1,367 research outputs found

    High-performance architectures for IP-based multihop 802.11 networks

    Get PDF
    The concept of a forwarding node, which receives packets from upstream nodes and then transmits these packets to downstream nodes, is a key element of any multi-hop network, wired or wireless. While high-speed IP router architectures have been extensively studied for wired networks, the concept of a “wireless IP router ” has not been addressed so far. In this paper, we examine the limitations of the IEEE 802.11 MAC protocol in supporting a low-latency and high-throughput IP datapath comprising multiple wireless LAN hops. We first propose a wireless IP forwarding architecture that uses MPLS with modifications to the 802.11 MAC to significantly improve the packet forwarding efficiency. We then study further enhancements to the 802.11 MAC that improve the system throughput by allowing a larger number of concurrent packet transmissions in multi-hop 802.11-based IP networks. With 802.11 poised to be the dominant technology for wireless LANs, we believe a combined approach to MAC, packet forwarding and transport layer protocols is needed to make highperformance multi-hop 802.11 networks practically viable. 1

    Implementation and evaluation of the sensornet protocol for Contiki

    Get PDF
    Sensornet Protocol (SP) is a link abstraction layer between the network layer and the link layer for sensor networks. SP was proposed as the core of a future-oriented sensor node architecture that allows flexible and optimized combination between multiple coexisting protocols. This thesis implements the SP sensornet protocol on the Contiki operating system in order to: evaluate the effectiveness of the original SP services; explore further requirements and implementation trade-offs uncovered by the original proposal. We analyze the original SP design and the TinyOS implementation of SP to design the Contiki port. We implement the data sending and receiving part of SP using Contiki processes, and the neighbor management part as a group of global routines. The evaluation consists of a single-hop traffic throughput test and a multihop convergecast test. Both tests are conducted using both simulation and experimentation. We conclude from the evaluation results that SP's link-level abstraction effectively improves modularity in protocol construction without sacrificing performance, and our SP implementation on Contiki lays a good foundation for future protocol innovations in wireless sensor networks

    Cellular Multihop Networks: State of the Art

    Full text link
    This paper presents the summary of some research in the area of cellular multihop networks that contains the improvement in network performance also the difficulties and the complexities of the networks. The combination of two different networks, mobile cellular networks and WLAN ad hoc networks will be presented. The main purpose of the combination is to minimize the weaknesses of both network types when they are deployed separately. By having this combination then it is possible to provide higher mobility for WLAN ad hoc networks user and higher data transfer rate for cellular network users in multimedia applications. The cellular multihop networks will reduce blocking probability, balance the cells load and increase the network capacities. Although there are improvement on the performance of the combine networks, but there are additional aspects that should be considered seriously, especially for WLAN ad hoc users. Authentication, Authorization and Accounting (AAA) functions, the dynamic routing and relay path discovery, maintenance and security issues are aspects to be considered for cellular multihop network

    IDHOCNET-A Novel Protocol Stack and Architecture for Ad hoc Networks

    Get PDF
    Presently employed Internet Protocol (IP) stack possesses number of architectural problems. The issues like Dual/Overriding role of IP addresses, mobility, multi-homing etc are the limitations for the infrastructure oriented networks which even have support of Dynamic Host Configuration Protocol (DHCP), Domain Name System (DNS), Network Address Translation (NAT) servers, etc. Such issues are extremely complex to handle in the case of multi-hop wireless ad hoc networks which lack the support of any infrastructure component. The contemporary research direction for the improvement of present Internet architecture mainly focuses on the use of real identifiers instead of IP addresses for host identification in the network. However, the proposed architectures mostly discuss the infrastructure oriented network models and minimal research has been conducted in the direction of proposals for ad hoc networks.  In this paper we provide a thorough discussion on the practical usage issues of IP based ad hoc network implementation. In order to resolve the present limitations of ad hoc networks, we describe an implementation of a novel identifier based ad hoc network protocol stack and architecture known as IDHOCNET (Identifier based ad hoc network). The architecture proposes a novel paradigm of identifier based applications for multi-hop wireless ad hoc environment. The proposed system further provides backward compatibility to support co-existence with IP based applications. As a proof of concept, the architecture has been implemented on Linux platform with WiFi interfaces. Various practical scenarios with architectural insight are presented to demonstrate the practicability of the proposed approach

    Wireless measurement Scheme for bandwidth Estimation in Multihop Wireless Adhoc network

    Get PDF
    The necessity to bear real time and multimedia application for users of Mobile 1D468;1D485;1D489;1D490;1D484; Network (1D474;1D468;1D475;1D46C;1D47B;) is becoming vital. Mobile 1D468;1D485;1D489;1D490;1D484; network facilitates decentralized network that can present multimedia users with mobility that they have demanded, if proficient 1D478;1D490;1D47A; multicast strategies were developed. By giving the guarantee of 1D478;1D490;1D47A; in 1D468;1D485;1D489;1D490;1D484; network, the proficient bandwidth estimation method plays a very important role. The research paper represented here presents a splendid method for estimating or measuring Bandwidth in 1D468;1D485;1D489;1D490;1D484; network whose character is decentralized in nature. Contrasting in the centralized formation, the bandwidth estimating in 1D468;1D485;1D489;1D490;1D484; is significant and this eventually makes an influence over the 1D478;1D490;1D47A; of the network communication. The admission control and dynamic bandwidth management method which is presented here, facilitates it with fairness and rate guarantees despite the distributed link layer fair scheduling being absent. Alteration has been made over 1D474;1D468;1D46A; layer and this method is appropriate where the peer-to-peer (1D477;1D7D0;1D477;) multimedia transmissions rates are amended in compliantly fashion.In the research work presented here the architecture of the 1D474;1D468;1D46A; layer has been altered and the data handling capacity has been increased. This technique is adopted to facilitate higher data rate transmission and eliminate congestion over the considerednetwork. The proposed technique implements the splitting of 1D474;1D468;1D46A; into two sub layer where one will be responsible for control data transmission while other effectively transmits the data bits. Thus it results into higher data rate transmission with better accuracy and optimized network throughput. The research work in the presented paper exhibits superior accuracy and is very much effective in bandwidth estimation and management application in multi hop Mobile Ad-H
    • …
    corecore