can neglect the influence of extreme symbols with
fewer neighbors, and the receiver uses hard decisions. If p is the prob-
ability of error in one dimension, the probabilities of the eight closest
neighbors are

p— Qp2 and p2
We neglect other errors. From (5) we get
(N =71 —r2)(L—dp+4p°) + ri(p — 2p%) + rop?
> /KN (1 - 8p+ 28p? — 48p3 + 36p*).

For a typical error pattern we get from (4)
1 —8p+28p” — 48p® + 36p" > K/N
whereas the standard decoding algorithm gives
1-8p+8° > K/N

Thus for p=1/16 the rate is improved from 17/32 to 39/64.
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In soft-decision decoding, the receiver alphabet is usually larger than
the transmitted alphabet, and thus there are always several types of
received symbols. Before proceeding with the more general case, we
illustrate the concepts by a simple example:

Example 2: Consider a symmetric channel with the standard con-
cept of errors and erasures. If a symbol is erased, all weights are chosen
to be zero. In the remaining positions, the received symbol is assigned
a weight of 1 — p, where p is the error probability on the channel, all
other symbols have weight zero. Let the number of erasures in a block
be e with average value E'. For a block with ¢ errors, (2) becomes

(N—e—1)(1-p) i
V(N —e)(1l—-p)?

For a typical error pattern, we have from (4)

(1—E/N)Y1—p)? > K/N

and we choose the rate to satisfy this condition. We can then find an
upper bound on ¢ as a function of e

t<N—-e—(1=p)\/(N—-—E)N—-e¢)

But we can get a more convenient linear bound by taking the tangent
at the point corresponding to typical error patterns

t+e(l+p)/2< Np+E/2—Ep/2
For the same rate, standard errors and erasures correction would give
t4+e¢/2< Np+E/2—Ep—(N—E)p°/2

For E/N = 1/4 and p = 1/8 the two relations become

t —|—ge< E
16 64
109

t 2
+e/2< 512

indicating that more errors are corrected by the KV algorithm, and the
number of errors increases a little faster when there are fewer erasures,
as one would expect from the square-root bound.

IV. BOUNDS ON RATE AND CORRECTABLE ERRORS

The bound (1) refers to the classical channel model where the tran-
sition probabilities are given, the rate of the code is bounded, and the
reliability is improved by selecting a somewhat lower rate. However,
more realistic channels are described by one or more parameters, such
as the S/N ratio, the code is designed for a set of worst-case parameters,
and it is assumed that the code will have an improved reliability on a
cleaner channel. In this section we derive a bound on the performance
of the KV algorithm by converting (4) to a bound on the number of er-
rors that can be corrected. Some additional assumptions are needed for
such a bound to apply. The advantage of this approach is that the per-
formance can be described in more intuitive terms and is more easily
evaluated.

First we need a concept of a correctly received symbol. For each
transmitted symbol we assume that there is a preferred received symbol
a; € B, such that when b; = ! is received, P[a;|b;] is the maximum
weight. If a different symbol is received, we refer to that event as an
error.

In evaluating the condition (2) it is sufficient to know the weight
of the symbol that was transmitted, the set of weights associated with
each received symbol, and the number of times each value occurs in
the column of M . Thus we may divide the alphabet B into equivalence
classes by placing two symbols in the same class whenever the weights,
sorted in decreasing order, is the same.
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Definition: An error of type (¢,7) is the event that the received
symbol is of type j and the transmitted symbol appears in position ¢
on the sorted list of weights. If there are several symbols of the same
weight on the list, we assume that the transmitted symbol corresponds
to the first of these weights.

Let r; be the number of received symbols in a block that belong to
class j. We can then collect the terms in (2) to obtain the square of the

denominator
2
Z ryw; 7
4J
Let t;;,¢ > 0, be the number of errors of type (i, j), while to; is the
number of correctly received symbols of type j. Note that some re-

ceived symbols may never be correct, and there is no error or weight
of type (0, 7). The number of received symbols of each type is

r; = E t;
i
and we can write the numerator as

E ti w;;
i

For the worst-case channel under consideration, let 7; and # ; indicate
the expected values of the number of received symbols and errors of
each type. We can write (4) as

12 ! -
E riw;; = E t,,w,] > K
%]

(%]
and we assume that the rate of the code is chosen close to this limit.

Lemma 1: If (2) is satisfied, the block is also correctly decoded if
the r; are unchanged, but the number of errors of type (¢,7), ¢ > 0, is
less than or equal to #;;

Proof: The denominator is independent of which symbols were
actually transmitted, and the numerator is at least as large as in (2).

In general, if a received vector can be decoded, so can any vector
where the received symbol belongs to the same class, but the trans-
mitted symbol is changed to the one on top of the list of weights for
that class. However, to get a satisfying bound we need to assume that
when (2) is satisfied, it will always remain satisfied if a received symbol
is replaced by the corresponding “correct” symbol.

For simplicity, assume that all correct symbols are of the same type.
Rewriting (2), we get

(]V - Z 7','2']')
2,7>0

To replace this nonlinear expression by a linear bound, we take partial
derivatives, —d;;(r1,72,- - ), with respect to the ¢;;

—1/2
—wor + wi; — % K <Z r,,ulizj) <— Z wh + Z'w?])

]

wo1 + g tijwis

i,j>0

- VK Zr'jwfj >0
vy

where again the last term disappears when the received symbol is of
the same type as the correct symbols. In that case, the expression is
negative since the weight of the correct symbol is larger than other
weights. However, for a general set of weights there is not necessarily
a best symbol since the derivative can change sign.

Example 3: Consider a particular pair of received symbols and a
vector which contains several instances of each. If the list of condi-
tional probabilities is (2/3,1/3,0,0, - - -) for the ‘correct” symbol, and
(1-+/2/3.0,0, - - -) for the other symbol, the derivative is zero for the
expected distribution of received symbols.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 11, 2009 at 07:17 from |IEEE Xplore. Restrictions apply.
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The assumption that the right side of (2) is monotone when one type
of symbol is replaced by the “correct” symbol is usually satisfied for
channels of interest. The counter examples appear to require that there
are two competing symbols, both of which have rather low reliability,
and in such cases the function is extremely flat.

Let the set of numbers r; be chosen such that

Z rhwi; > K/N

(%)

For simplicity let all “correct” symbols belong to the same class, 7 = 1
We then have the following condition for correct decoding of the
received block:

Theorem 1: If the number of received symbols of each type is 7; <
7% for j > 1, and the number of errors of each type is at most

7 Pla;|b;]

for b; # a’, list decoding by the KV algorithm succeeds.

Proof: Under these assumptions, the left side of (2) is lower
bounded by the fraction where 7; is replaced by ;. We can then apply
Lemma 1.

Under the same assumptions, we have the following theorem.

Theorem 2: For a given channel, (4) is an upper bound on the rate
of a code that can be successfully decoded by the KV algorithm.

For long codes the bound is tight, since the distribution of errors
is close to the typical distribution. However, for specific channels we
might obtain a tighter bound as

D dij(riry -ty < D

i,j>0

replacing the nonlinear function by a tangent plane in the point cor-
responding to the typical distribution of received symbols. Example
2 was a simple case of this approach. For such a linearized bound to
be a strict lower bound on the number of errors corrected, the second
derivatives have to be nonpositive. This is true for the second deriva-
tives with respect to any one of the variables, but as discussed in the
case of the first derivative, there could be unusual channels where some
mixed derivatives are positive.
We proceed to some cases, which provide more qualitative insight.

V. SOME IMPORTANT SPECIAL CASES

If » symbols are erased, we simply assign a weight of 0 to all of them.
Clearly one value is correct, but for a large alphabet 1/¢ is too small to
make a difference. Thus, from (4), we find

N—-—r>K o r<N-K
which just serves as a check on this approach. If a list of n possibilities
is given, n < ¢, and each is assigned a probability of 1/n, we find
n—1

< N-K.

Ner+ZSK or » ()
n

n

We may interpret this result as saying that a list of two values counts
as half of an erasure, a list of three as 2/3, etc. Thus, very small lists
offer an advantage compared to erasures, whereas longer lists are of
negligible value. From an information theory point of view we would
expect the cost of a binary list to be one bit, but the algorithm is far
from this limit. The result can be easily extended to include unequal
probabilities for the alternatives.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 8, AUGUST 2007

Consider the case where for a set of received symbols the probability
of error is known, but other values each have probabilities that are too
small to give a significant contribution. If all symbols have error prob-
ability p, we get the square-root bound for the Sudan-Guruswami algo-
rithm. If several sets of symbols have different error probabilities, we
get from (4)

S oril=p)’ > K

7

O]

Thus if we find the rates on the square root bound for each of the error
probabilities, the rate for a code correcting a mixture of the probabilities
is the average of the corresponding rates. Clearly, this means that more
errors are corrected than in the case where the average error probability
applies to all positions. However, there is only a significant difference
if the higher error probabilities are large.

Example 4: If r symbols have a low reliability while the rest are
more reliable we have

(1—r/N(1—p)+r(1—p2)°/N > K/N

Let p1 = 1/4, and let po = 1/2. With » = 1/3 as the design point of
the code, we find the rate as 11/21. Thus there are three types of er-
rors, t reliable positions in error, u unreliable positions with the correct
symbol, and v unreliable positions in error. Taking partial derivatives
in the design point, we get the linearized bound on the number of cor-
rectable errors

t4u/8 4 19v/24 < 23/72

It may be readily checked that this approximation is actually a lower
bound.

Finally we consider the case where errors occur with probability p,
but the correct symbol can always be assumed to belong to a set of n
equally likely values. This adds a term to the bound

(1—p)* +n(p/n)* > K/N ®)
Clearly this bound approaches the square-root bound for increasing 7.
Expanding it in negative powers of n, we get the first-order approxi-
mation
p<1—-+/K/N+(1-K/N)’/(2u\/K/N).
Thus for K/N = 1/4 we get p < 1 4 1/(4n). Since there is only one
type of received symbol, any number of errors less than p/N is corrected.

In [3] Jiang and Narayanan considered RS codes over a field of size
2™ used on a binary erasure or binary symmetric channel. In the first
case, there is usually a single erasure in a symbol, and the result can be
obtained from (6) with n = 2. If a symbol contains a single bit error,

there are m possible correct symbols, and we can again find the number
of correctable errors from (8).

VI. CONCATENATED CODES

Concatenated codes with binary inner codes represent an important
application where information about the conditional probabilities of the
various symbols is available to the RS decoder. We assume throughout
that the underlying binary channel is the binary symmetric channel and
that the parameters of the inner code are (n, k, d)

As a first case consider the single parity check code (n,n — 1,2).
When a symbol has odd parity, it is considered to be an erasure with

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 11, 2009 at 07:17 from |IEEE Xplore. Restrictions apply.
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n possible values. If the parity check is satisfied, the error probability
is closely approximated by the probability of two bit errors, and there
are n(n — 1/2)equally likely error values. The improvement when the
KV algorithm is used comes almost entirely from the possibility of
correcting n/(n — 1) times as many erasures.

If the inner code is a (n, k, 3) Hamming code, an error-free symbol
has a very low probability of error. Symbols with a corrected bit, on
the other hand, are much more likely to be in error. Even though the
number of possible error values could be counted, the improvement in
the number of errors corrected is negligible. Thus the performance is
calculated from (7).

For an inner code of lower rate, codewords with few bit errors have
high reliability. When the number of errors approaches d/2, it is nec-
essary to distinguish between cases where a second codeword is fairly
close and the more common case that there is only a single likely trans-
mitted symbol. When the number of errors exceeds d/2, some vectors
are close to a codeword different from the one transmitted, while other
vectors are far from all codewords.

Example 5: Consider the projective geometry code (21,12, 6) for
which the necessary details can readily be worked out. Let the average
number of bit errors in an inner codeword be 2. It follows from the
binomial distribution that the probability of 0 or 1 error in a block is
0.39, and in this case the decision has a high reliability. Two errors are
corrected, but the probability of decoding error (if four errors actually
occur) is (0.12. The 280 weight 3 error patterns are uniquely decoded,
and for simplicity, we merge this set with the double errors. The re-
maining 1120 weight 3 error patterns are in 380 cosets which gives a
list of four possibilities. The remaining errors of weight 4 are treated as
erasures, and in our estimate we neglect the contributions from weight
5 errors. In this way, we can apply (4) to get

K/N < 0.39 +0.32(1 — 0.12)* + 0.16/4 = 0.68.

This can be compared to standard errors-and-erasures decoding of the
RS code where the bound on the rate is (0.63. There is a gain from
the small list size of weight 3 errors, and a small gain associated with
distinguishing the different reliabilities.

VII. CONCLUSION

The aim of this correspondence has been to give a more accessible
version of the bound on list decoding. Using the simpler expressions it
is possible to characterize the errors patterns that are typically decoded
by the Koetter—Vardy algorithm.

The cases discussed cover most of the situations that are important
for applications. As demonstrated in specific cases, the improvements
are significant only for fairly low rates, sets of symbols with large error
probability, or a small set of alternatives with high probabilities.

In all cases the performance is still far from maximum likelihood
decoding.
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Quasi-Cyclic Low-Density Parity-Check Codes With Girth
Larger Than 12

Sunghwan Kim, Jong-Seon No, Member, IEEE,
Habong Chung, Member, IEEE, and Dong-Joon Shin, Member, IEEE

Abstract—A quasi--cyclic (QC) low-density parity-check (LDPC) code
can be viewed as the protograph code with circulant permutation matrices
(or circulants). In this correspondence, we find all the subgraph patterns of
protographs of QC LDPC codes having inevitable cycles of length 2:.: =
6,7,8,9,10, i.e., the cycles that always exist regardless of the shift values
of circulants. It is also derived that if the girth of the protograph is 2g, g >
2, its protograph code cannot have the inevitable cycles of length smaller
than 6¢g. Based on these subgraph patterns, we propose new combinatorial
construction methods of the protographs, whose protograph codes can have
girth larger than or equal to 14 or 18. We also propose a couple of shift
value assigning rules for circulants of a QC LDPC code guaranteeing the
girth 14.

Index Terms—Girth, low-density parity-check (LDPC) codes, proto-
graph, protograph codes, quasi--cyclic (QC) codes.

I. INTRODUCTION

Since the low-density parity-check (LDPC) code exhibits the ca-
pacity-approaching performance for many channels such as binary era-
sure channel (BEC), binary symmetric channel (BSC), and additive
white Gaussian noise (AWGN) channel, it has been one of the major
research topics for many coding theorists at least for the last decade. It
is known that the message-passing decoder of LDPC codes is relatively
easy to implement due to the sparseness of the parity-check matrix, but
the encoding complexity of LDPC codes is quite high. Thus, many re-
searchers have been working on designing efficiently encodable LDPC
codes.

Although the random construction shows good asymptotic perfor-
mance, its randomness hinders the ease of analysis and implementa-
tion. In an effort toward the algebraic constructions of LDPC codes,
a quasi--cyclic (QC) LDPC code is getting more attention due to its
linear-time encodability and small size of required memory.

A (J, L) regular LDPC code is defined in terms of a parity-check
matrix H in which each column contains .J 1’s and each row contains
L 1’s. Originally, a QC LDPC code is defined as a (.J, L) regular LDPC
code of length Lp whose parity-check matrix H is a .J x L array of
p X p circulant permutation matrices (shortly, circulants) [1]. Fossorier
derived the necessary and sufficient condition for the existence of cy-
cles of given length in QC LDPC codes. Fossorier [1] and Tanner [2]
also showed that these QC LDPC codes have a girth at most 12.
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