1,122 research outputs found

    Verification of Smoke Detection in Video Sequences Based on Spatio-temporal Local Binary Patterns

    Get PDF
    AbstractThe early smoke detection in outdoor scenes using video sequences is one of the crucial tasks of modern surveillance systems. Real scenes may include objects that are similar to smoke with dynamic behavior due to low resolution cameras, blurring, or weather conditions. Therefore, verification of smoke detection is a necessary stage in such systems. Verification confirms the true smoke regions, when the regions similar to smoke are already detected in a video sequence. The contributions are two-fold. First, many types of Local Binary Patterns (LBPs) in 2D and 3D variants were investigated during experiments according to changing properties of smoke during fire gain. Second, map of brightness differences, edge map, and Laplacian map were studied in Spatio-Temporal LBP (STLBP) specification. The descriptors are based on histograms, and a classification into three classes such as dense smoke, transparent smoke, and non-smoke was implemented using Kullback-Leibler divergence. The recognition results achieved 96–99% and 86–94% of accuracy for dense smoke in dependence of various types of LPBs and shooting artifacts including noise

    Video Object Segmentation and Tracking Using GMM and GMM-RBF Method for Surveillance System

    Get PDF
    Now a day’s computer vision has been applied to every organisation. Such that the all in security systems, computers are widely used regarding to this the security purpose every organisation are used different monitoring system i.e. surveillance system, suspicious monitoring system etc. Object tracking and explanation is the definitive purpose of many video processing systems. The two critical, low-level computer vision tasks that have been undertaken in this work are: Foreground-Background Segmentation and Object Tracking. In surveillance system cameras capture the footage for tracking suspicious movement in organisation, in this condition the videos prepare with the help of surveillance cameras the most difficult task is to tracking the object from the video and make the another image so that image should be vague to identification. Generally the surveillance system work We use a stochastic model of the background and also adapt the model through time. This adaptive nature is essential for long-term surveillance applications, particularly when the background composition or intensity distribution changes with time. In such cases, concept of a static reference background would no longer make sense. DOI: 10.17762/ijritcc2321-8169.15062

    Convolutional Neural Network on Three Orthogonal Planes for Dynamic Texture Classification

    Get PDF
    Dynamic Textures (DTs) are sequences of images of moving scenes that exhibit certain stationarity properties in time such as smoke, vegetation and fire. The analysis of DT is important for recognition, segmentation, synthesis or retrieval for a range of applications including surveillance, medical imaging and remote sensing. Deep learning methods have shown impressive results and are now the new state of the art for a wide range of computer vision tasks including image and video recognition and segmentation. In particular, Convolutional Neural Networks (CNNs) have recently proven to be well suited for texture analysis with a design similar to a filter bank approach. In this paper, we develop a new approach to DT analysis based on a CNN method applied on three orthogonal planes x y , xt and y t . We train CNNs on spatial frames and temporal slices extracted from the DT sequences and combine their outputs to obtain a competitive DT classifier. Our results on a wide range of commonly used DT classification benchmark datasets prove the robustness of our approach. Significant improvement of the state of the art is shown on the larger datasets.Comment: 19 pages, 10 figure

    Video-based Smoke Detection Algorithms: A Chronological Survey

    Get PDF
    Over the past decade, several vision-based algorithms proposed in literature have resulted into development of a large number of techniques for detection of smoke and fire from video images. Video-based smoke detection approaches are becoming practical alternatives to the conventional fire detection methods due to their numerous advantages such as early fire detection, fast response, non-contact, absence of spatial limits, ability to provide live video that conveys fire progress information, and capability to provide forensic evidence for fire investigations. This paper provides a chronological survey of different video-based smoke detection methods that are available in literatures from 1998 to 2014.Though the paper is not aimed at performing comparative analysis of the surveyed methods, perceived strengths and weakness of the different methods are identified as this will be useful for future research in video-based smoke or fire detection. Keywords: Early fire detection, video-based smoke detection, algorithms, computer vision, image processing

    Dynamic texture recognition using time-causal and time-recursive spatio-temporal receptive fields

    Full text link
    This work presents a first evaluation of using spatio-temporal receptive fields from a recently proposed time-causal spatio-temporal scale-space framework as primitives for video analysis. We propose a new family of video descriptors based on regional statistics of spatio-temporal receptive field responses and evaluate this approach on the problem of dynamic texture recognition. Our approach generalises a previously used method, based on joint histograms of receptive field responses, from the spatial to the spatio-temporal domain and from object recognition to dynamic texture recognition. The time-recursive formulation enables computationally efficient time-causal recognition. The experimental evaluation demonstrates competitive performance compared to state-of-the-art. Especially, it is shown that binary versions of our dynamic texture descriptors achieve improved performance compared to a large range of similar methods using different primitives either handcrafted or learned from data. Further, our qualitative and quantitative investigation into parameter choices and the use of different sets of receptive fields highlights the robustness and flexibility of our approach. Together, these results support the descriptive power of this family of time-causal spatio-temporal receptive fields, validate our approach for dynamic texture recognition and point towards the possibility of designing a range of video analysis methods based on these new time-causal spatio-temporal primitives.Comment: 29 pages, 16 figure

    Light-YOLOv5: A Lightweight Algorithm for Improved YOLOv5 in Complex Fire Scenarios

    Full text link
    In response to the existing object detection algorithms are applied to complex fire scenarios with poor detection accuracy, slow speed and difficult deployment., this paper proposes a lightweight fire detection algorithm of Light-YOLOv5 that achieves a balance of speed and accuracy. First, the last layer of backbone network is replaced with SepViT Block to enhance the contact of backbone network to global information; second, a Light-BiFPN neck network is designed to lighten the model while improving the feature extraction; third, Global Attention Mechanism (GAM) is fused into the network to make the model more focused on global dimensional features; finally, we use the Mish activation function and SIoU loss to increase the convergence speed and improve the accuracy simultaneously. The experimental results show that Light-YOLOv5 improves mAP by 3.3% compared to the original algorithm, reduces the number of parameters by 27.1%, decreases the computation by 19.1%, achieves FPS of 91.1. Even compared to the latest YOLOv7-tiny, the mAP of Light-YOLOv5 was 6.8% higher, which demonstrates the effectiveness of the algorithm
    corecore