1,268 research outputs found

    A High-Gain Nonlinear Observer With Limited Gain Power

    Get PDF
    International audienceIn this note we deal with a new observer for nonlinear systems of dimension n in canonical observability form. We follow the standard high-gain paradigm, but instead of having an observer of dimension n with a gain that grows up to power n, we design an observer of dimension 2n − 2 with a gain that grows up only to power 2

    Detection of Sensor Attack and Resilient State Estimation for Uniformly Observable Nonlinear Systems having Redundant Sensors

    Full text link
    This paper presents a detection algorithm for sensor attacks and a resilient state estimation scheme for a class of uniformly observable nonlinear systems. An adversary is supposed to corrupt a subset of sensors with the possibly unbounded signals, while the system has sensor redundancy. We design an individual high-gain observer for each measurement output so that only the observable portion of the system state is obtained. Then, a nonlinear error correcting problem is solved by collecting all the information from those partial observers and exploiting redundancy. A computationally efficient, on-line monitoring scheme is presented for attack detection. Based on the attack detection scheme, an algorithm for resilient state estimation is provided. The simulation results demonstrate the effectiveness of the proposed algorithm

    Pole and zero assignment and observer design

    Get PDF
    Imperial Users onl

    Modeling and Estimation of Biological Plants

    Get PDF
    Estimating the state of a dynamic system is an essential task for achieving important objectives such as process monitoring, identification, and control. Unlike linear systems, no systematic method exists for the design of observers for nonlinear systems. Although many researchers have devoted their attention to these issues for more than 30 years, there are still many open questions. We envisage that estimation plays a crucial role in biology because of the possibility of creating new avenues for biological studies and for the development of diagnostic, management, and treatment tools. To this end, this thesis aims to address two types of nonlinear estimation techniques, namely, the high-gain observer and the moving-horizon estimator with application to three different biological plants. After recalling basic definitions of stability and observability of dynamical systems and giving a bird's-eye survey of the available state estimation techniques, we are interested in the high-gain observers. These observers may be used when the system dynamics can be expressed in specific a coordinate under the so-called observability canonical form with the possibility to assign the rate of convergence arbitrarily by acting on a single parameter called the high-gain parameter. Despite the evident benefits of this class of observers, their use in real applications is questionable due to some drawbacks: numerical problems, the peaking phenomenon, and high sensitivity to measurement noise. The first part of the thesis aims to enrich the theory of high-gain observers with novel techniques to overcome or attenuate these challenging performance issues that arise when implementing such observers. The validity and applicability of our proposed techniques have been shown firstly on a simple one-gene regulatory network, and secondly on an SI epidemic model. The second part of the thesis studies the problem of state estimation using the moving horizon approach. The main advantage of MHE is that information about the system can be explicitly considered in the form of constraints and hence improve the estimates. In this work, we focus on estimation for nonlinear plants that can be rewritten in the form of quasi-linear parameter-varying systems with bounded unknown parameters. Moving-horizon estimators are proposed to estimate the state of such systems according to two different formulations, i.e., "optimistic" and "pessimistic". In the former case, we perform estimation by minimizing the least-squares moving-horizon cost with respect to both state variables and parameters simultaneously. In the latter, we minimize such a cost with respect to the state variables after picking up the maximum of the parameters. Under suitable assumptions, the stability of the estimation error given by the exponential boundedness is proved in both scenarios. Finally, the validity of our obtained results has been demonstrated through three different examples from biological and biomedical fields, namely, an example of one gene regulatory network, a two-stage SI epidemic model, and Amnioserosa cell's mechanical behavior during Dorsal closure

    An investigation of techniques for nonlinear state observation

    Get PDF
    A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, in fulfilment of the requirements for the degree of Master of Science in Engineering. Johannesburg, 2016An investigation and analysis of a collection of different techniques, for estimating the states of nonlinear systems, was undertaken. It was found that most of the existing literature on the topic could be organized into several groups of nonlinear observer design techniques, of which each group follows a specific concept and slight variations thereof. From out of this investigation it was discovered that a variation of the adaptive observer could be successfully applied to numerous nonlinear systems, given only limited output information. This particular technique formed the foundation on which a design procedure was developed in order to asymptotically estimate the states of nonlinear systems of a certain form, using only partial state information available. Lyapunov stability theory was used to prove the validity of this technique, given that certain conditions and assumptions are satisfied. A heuristic procedure was then developed to get a linearized model of the error transient behaviour that could form the upper bounds of the transient times of the observer. The technique above, characterized by a design algorithm, was then applied to three well-known nonlinear systems; namely the Lorenz attractor, the Rössler attractor, and the Van Der Pol oscillator. The results, illustrated through numerical simulation, clearly indicate that the technique developed is successful, provided all assumptions and conditions are satisfied.MT201

    Observers for canonic models of neural oscillators

    Full text link
    We consider the problem of state and parameter estimation for a wide class of nonlinear oscillators. Observable variables are limited to a few components of state vector and an input signal. The problem of state and parameter reconstruction is viewed within the classical framework of observer design. This framework offers computationally-efficient solutions to the problem of state and parameter reconstruction of a system of nonlinear differential equations, provided that these equations are in the so-called adaptive observer canonic form. We show that despite typical neural oscillators being locally observable they are not in the adaptive canonic observer form. Furthermore, we show that no parameter-independent diffeomorphism exists such that the original equations of these models can be transformed into the adaptive canonic observer form. We demonstrate, however, that for the class of Hindmarsh-Rose and FitzHugh-Nagumo models, parameter-dependent coordinate transformations can be used to render these systems into the adaptive observer canonical form. This allows reconstruction, at least partially and up to a (bi)linear transformation, of unknown state and parameter values with exponential rate of convergence. In order to avoid the problem of only partial reconstruction and to deal with more general nonlinear models in which the unknown parameters enter the system nonlinearly, we present a new method for state and parameter reconstruction for these systems. The method combines advantages of standard Lyapunov-based design with more flexible design and analysis techniques based on the non-uniform small-gain theorems. Effectiveness of the method is illustrated with simple numerical examples

    Yet Another Tutorial of Disturbance Observer: Robust Stabilization and Recovery of Nominal Performance

    Full text link
    This paper presents a tutorial-style review on the recent results about the disturbance observer (DOB) in view of robust stabilization and recovery of the nominal performance. The analysis is based on the case when the bandwidth of Q-filter is large, and it is explained in a pedagogical manner that, even in the presence of plant uncertainties and disturbances, the behavior of real uncertain plant can be made almost similar to that of disturbance-free nominal system both in the transient and in the steady-state. The conventional DOB is interpreted in a new perspective, and its restrictions and extensions are discussed
    corecore