15 research outputs found

    Commutative properties for conservative space-time DG discretizations of optimal control problems involving the viscous Burgers equation

    Get PDF
    We consider one-dimensional distributed optimal control problems with the state equa-tion being given by the viscous Burgers equation. We discretize using a space-time dis-continuous Galerkin approach. We use upwind flux in time and the symmetric interior penalty approach for discretizing the viscous term. Our focus is on the discretization of the convection terms. We aim for using conservative discretizations for the convection terms in both the state and the adjoint equation, while ensuring that the approaches of discretize-then-optimize and optimize-then-discretize commute. We show that this is possible if the arising source term in the adjoint equation is discretized properly, following the ideas of well-balanced discretizations for balance laws. We support our findings by numerical results

    Spectral methods for hyperbolic problems

    Get PDF
    AbstractWe review the current state of Fourier and Chebyshev collocation methods for the solution of hyperbolic problems with an eye to basic questions of accuracy and stability of the numerical approximations. Throughout the discussion we emphasize recent developments in the area such as spectral penalty methods, the use of filters, the resolution of the Gibbs phenomenon, and issues related to the solution of nonlinear conservations laws such as conservation and convergence. We also include a brief discussion on the formulation of multi-domain methods for hyperbolic problems, and conclude with a few examples of the application of pseudospectral/collocation methods for solving nontrivial systems of conservation laws

    Smooth and compactly supported viscous sub-cell shock capturing for Discontinuous Galerkin methods

    No full text
    In this work, a novel artificial viscosity method is proposed using smooth and compactly supported viscosities. These are derived by revisiting the widely used piecewise constant artificial viscosity method of Persson and Peraire as well as the piecewise linear refinement of Klöckner et al. with respect to the fundamental design criteria of conservation and entropy stability. Further investigating the method of modal filtering in the process, it is demonstrated that this strategy has inherent shortcomings, which are related to problems of Legendre viscosities to handle shocks near element boundaries. This problem is overcome by introducing certain functions from the fields of robust reprojection and mollififers as viscosity distributions. To the best of our knowledge, this is proposed for the first time in this work. The resulting C0C_0^\infty artificial viscosity method is demonstrated to provide sharper profiles, steeper gradients and a higher resolution of small-scale features while still maintaining stability of the method

    Fourier-Gegenbauer Pseudospectral Method for Solving Time-Dependent One-Dimensional Fractional Partial Differential Equations with Variable Coefficients and Periodic Solutions

    Full text link
    In this paper, we present a novel pseudospectral (PS) method for solving a new class of initial-value problems (IVPs) of time-dependent one-dimensional fractional partial differential equations (FPDEs) with variable coefficients and periodic solutions. A main ingredient of our work is the use of the recently developed periodic RL/Caputo fractional derivative (FD) operators with sliding positive fixed memory length of Bourafa et al. [1] or their reduced forms obtained by Elgindy [2] as the natural FD operators to accurately model FPDEs with periodic solutions. The proposed method converts the IVP into a well-conditioned linear system of equations using the PS method based on Fourier collocations and Gegenbauer quadratures. The reduced linear system has a simple special structure and can be solved accurately and rapidly by using standard linear system solvers. A rigorous study of the error and convergence of the proposed method is presented. The idea and results presented in this paper are expected to be useful in the future to address more general problems involving FPDEs with periodic solutions.Comment: 13 pages, 3 figures. arXiv admin note: text overlap with arXiv:2304.0445

    A Direct Integral Pseudospectral Method for Solving a Class of Infinite-Horizon Optimal Control Problems Using Gegenbauer Polynomials and Certain Parametric Maps

    Full text link
    We present a novel direct integral pseudospectral (PS) method (a direct IPS method) for solving a class of continuous-time infinite-horizon optimal control problems (IHOCs). The method transforms the IHOCs into finite-horizon optimal control problems (FHOCs) in their integral forms by means of certain parametric mappings, which are then approximated by finite-dimensional nonlinear programming problems (NLPs) through rational collocations based on Gegenbauer polynomials and Gegenbauer-Gauss-Radau (GGR) points. The paper also analyzes the interplay between the parametric maps, barycentric rational collocations based on Gegenbauer polynomials and GGR points, and the convergence properties of the collocated solutions for IHOCs. Some novel formulas for the construction of the rational interpolation weights and the GGR-based integration and differentiation matrices in barycentric-trigonometric forms are derived. A rigorous study on the error and convergence of the proposed method is presented. A stability analysis based on the Lebesgue constant for GGR-based rational interpolation is investigated. Two easy-to-implement pseudocodes of computational algorithms for computing the barycentric-trigonometric rational weights are described. Two illustrative test examples are presented to support the theoretical results. We show that the proposed collocation method leveraged with a fast and accurate NLP solver converges exponentially to near-optimal approximations for a coarse collocation mesh grid size. The paper also shows that typical direct spectral/PS- and IPS-methods based on classical Jacobi polynomials and certain parametric maps usually diverge as the number of collocation points grow large, if the computations are carried out using floating-point arithmetic and the discretizations use a single mesh grid whether they are of Gauss/Gauss-Radau (GR) type or equally-spaced.Comment: 33 pages, 19 figure

    New Optimal Periodic Control Policy for the Optimal Periodic Performance of a Chemostat Using a Fourier-Gegenbauer-Based Predictor-Corrector Method

    Full text link
    In its simplest form, the chemostat consists of microorganisms or cells which grow continually in a specific phase of growth while competing for a single limiting nutrient. Under certain conditions on the cells' growth rate, substrate concentration, and dilution rate, the theory predicts and numerical experiments confirm that a periodically operated chemostat exhibits an "over-yielding" state in which the performance becomes higher than that at the steady-state operation. In this paper we show that an optimal control policy for maximizing the chemostat performance can be accurately and efficiently derived numerically using a novel class of integral-pseudospectral methods and adaptive h-integral-pseudospectral methods composed through a predictor-corrector algorithm. Some new formulas for the construction of Fourier pseudospectral integration matrices and barycentric shifted Gegenbauer quadratures are derived. A rigorous study of the errors and convergence rates of shifted Gegenbauer quadratures as well as the truncated Fourier series, interpolation operators, and integration operators for nonsmooth and generally T-periodic functions is presented. We introduce also a novel adaptive scheme for detecting jump discontinuities and reconstructing a discontinuous function from the pseudospectral data. An extensive set of numerical simulations is presented to support the derived theoretical foundations.Comment: 35 pages, 20 figure

    Spectral Methods for Hyperbolic Problems

    Get PDF
    We review spectral methods for the solution of hyperbolic problems. To keep the discussion concise, we focus on Fourier spectral methods and address key issues of accuracy, stability, and convergence of the numerical approximations. Polynomial methods are discussed when these lead to qualitatively different schemes as, for instance, when boundary conditions are required. The discussion includes nonlinear stability and the use of filters and post-processing techniques to minimize or overcome the Gibbs phenomenon

    Construction of Modern Robust Nodal Discontinuous Galerkin Spectral Element Methods for the Compressible Navier-Stokes Equations

    Full text link
    Discontinuous Galerkin (DG) methods have a long history in computational physics and engineering to approximate solutions of partial differential equations due to their high-order accuracy and geometric flexibility. However, DG is not perfect and there remain some issues. Concerning robustness, DG has undergone an extensive transformation over the past seven years into its modern form that provides statements on solution boundedness for linear and nonlinear problems. This chapter takes a constructive approach to introduce a modern incarnation of the DG spectral element method for the compressible Navier-Stokes equations in a three-dimensional curvilinear context. The groundwork of the numerical scheme comes from classic principles of spectral methods including polynomial approximations and Gauss-type quadratures. We identify aliasing as one underlying cause of the robustness issues for classical DG spectral methods. Removing said aliasing errors requires a particular differentiation matrix and careful discretization of the advective flux terms in the governing equations.Comment: 85 pages, 2 figures, book chapte

    Applied Mathematics of Space-time & Space+time: Problems in General Relativity and Cosmology

    No full text
    Cosmography is the part of cosmology that proceeds by making minimal dynamic assumptions. That is, one does not assume the Friedmann equations (Einstein equations) unless and until absolutely necessary. On the other hand, cosmodynamics is the part of cosmology that relates the geometry to the density and pressure using the Friedmann equations. In both frameworks, we consider the amount of information and the nature of the constraints we can obtain from the Hubble flow in a FLRW universe. Indeed, the cosmological parameters contained in the Hubble relation between distance and redshift provide information on the behaviour of the universe (expansion, acceleration etc...). In the first framework, it is possible to concentrate more directly on the observational situation in a model-independent manner. We perform a number of inter-related cosmographic fits to supernova datasets, and pay particular attention to the extent to which the choice of distance scale and manner of representing the redshift scale affect the cosmological parameters. In the second framework, we use the class of w-parameter models which has become increasingly popular in the last decade. We explore the extent to which a constraint on the w-parameter leads to useful and non-trivial constraints on the Hubble flow in terms of cosmological parameters H(z), density p(z), density parameter O(z), distance scales d(z), and lookback time T(z). On another front, Numerical Relativity has experienced many breakthroughs since 2005, with full inspiral-merger-ringdown simulations now possible. One of the main goals is to provide very accurate templates of gravitational waves for ground-based and space-based interferometers. We explore the potential of a very recent and accurate numerical method, the Spectral Element Method (SEM), for Numerical Relativity, by treating a singular Schwarszchild black hole evolution as a test case. Spectral elements combine the theory of spectral and pseudo-spectral methods for high order polynomials and the variational formulation of finite elements and the associated geometric flexibility. We use the BSSN formulation of the Einstein equations with the method of the moving punctures. After applying the variational formulation to the BSSN system, we present several possible weak forms of this system and its spectral element discretization in space. We use a Runge-Kutta fourth order time discretization. The accuracy of high order methods can deteriorate in the presence of discontinuities or sharp gradients. We show that we can treat the element that contains the puncture with a filtering method to avoid artificial and spurious oscillations. These might form and propagate into the domain coming from discontinuous initial data from the BSSN system
    corecore