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ABSTRACT |
‘This thesis is concerned with pole and zero .
assignment by proportional feedback in linear time-
invariant multivariable systems, and the associated

problem of observer design.

The eigenvectors of a single-input system with
feedback are given in a new fdrm, and the associated
re-diagonalized system is oﬁtained directly.'The
problem of pole assignment in systems with restricted
measurement access is assisted by a solution which
yields the feedback gains for the assignmént of a
limited number of poles, together with the coefficients *
of a residual characteristic equation, yieﬁging the '
unassigned poles. |

Two solutions are given to the problem of the
assignment of the poles and zeros of a scalar transfer
function. -

A simple step-by-stepldesign procedure for state
observers is given, and a'geﬁ@ral gsolution for the
design of a linear funectional observer, which removes
the need for reduction to a canonical form. The procedure
is extended to the design of low-order linear functional

observers, yielding explicitly the constraints on the

observer poles correspdnding to any proposed obserer

s



order. A design procedufe for general degenerate observers
is also given.

The properties of the dual observer are examined,
and a new design procedure is presented, which yields
a design of lower order than that available hitherto.

The problem of observers for systems with |
inaccessible inputs is.considered, and new conditions
for the existence of a type of observer suitable for
such systems are obtained.

Finally, a simple general algorithm for pole'
assignment by output feedback is given, which exploits
the high speed of operation of modern digital computers.
This algorithm permits the inclusion of pfactical

design constraints.
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S.

CHAPTER 1.

INTRODUCTION TO POLE AND ZERQ ASSIGNMENT AND

OBSERVER DESIGN.

1.1 Introduction.

The pioneering work of Rosenbrock [R{l and Wonham

[Wi] on pole assignment, and of Luenberger ELf] on the
theory of observers, has led to a large volume pf
published work on these and related topics in a little
over ten years. Although much prégress has been made,.
complete answers to all of the quest;oﬁs arising have
not yet been obtained. For example, the necessary and
sufficient conditions for the assignment of all poles
of a linear system by output feedback are not known.
The situation has now been reached where some workers
in the field of control theory are expressing doubts
as to the value of the state space approach, upon which
the ideas of pole and zero assignment and observer.
theory are based. This probably is a natural reaction
to the fact that the high hopes which were held at
one stage have not been completely fulfilled.-However,
there can be little doubt that these techniques have
value, and must take their placevalongside other
techniques, such as those based on frequency response,

in the design of linear systems.
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The systems considered in this thésis are linear
and time-~-invariant, and the signals are deterministic.
The matrices (A,B,C), which characterise the system, .
in the usual notation, are regarded as fixed, and not
open to the choice of the designer. All external signals
continue to be applied to the system after the feedback
is applied, and no interchanging of external inpg;s,

80 as to apply them to other'inputs,'is permitted.
The problems thus take a reasonably realistic form.

The broad aim of the research was to find methods
for the design of feedback for such systems so as to
obtain desired sets of closed-loop poles. The assign-
ment of zeros is also considered, in so far as this
can be achieved by simple feedback. Because Of thé
importance of the position occupied by'state'vgctor
feedback in pole and zero assignment, the question of
the design of state observers, degenerate observe;s
and dual observers has received attention. In such a
wide subject, some measure of selection is necessary,
and an important topic that has not been considered
in this thesis is that of decoupling by output |
feedback.
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Towards the end of the thesis, the qugstion of
closed-loop pole assignment by output feedback is re-
examined, and an algorithm .is presented which becomes
practicable now that modern high-speed digital computers,
such as the CDC7600, are available. This algorithm
may be regapded almost as thé'opposite approach to that
of modal control, which fofmé@ the starting point of
this thesis. The modal contfbi approach is based on an
elgenvalue-cigenvector aﬁalysis of the syétem to be
controlled, and depends upon the Jordan form into which’
the system matrix can be transformed. The algorithm
presented here requiresAno preliminary tranéformafion
of the system equation;, is completely general, and can
deal with all system poles, whether they be real or
complex, simple or multiple, before or after the feed-
back 1s applied. When this algorithm;is used, the general
theory of mode controllability and obsc:yability provides
a background which helps in the understanding of the |
problems, but it does not form the basis of the technique.
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1.2 Outline of the Thesis.

In Chapter 2, the problem of pole assignment
where the system state vector is fully accessible for
measurement is considered. After a brief review of the
avallable methods, the explicit gain formula for the
single~input case, which was reported in'[M1] ’ [ﬁz] ’
is developed, for completeness. New formulae are obfained
for the eigenvectors of the system after the application
of state vector feedback. These formulae are an advance
on those given previously [Mél s in that tﬁey apply
whether particular system eigenvalues are changed or not.
These results will be useful in theoretical work, and a
canonical form is obtained for the're-diagonalized |
system with feedback, which avoids the need for the
re-calculation of eigenvectors by the usual methods.
Relationships are established befween recent
work of Fallside and Seraji and earlier work of Bass
and Gura; also, between a method due to Willner, Ash
and Roy and a technique proposed by Luenberger. Thé
connection between this last method and the-explicit

gain formula of [M1] ’ [Mz] » is demonstrated.
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Other recently reéorted work on pole assignment
by state vector feedback is revie%ed; and the connections
with existing methods are indicated.

The problem of pole assighment with restricted
measurement access is discussed in Chapter 3, including
the important results of Dafison and Sridhar and Lindorff
concerning the number of poles which can be assigned. J
A procedure for pole assignment for this case‘is'given,
which yields the feedback gain vector and, at the same
tine, fhe coefficients of the residual characteristic
polynomial, from which the unassigned poles may be
determined. The sensitivity of the unassigned poles
to small changes in the assigned poles is also examined.
The techniques available for multi-input systems are
reviewed, and the limitations of some recently reported
work in this area are pointed out.

The assignment of zeros as well as poles is
considered in Chapter 4. The basic limitafions arising
from the limited number of wvariable parametérs are
discussed. Attention is then directed to the problem
of designing the feedback gains to give a desired
single scalar inpﬁt-output\transfer function. Two
methpds are presented, one of which is based on the

concepts of modal control, and permits the results of
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modal control theory, such as the explicit gain formula
for a single—input system, to be applled directly to

the problem of zero assignment, as well as pole assign-
ment. The second method presented is based on the
transformatioh of the system to the companion form. :
Both techniques provide information on the possibilities
available for zero aséignment in individual cases.

In Chapter 5, the broperties of state observers
are reviewed, and the techniques available for the
design of state observers of full dimension and'af
reduced dimension are discussed. Cumming's method,
which is éapisfactory.for the design of reduced-order
observers where full digital compﬁter fécilities are -
available, 1s discussed in some detail. A different
approach is appropr;ate for design by pencil and paper,
assisted by an electronic calculator, or a time- | |
sharing computer terminal, using a limited progrémming
language. A very simple step-by-step design method is
presented, which is useful 1n such cases.

The linear functional observer is considered in
Chapter 6. The -established result; are reviewed, and
- a design procedure is presented for anvobserver with
arbitrary dynamics to provide any pre-specified linear

functional of the state vector of a multi-output system.
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This procedure differs ffom that originally proposed

by Luenberger in that it does not require the transform-
ation of the system to a special canonical form. Thé
procedure, incidentally, can bé used to provide an
alternative proof of Luenbefger's result concerning

the existence of a linear functional observer of order
(p=-1), where p is the observability index. The procedure
is extended to the case of a low-order linear functional
observer, and provides sets of conditions which must be
satisfied by the coefficients of the characteristic
polynomial of the system matfix of the observér,'if

a linear functional observer of given order is to exist.
This work parallels that of Fortmann and Williamson,
which is based, like Luenberger's earlier work, on

the use of canonical forms.

The more general problem of designingodegenerate
observers, to provide more than one pre-specified linear
‘functional of the state vector, is considered in Chapter 7.
The approach used in Chapter 6 is applied to this problem,
to provide a routine desigﬁ procedure for degenerate
observers. It is not claimed;ihowever, that this
procedure will yield the dégéﬁerate observer of lowest

possible order in any given case.
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The dual observer -is considered in Chapter 8.

The properties of the dual observer are examined; in
particular how these differ from those of the ordinéry
observer. A new technique for the design of a dual
observer of reduced order is presented, and the existence
of a design of lower order than that given bf previous
workers is established.

Chapter 9 deals with observers for systems with
inaccessible inputs. A serious‘disadvantage of observers
is their need to be provided with the inputs which are
applied to the obsgserved system. The work of Hostetter
and Meditch on O-observers and k-observers, intended
to overcome this difficulty, is reviewed, and extended
by the provision of a simplified criterion for the
exisfence of a k-observer for a single-input, single-
output system, and a sufficient condition for the
existence of a k-observer for a multi-input, multi-
outpﬁt system. . |

In Chapter 10, a return is made to thé problem
of pole assignment in multi-input, multi-output systems.
Recent work is reviewed, and its 1imitations indicated.
A general algorithm for closed-loop pole assignment'
is presented, which makes use of the availability of
the modern high-speed digital computer. The algorithm is
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applied to some numerical examples.

In Chapter 11, the work covered by the thesis
is reviewed, and some general.cohclusions are reached.
Recommendations are made forvfuture research, where
this is considered to be promising. éome.more general
comments are also included, concerning the problems 
that arise ih applying linear systems theory to
practical numerical cases.

Concerning notation, this has been made as
consistent as possible, within the limits imposed
by tbe available symbols. According to convenience,
the feedback gain matrix is sometimes defined with.

a negative sign, and sometimes with a positive signe
The convention used is stated in each case, and so

this should not cause confusion.
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1.3 Contributions of the Thesis.

In Chapter 2, the formulae for the eigenveétors
for the system with feedback, and the canonical form °
for the re-diagonalized system equations, are new.
In Chapter 3, the procedure for pole assignment for
a system with restricted meaéurement access,lwhich
yields both the feedback gains corresponding to the
assigned poles and the coefficients of the residusal
characteristic polynomial corresponding to the un-
assigned poles, is original}‘The treatment of the
sensitivity of the unassignedvpoles to small changes
in the assigned poles has,.as;far as is known, not
.been given before. | |

The two techniques for transfer function synthesis
in the scalar case by state vector feedbaék are original,'
in Chapter 4.

In Chapter 5, the simple step-by-step design‘
method for state obserjérs is new. The desigh method
for the linear functional observer in Chapter 6 is
original, as are its extensions to the design of low-
order linear functional observers and, in Chapter 7,
to the general problem of degenerate‘observers.

In Chapter 8, the design method for dual observers

is new, as is the result that a dual observer of order
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(q-1) exists, where q is the controllability index,
permitting the arbitrary assignment of all poles of
the overall system comprising the system and the dual
observer. Some new conditions for the ekistenpe of
k-observers and O-observers ére established in Chapter
9, particularly for the multi-input, multi-output case.
The algorithm for pole assignment for multi-
input, multi-output systems by output feedback given
in Chapter 10 is original. It is very simple, and
becomestracticable only with the availabiljty of
the modern high-speed digital computer.
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CHAPTER 2.

POLE ASSIGNMENT WITH FULLY ACCESSIBLE STATE VECTOR.

2.1 Introduction.

We consider a lincar time invariant_syatem desgribed
by the equations: | '
% = Ax + Bu' + Bu _ ‘ (2.1.1)

y = Cx  (2.1.2)
where x, u', u and y are vectors of dimensions n, r, r
and m, representing the state, feedback_input; external
input! and output, respectively. The matricesAA,_B and C
are constant, and the problem 1s to find a constant
feedback matrix K such that, if: ,

u' = Ky | | (2.1.3)
the closed-loop system has desired poles.

There are two broad types of approach to this prqbl;m,
the first based on eigenvalue/eigenvector afalysis, which
we shall call 'spectrai' methods, and the second based

on directly changing the coefficients of the character-
istic polynomial, which we shall call ‘coefficient' methods.

2.2 Spectral Methods.
It is obvious that, if r =m =n, and B and C are

non-singular, K can be found without difficulty. For, if
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W is a matrix which transforms A into Jordan form, i.e.,
wolaw = /\, where £\ is a Jordan matrix, then the change
of state vector to z, where z = W'1x, in (2.1.1) and
(2.1.2) gives the equations as:

3 =Az + wBKewz + W lBu (2.2.1)

If now./\1 is a diagenal matrix of desired eigenvalues
of the closed-loop system, we have only to put:

k=W, AW |  (2.2.2)
to achieve the required result.

In practice, it is rarely possible to use the result
in (2.2.2), because the numbers of inputs and outputs .
availeble are usually very much less than the system
order n. Porter [P{] has set out the conditions whieh
- must be satisfied for such a eimple approach to be
extended to systems in which m and r are less than.n,
and these are clearly'very restrictive.

Rosenbrock ER{] s in his original paper on modal
control, dealing with the case in which the eigenvalues -
of A are distinct, suggested a procedure for obtaining
arbitrary assignment of m eigehvalues by chooeing C as
the first m row eigenvectors of A, and B as the first m
column eigenvectors. This permits the assignment of m
eigenvalues without affecting the remaining (n-m) eigen-

values. Rosenbrock suggested a procedure for approximating
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to this in practical cases. This procedure requires a
separate feedback loop, between one input and one output,
for each eigenvalue which is to be assigned. The methdd
is obviously limited by.the nunber of inputs and outputs
available, and by the success one can achieve in approx-
imating to eigenvecfors,in the input and output matrices.
Takahashi, Rabins and Auslander [T{]-have‘@escribed
a similar approach, in which they distinguish between
"ideal' control, in which all the canonical states which
are not having eigenvalues changed are both unéontrollable;A
and unobservable with raspect to thq inputs and outputs
used for the feedbacks, and 'non-ideal’ control; in which
either uncontrollability or unobservability is achieied,
but not both. It is shown that, in the non-ideal éase,
although the system eigenvalues are changed in the desired
manner, cross-couplings are introduced>between the canon-
ical states, which would not othe?wise exist. The approach
depends, in practice, upon a process of finding suitable
' measurement nodes, with respect to which certain canon-
ical states are unobservable, or control nodes, with
respect to which certain canonical states are uncontrol-
lable. It would appear to be useful in giving some
guidance in the choice of a control strﬁcture,‘although

the amount of freedom of choice may be 'so limited in
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practice as to make this of no-éreat value. This method,
and that of Rosenbrock, are included in this chapter,
because they represent partial applications of (2.2.2). .
Simon and Mitter [Si] set out the theoretical
foundations of modal control, based on the ;pplication
of the fundamental work of Kalman [K{l y Gilbert [G1} ’
Wonham [W{] and Luenbefgerv[i{] to the 1deas suggested
by Rosenbrock. They introduced the important concepts
of mode controllability and ﬁbde observability, and
showed that the conditions fo these coincide with tﬂose
for state controllability andfétate observability derived
by Kalman and Gilbert. Simon and Mitter gave an important.
theorem covering the case in which the A matrix is derog-
atory. They showed that the minimum number of inputs
necessary to permit full eigenvaiue assignment in a-
controllable system in which the state vectqrbis fully
accessible, is equal to the greatest number of Jordan
blocks having thenéamq eigenvalue, in the Jordan canon-
ical form representafion. They gave an algorithm for
changing a number of eigenvalues simultaneously, which
requires the solution of a set of 1inear'equations, and
a recursive algorithm,'in which one eigenvalue is changed
at a time, and the system restored to canbnical form

at each step. Although they showed that a single-input
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system in which A has distinct eigenvalues can have all
n eigenvalues assigned by state vector feedback, they
did not obtain an explicit expression for the feedback
gains necessary for this.
The problem of finding the feedback gains explicitly

was solved by Mayne and Murdoch [M1)lhé]-, and by Crossley .
and Porter [01] » independently. These solutions are for
the distinct eigenvalue case. The solution was extended
to the multiple eigenvalue case by Retallack and Mac-
Farlane [R2] » and by Gould, Murphy and Berkman [GZ} .

-. The derivation of the result for the distinct
eigenvalue case is given in the following section, as

this will be required subsequently.

2.3 Explicit Gain Formula for Single-Input System.

A single~input system is describeéd by thevequations:'

I

X = Ax + bu' + bu . (2.3.1)
¥y = Cx (2.3.2)
We require to find the feedback gain vector kT,
whore:

"= kTy’

u
such that the closed-loop system matrix (A + kaC)
has a desired set of eligenvalues. x and y are n-vectors,

u' and u are scalars, A has distinct eigenvalues, C is
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nonsingular, and the paif (A,b) is controllable. .
Let W be a matrix of self-conjugate column ‘eigen-
vectors of A, corresponding to the eigenvalues ( >\1', .o An).
Let Wb =ol = [y -+ &,] 5 and

Kow = % = [y - [ -

If the eigenvalues of (A + bk C) are (A y e }\d),

then:
n
T (A% - A) o |
"‘;5(53 = i=1 i J ‘ (263.3)
n _
J=15.en Tt_ (Ai -)\J)
i=1
i3 S
Prodf.

We introduce a new state vector z, such that x = Wz.
Then, (2.3.1) becomes, with feedback,
= (A+0§FT)Z +du (2.3.4)
y = CWz (2.3.5)
where /A = diag( A1, .o )\n). / |
The system poles are the eigenvalues of (/\ + 4 pTU.
The characteristic polynomial of this matrix is: _
det(sI - A - ap”) (2.3.6)
[st - A] det(z - (s1 -A ) FT) (2.3.7) |
| Applying the matrix identity det(I + EF) = det(I + FE),
wnich is proved in [u1) , (2.3.7) vecomes:
(s = A1 - é‘s‘i_ . 1)5’-13?(3 -2 (2.3.8)
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Setting s = Aj and rearranging gives (2.3.3). This
proof is due to Mayne [M1] . "

4

2¢3+1 Comment.

As (A,b) is ?ongfollable, and A has distinct eigen-
values, & £ 0, j=1, .. n. It follows that the /33 can
be determined from equation (2.3.3) for any set of
A, 1=1, .. n. There is no restriction on the A%,
which may be distinct or repeated. For physical realiz;
ability, the A; Will be real, or in complex conjugate
pairs; as will the )&. Some of the ,Xg'may be.set
equal to the Aj’ if'desired, which simply corresponds
to leaving some eigenvaiues unchanged. kT is founq-from:

k= gt | - (2.3.9)

If the pair (A,b) is not completely controllable,
the formula (2.3.3) can still be ﬁsed, as the derivation
does not require that oLy # 0. It is clear from the
expression that, if Xy = 0, at least one of the ,Ag |
must be set equal to ,Aj, in order to make the expression
Z2ero. /33 then becomes indeterminate, but the solution
can otherwise be completed as for the controllable case.

The expression clearly applies equally to the case
in which k'C is regarded as fixed, while b is varied.

If the system is observable through kTC, completé eigen-
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value assignment is poséible.

2.4 New Eigenvectors With Feedback,

It is useful to have the new row and column
elgenvectors of the system with feedback, i.e., the
row and column eigenvectors- of (A + ® F'T)v,in the
canonical z co-ordinates. These are‘useful if it is
desired to restore the system to diagonal form after
feedback is applied, or if eigenvalue and eigenvector
sensltivity studies are to be made.

Simon and Mitter [81] obtained the new eigehvectors
after changing a single eigenvalue, in conneétion with
their recursive algorithm. Murdoch [Mé] obtained the,
eigenvectors for the general cése, when some or all of
the eigenvalues are changed, where the eigenvalues of A
are distinct. Using the results obtained in tMé] y and
the feedback gain expression (2.3.3), the following b
expressions are obtained for the new eigenvectors for
a completely controllable system with distinct eigen-
valges both before and after the application of feedback.
Thus, &, £ 0, i=1, .. n, Ay # ,\3, i#3J, and
ALA XS 143, o

2.4.1 Formulae for Eiggnvéctofs.

(a) If V is a matrix of row eigenvectors of (A + at{.ST.),
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the element in the ith row and the Jjth column of V is

given by:
— a
4|=1()\q— /\J)
Vig = 941 (2.4.1)
oLy T (A = A)
q=1
a# 3

(b) If W is a matrix of column eigenvectors of (I\ + deT),

the element in the ith row and the jth column of W is given

by :
noa
wij = a#1 (2.4.2)
d d
311(A;j"qu)
Q#3

The expressions (2.4.1) and (2.4.2) have been so
chosen that:

W =1,
where I is the identity matrix.

There is no requirement that the )% be not equal
to the Ai' If such equalities exist, these will result
in the cancellation of some factors, and zero values for

others, as appropriate.
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Proof.

The proof is in three parts. (a) We first prove that
a general row of V, vz, is a row eigenvector of (/\ + & P T)
corresponding to the eigenvalue ,A?h where the jth element
of v? is given by (2.4.1), with i replaced by r. (b) We
then prove that a general column of W, W is a column
eigenvector of (/\.+ a((BT) corresponding to the eigenvalue

Ag, where the ith element of W, is given by (2.4.2), with

m

j replaced by r. (c) Finally, we show that v;wP = 1.
{a) Row Eizenvector.

vL is a row eigenvector of (/\ + d’eqﬁ corresponding

r

to the eigenvalue Ag if and only if the followiag eguation
is satisfied:
T T a. T
= 2
vr(./\ + o« ) = )‘rvr‘ (2.4.3)
The Jjth element on the left hand side of this equation
is:
T
v + Vv .
ry Ayt Vet By
where /3j is the jth element of IST, and that on the rizht
hand side is:

Adv

rrj
Hence, we wish to show that:
a

V'f,o( Bi= (AL

Substituting for i~ from (2.4.1), with i = r, this equation

- )\j)vpj

is equivalent to: n
T (Ag = A
Q=1
v By = (A - ) 2
. q_—_1
a#3

Since of, A 0, this may be written as:
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n
ad
T c]zl( )\q ) )‘j)
Vol ol Fj = == (2el4ely)
™ (A, - )\j)
q=1 1
Q%]

Using (2.3.3), with the appropriate change of symbols,
the left hand side of (2.4.4) becomes:

n
—_— d

g:

T
vr°‘ n
TN - )
q=1 a J
a#J

Clearly, the equation is satisfied if and only it

T

Vro(_ = 1-
Substituting for the elements of Qﬁ from (2.4.1), the

left hand side of this equation becomes:

n a
n 'TE1(/\q- )\J) n
> i >
=2 A=A
=1 T ()\q- Aj) i=1 Ar 3
q=1
a#j

from (2.3.3).

(2.3.8) gives the identity:

n

n
(s~ AD)
TE;‘ :illil_ _ 5 - £L1 ° AJ (2.445)
n
RIS W (s - X))
3=1

Setting s = ‘Ag in this identity completes the proof

for the row eigenvector.

(b) Column Eigenvector.

L is a column eigenvector of (/\ + o(fST) corresponding

to the eigenvalue Ai if and only if the following equation

is satisfied:



31.

(N v 2wy = Aw (2.4.6)

rr
The ith element of this equation on the left hand side is:
T . .
/\iwir + 0(1/3 w,, where o, is the ith element of «,

and that on the right hand side is:

d
rwir

Hence, we wish to show that:
T d
oy @ v = (AL - AIWsn
Substituting for wir from (2.&.2), with j = r, gives, on

the right hand side:

0 d
di Tl. (AI'- /\q)

u (AT =AY

I'

i

The left hand side becomes:

2 1>/3p"(’\d Ag)

which may be written:

n<,\d

o Ti -

1 r defsp
p=1

d
l\ (JX ) r
qﬁr
Clearly this equation is satisfied if and only if:
n
2, Safs
=1
d
p=1 Ap M

but this was shown to be true in (a), and so the proof

is complete for the column eigenvector.
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(c) Product of Row Bigenvector and Column Eigenvector.
n

T
Vel = : vrpwpr

p=1
Where vrp is obtained by putting i

rand j = p in (2.4.1)
and Wor is obtained by putting i = p and j = r in (2.4.2).
Then:

n
n ‘IT(,\ = AT (AT = A
va - E q;ér a#p (2.447)
r>r n
p=1 u (Mg = AT AL - AD)
q=1
qzép Qfr
Using (2.3.3), this may be written:
n
T (AL -
a=1 :;EE °<QJ39 (2.14.8)
n 2 oife
_\1( ) p= 1 ’\p)
atr

Differentiating the identity (2.4.5) with respect to s

and setting s = )\i, with j = p, gives:

i T (AL - AD (AL - AY
d q:1 q:1
Z D(SD = 9fr (2.4.9)
(Np = Ap)” (5 (A% - A2
p=1 q=1 r Q

From (2.4.8) and (2.4.9), it follows that:

VTW = 1
rr  °

This completes the proof.
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2.4.2 Numerical Examnle..

To illustrate the application of the.formulge of
(2.14.1) and (2.4.2), consider the case in which:

M=0 A=t Aj=-3

Apm ot A=z A=

Ky=1, &Ky=-1, & =2,

This example includes one eigenvalue ﬁhich is

unchanged by the feedback.
Application of the formulae gives:
-2

-3 o)
-V = -1 =2 0
-2 3 1

5 2 12J

-2 3 0]
W= 1 =2 0]
2 -12 12

It is readily verified that VW = I.
The feedback vector required to give thése new
eigenvalues may be obtained from (2.3.3) as:

/3T = [2 6 Oﬂ ,

whence the new system matrix with feedback is:



o 0 o 1 [2 6 o]
L= |0 1 o + [~
0O 0 =3 2
2 6 0
= |-2 -5 o0
L 12 =3

It then follows that:

-1 0 o)
VLW = 0 =2 o)
0 0 =3

as required.

This procedure is described in IM1{] ‘

34,
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2.5 Redisponalization of Controllable System With Feedback..

If, in the system discussed in 2.4, a new state
vector , p, is introduced, where z = Wp, and W is as

given in (2.4.2), equation (2.3.4) becomes:

u ‘ (2.5.1) |

- e o

where N = diag( }\% cos Ag).

Derivation.

The new system matrix is diagonal, because the Ag
are distinct, and W is a matrix of column eigenvectors.
The new input distribution vector is V& , where V is

given in (2.4.1), or, equivalently, as:
v, = I3
ij 3
TERe

Then the ith element of the new input distribution

vector is:

Zn_f.j_@__.=1 |  (2.5.2)
J=1(>\(;. - )\J) ' , '
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Proof.

From (2.3.8),

e At - 5B = 16— A
J=1 '- =17

: o . (253)
First assume ,Ad #Z )3, J=1, eee n, and set

8 = )\i. Equation (2.5.2) follows. |
Now let Ag tend to one of the Aj‘ The expression

(2.5.2) is unaffected, because the term ('Ad - ,K ) is

always a factor of /33, for each J, J= =1, ees Ne

The expression (2.5.2) is therefore true generally.

2.6 Coefficient Methods.

An explicit solution to the problem'of finding the
feedback gains for arbitrary pole. assignment in a control-
lable single-input system was given.by Bass and Gura [Bﬂ fL
For the system described by (2 3.1) and (2 3.2), in which

C = I, the feedback gain vector k , Where:

u' k_ y (2.6.1)
is given by: |
Do~ Tyi-1
k=~2 (84 - a;_4)(87)" " (2.6.2)
i=1 :

. where: d = [ﬁ-qtre | ' - (2.6.3)



in which e, is the last column of the identity matrix,

%;_4 8nd a,_, are coefficients of' 811 in the character-

istic polynomial with and without feedback, respectively.

D is the controllability matrix:

l

D = [b;AbfAzb ...jAn’1b] | (2.6.4)
This result can be obtained alternafivély by

. transforming equation (2.3.1) to the phase-variable form.
Using the method of Ramaswami and Ramar [Rj] ; the system

may be placed in the phase-variable form:

p =4+ [0]u' + [O]u (2.6.5)
0 0 |
0 0
1 1

by the transformation p = Tx, where T is the observability.

matrix of (t?,A), i.e.,

ct d"ﬁ
Haes 3

f=3
) ]

(2.6.6)

ct
e Fle o o
(N

o]

]

-—
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and t? is the last row of the inverse of the controllability

matrix (2.6.4). A, has the form:
[0 1 0 0. . 1
O 1 0 .« o

¢« OO

(2.6.7)-‘

- - e o "a
ao 81 .

L i

The transformed state feedback gain vector 1is kTT-1,

and 1t 1s clear from (2.6.5) that this gives the desired
set of coefficlents (ﬁ;, .;.'Eh_i) to the closed-loop

characteristic equation if:

T "1 - _~ s ~r ' g .
kT = [ao a.l e o an_,]_J v+ l-ao 8.1 . o an_a (2.6-8)
Hence: - . '

K = - [(E,ma,) Bymay) o o (E_j-ap J)]T (2.6.9)
Substituting for T from (2.6.6) gives:

T ox - T _(¥.- T, -5 -a_ . )tIan—d
k™ = ~(¥,-a )ty -(a,;~a )tiA .. (an_1vgn_1)t1A
(2.6.10)

Transposing (2.6.10) gives (2.6.2).

2.7 The Method of Anderson and Luenberger.
The formula (2.6.2) cannot be used With‘a system

which is not controllable through a single input.
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Anderson and Luenberger [h{] cénsidered the general casé
of a multl=input system, and derived é canonical form,
based on generalised phase—Variable forms obtained by
Luenberger [Lé} . In the single-input case, this form
coincides with the phase-variable canonical form, and

is unique. In the multi-input case; the canonical form
is not unique, as it depends upon the scheme used in
selecting sets of linearly 1Adependent vectors from

the controllability matirix. . ‘

Power [Pé’ has described an extension to this method,
in which advantage is taken of the possibiiity of
replacing some zero terms by non-zero terms in the
canonical forms, without affecting the char%cteristic
polynomial, so as to obtain extra design freedom.

One difficulty that may arise in using the method
of LA{} is that the initial'ﬂon-uniqué formation of the
canonical form decides the éize of the real companion
matrices of which it is compd%ed. This places limitations
on the choice of system ppléé;,to achieve realizability.
Power [Pj] has suggested an éktension to the method to
overcome this difficulty,-and'provide increased design

freedom.
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2.8 The Method of rallside and Seraji.

This method [F{] is. based on the relationship.
k'g(s) = F(s) - H(s) (2.8.1)

where F(s) and H(s) are the open-loop and closed-loop
characteristic polynomials of the system, kT is the
feedback gain vector,}énd g(s) is an n-vector, the
elements of which“aregthe numeratof golynomials 6f the
transfer functions from the input concerned to each
state. variable. The relationship (2.8.1) was given by
Bass and Gura fBﬂ « Multi-input systems are treated
as single-input systems, by distributing scalar feedback
eamongst the inputs, as is done in other.échehes. The
method then involves equating coefficients to achileve
a desired F(s).

Although it appears to be simple, this methbd
probably ihyolves,‘for large systems, about the same
amount of work as the use of the phase fariable-cahon-
ical form, due to the need to find F(s) and g(s)
initially. It is obviously closely related to the method

of Bass and Gura.
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2.9 The Method of Willner, Ash and Roy.

Willner, Ash and Roy [wz] have described a pole-
placement algorithm which they claim to be new. This is |
. . N
neither a spectral nor a coefficient method. For a single-

input system, this method is based on the solution of the

equation:
‘TP - AT = bkl R (2.9.1)
or: | '” A ‘ |
PP = A + bETTTY (2.9.2)

The vector ki T |

now represents the state feedback gain
vector. |

F is chosen to have the desired set of eigénvaluea,'
and k© is set to the sum vector [1 11 ; . f]..'
Equation (2.9.1) is then solved for T. |

This method is;very similar to a method first
described by Luenberger'tL1] . |

In extending their method to multi-input systems,
the authors use a technique of converting the multi-
input system into a single-input’system by distributing

a scalar feedback amongst the inputs in such a way as -

to preserve controllability. It is claiméd that this
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method can be used with any controllable system, but
Murdoch [ﬁﬁ] has pointed out that this is a fallacy.
As shown by Simon and Mitter [81] » there is no single
input through which the systém éould be controllable
if the A matrix is derogatory. The‘significance of
this statement is that, for a derogatory A matrix,
there exists no vector d such that the pair (A,d) is
controllable. This is easily proved beéause? since A

is derogatory, there exists a polynomial in A of degree

a» less than n, such that:
q q-1 A _
AT+ e AT x el k g1437 a,l = 0. (2-9f3)

Post?multiplying (2,953) by the column vector 4,

and rearranging,

= - Q=13 - -
Aq'd = aq_1A d oo = 81

Ad ~ad . (2.9.4)
It follows that the controllability matrix

2

[ﬁ Ad A%d . . An'1é] is singular, because the (g+1)th

column is linearlg deqendent on the preceding columns.
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2.9.1 Alternative Derivation of Explicit Feedback

Gain Formula.

The method of Willner, Ash and Roy applied to a
controllable single input system with distinct eigenvalues
provides an interesting alternative derivation of the

explicit feedback gain formula (2.3.3)
Consider the controllable single input system

described by equations (2.3.1) and (2.3.2).
Let A = W/\W-1, where W 1s a matrix of self-conjugate

column eigenvectors of A, and /\ = diag( )ﬁ’ oo An)’

where ( )H’ «+s A,) are the eigenvalues of A, assumed

distirict. Then (2.9.1) becomes:

TF - WAW™" 1D = bx? o (2.9.5)
or.
wler - Aw I = wloxT  (2.9.6)
.° .
Let Wb = &« = Tt '}T and let
= = 1 ¢ ° odnl) .

L RN

Let F = A% = aiag( Xﬁl.?; Ag), where ( A%, . . Ag)

are the desired closed-loop eigenvalues.
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Let W 'T = {7, Then (2.9.5) becomes:

FrA2- A=l 11, ’. 1} | (2.9.7)

Assuming that the Ai and the ‘A% have no terms
with common values, we may solve for the elements>o£‘
r‘, obtaining, for the term in the ith row and Jjth
column:

(J .
Y, = | (2.9.8)
ij 3 N _

)\j = i

Writing (2.9.7) in the form:
CAIMT= A+ d[1.1 1. . 1')("1' (2_.9‘».1.0).
and comparing with equation (2.3.&), we”find:
FT =011, ﬂl"‘f’ | | (2.9.11)

For clarity, we shall write this in full for a

third order system:
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b Tt

o e o

1 2 .2 2 (2.9 1'2) o
N h, A .

| 3 3
" V)&A'T')‘B 2% 5 A= 4
- S

Suppose we wish to find /31. This is the sum of the
terms in the first column of the inverse of the 3X3

matrix in (2.9.12). Hence, we may write:

1 .1 1
<y - %, a

d . d a

Aq- )‘2 %2' >‘2 ’\3' ?\2
<3 = 3 3.

d a a o

f‘1 - O >‘3 25" k} Az- )‘3 ' (2.9.13)

'<1 a<1 «1

a a_ a

MN AT A Am A
0(2 <y P

M= N ‘\3"‘\2 f\g' Mg
o<3 oL3 0{5

d d

Mmhs A Ay -4
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By removing the'factors 0% and d%, and considering
the formationAoflidenticai columns and identical rows,
it is clear that the numerator determinant of (2.9.13)

has the following form, disregarding signs:

o 5 ot5( A= M) CAG= AP A3- A AS- A
(A9 A0 C A= A0 A5 A CAG- A C AS- ADCAS- Ay)

(2.9.14)

 Similarly, the denominator determinant has the

form of (2.9.14), multiplied by:

oy ( M= A Ag= )

- (2.9.15)
CAT- ADCAS- ADCAS- A

The ratio is thus:

(A% A A% A)( AL
- A= A CA= APCAS= AY) o (2.9.16)
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The sign is determined by considering the effect
of X1 becoming large in magnitude.

(2.9.16) is the formula (2.3.3) for n=3, j=1.
The corresponding expressions for /Gzland ﬁ% can be
found in a similar way, and the generalisaﬁion to larger
systems can be understood from the form of (2.9.1&) and
(2¢9.15). We shall not deal with the case where some of
the )g are specified as equal to some )3. In such
cases, 1t 1s only necessary to replace the-appropriate:
1's in X* by O's. | |

In this procedure, we were solviné for the new

column eligenvectors of the system with feedback, and

finding the feedback gains in the process. ..
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2.10. Other Recent Work on Pole Assignment by State

Vector Feedback.

Paraskevopoulos and Tzafestas [Pé] have recently
described a procedure for closed-loop pole assignment
based on finding the transformatibn matrix T such that,

for given A, B and L, the matrix'equation:

A + BF = TLT™] (2.10.1)

is satisfied. I is chosen to be in the diagonal or the
Jordan form, with the desired set of eigehvalues. A and
B have their usual significance, and F is the unknown
"-feedbaek gain’matrix. Although claimed to be new, this
is similar to the method described by Willner, Ash and

Roy [Wé] » and by Luenbergerv{L1] . The method of {Pé]
différs from earlier procedures in that the system is
first transformed to the phase-variable form, or to the
generalised phase-variable form of Anderson and Luenberger
[Af}‘. However, when this is doné, there seems to be no
- advantage in going to the trouble of fipding the transform-
ation matrix T, since the last rows of the companion blocks
of the A matrix can then be changed directly to give any
desired set of coefficients to the closed-loopvcharaéteristic

polynomial.
It is claimed that the method described yields
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| the full degrees of frecdom in the choice of F, but this

claim does not seem to be Jjustified in the numerica;

examples which have been given. For example, in Ex. 3

of [P5] , the system given is described by the equationi
[0 1 o0 o (0 0
. 11 30 0 0 1 0
X = X+ u - (2.10.2)
o o o0 1 0o o
o o 7 12 o 1
d - -

in which the desired closed-loop poles are to be at O, 1,

-1 and 2. The authors reach fhe éonciusion that:

11 =29 0 0 o
F = | (2.10.3)
0] o =5 -1 :

However, it is clear that this is not the mosf general
form of F possible, because the.last two elements of thé
first row could be given any values or, alternatively,
the first two elements of the second row could be given
any values, without affecting the closed-loop poles of
the system. This is clear fﬁom the gquasi-upper-triangular
or quasi-lower-triéngular stréﬁture of the system matrix,
respectively, in the two caseg}.No indication is giveh in

[Pé] as to how the degrees of freedom in F may be used.

IR
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- The problem of output feedback is also treated in [P5]

and this will be discussed in Chapter 3.

Flower [F?] has described a procedure for pole
assignment for a single input system, based on the fact
that the coefficlents of the characteristic polynomial
of a matrix are given by the generalised traces, i. e.,
the sums of all possible determinants which can be formed
from the original motrix by omitting columns and corres-
ponding rows. As is well known, the coefficient of (- 1)n 0
is obtained by omitting no column or row, g1v1ng the
determinant of the matrix itself, and the coefficient of
-s™1 ig obtained by omitting (n-1) rows and columns,
giving the usual trace.

When this technique is applied to the matrix:

(A + 'ka) ,

a set of linear equations in the elements of kT'is obtained,

so as to give a desired set of closed—loop poles.

The method becomes rather cumbersome with high-order
systems, due to the large number of determinants, of
different orders, which have to be computed. Apart from
the small advantage of avoiding complex arithmetic, this
method seems to have no advantage over the nalve technique
of inserting each desired closed-loop eigenvalue in turn,

to form the matrix:
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J

and ﬂhen forming the set of linear equations in the elements

of kT, k1, k2, etc., in which each equation is of the

by = (- A0 = oy e o] (2.10.4)

form:

J1

Ebid + ea =0

, ,
lD + k1|b:d + k2

ld‘ 53 |

jz:dj3i.. '
. (2.10.5)

d
In practical applications, it is un;ikely that the
closed-loop system will be required to have multiple'poles;
If this is required, however, this simple method can'be '
adapted by considering the derivatives of Dj + ka witﬁ

respec£ to ‘Ag, the corresponding number of which must

also be set to zero for a multiple eigenvalue. These
derivatives correspond to the generalised traces considered
in [Ff] , but, of course, in this alternative approach,
‘these need be considered only when multiple éigenvalues

are specified.
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2.11 Conclusion. .

The coefficient methods have the édvantages that
they'involve only resl numbers, and that éhey admit of
pole assignment in systems in which the A matrix has‘
multiple eigenvalues, provided that it is honderogatory,
without any change in the method. . '

The spectral methods provide greatér insiéht and,
although they generally involve complex afithmetic, it
would, in any case, be necessary to compute the open-.
loop poles when contemplating feedback, and so the
disadvantage of this is not great.

On the question of accuracy, some earlier workers
in this field tended to avoid the use of eigenvalues
and eigenvectors, and to favour the cdefficient methods.
!Direct methods 6f computing the transformations to the
phase variable form [S2,T2,C2,71,R4] involve repeated
multiplications by the A matrix, and this can cause
numerical difficulties. The problem of the powers of
the A matrix tending to become more nearly singular,
or the converse of their having very large determihants,
" can be overcome by the use of timé scaling, which simply
involves multiplying the A matrix by a constant. This
procedure has been suggested by Davison and Chow [D1] «
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The reason for the'a#oidance of eigenvalue methods
proﬁably was due to the lack of a'satisfactory method
for computing the eigenvalues of a non-symmetric matrix.
However, the introduction of the QR trgnaform method of
Francis EFél has resulted in the availability of reliable,
accurate programs for determining eigenvalues. The
situation now is that the determination of eigenvalues
by the direct matrix method is preferreg fo procedurea
which first find the coefficientsvof the charécteristic
polynomial, and then find the roots of this to obtain |
the eigenvalues. '

It should be remembered, however, that, if it'is
desired to use methods based on the coefficients of the
characteristic polynomial, these coefficients and the
transforming matrices needed to give the phaée variable
form can be found by taking adventage of the accurately
determined eigenvalues which are noﬁ avallable. |
Procedures based on the use of this information have
been described by Johnson and Wonham [Jé]‘for the
distinct eigenvalue case, and an extension to the multiple
.»eigenvalue case has been given by Mufti [M1é] . These
methods require the computation of the determinant and

of the inverse of the Vandermonde matrix, and explicit
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solutions to both of these problems are available -

(w3,n2,73] . |
In the problem of determining the feedback gain

form to the phase wvariable form, or someﬂvariaht of this,
and then determine the elements of the feedback'gaiﬁ' |
vector directly. Alternatively, one may choose tovusév

the spectral method, with accurately computed eiéenvalues E
and eigenvectors. At the final stage of this proeess,'
however, one has to0 compute the feedback gains from an
expression of the type (2.3.3), w?ieh involves the

products and quotients of differences between eigenvalues;

" which could introduce undesirable magnification of errors.

Basically, the feedback gains.which are to be found,
consist of such products, and are, therefore, closely
related computationally to the coefficients of the
characteristic polynomial. ‘l |

A result obtained recently by Davison and Wang [Dé]_-
reveals that almost all feedback laws make a controllable
observable system controllable through a single input,
and cause 1t to havé distinct eigenvalues. The effect
of this is that, if closed-loop pole assignment is the

only consideration, any controllable observable~system.

vector for a single-input system, one may choose to trans=
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can be treated as a singie-inpﬁt systgm with distinct
eigenvalues. The preliminary step of_applying almost
arbltrary feedback to achieve this condition can always
be assumed to be possible, provided that the system is
controllable and observable. Any change of system poles
caused by this initial feedback can be allowed for'in

the final pole assignment.
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CHAPTER 3.

POLE ASSIGNMENT WITH RESTRICTED MEASUREMENT ACCESS.,

3.1 _Introduction.

This chapter is concerned with pole assignment in
the system described by equations (2.1.1),(2.1.2) and
(2 143), in which m<n.

Davison [Djﬂ has shown that a controllable observ-
able system with m independent outputs (i.e., rankC = m),
can always have m closed—-loop eigenvalues made arbitrar-
ily close, but not necessarily equal to any desired set,
by suitable choice of K, subject, of course, to complex

-conjugate pairing to ensure realizability. An élgorithm'
for finding K is given, but ndthing can be said about
the remaining (n-m) unassignéd eigenvalues, which will,
in general, have been changed by the‘feedback in an
unpredictable way. Jameson ij] has reached a similar
conclusion, and has given an algorithm for finding K
based on a least-squares it of the actual eigenvalues
achieved to the desired set. ”

‘ The applicatidn of the method of Fallside and
Seraji to this case is discussed in 3.L. '
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3.2 The Result of Sridhar and Lindorff.

Using the approach of Retallack and MacFarlane
[ﬁg] y Sridhar and Lindorff [Sj] have given a proof

that, in a controllable, observable linear time-invariant .

system, max(m,r) closed-loop poles can be assigned .
almost arbitrarily. '

This result follows at once from Davison's result

[Dﬁl , that m closed-loop poies can be assigned almost .
arbitrarily. This 1a so because the eigenvalues of
(A+BKC) and of (A +C K?BT) are.the same. Henég the
conditions of [bj] that C haé rank m and (A,B) is
controllable, when applied to the transposed'matrix,.-
coincide with the conditions that B has rank r and
(A,C) is observable. Thus, if r>m, it follows that
r eigenvalues can be assigned almost arbitrafily.

A further comment in [Sj].is that Davison's:
conclusion that the poles which cannot be assigned
correspond to the zeros of the various transfer functions
existing in the multivariable system applies only to

sihgle-input, single-output systems, and 1s not general,
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3.3 Pole Assignment and Determination of the

Residual Characteristic Equation.

The method based on obtaining a least-squares
fit of closed-loop poles, suggested by'Jameson; | |
is mathematically attractive, and would be expected.
to give satisfactory results if the desired poles
were suitably weighted. This type of approach is
considered more generally in Chapter 10.

Davison's method is not_entirely satisfactory
as, although it permits the assignment, or near
assignment, of m poles, it gives'no information
about the reméining (n-m) poles. There is, therefore,
the necessity to compute all the systgm poles.after
the feedback has been determined, a process that
will probably reveal some unsatisfactory poles,
calling f'or reconsideration of the m assigned poles.

A reasonable approach seems to be‘£0'use a‘

method which assigns the m poles, while faciiitating

the finding of the remainder. In the following procedure,
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the feedback vector is found so that m poles are assigned
to be arbitrarily close to a desired set, and, at the
same time, the coefficlents of the residual characteristic

equation are found, the roots of which are the‘remaining

(n-m) unassigned poles.

3.3.1 System Description.

A linear time invariant system is described by the

equations:
"X = AX + bu' + bu '  (3e341)
y = Cx (3.3.2)

where X 1s a n X1 state vector, u' and u are scalar
feedback and external inputs, respectively, and y is
an m X 1 output vector. A has distinct eigenvalues
(.A1, .o An), C has rank m, and the triple (4,b,C)

is controllable and observable.

3.3.2 Problem Statement.

The problem is to find for the system (3.3.1),
. ‘ .
(3.3.2) the 1xm feedback gain vector k = [k;...l] , .
such that the feedback input: ‘
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W o=y  (3.3.3)
gives m preassigned eigenvalues ( ,\“z’, s » » )\g) to
the closed-loop system matrix:
(A - bK7C) C (3.3.4)
We also requife to find the (n-m) coefficients

(ags « « & _p_4) of the residual characteristic

equation:

g™l B L a8 + a =0 .(3‘3‘5) :

an-m-1 o]

The roots of (3.3.5) are the remaining (n-m)

unassigned eigenvalues of (3.3.4). .

3.3.3 Solution.

Let W be a matrix of self-conjugate column
eigenvectors of A. Let A: diag( }\1 cee )\n), and
let: | '

L = (ot eee T =W - 4(3.’3.6)
Let P = [?1 . o p;]T | ) f (3-3-7)
where: ‘

J—— a
- ( /\.1 - I\i) ' :
pJ = - i=1 . (3.308)
n
J=1’oon “Jizr.!( ,\J - Ai)
1£)
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Then the elements'of k? and the coefficients

a

o? are given as the solution of the set

&n—~m=1
of linear equations:

-

[WTCT_:'P . /AP ' 2P

. /(14m-11=] k; 1 -[ An-mp]

m R : .' (30309)'

3,3, Proof.
Let the eigenvalues of (3.3.4) be ( A%,'. .Ag),
of which ( A?, . . ,\i) are specified, whilst (A ..Ag)

m+1°?
are unspecified. Let:

pr = [+« f)= xTew | . (3.3.10)

Introducing the transformation x = Wz, equations

(3.341),(3.3.2) and (3.3.3) give: :
. _ L T JR | :
z=U -w ok'cw)z + W 'bu (3.3.11)

From (3.3.6) apd'(3.3;10), this becomes:

z = (A - ocf{T')z,+ <L u - (3.3.12)



From (2.3.3), we hﬁve:

—_— a

L (A - A7)
ifs T —

d,=1’ .ol j!l=1( /\:j - Ay)
143
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(303.13)“

As the system is contrbllable, acJ £ 0, j=1, ..n,

AL,

ans s0 (3.3.13) determines the FJ uniquely, from the

' 'Transposing (3.3.10) and substituting from (3.3.13),

wieTk =

(3e3e 1)
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The jth element irn the vector on the right hand

side of (3.3.14) may be written as:

SR 1} . —1 ‘ '
i=1 . i=m+1 g B (3.3.15) L
= : -
1£3
Consider the polynomial:
et n-m-1 _ + d.s o T(‘n(s'_ I\d) '
) an-m—js . . 48 * a5 = iemeq © i’
- (3.3416)

AAComparison of (3.3.16) with the factors of the form

12&?“A3- AD
in (3.3.15) shows that, in each case, the coefficients
of the powers of 'Aj are the coefficients of the
corresponding powers of s in (3.3.16).

Let P be defined as in (3.3.7) and (3.3.8).
Then rearrangeunent of (3.3.15) and the use of (3.3.16)

give (3+3.9). This completes the proof.
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3.3,5 Comment.

If equations (3.3.9) are inconsistent, the desired
set of m specified eigenvalues cannot be obtained.
However, Davison's result [D}] shows that consistency
can always be achlieved by making small adjustments to
the specified A?, i=1, .. m.

Iff the cholce of the A% is such that all the elements
of P are non-zero, it follows, since the Ai are dlstinct,
that the last (n-m) columns of the coefficient matrix
in (3+.3.9) are linearly independent, and the vector
on the right hand side is independent of these columns.
Also, since W is non-singular and C has rank m, the first
m columns are a linearly independent set.

The condition for consistency may be stated in the
form that, if the augmented coefficient matrix 1s written,
echelon reduction of the columns of thls should annlhilate
the last column. This may be used as the basis of a
procedure for finding relationships amongst the Ag
which represent inadmisslible choices. Avoldance of choices
of ,%? satisfying these relationships will then guarantee
the admisslbility of the set of Ag chosen.
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The procedure is illustrated by application to
the simple third order system with two outputs, used

as an example in 3.2. In this example,

-1 0 0] 1
1 1 1
A= 0 -2 0 y B = 1{, C =
1 -1 1
0 0 -3 1

"The augmented coefficient matrix for this system,

assuming that )% and ;Ag are to be specified, is:

[ 1 ! w1 ; -%(1+ A%)(1+.)gi?; z(1+ Aﬁ)(1+ Ag)
10 =1 (o ,\‘})(24‘,)\3)51 ~2(2+ X (2+ )| (3.3.17)
11 e DG AD | 3G AD G AD)

which, on echelon reduction of the first row, becomes

9

(3¢3.18), overleaf.



1, 202+ X)(2+ AD)

(1r A (14 X5)

- (3.+.~X})(3+_ /\g)

(1+ X)) (1+ AD)

op o2z X AD)

(e AD G+ AD)

- 3+ XD+ AD)
(1+ )\%)(‘H )\g)

(2+ A3)(2+ A)
“50+ X (e AD)

(3.3.18)

301 XD AD)
|

~(2+ Ady(2+ A3)

(3+ AP (3+A3)

99
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It is clear that echelon reduction of the last
column by the first two columns will not be possible,
in this case, if the 2 X2 matrix in the bottom left hand

corner of the augmented coefficient matrix isisingular.'

This condition yields:

1+ )ﬁ' 3+

(3.3.180))
3 4 X} 1+ |

Thus, any choice of A% and ,Xg satisfying (3.3.18%w)
is inadmissible. We note that this condition isAsatisfied
by the choice ( A%=°'.'Ag=’4) which was used in the |
example.

It would be possible to use this method of check-~
ing for inadmissible choices, or a variation of it, in
which some of the Ag, i=1, .. m, are given numerical
values, for large systems. However, this would be
cumbersome, and a simple trial and error search ﬁrocedure'
probably would be satisfactory. The problem of avoiding
inadmissible choices of ,\g is a generél one, and has

been discussed by Davison [D31 .
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3.3,6 Numerical Example

The occurrence of inedmissible choiceé of eigen-
values 1is exceptional, and we. now demonstrate the use
of this method in the normél éﬁse, by application to
a sinmple example.

Given the system:

-6 =11 =6}

The matrix A has the q;genvalﬁesi

I

It is required that )$V= -4, A5 = -5. We wish
to £ind the feedbéck gain vector k' = fk1 k2]’ where
u' =-kTy, to give these eigenyalues, and to find the
coefficient of the residual characteristic equation

which, in this case, is of degree 1.

A matrix of column eigenvectors of A,isﬁ

11 3 2 %
W= |=1 =2 =3|,and W 1= |=3 -4 -1
%

2
1T 4 9 1 3



& =Wt = [-5
’ 2
which shows that the system is controllable,'énd .

cw = |0 =1 -2
2 5 10

which shows that the system is observable. Whence:

0o 2
.5 S P
-2 10

From (3.3.8),

o = (=1 +u)(=1+5)

p1 = =2
3(=1 + 2)(=1 + 3)

and )\lp1 = =1X =2 = 2

p____("2+’-l-)("2+5) _ _6

2 - 5

“5(=2 + 1)(=2 + 3)

and )épz=-2x-% = 1‘%

pr = = (3 +WI=3+5)
2(=3 + 1)(-3 + 2)

3

2
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Equation (3.3.9) then becomes:

which has the solution:
- = 4 = 22 '
k1 =L, k2 = 7g» 8, = 7§» 80 that ﬁhe residual
characteristic equation is:
ﬂ = )
8 + 9% = o, ’

and the third eigenvalue is - %%.-




3.3.7 Sensitivity of Unassigned Poles to Changes

in Assigned Poles. |
In the solution given in 3.3.3, the (n - m)

unassigned poles will often be found to be unsatis-

71-

factory, because they represent an unstable, slbw, '

or inadequately damped response.

The next step is to adjust the values of the

assigned poles, in order to improve the locations;‘
of the unassigned poles, with a view to arriving at
an acceptable compromise. In this process,; it is
useful to have some idea of the likely effect of:
changing each of thé assigned poles. In pafticular,
knowledge of. the diréctidn of the change, and the’
relative effects of changing different assigned '
poles would be helpful. This information is given,
for small changes, by the following rélationships.’
The partisl derivative of each element in the

vector of unknowns in (3.3.9) with respect to

variation of one of the assighed poles, ;Xg, 1€$q< m,

is given as the solution of the set of linear

equations (3.3.19).



[ASI1[& WTCTEPE/\P

¥
!
. -'&_m—1P _;.
!
|

n-m-1

a)\g
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(3.3.19)

The small changes in the unassigned eigenvalues,

A/\g, 1 = (m+1), ... n, corresponding to given small

changes in the coefficients of the residual character-

istic equation, Aao, ess Oa

n-m-1

» are given as the

solution of the following set of linear eguations:

T ad |
AAm+1 -

T

Aan_m_l
* (3.3.20)
e
J




The element in the ith row and the jth column

of the (n = m)X (n = m) coefficient matrix is tho

sun of all products of /\d WL /\n taken (1 - 1)
‘at a time, excluding Aﬁ, multiplied by (-1) .

Proof.

73.

Differentiating (3.3.9) partially with respect

to one of the assigned eigenvalues )\g, 1€ q<m, gives:

O.DP -AaP :
'DA@

a,\d i

[ T T-P J\P.. .-l —m-1P

.A

n—m- 1 9P

ya
bAq

s

Qq

.(3.3¢2{)



from which:

Cadl oPs _
( .}\q Aj) aXé Py
J=1y ee n

q_=1, ee I

(3.3.22)

.(3.3.23)

Equations (3.3.23), (3;3.21) and (3.3.9) then

give (3.3.19).

Equation (3.3.20) is obtained by writing the

coefficients of the residual characteristic equation i+

(<]

as the sums of the products of the unassigned eigen-

values, with appropriate signs, and finding the total

.differential of each of these expressions.
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3.3.,8 Comment.
The expression (3.3.19) for the partial

derivatives of the feedback gains and of the
coefficients of. the residual characteristic equatibn
is convenient to use, as, apart from the diagonal

matrix ( AZI -j\_), the two coefficient matfices

are already available from (3.3.9). The'kj,.j=j, ee W,

were obtained in the solution of (3.3.9), together
with the a;, 1=0, .. (n—m-1‘);-.-whioh vield .t_he ,\g,'
p=(m+1), .. n, required in (3.3.20). '

| The only part of (3.3.19) which has to be
altered to yield the sensitivities with respect to
a different assigned eigenvalue is the difgonal
matrix ( Ag; -A ).on the left hand side.

The expressions provide guidance in fhe difect-
ions in which to change the assigned eigenvalues; and
in the choice as to which gssigned.eigenvalues have
the greatest effect on thegﬁnassigned eigenvélues )
it is desired to influence.' |

It is important that the steps chosen in the

changes introduced in the assigned eigenvalues are

‘not so large that the derivatives fail to provide a

reasonably valid prediction. The step size can be

reduced if necessary, after initial trials. -

!
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The sensit.ivity‘. expression also gives guic}.anc‘e
in the adjustment of the assigned eigenvalues to effect .
a reduction in some -of the feedback gains, where it was
found that these were undesirabl.y -high. The effect of
any proposed chanée on the unassigned eigenvalues can

be seen at the same time.

23,9 Numerical Example. _
We now apply the sensitivity expressions (3.3.19)

and (3.3.20) to the example considered in 3.3.6. Here
we have: )g' = =4, ' . -

For changes in %, (3+3.19) becomes:

3 0o o] fo 2 -2]%]=[o 2] u
ax}
o -2 of |1 5 -2 k| |1 5 X
a i
23| ,
Lo o =1f |2 10 -3$]{%%] |-2 10]
- b d e .
.a)\ﬂ

from which: OJa 60
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For changes in )g, we have: .A% = =5, and (3,3.19)
is similar to the foregoing expression, except for the

diagonal matrix on the left hand side, which is:

-y, o 0] .
0 -3 0
L O Q -ZJ

= 5

a)g 19

In this case, equations (3.3.20) givef

AN = - aa

We conclude that the'unassigned eigenvalue 1is

from which: 'aao 20

three times more sensitive to changes in )& than to
changes in )g. Also, the signs are such that, if we
wish to move the unassigned eigenvalue to the lgft}
along the real axis, this can only be achieved by
moving either or both of the assigned eigenvalues

to the right. These conclusions are, of course,

only valid over a limited range.
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If we now reassign the eigenvalues es:

a a_ _
A = =3, end )y = -4, we obtain:

P1 = =1

2
P2 = 5
P3 = 0

- 2 L
15 5]k 5
_'-2 10 OJ aOJ OJ

from which:

k1=g’ k=%, a='2.

Hence, )% = =2,

It is interesting to see how th> prediction from
the sensitivity analysis compares with the exact resulf
found above. We have: |

245 QA a
a)g = a,\d s\t a,\da,\d

19 19 19
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and the new ‘Xg is given by:
A =-22-59 - _q.0.
- 19 19
It is seen that, in this case, thé agreement ié,

very good.

3.4 The Method of Fallside and Seraji Applied to the

Restricted Measurement Access Case.

This method will be discussed by appliéatioﬁ.tO'
the numerical example 3.3.6.' '
In this procedure, it is first necessary to
transform the state vector so that the two outputs
are the first two elements of the new state vector.

This is achieved by making the transformation:

z = [21 Z, 23] = Tx, where:

1 1 0
T= (1 0 1

o o 1
and:

o 1 =1 |
L T Y | (3.&51)'
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. ' _ _ [
go that the A, b and C matrices in the new co-ordinates

become:
B 2 : 1
'Ao = (=10 4L =10 ,f“ bo =. |1
_-11 '5‘-—11 R 1]
(1. o of .. " . |
Co = . S (3.’-‘-02)
0] 1 0 ST .

We next find the vectéf g(s) of the numerators
of the transfer functions from the scalar input to the

states. This 18 given by:

- , T
gls) 1 [31(8) g,(s) 33(8)] o
F{s) F{s) . _ .

(sI - A63-1bo~ . ; '  (3el4.3)

where F(s) is the open-loop characteristic polynomial.
Hence, '

.(sz+83+7; ‘
g(s) _ 1. |(s%-108+1)| (Bolselt)

F(s) §9+68%+115+6 (82-11S+6)

‘o . -
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- The third element of the vector in (3eltely) will
not be used, as feedback is taken only from z4 and Zgye
Then, with feedback -k'y = -k Cx = =k,z,-k,Z,, Wwe use

the relationship:
H(s) = F(s) + kqg,(8) + kygy(s),

where H(s) and F(s) are the closed-loop and open=loop

characteristic polynomial, respectively. Let:

H(s) = 80 + aés2 + a;s + a; , where the a3 are

fixed by the choice of closed-locp poles. Then,

3

8 +aész+a%s¥aé = 89+68%+118+6 + k1<82+88+7) +'k2(52-105+1),

Equating coefficients,
-
=6 + k, + k,

1

! 11 + 8k

o)
-
I

4 — 10k, (3e4445)

a' 6 + 7k1 + k2

from which we obtain:

3a, - a} - 13a;, + 71 = 0 | (3.4.6)
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Equation (3.u.6) represents a constraint on the,
coéfficients of the new characferistic polynomial. -
If this polynomial has as roots the assigned poles
-4 and -5, and the unassigned pole -/1, it may be

written:
8 + (9+f’)32 + (20+%ﬂ')s.+ 29p o (3.&.?)

Substituting from (3.&.7) intb (3.4.6) gives:

/;: 22 » 80 that the unassigned pole is at =~ 22 .

19 - 19

We then find:

y (20+9p ) l
a, = + = me——
1 ( 19
' 660
8, = 20/° =—;—9—

and, from (3.4.5), we obtain:v‘ ;
. g | |
= k o= e o
2 T g

These results agree with those obtalned in 3.3.6.V
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3.4.1 Comment.
Although the method of Fallside and Seraji is

fairly simple to apply in the case of systems of low
ordar, as in this example, the following points should
be noted.

(a) There is the initial transformation of the
state vector so that the first m elements of .the new state
vector are the m system outputs. |

(b) The formation of the vector g(s) would, in
larger systems, involve the use of the Leverrier
algorithm, or some similar process suitable for use
with a computer. .

(¢) There are, in general, (n-m) constraint
equations corresponding to (3.4.6), in the coefficients
of the new characteristic polynomial. These equations
1nvolvé sums of products of the assigned and‘unassigned
poles, and are not easy to interpret. In the example |
considered, there was a single unassigned pole, and

this fact simplified the solution.
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7.5 Multi-input Systems.

For é controllable, observable system wiﬁh
restricted measurement access, and more thah one input,
the result given in 3.3.3 for the single-input case
with distinct eigenvalues can be used as follows.

If the system has multiple eigenvaiues, almost
arbitrary feedback can be applied initially to give
distinct eigenvalues, as shown by Davison and Wang

[p2] . |

If the system is controllable through a single
input, this input can be used for the feedbacks.
Othéfwise, a vector « can be found such that (A,Bx )
is controllable. Wonham [W1] has shown that such a |
vector always exists for a controllable system in
whidh the A matrix is non-derogaﬁory. In fact, there.
is considerable freedom in choosing &, which can be
chosen in such a way as to provide desired relative
magnitudes of control signals applied td the various‘
inputs. This can be done, of course, even if the
system is controllable through a single input.

& can be chosen initially from this‘point of view,

and modified as necessary to achieve controllability.
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This corresponds to the 'relative tiéhtness' of control
referred to by Fallside and Seraji [F1] .

A procedure has been described recently by
Paraskevopoulos and Tzafestas [P51 . This ié.as folioWs:

Suppose, in the usual notation, thaf y = Cx,
where y is an m-vector, m<n, and rank C = m. We'seek
a non-singular mx m transformation S such that:

sc = [€: o] |

where 8 is non-singular, and the remaining elements of
SC are zero. It is claimed that such a transformation
always exists, but this claim is unjustified, since 6 ,
will be singular if the first m columns of C form a_singular
matrix. It would be possiblé fo obtain a non-singular
E by re-ordering the elements of the state vector, but
it is not, in general, possible to obtain the required ,
zero elements elsewhere in SC. The method proceeds as:

o
follows:

(1) Solve the eigenvalue problem using state vector
feedback, i.e., the inputJu = Fx _
| (2) Partition F as F'= [ﬁ;% y Where‘% has m
columns. Then the'gain matﬁix P of the output feedback
Py is obtained from: o .
- p=R[E]TT

. . a \
(3) The arbitpary'elements of F are then restricted
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by the equations involved ihw% = 0.

Even if the above steps can be carried out in special
cases, it is claimed only to permit m closed-loop poles,
to be pre-specified. Nothing can_be said about the remain-
ing (n-m) closed-loop poles. It is seen fﬁat the method
1s based on invalid essumptions and, in any case, 1t
is of little use to essigh some of the closed—lopb.poles3
if the remainder mey move to unacceptable locations.

In a numerical exambye, Ex. 5 of.(Pél., a system
is considered which has tw§ﬁinputs and two outputs,
and which is of order three:ilt is found that two of
the.eigenvalues can be ehanged to .desired values, whilst
the third eigenvalue remains‘unchanged. The reason given
is that two eigenvalues onlydcen be controlled because
the rank of the C matrix is two. This reason is incorrect.
In the particular example chosen, the third elgenvalue
1s unobservable, and_so could not be affeeted by output
feedback. :

It is interes{ing to note,‘aa has been peinted
out by E. J. Davison (in a verbal communication), that
a third order system with two independént inputs and two
independent outputs, which is controllable and obserﬁable,
can always have its eigenvalues made equai to, or .

arbitrarily close to, any prescribed set of values, by
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the use of cohstant feedback between output and input.
In the usual éase, therefore, one would expect to be
able to asslign all three eigenvalues in the example

given in [P5] .
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CHAPTER L.

POLE AND ZERO ASSIGNMENT BY STATE VECTOR FEEDBACK.

L.1 Introduction.

Although the pfoblem}of designing constant state
vector feedback to achieve desired closed-loop pole
assignment is now well understoéd; the question of B
designing such feedback to achieve desired trather'~
function zeros, as well :as poles, is currently the
subject of investigatiop. The problem of zer& assignment
is clearly very much more difficult than pole assignment.

Suppose it i; deéired to assign;all poles and the
zeros in gq scalar transfer functions by state vector
feedback applied to r inputs. To obtain a rough idea
of the problem, it may be assumed that each transfer
function has the maximﬁm of (n-1) zercs, so that the
total number of (zeros + poles) to be assigned is
q(n-1) + n. If state vector feedback is applied torthe
r inputs, the number of avallable feedback gain parameters
is nr, so that, to provide sufficient parameters fér
the zero-poie_assignment, it is required that:

nr = q(n=1) + n ' '
or  q < 2(r-1) ' (4ete1)
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For a é&stem of éppréciéﬁle order,'ﬁgT ~1, so
that the number of scalar traﬁéfer functions is limited
to about (r-1). Whilst there will be exceptional cases
in which it is possible to achieve assignment of all
zeros and poles in a greater number of scalar'transfér
functions than this argghent suggests, . it 1s élear tﬁat,
in general, fhere are enough feedback parametersvto
permit assignment of zeros and poles in only a very
limited number of ﬁranéfer functions. This fact was
pointed out, in a slightly different ﬁay, by Chen.[C}] .

It is apparent from the form of (u;j.1) that
systems of low order will give more favourable results.
than high order systems. Thus, the illustration of.
proposed techniques by appingtion to, say, second or
third order systenms, which is gquite common in the
litefature,vdoes not give.a true picture of what can
be expected in general. | | '

Simon and Mitter'[su] have considered the synthesis
of transfer function métrices with. invariant zeros,'by
making use of the property.of invariance of tranéfer
fuﬂction zeros in the presence of feedbaok to the input
concerned. This approach, however, is limited to systems
in.which each input controls only a subset of the system

eigenvalues, and the subsets are disjoint. The field
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of application thus is not ﬁé%y great.

Rosenbroch [RS] has investigated the allocation
of poles and zeros in the McNillan form of the transfer
function matrix, but his methoq ;s based on the choice
of the system output matrix C, a choice which is not
usually available to the designer. This approach, also,
seems to have limited gpplication. | ' |

Loscutoff, Schenz and Beyer [Lj] have studied
the effects of inqariqnt zeros in connection with
closed-1loop pole assignment. They haie provided means
for identifying invariant zeros, and have proposed to
overcome their undesirable effects, where these arise,
by cancellation.with poles, when they are in the left
half-plane. |

Power [bﬁ] has investiéated the éffect of state
variable feedback on the nuﬁerators of transfer functions,
but his approach is purely analytical, and makes no
contribution to the problem of zero assignment.

An inberestihg approach was used by Chen [Cﬁ]-,
yielding a seguential zefo—pole placement technique.
This provides a means for checking zero assignability,
and permits more than one input-output transfer function
to have'complete pole-zero assignment in some cases, .
but gives little guidance as to how to proceed in

those cases in which there is no solution.
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Furthermore, although the method is general iﬁ_principle,
the solution is found as @ systeh of linear algebraic
equations only in the case of a 2-input system. When
the number of inputs is greater‘than 2, the equations
become non-linear, and hence difficult to séﬁve.

Fallside and Seréji [Fj] have studied the problem
of pole and zero assignﬁent using unity-rank feedback.'
By this it is meant that a linear functional of the
state vector or of the outputjyector ié fbrmed, giving
a single scalar vafiable.AThié;écalar variable is them
applied to the systenm inputé’ﬁﬁrough different constant
gains. It has been shown that uﬁity—pank Teedback is
very restrictive and that, for an nth-order system,
with full state-vector feedback:applied to r inputs,
there arc only (r-1) degrees of frcedom available to
meet specifications other than pole asSignment.-Thus,
for a system with two inputs, only one zero dould be
assigned, together with.all the poles. If more zeros
are required to belassfgned, this cén:only be ‘achieved
at the expense of pole assignment. Fallside and Patel
CF&] have described a procedure for achieving an approx-
imation to a desired pole-zero. pattern. However, there
is no guarantee that a‘satisfactofy approximation

can be achieved in the genefal,casef
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Wang and.Desoer Eﬁd] have given a complete
solution to the problem of 'exact model ﬁatching',"
by which is meant finding a state feedback law'fer‘a
given system which makes the overall system transfer
function exactly equal to a given transfer function.
In this context, 'transfer function' means transfer
function matrix. Their procedure is in two stazges.
First, by using an rxr gain matrix between the‘extefnalv
inputs and the system inputs, an rxn state feedback -
gain maﬁrix, and a co~ordinate transformation, the‘
system is put in a speciél canonical form, in which
ﬁhe A matrix is quasi-diagonal, with each disgonal
block of companion form, but with all eigenvalues zero.

In the second step, a further rx r input gain matrix

‘and rxn state feedback gain matrix are found, so as

to give the desired transfer function matching, where
this is possible. The required laws are giveh-as the
solution of a matrix equation, the conditions for
solvability of which give the conditions for the
existence of a solution of the problem.

The method is of considerable interest, but it
is subject to limitations similarAto those given in
(Lie1e1)s The introduction of the additioﬁnl dosigh

freedom represented by the rXr input gain matrix
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changes the condition on q to:

5 | |
ag 2 -1+ %) | (Leta2)

For a system of low order, the introduction
of the input gain matrix may permit an appreciable
‘increase in g. For a high order system with-a relatively
small number of inputs, the increase is not likely to
be very great. |

The method of Wang and Desoer does not give any
" clear guidance as to how to proceed when the conditions
for solvability are not satisfied, and the ihtroduction
of the various gain matrices and the co-ordinate
transformations tend to make the problem rather obscure,
in such cases.

Moore and Silverman M15].have approached the
exact model matching problem in a different way
without using initial co-ordinate transférmations;
They have also considered ‘'dynamic state feedback',
by which is meant feedback obtained from the original-
system augmented by the addition of a number of
integrators, and have gilven a set of nocessnry and
sufficient conditions for one system to be transfer '
function equivalent via such dynamic state feedback

to a specified model system.,
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In this thesis, the pole-zero assignment problem
considered is that of finding state vector feedback
to prévide completely specified poles and zeros in
a single scalar, input-output transfer function. It

is clear from the foregoing discussion that, in general;

- the possibilities of zero assignmeﬁt in high order .

systems with a relatively small number o? inputs are
rather limited. There are many practlcal cases in
which the number of inputs available forvmanipulation
is small, and where one input-output transfer function
is of major importance, whilst other input—output
transfer functions are of secondary importanca. The.
most unfavourable case of this sort arises whére
there are just two inputs, the desired transfer function -
between one of these inputs and some output belng
speclflied. The second 1lnput is avallable for'the
purpose of applying feedback so as to permit the
numerator of the transfer function from the first
input to be changed. It is this case which is4consider¢d.
Two methods are describéd; the first of which
permits the results of 'modal control' theory to be
applied directly to the problem of assigning transfer
function zeros. The second methodvis baséd on the i

v 0
transformation of the system to the companion form
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and the formation of a set of.linear equations from
which the coefflicients of the charactéristic polynomial
corresponding to the desired transfer function numerétor
coefficients can be found. State vector feedback can
then bo calculated to provide this set of characteristic
polynomial coefficients when applied to thé second
input. In both methods; the second stage is to'find
the étate'vector feedback which, when applied t6 the
first input, will give the desired closedéloqp poles;
This feedback does not affect the numerator of'the
transfer function, which was established.in the first
stage.. |

It is well known that the numerator of a transfer
function is unaffected by state Qéctor feedback applied
to the input to which the transfer function.applies.
However, a simple proof of this is'given in thé next
section, as the result is used in the pole-zexro
assignment procedures which follow.

L.2 Proof of Invariance of Transfer Function Numerator.

- Given a linear systém described b& the equation:
% = Ax + Bu, where B = [b1i br'} ,
let state vector feedback bel‘. ;:}'plied to the first
input, so that the equationAbeQQmes: ‘

x = (A + b1kT)x + Bu;' ) (4.2.1)
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The input-state transfer functions are obtained by
taking the Laplace Transform of (4.2.1), with zero
initiallconditions, giving:

(sI - A& - bK)E = BT . (4.2.2)
The transfoxr function Lrom tho Lirot input_is'obtainod
from:

(sI - A -b.X)% = b, (4.2.3)
Each element of X may be found by using Cramer's
rule, as the ratio of two determinants. The denominator
determinant is det(sI - A - b1k¢), and the numerator
determinant corresponding to Ei is the same determinant,
but with the ith column replaced by b1. It is obwvious
that, in this numerator determinént, all the remaining
elements of kT éan be removed by subtracting suitable
multiples of the ith column from all the othep columns,
without changing the value of the determinant. Hence,
the transfer function numerator is invariantwith
respect to k?. |

It is clear that the removal of the reméining
elements of kT would not haié been possible if the |
transfer function considered'hgd relaﬁed to an input
other than that to which the;féedback was applied.

. Use of both of these'fesﬁlts is made in the

pole~zero assignment techniques to be described.

———— e
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LL.3 Pole and Zero Assipgnment by State Vector Feedback.

L.3.1 Introduction.

A procedure is now descfibed which enables
specified poles and zeros of a scalar transfer function
of a controllable, observable, linear system to be
obtained by using state vector feedback to'two inputs.
The number of zeros is egual to the number of zeros
in the transfer function, before feedback is,applied,
from one input or the‘other to the output concerned,
whichever is the greater. Those zeros which can be
changed, and those which cannot, are identified.

The former can be made equai'ﬁo, or arbitrarily close
to, any assigned vélues, andigﬁe poles can be assigned
arbitrarily. | ‘.fl

This procedure is descrlbed in [Mé} and [M12]

L.3.2 System Descrivtion.

A linear time-invariant system is described

by the egquations:

x = Ax + Bu | (L.3.1)
v = cx (4e3.2)
where x is an nx 1 staté vector, u = [ 2]

a 2X 1 input vector, and y is a scalar output.
B = [b1:b%] , where the n-vectors b1 and b2 are

: A
‘linearly independent, and the system is sompletely

controllable through bzlalone..This latter condition
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can alwvays be met by the use,'if*necessary, of suitable
feedback [Du] , since (A,B) is controllable. cT is
a constant measurement vector.

L,3,3 Problem Statement.

The problem is to find the feedback veltors k?

and ké such that the syétem:

R [b1:=b2] k?i )X + Bu ; ¥y = oTx, (L.3.3)

T
5

has a transfer function betWe§§~y and u, with, as far

as possible, specified poiésféﬁg ZEeros.

Lh.3.4 Procedure.

Two sequences of scaiars; Sy and 82,'are formed:

T T 1

= C b1, c .Ab1’ CTA2b1’ LI 4 ,cTAp- b1 and

T,2

T AD

L= o , ofa%hy

T
S b2, c Ab2, c

2, L IR ] 2

where, in each case, the sequence terminateé at the
first non-zero term. The method to be described requires
that g2p. If this bon@ition is not‘sa;isfied, a
proportion h of the input a, is added %o u,, SO that

b, becomes (b1 + hbz). This will make g = p. It

will, from now on, be assumed that this has been done,'-

if necessary, and that b1.has been changed accordingly.

The procedure is in two stages.
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Stage 1. ) , . l_

°
-
k; is first determined so as to locate the zeros.
m
L

Let k.l

obtaiped by Brockett [BZ], the zeros of. the transfer

be a zero vector.at this stage. Using a result

function relating y to u, are eigenvalues of the

matrix:
b,e (A + bok;) e
I - ; - 2 , (B ¥ pkp) (Le3.l)
b= : . . :
c (A + b2k2) b,

It is proved in 4.3.8 that, since g2p,

1)

cT(A + 'bzkg)p-‘1 = cTAp-1 | (4.3.5) .
The matrix (4.3.4) may thus be written: i
A+ b kT . (4e3.6)
e} o2 . o :
where: ,
{
b1cTAP_1 | '
Ao = I = ——— A
cTAp_1b1 ,
(4.3.7)
b ,claP
b = ] =« —m—— (D
o} 2
cTaP~y :

‘The pair (Ao,bo) is checked for controllability,
using any method that permits the identification of

the uncontrollable eigenvalues. Kalman's canonical
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decomposition method is guitable, or Gilbert's method,
extended, if necessary, to the case of multiple
eigenvalues. It is proved in 4.3.9 that AO has the
eigenvalue O 6f multiplicity at least p, and it is
further proved in 4.3.10 that the eigenvalue O of .
multiplicity p is uncontrollable through bo' The |
remaining (n-p) eigenvalues of (L4.3.6) are the zeros
of the transfer function. Of these, any that are
uncontrollable through bO cannot be changed, whilst
all the rest may be assigned arbitrarily by using
modal control theory [MT] ,[Rzl , to determine kg.
The eigenvalue O of multiplicity » has no physical
significance, and arises only because the degree 6f
the numerator of the transfer function is (n=p).
 Stage 2.

The system poles will have been changed by ﬁhe
application of feedback kg, and k? is now determined
+ 50 as to locate the poles as regquired. It is first

necessary to check for controllability the pair:

((8 + byk3),b,) (4.3.8)
If this test is satisfied, k? may be found, by again
using modal control theory {M1] ’ [RZ] s to move the
poies to any desired locations. As was shown in 4.2,

the application of the feedback k?’will have no
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effect on the zerbs which wefésestablished in Stage 1,
because thils feedback is:abpliéd to the‘input from
which the transfer function is taken.

If the test for controllablllty of (u 3.8)
falls, controllability can be achieved by making
small adjustments to kg,.which meéns that the zeros )
in Stage 1 can now be made only arbitrarily élosé
to assigned values, and not necessarily'equal to them.
This statement is Justified by the following theoren.

L.3.5 Theorem. .‘

If the pair (A,b2) is.controllable, and b, £ 0,
a &ector kT can be chosen, with elements arbitrarily
close to those of a given vector kg, such that
(A + b k )b 1) is controllable.
Proof. .
Applying to this case a lemma of Heymann [H11 ’
there exists a vector k' such that ((A + bsz),b1)v
is controllable. Let kT be so chqsen. Now Qhange the
first element of kT, noting that there is a finite
number of vaiues of the change which givé uncontrollability.
We may. therefore, choose a value which makes this N
element either equal to or arbitrarlily close ﬁo the -
first element of kg, whilst preserving controllabiiity.

Repetition of this process for each element of k? in
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turn, retaining the changed value at each step,

completes the proof.

L.3.6 Coefficient of sP®P in the Numerator Polynomial.

The coefficient of the highest power of s, s" P,

in the transfer function numerator polynomial, is
c"a?"'b,, and this is independent of kj and kj, so

that this coefficient cannot be assigned by the state

vector feedback.

Proof.

Let the characteristic polynomial of

U\ T .
(A + bk + b2k2) be:

n - n-1
8" + d1s + ees + dn—1

Let the adjoint of this matrix be:

s + d (4.3.9)

D(s) = sPlp . s, _oDq + ee. + sD

o) n-2

+ D4 (4.3.10)
where the D;j are nXn constant matrices. '

The matrix coefficient of s* ? in the transfer

function numerator polynomial is then:

T

From the Faddeev-Leverrier algorithm [Fé}[z1]_,

D =1I
o
_ T T ‘
D1 =D (A + bkl + b2k2) + d1I
_ T T _
D, = D1(A + bky + b2k2) +‘d2;
S T T2 ' T T
= (A + b1k1 + b2k2) +‘d1(A +vb1k1 + pzkz) + d,I

and so on.
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Continuing in this way gives: _
_ T T\p-1 T T\p=2 -
D,_q = (A + bk + b2k2) + d1(A + boky o+ b k) + e
see dp_1I ' (L‘-'-3012) )
It then follows from (4.3.12), and the rules
of formation of the seguences S1 and 82 that the .

T T,p-1 .
Dp_1b1, is c”™A b,. This
completes the proof.

L.3.,7 Numerical Examole.

- The procedure is illuétrated by a simple example,

in whiech:
[1 2 0 0] E L
. lo 2 o o 1 1
A= 15.3-1 0o|l3 Pq°= ol 3 P2= o
ho 5 0 -BJL LGl .B.L

el = [1-1 1 -1]

The transfer function between y and u, is to have -
zeros at -2 and -L, and poles at —1.5, -2.5, =3.5 and
-L.5. |

Forming the sequences 81 and Sé reveals that
p=agq=2, so that there will be two zeros.

Applying (L.3.7) to this case gives:
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-2 -10 -3 27] . [=11]
-1 -2 -1 9f -l
8= 1 0 -3 -1 ol P | o0
-2 3 -2 15] -7,

AO has the eigenvalues 0, 0, .0.101 and 9.899, of which
only the last two are controllable through bo. These »
are the zeros of the transfer function without feedback.
Using modal control theor& to move these eigenvalues-

to -2 and -4 gives:

T
2

k5 = [—ﬁ.S 8.125 0 0| , and (A +'b2kg) becomes:

-5 34.5 0 0]
-1.5 10.125 O 0
o =3 =1 0
4.5 29.375 0 -3

This matrix has the eigenvalues 4.8952, 0.2298,
=1 and =3, all of which are controllable through b1.
Again using modal control theory to move these eigenvalues

to =1.5, =2.5, =3.5 and -4.5 gives:

k? = [-6.1&6 6.433 -2.188 —O.560]

This completes the procedure.

L.3.8 Proof of (4.3.5). .

’

By considering vectors of the form:

éT(A + bok ) = cTA + C b k = cTA, i ch2 =0,
cT(a + b2k2)2 - ¢ A(A + byls) = oTA% c*Abzkg"= eTa?,
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3

if ¢™b, = 0 and c'Ab, = O, and so on, it is easily:

seen that, since:

T,i ) i '
¢*A', = 0, for i =0, ... (g-2),

2
e"(A + vyk)t = cTAl, for 1= 0, ... (g=1).  (4.3.13)

Bquation (4.3.5) follows, since g2 D.

4.3.9 Proof that AO has the Eigenvalue O of Multiplicity

At Least p.

The eigenvalues of Ao'afe the roots of the

characteristic.equation:.

b1cTAp : -
sI = A + —g—=7 = 0 (Le3.1k)-
' cAY b :
; >
which may be written:
l l (sI -'A)"‘b1cTAp |
cTAp-1b1

Using the result, proved in LM1] s that
[I + ngI = (1 + ng), where £ and gT are column

and row vectors, respectively, the eqguation becomes:

cTAP(sI - A)'1b1 } .
sI - Al 14 — : 2o,
. cTAp 1b1

Setting s = O makes the expression in brackets
zero, so that O is a root. Differentiating the expression

in brackets with respect to s, and setting s = O, makes
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this expression zero, because cTAp—‘?b1 = O..Repcaﬁing,
this operation (p-1) times, and remembering that
o®a'b, = 0, for 1 =0, ... (9-2), shows that the
expression in brackets has the root Q of:multiplicity

Py, s0 that AO has the eigenvalue O of multiplicity

at least p.

4.3.10 Proof that, in (4.3.6), the Eigenvalue O of

lultiolicity o is Uncontrollable Through b

The matrix (4.3.4) is of the same form as A,
except that A is replaced by (A + bzkg). It follows

from (4.3.13), and from the rules of formation of

the seﬁuences S1 and 82, that the values of D and o}

-are unchanged if, in these sequences, A 1is replaced

T
by (A + b K,

u.3.9; the matrix (4.3.4), and hence (L.3.6), has the
' T
2 *

). Thus, by the same argument as in

eigenvalue O of multiplicity at least p, for all k
This statement implies that the eigenvalue O of multi-
plicity p is uncontrollable through bo"

L.3.11 Conclusion.

The procedure described permits the identification
of those zeros which can be changed, and those which
cannot. All the zeros that can be changed can be made
equal to, or arbitrarily close to, any assigned values,_
and the poles can be assigned arbitrarily, by using

the established techniques of modal control.
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It follows from these results, and from 4.3.6,
that the transfer function is completely determined .
on completion of the procedure described.

L.y Transfer Function Synthesis by State Vector Feedback.

L.,4,1 Introduction.

A procedure is described for the design of statg
vector feedback for a time—in?ariant linear system
to give a desired scalar input—outpﬁt transfer function.
Any constraints on the design are revealed, and
means are provided for checking all other transfer [
functigns. The problem qonsidered.is the det;rmination
of the state vector feedbacks needed to give a desired
scalar transfer function bet@een one input and one
outpﬁt of a system which has two inpdts. The number
of inputs available often is'iimited in practical
cases, and so- the system cdnsiaered may be regarded
as representing the most ﬁhfévaﬁrable multi-inout
case. The procedure gives éuidance at each~stage on
any constraints on the design. Means are provided for
monitoring all other input/outpﬁt'and input/state

transfer functions during the design process..

L.h.2 System Descrintiorn.

| A linear system is described by thé equations:
= Ax + Bu . o (Lebet)
¥ = 0x | ‘ i(kee2)

e
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where X is an nx 1 state vector,

u = u1 is a 2x 1 input vector,

y =¥, is an mx 1 out;pu“*‘t vector,

S P ] L  (baka3) °
and © = |7 o (Lolials)

The system is observable, andis completely controllable
through b, alone. The n-v‘éc‘_:t.t)r:"si'Q,l and b, are linearly
independent. -

Note. ,

If (A,B) is controllable, (A+BK','§2') can be made to be
controllable by the use of suiteble initial f'eédback“

x [ou] . | :

L.L.3 Pro}_::lem Statement.

— H

The problem is to find the feedback vectors _l_c
. i » .

and k, such that the system:

Ve .

= (A + [91592] Er‘g )X + Bu, ¥y =Cx, (L4e5)
] T .

X5
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has a transfer function relating y4(s) to u.(s),

given by:
n-1 n-2 S
P,.q8 + D08 + oo+ DyS + Dy (.16
n 1 n-1 . SRR Bt t
s + a;_,8S + oo + a¢§ + ag

in which the py, J =0, «ev (n-2), and the

ai, i=0, «es 5, (n=-1), are to be given preassigned
values,~as far as possible. The value of p, _, is
T ' ‘ '

c1b1, and cannot be assigned.

L.y Preliminary Results.

A system of the type represented in (L4.4.1),
(4.4.2) has a transfer function relating an input
corresponding to a general célumn b of B to an output

m
. T
corresponding to a general row ¢~ of C given by:

ET(sI - a)" 'y , (Uelsa7)
_. adj(sI - A)
where (sI - A) L. _ (4elya8)
| det(sI - A)
Now, adj(sl - A) = Isn;1 + Gn_zsn—2 toees + Gus + Gy
(hohe9)

where the Gj can always be computed in a routine

manner, e.g., by the Faddeev-Leverrier algorithm,

~but, in the case in which the A matrix is. in the .

companion form, A_, the Gj have a particularly simple
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form, so that they can be written down. The formulae .

for writing these matrices are given'in L.bh.6.

The matrix A  for a fifth order system is of the form:

[0 1 0 0 O

O O 1 0 O

A, = O 0 0 1 O

O 0 0 0 1
rao-a1-a2-a3~aul,

-(u.u;1o)

and the Gj matrices are given in full for this case

in equations (L4.l4e11).

GLI-=I
' &, 1.0 O 0]
0 8, 1 0 O
G3 = O O au 1 O
O 0 O au 1
.;ao-a1-a2-a3 O-
] a3 ah 1 0 O]
o 83 au 1 O
G2 = 0O O axy ah 1
-a —a, "8, 0O O
_O —a,~a ~a, OJ
raz az @ | 0]
0 a5 a3 a, 1
G1 = |-a ", O 0 0
0 —ag=ay O O
_O 0 ~8,78 OJ

[ a4 8, az au

-8, O 0 O
0 -a, Q 0
0O O -8, 0}

O O O O -

_O 0 O -,

(Lolte11)
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From (L.4.7) and. (k.4.9), the coefficient
p. of s in the transfer'function_numerator polynomial
is given by: |
D, = e’ 2 (Lolye12)
This relationship enables all the coefficients to
be found for all the transfer functions, by the approp-
riate choice of gT, b and Gq. Where the A matrix
is in the companion form,-it is clear that the Gj’
"are functions of the a;, the coefficients of the
characteristic polynomial of the A matrix. It is
then possible to formulate a set of equations from
which the a; can be found so'as to give desired
coefficients pq in a given transfer funétion-numerator
polynomial. These equations are set out in full in

(4ol4e13), for a system of fifth order, where:

ET = [C,l 02 es e 05]

_ ; 1T
and b = [01 by e b5] .
In L4.4.7, formulae are given which enable the
equations to be written down for a system of ény

order.



201b]+c2b2+c3b3+cubu) -c5bLL —c5b3 —c5b2 ~Cgb |
(c1b2+c2b3+33§u) (c1b1+02b2+03b3) ~(Chb3+c5bh) —(cub2+c5b3) —(cub1+c5b2)
(c153+02bu) (c1b2+02b3) (c1b1+c2b2) —(c3b2¥cub3+c5bu) —(c3b1+cub2+c5b3) .
¢ 4by, o c,bz c b, ' c:1b.1 ;(02b1+03b2+cub3+c5bu)-
(1 0 o o][fes] (e, ey o5 ¢ |[5,]
O 1.0 0jfp, 0 ¢, CpCxg. bSJ
= - . (beba13)
0 o 1 O o 0 0 ¢, o bu e e
' o 0 0o 1j|p, 0 0 0 ey |bs]

el
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L.b.5 Procedure.

The design proceeds in two stages. In the first
stage, the feedback wvector gg is.found, so as to give
the desired numerator polynomial to the transfer
function: . e

23(51 - A - yzgg)_jp1 _ (Golpely)
This feedback changes the.system eigehvalues to some
new set. In the second stagé, the feedback vector EE
is found so as to changeEthqaeigenvalues to the desired
set corresponding to thé réé&ired system poles.
. Since the system (4.4:&), (4.4.2) is controllable

through b,, it can be transformed into the companion

2’

form by the state vector transformation z = Tx, so that

the 32 vector becomes, in the z-space, sz = &5 where

e_ is a unit column n-vector with a 1 in the last row,

and zeros elsewhere. Ih this form, the feedback vector

ggT—1 can be written dowvn to change the a;, in the last
row of the Ac matrix to any desired values._

T Tr—1

Let ¢ = 21T— » and b = Tby, in equations
(Lelte13). IT these equations are consi“tent, they may
be solved for the a; to give the desirea pq. Otherwise;
row reduction‘of these aquations will provide a set of.

linear constraints on the pq which must be satisfied to

give a solution.
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The right hand side of equations (Le4e13) has
been arranged in such a way that, if the row reduction
operations on the left hand side coefficient matrix are
carried across to the right hand side also, each zero
row on the left hand side on completioﬁ of the row‘
reduction yields a linear condition on the pq.

E? is now found to give the deéired closed-loop
voles. As has been shown in L.2, the application of this.

feedback will not disturb the numerator polynomials

relating to this input, which were obtained in the firsﬁ

stage. It is first necessary to check for controllability _ ”

the pair ((A + byl),b,). If this test is satisfied,
gf may be found so as to give any preassigned set of
closed~loop poles. Otherwise, small changes in gg,
and hence in the pq, must be introduced, so as tp
achieve controllability. The validity of this procedure -
has been established in L.3.5. |

The determination of g? may be achieved by
transforming the matrix (A + ngg) to the companién
form, by a suitable co-ordinate transformafion, S0

that the vector b, becomes gn. Thus, the denominator

coefficients ai are assigned as desired.’
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L.l.6 Rules for Writing the Gj'Matrices. R i
For j<(n-1),

The Cfirst (j + 1) elements on the main diagonal are
Bypq7 and the rest_are ze;o;t

The Tirst (j + 1) elements oﬁ‘ the i'th diagonal above
the main disdgonal are aa+ +1,’and the rest are zeros.
For (J + i + 1);>n, all dlagonal entries are zero.

The last (n - 3§ - 1) elements on the i'th dlagonal

below the main diagonal are -a 4+ and the rest

J=i+
are zeros.

For (j - i+ 1)<0, all the diagonal entriea are ZEero.

L.4.7 Rules for Writing the Linear Rquation Set.

The general term in the i'th row and the j'th
column in the coefficgent matrix on the left hand éide
of the equations genéralised from (Lilhei3) iss
i

cpbp+i-j for j€i, and:

INAE

j . pPp+i-j  for 3Hi.
Pp= n-=i+1
The formation of the generalised right hand side

will be clear from equations (L.h.13).

B e ST
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L.h.3 Derivation of the Formulae for the Gj and

the Linear Eguation Set.

The formulae for the Gj may be derived by ap?lying
the Faddeev-Leverrier algorithm [21] to the case in
which the A matrix is of the companion form, Ac}
According to this algorithm,

Gj = Gj+1Ac + aj¥1I

and G = I (4o 15)

n-1
Now,

AC=H"'§n[ao a1 "0 an_,l]
where- H is a matrix with 1's in the first diagonal
above the main diagonal, and zeros elsewhere. &, is
a unit column n-vector, with a 1 in the laét row, and
zeros elsewhere. : ' .

Hence, in (L4.4.15), _

Gj = Gj+1H - Gj+1§nljao By eee an_1] + aj+1I (4.4.16)

The Gj are obtained by starting with j = (n-2), and
working downwards in J. The effect of post-multiplying
Gj+1 by H is to shift all columns one ﬁiace to the right,
and to make the first column zero. Let the rosulting

matrix be -T-:J G.

3+1§n is the last column of ij1, which

is found to be §j+2’ a unit column n-vector with a 1

in the (J+1)th row, and zeros elsewhore. Hence, the
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vector [go 51 .. an_i]‘is subtracted from‘thé (§+2)th
oV of'ﬁj, to form'aj,.say. The addition of 8441 to
each diagonal eleﬁent;of Ej then gives Gj' The formatién
of the G, matrices will be understood from this, and
from a consideration of the matrices in (L.L4.11).
The formulae in Lw.lw6 are derived from this.

The linear eguation set is derived by forming
the coefficient Qf each power of s in the transfer function
numerator polynomia}, by usiﬁg g?, Q_éﬁd the Gj’ equating
this to the desired coefficient, and performing simple
algebraic manipulation. The formulae in L.4.7 are’
obtained by considering the generalisation of the
process of formation of the equations (L.le13).

L.4.9 Numerical Example.

The procedure is illustrated by application to

the same numerical example as was used in 4.3.7.

Here,
1 2 0 O] 3] ]
0o 2 0 0 1 1
A= 0-3-1 0|3 B1= Jo|i Ra= o
0 5 0 -3 2 3
o S L p

T _
ey = [1-1 1 -]
-The transfer function between y and u, is to have

zeros at -2 and -4, and poles at -1.5, #*2.5, =3.5 and ~-L.5.
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Ve Cirst note that P =-9?gi = 0, so that there arc
at most two zeros. The transformation matrix T to

give the companion form representation of A, p2 is:

-15 69 20 -3

1 {-15 33 =20 9

24,0 -15 141 20 =27
-15 57 =20 81|

and:
-18 =12 10 4]
T-1 - -3 =1 3 1
9 -6 =3 0
1 =3 -1 3
whence: 0.075
TH1 - 0.025
0.175
0.725

and Q?T—1 = [-7 -4 5 O]

The linear equation set corresponding to (L.4.13) is

now formed as:

O 0 0 O az 1 0 O P,
-2.625 =0.875 ~0.125 =0.375 a5 = {0 1 O Dy
-1.225 -0.175 -0.525 0.925 a4 o 0 1 D,

Lo

1.Q
-11-375
-5.075

mhe flrst row gives the constraint Py, = 1. We require p1 =6,

I% is unnecessary to perform the row reduction in this
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simple cnoae, as the two romaining equatlons obviounly
are consistent. The asolution is non—uniquo,.und 80
additional specifications can be included. In'thié
case, however, Tor the.purposé of permitting direct.
comparison with the method of L.3, two of the
eigenvalues of (A + gzgg) will be specified as =1

and +3. This gives the following set of equations:

1 -1 | -1 '33' 1
27 -9 3 -1 as| - 81 .
2.625 0.875 0.125 0.375| |a, =17.375
1.225 0.175 0.525 -0.925 Lao -13.075
- The solution is:

{33 -1.125 , v i
a, | = -16.375 o ‘0
a, -10.875 . '
ao 3-575

Without feedback, the coefficiemts of the characteristic

polynomial of A are: 1, =7, ~1 and 6. Hence,

=2
whence:

G171 = [(-3.375+6) (10.875+1) (16.375-7) (1.125+1)]
ks = {—1.5 8.125 0 o]

This result agrees with that obtained in 4.3.7.

The second stage of the procedure, to locate the

poles, is the same as in 4.3.7.

2
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" U.h.10 Conclusion.

The procedure deséribed giﬁes a general method
of approach for determining the state vector feedbacks
requireq for the synthesis of the scalar'transfer
function. It is clearly closely related to the
method of CWh] , but gives more information at eéch
stage of the design process. Consiraints on the design
are revealed, and can be allowed for at the appropriate
stage. By the use of the relations of the form (4.4.7)
and (4.4.9), the coefficients of the numerator |
polynomials of any transfer functions can be examined.
Where these transfer functions relate to the input u1,
the numerators will not change when the feedback'gﬁ is
applied. The numerators‘of transfer functions relating
to other inputs in general will change when ES is applied.
Hence, (L.4.7) and (4.4.9) must be used accqrdingly.

Although the solution of the linear eguation set
is generally non-unique, as in the numerical exaﬁpie
considered, the scope for including additional specified
requirements is rather limited. It is possible to obtain
another linear equation set corresponding to another
row of C, to permit specification of the transfer
function to another output, from the same input, and to

seek a solution of both sets of equations. In this case,
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linearity is preserved. !/ith low;order systems,
this may sometimes permit'the sgeéification of two or
possibly more scalar transfer functions from,the.same‘
input, depending upon tlie orders of thé numerators of
the transfer functions.

The procedurq'haf been described in £H13] .

L.5 General Comments. , C

Either of the procedures 4.3 or L.L gives a
complete solution to the problem of designing state
vector feedbaqk for a system with two inputs, to
provide, as Tar as possibie, a specified scalar input-
output transfer function. The first method achieves this
by making dirsct use.of the technique of medal controi.
The problem of 1oc§ting'zeros is transformed into_a
oroblem of 1ocating the eigenvalues of a related ﬁatrix.

The procedure of L.4 reduces the zero assignment
problem to the solution of a set of linear equations.
The consistency of ﬁhese equations provides rull
information regarding any constraints'on the choice
of coefricients of the transfer function numerator 
polynomial. |

The non-unigueness of the solution appears in
4.3 where only the controllable eigenvalues of the

matrix used to determine the zeros are assigned by
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means of an n-vector of state feedback gains.

In 4.4, the non-uniqueness appears more directly
in the solution of the linear cauation sect, and permits
the consideration of other linear egquation sets for
simul taneous solution, if desired, to enable other
| transfer functions to be specified also. The method
of u.h.also provides convenient means fof checking
all transfer function numerators, using information

available in the procedure.
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CHAPTER 5H. -

STATE OBSERVERS.

5.1 Introduction.

The pole assignment and pole-zero assignment
procedures described in the preceding chapters nearly
all require feedback of specified linear functionals .
of the system state vector. In most practical cases,
the number of available outputs is less than the
system order, so that it 1s not possible to form any
arbltrarily chosen linear functional of thé state

vector as a linear functional of the system outputs..

' One solution to this problem for deterministic systems

is provided by the state observer, which is a linear
dynamic system driven from the inputs and outputs of
the system under consideration, so as to permit the
construction of an estimate of the system}state vector
continuously in time. .

5¢1.1 Observer Proverties.

The arrangement of an observer is shown in Fig. 5.1.

The system is described by the equations:

X

Ax + Bu

li



where x, y and u are vectors of dimension n$ m and r,
respectively, representing the system stétes, outputs

and inputs.-

The state observer is described by the equation:

where z is the observer state vector, of dimension 1.
The matrices A, B, C D, K and G are constant, and of

appropriate dimensions.

Y

Fig. 5.1.

124.
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The theory of state dbser#ers was given by
Luenberger [L1][Lu][L5] and the following'brief treatment .
is included for completeness. - |

Combiﬁing (5.1.1) and (5.1;2) gives the.overall'

system differential equation as:

d- b R e

Taking the Laplace tfansform of (5.1.3), and

denoting the Laplace transform of a time variable by a-

-

bar,. gives the solution as: -

X ; (sIn-A):  Q f1,g§9) . (sInﬁA) 0 ]~ %]ﬁ
zZ -KC (sIl-D) j”:z(Q) ~KC (sIl—D) G
SRR | (5.1.4)
whence: - : '
% = (sI_~A)"'x(0) + (sI_-a)"'B® (5.1.5)
and:

= (sI;-D)7'kG(sI_-8)"'x(0) + (sI,-D)7'z(0)
+ (sIlFD)_1KC(sIﬁ-A)-1Bﬁ + (sIIQD)-1Gﬁ (5.1.6)

waf
1

Now let G = TB, where T satisfies the matrix equation:
TA - DT = KC | (541.7)

and 1ét z(0) = Tx(é) +}w(o) V | ; ' (5;1.8)

G can be chosen by the designer, and (5.1.8) introduces

no loss of generality.
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Substituting for G, KC and z(0) in (5.i.6) gives:
(s1,-D)~(2a-DT) (sI-4) " 'x(0) + (sI;-D)7 (Tx(0)+w(0))
¥ (sIl—D)-1(TA—DT)(sIn—A)—1Bﬁ - (sIl-D)—1TBE (5.1.9)

(sI,-D)”'w(0) + (sI -D)‘1(TA;DT)(szn-A)'1x(o)
+ (sI D)~ T(SI -A)(SI ~-A)" k(O)
+ (8I,-D)” 1(TA-DT)(sI -A)"'B% + (sI,-D)" (st -A)(sI -A) E:h 3

(5 1+10)
(sIl-D) w(O) + (sI ~-D)~ 1(TA-DT+Ts-TA)(sI -A) x(0)
+ (sIl-D) 1(TA-DT+Ts TA)(sInaA) B . (5. 1. 11)

(s1;-D)"'w(0) + T(sI_-A)""x(0) + T(sI -A)71BE (5.1.12)
(s1,-D)"'w(0) + TR o (5.1.13)
(5.1.5). |
If the observer is stable, i.e., D represents a

ie system, the time response corresponding to the first
of (5.1.13) will represent a decaying response to

initial 'mismatch' w(0O). When this response has

decayed,..there remains:

z
due
Lapl

beco

The

= TX, and s0 z = Tx ~ _ (51014)
to the linearity and uniqueness properties of the

ace transform. In the time domain, equation (5.1.13)

mes:
7 = eth(O) + Tx ' ' - (5.1415)
equation (5.1.15) expresses a fundamental property
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of the observer, which is.that, after any initial mismatch
has decayed, the state vector of the observer becomes and
remains a fixed linear transformation of the system state

%

vector, for all system inputs.

A question arises as to whether the matrix T can
be found as a solutionbf the equation (5.1.7).
Gantmacher ij] has shown that an equafion of’ the form
of (5.1.7) always has a unique solution Lf the matrices
A and D have no common eigenvalue. Now, D is at the '
disposal of the designer of the observer, so that the
conditions (i) D should have all eigeﬁvalués with '
negative real parts and (ii) D should have no eigenvalue
in common with A are easily met. Apart from these two
conditions, D can be chosen arbitrarily. Howéver, these
conditions only ensure that there will be sbme solﬁtion
matrix T. The'general broblem of observer design is
concarnod with the dyunamics off D, and with the nroportics
of T. |

Hele2 Observer Used with Feedback.

Since the observer is to be used for apolying
feedback, it is important to consider the properties
of a linear system with observer and feedback. The
genéral arrangement is shown in Fig. 5.2.

Feedbackis obtained both from the'syséem outouts and

the observer state vector.



128.

u
-0
y
A D
y
Py F,
—t J}
Fig. 5.2,

|

|

This system is representéd by the following equations:

it

X = AX + Bu + BF,y + BF,z . - (5¢1.16)

2

Dz + Ky + TBu + TBF,y + TBF,2 ' (5.1.17)

Setting y = Cx, and KC = TA - DT, gives:

(A+BF,C) BF X Bl u
= 1 2 + ] ~ (5.1.18)

(TA-DT+TBF1C) (D+TBF2) z| |TB

Introducing a change of state vector to [x] » Where:
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gives the differential equatibn in the form:

x (A+BF,C+BF,T) BF, || x Blu - -
| = o e | (5.1.19)
W .0 » D |jw 0

The form of (5e1. 19) reveals that the overall
system with feedback has the elgenvalues of (A+BF C+BF T)
and the eigenvalues of D. This is thev separation'
property, and vermits the feedback to be designed'aé

for the original system,:but with_the‘measurement matrix

C augmented to Cl .
17T
To obtain the transfer.functions, the Laplace

transform of (5.1.19), with zero initial cohditions,"

is taken. This gives:

-1 -

C-BFZT) - GF,

X ) (sIn-—A-BF1 Blu '(5.1.20)
w 0 (sIl—D)
(sI o ~A-BF,C-BF, T) 1 (sI A-BF1C-BP T)" Tap (sI -p)"~1
0 ' (sI;-D)" -1
(5.1.21)
whence:
- (sIn-A-BF c-3F,1) 1B (5.1.22)

1
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Bquation (5.1.22) shows that, as far as input—staﬁe,
and hence input-output transfer funcﬁioné are concerned,
the system with observer behaves as a system of ordef n,
with the measurement matrix augmented as described. It
is this property which, together with the separation
property, makes the observer particularly usefﬁl in
connection with pole assignment and pole-zero assignment
by feedback.

H5eled State Observer Design.

So far, nothing has been said about fheIValue of l,A
_the orqer of the observer. The objective is to reconstruct
the state vector, and the simplest solution is to let T = I. .
This gives z = x, and the observer equation .(5.1.7)
takes the form:

A -D

KC,
(A - XC) (5.1.23)

or D
From modal control theory, if the pair (A,C) is
oﬁservable, the matrix D in (5;1.23) can be given any
arbitrary éet of eigenvalues, by suitable choice of K.
Recognising that some linear combinations of the
state variables are already availlable in ﬁhe outﬁuts'y,
Luenberger showed that the entire state vector could ‘
always be reconstructed for an 6bservable system by

means of an observer of order (n-m), wherc m is the
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number of linearly independent system outputs, and that
the observer dynamics could be chosen almost arbitrarily,
subject only to the conditions (i) and (ii) in 5.1.1.
Luenberger gave a design procedure baséd on the transforaation
of the system to a canonical form in which the A matrix
assumes one of the companion forms, or has diagonal
blocks of this form.

The design problem will now be considered based
on the equation (5.1.7) directly. The approach is
somewhat similar to that used by lNewmann (ﬁ1] .

First suppose, in (5.1.7), that D is of dimension
(n-m), and that T is chosen with rows linearly independent
of the rows of C. This will enable the state vector to

be recovered, if the observer functions correctly,

from: x = [;]'1[3;] .

Then, (5.1.7) gives:

[KED] = TA [c]‘1 (5.1.24)

T

Hence, K and D are uniquely determined. If the solution
for D obtained in this way reovresents an unstable or
otherwise undesirable observer, another T must be tried.
This approach is, therefore, unsatisfactory.

Now suppose that, for an observer of the same

dimension, in (5.1.7), D and XK are chosen. The equation
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may then be solved for_T; For example, if both A and D
have distinct eigenvalues, A may be written A = WA,
and D may be Written ﬁt\?Uf1;>ﬁhere ,\? and 4ﬁ9 are

diagonal maﬁrices of eigenVaIﬁEé, and W and U are matrices

of column eigenvectors. Thé éqﬁétion (5¢1.7) then becomes:

XC, ofi

i A2V - U ASuT

Ul A® - AT Mo = uTTkow (5.1.25) -
which may be solved, element by element for the matrix

1

UT'TVW, and hence for T. The method may be adapted to
cater for multiple eigenvalues, but is, in any case,
unsatiéfactory, becéuse? although D can be chosen ;o
have satisfactory dynaﬁics, there is no controi over
the solution T. If this is found to have rows which are
linearly dependent on the rows of C, the choice of
dynamics of D will have to be éhanged, and the
orocess repeated.

The general solution to this pfobiém was obtained
by Cumming, and is described in the next section.

The approach used in establishing this method of

solution is different from that used by Cumming.
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5+1.4 Cumming's Method.
. In Cumming's method [Cu][c5] » & vector z is

formed as:

z_ = 2z + Ry (5.1.26) '

o
where R is a constant matrix to be determined, and so
Z = zo - RCx

The (n-m)x n matrix T, is chosen arbitrarily,
with rows linearly independent of the'rows of C. The
action of the observer is to make z, tend asymptotidglly
to Tox,uand z tends to Tx, so that: '
T = T - RC (5+1.27)

Inserting (5.1.27) in (5.1.7) gives¥
(To - RC)A - D(To - RC) = KC

(T, - RC)A = [(K - DR);'D][_Q ]
. T

O
and so: . :
[(K - DR)ED] = TA[C =1 _ greafc 771 ~ (5.1.28)
SR
= [K,IKZ:I - R[K’BEKA (5.1.29)

where the partitioning on the right hand side coincides
with that on the left. Then, from (5.1.29),

(5.1.30)
® (5.1.31)

D

1l

K2 - )

DR + K, - RK

and K 4 K3



13L. 

In (5.1.36), according to modal control theory,

D can be assigned any arbitrary set of eigenvalues by

suitable choice of R, if the pair (KZ’Ku) is observable.
It will now be proved that (K23Ku) is observable if
(A,C) is observable. ' | ' '
Proof.

Let (A,C) be observablé,';nd let C have m rows,

which are linearly independent. This introduces no loss

of generality, since linearly dependent rows can be .
ignored. : i
‘@
Let: » o
C -1 . . )
Sl [P:Q] o (51.32)
o] o : . .

whefe the partitioning is such that P is nXxm, and Q

is nx (n-m).

Since: R .
C {P: Q] =1 | (501.33)
i o
Ty : :
CP=1I_; cQ =0 |
TP =0 ; TQ=1I__ (5¢1.34)

Fron (5.1.29),

Ky, =T AQ ;K = ChAQ : (5.1.;5)
The pair'(Kz,Ku)-is observable if the matrix H

i



has rank (n-m), where:

_ | )
H = Kh
2
KhKZ
n-m-1
L?hKZ 4

Substituting from (5.1.35),

H= [caq |
CAQT AQ
CAQT JAQT JAQ
L l

Since:
[Pie] [G] -1,
TO
QTo = In - PC

135.

.(5.1.36)

(5.1437)

(5.1.38)

(5.1¢39)

Substituting from (5.1.39) in (5.1.37),

H =

(cA
CAZ — CAPCA
CAS - CA®BCA - CAPCA

2

+ CAPCAPCA (5.1.40) -
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By elementary row operations, it can be shown that H

has the same rank as:

G = CA Q
cAZ.
. (5¢1.41)
n-m 4 :
| CA 1
Now consider the matrix product:
G1 = |C Q
CA _
2 : o '
CA  (541e42)
n-m
| CA™ ]

The rank of Q is (n-m), because this comprises

T

(n-m) linearly independent columns of C ]-1 » and the
o

rank of the first factor in (5.1.42) is n, because
(A,C) is observable and C has'rénk m. Hence the rank of
the product matrix G, is at least n - n +‘(n-m) = (n-m).
The rank also is at most (n-m), because Q has this rank.
Hence G, has rank (n-m). But, from (5.1.34), CQ = 0, and

so G has rank (n-m). This completes the prodrf.
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5.2 Simple Design of State Observér;

Although Cumming's method provides a complete
solution to the problem of designing a state observer
héving arbitrarily chosen eigenvalues, which is suitable
for programming on a digital computer so as to provide
an automatic solution, it is not an easy procedure
for :pencil and paper calculations. The matrix operations
and the embedded modal control proplem may present.
considerable difficulties when dealing with high-brder
'systems without the aid of a full computer progfam.

The availability of electronic calculating machines

of the hand and desk types, and of time-sharing computer f
terminals which provide packages for standard matrix
manipulations, but not specialised progréms for control
engineering work, makes it useful to consider methods

of design which permit these facilities to be used to

aid pencil and paper design.

In the method which is now to be described, a state
observer is designed as a succession of scalar observer
designs. The eigenvalue of each scalar observer must‘be
real, but this is no disadvantage in most practical_céses.
Otherwise, the eigenvalues can be chosen almost arbitrarily,

and the computations involved are very simple.
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D.2.1 Properties of Scalar Observer.

For a linear system described by the equations: .

X = Ax +‘Bu .

y = Cx - o (5.2.1)
where x, y and u are vectors Qf dimensibn ﬁ, m and T |
respectively, = scélar observer is descriﬂed by the

equation:

z = dz + kTy.+ gTu - (5.2.2)
where z and 4 are scalars, and kT-and gT:are‘row vectors.
The system (5.2.1) is controllable and observable.

In this case, equation (5.1.7) takes the form:

tTA - at® = x%C ' (5.2.3)

T ., s .
where t~ is a row vector of dimension n, such that z

tends to th.

d is the eigenvalue of the observer, and equation

(5+2.3) may be solved for tT, if d is not an eigenvalue
of A, as: » F
tT = ¥'c(a - 1d)”? (5.2.4)

The scalar observer design requires that 4 is
chosen to be negative and real, and that the pair (A,k?c)
is observable. Since (4,C) ié observable, a kT can always
be found to satisfy this cohdition iff A is non—derogatory.

However, since, in the case under consideration, the



139.

state observer is being designedvfor the purpose of
providing feedback for pole/zero assignment, there is
no reason why arbitrary feedback from the system outéuts
should not be applied initially so as td separate the |
eigenvalues of a derogatory A matrix, and so render it
non-derogatory [bé] . The final design of feedback can
allow for this initial feedback. '

The design procedu#e rests on the following theorém:
" Theorem. | |
The observer eigenvalue d in (5.2.4)‘can'be chosen
so that the vector tT is linearly independent of any
arbitrary set of (n-1) lineﬁrly independent vectors T_.
Proof. |

It tT is linearly dependent on Ta’ the determinant;

=0 o (5.2.5)

T
a

Substituting in (5.2.5) from (5.2.4),.

T
a

T -1 |

Assume initially that A has distinct eigenvalues.
d 1s not an eigenvalue of A, so that the inverse exists.
Let W be a matrix of column eigenvectors of A. Then

(5.2.6) may be written:
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K'ew | = 0 0 N lw'1]='o, (5.2.7)
e |
0 Xz—_-a- . .
O O ® L J
L [ ] L ] L ] ) _ -.J
TT T T T rw
a
Let XCW = YT = [Y1 rn] (5.2.8)
and let T W =T, : - (5.2.9)

T, has (n~1) linearly independent rows, because W is

non-singular. It then follows from (5.2.7) that:

Y, P hn o | (542410)
A-d TAd A —d '
TW

In (5.2.10), the Y}, j=1yeeen, are all non-zero,
because (A,kTC) is observable. Expanding the determinant
n
( Aj-d), yields

by the first row, and multiplying by (i
j=

a polynomial equation in d of degree (n-1), which is not
identically zero because, since T _ has (n-1) linearly
independent rows, at least one of the co~factors of ther
terms in the first row is non—zefo. It follows that there
are at moat (n-1) valuos of tho obsopvdr cigonvﬁluo o

giving a tT which is linearly dependent upon T,- This
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completes the proof for the case in which A has distinct
elgenvalues. | | . '
Where A has multiple eigenvalues, but is non-.
derogatory, the Jordan form will have a Jordan block -
corresponding to each different multiple eigenvalué.
There will be no two blocks with the same éigenvalue.

The proof will be extended to this case by considering

one such block, of dimension 3, for'definiteness. W then

includes generalised eigenvectors.
Corresponding to a third-order Jordan block, with
eigenvalue A1, the inverse in (5.2.7) will have a

diagoﬁal block of the form:

p— -

1 1 1

A= - _3y2 31
1 (A7) C4ma) (5.2411)

) 1 _ 1 '2

A-d ( A-)
0 0 1
A -d
- | N

whenee the corresponding part of the first row of

(5.2.10) will assume the form:

Y, -

2{1??_*1 , ‘fz?;*f R T
MO CA)R T A DA (AR (el

(5.2.12)
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The condition of observability implies that \; £ 0,
whilst the values of 7é and 73 are immaterial. It again
follows that expansion of the determinant by the first
row, and multiplication by ( A1-d)3, and by factors
corresponding to the other eigenvalues yields a polynomial
equation of degree (n-1), wﬁich is not.identically zero.
Hence the theorem is true generally. '
| 5.2.2 Design Procedure.

k? is first chosen so as to preserve observability.
This value is retained throughouﬁ the procedure. | ‘

_The first observer eigenvalue d1 is'chosen,'ahd
the corresponding T vector, tT is founﬁ from (5.2.4).

1

t? is then checked for linear independence of C, by echelon

reduction, or otherwise. If it is found to be linearly

dependent, a different value of d1 is chosen, and the

process repeated. When linear independence is established,

the next observer eigenvalue d2 is chosen, and tg is

found from (5.2.4). tg is then checked for linear .

independence of [C y and so on.
T

Ty
The process is continued until (n-m) eigenvalues
have been chosen. The state vector can then be estimated.

by inverting the non-singular matrix:

(¢ ]
T
ty
T
tn-m .
L -
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Each scalar observer has'the external inputs applied

to it as:

T

. g" = t7B. | | (5.2.13)

Where means are available for finding eigénvectors?

and A has distinct eigenvalues, the process can be further

simplified so as to avoid the matrix inversion for each
value of d chosen. Equation (5.2.4) may then be written

in the form:

T T 1 _
t.W=XkCW |—— 0 0
J A-a | | (5.2.14) .
I I ,
0 0
Ap=d, .
L' 0 0 'J

This method will involve complex arithmetic if A
has complex eigenvalues. |
5.5 Numerical Example.

A simple numerical example, which is a modified
form of an example given by Luenberger ELS] ’ will now
be used to illustrate the design of stafe observers
by both Cumming's method and the simple method of 5.2.

'In this example, the state vector is to be estimated
by a minimum-order observer having the eigenvalues

-1 and -2, if possible.
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= [-2 0 1 of e
o-1t 0 1} -~ : -
Thus:
kK, =[0 1] 3 Ky = [-2 O] ;
-1 0] s 0 0
K3 = -2 0 ; TF&?E 1 0
L O "'1‘ . - '_;:_’, 0 1J

This gives:

2 [2 9 -t ‘j

K2 has the eigenvalues O and -2, and D is to have the

eigenvalues =1 and =2. This is achieved with:

R [o 0
- 0 1

[—2 L o]
0 -1

DR + K, = RK

and then: D

g
o
5

1 3
= |-2 ol[o © +[o 1]-[0 olf-2 ©
Lo -1JLlo 1) L1 9 o 1| o -
= [o 17
-1 0]

and G=TB= |0 1 0 O
0 0 -1 1



5.3.2 Simple Scalar Method.

We first choose any kT

observable. k? =
Then: k C = 1] 0 0 0f =
0O 0 1 O
PFirst scalar observer: d1 = =1
t? = k(A - m1)'1
=1 o 1 o]'-1_ 1
'Of-1
0O O.
L-1 0
- [1 1 2 -é]'
This is linearly independent of

S0 is acceptable.

g4

Second scalsa

t

r

T
2

D - -4ﬂ o]
0
o
1]
observer: '.d2”¥,-2
= kTC(A - Id,)7Y
= Ei o 1 xﬂ [0 1 ©
0O 0 1
o 0 1
-1 0 0

[@ -1 ? -1]

O O = O

such that (A;kTC) is

[l ‘ﬂ satisfies this requirement.

[j 0 1 '0] |

146.

the rqws of C, an&

JO = O O
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This is linearly independent of the Tows of

[C ] » and so is acceptable.
1

i

0
0
|1

K S R I7 _
g, = tB = [o 1 2 1]0 1

The overall design obtained by this method is thus:

D=(-1 0] ; X= |1 1] ; = - '
lo-2| o1 S :
The corresponding design obtained by Cumming's.

Y R S

method was:

D
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5.4 Conclusions.

Cumming's method has been derived in a uniform
treatment based on'Luenbergef's observer.quation, and
a proof of observer eigenvalue aséignability has been
given. Where the obéerver is used for providing fecdback,
the matrix R introduced in Cumming's hethod need havé
no physical existence. For example, if the overall
feedback is to be F1y + Fzzo, this is equal to |
F.y + F2(Ry + z) = (F1 + FZR)y + Foz = Fay + F,yz, 80
that the effect of R can be included in a new system
output feedback gain matrix Fa. R'may.then be regafded
as an artifice used to facilitate the design ofvfhg
observer.

Cumming [ Cl | has shown that the ¢ondition that
the observer should have no eigenvalue in common with
‘the original system is not neceséary. Although this
point is of some theoretical interest, it is notvimportant
where the observer is used in connection with closed-loop
pole assignment. Since all the'closed-loop poles are to
be assigned, there seems to be no merit in choosing
observer poles which coincide with those of the original
system. ' _

Whilst Cumming's method undoubtedly provides a completé

and satisfactory solution to the problem of state observer
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design in general, there are advantages in considering
a computationally simpler method; The simple.séalar
design method presented in 5.2 permits a minimum-
order observer to be designed in every case, with almost..
arbitrary real eigenvalues, whilst using only routine
matrix operations which are available inimost time-sharingll
and similar computer libraries. Whilst the method
involves an element of trial and error, this is not a
serious disadvantage, because, as is cléar from the theorem
given, thé occurrence of a tg which is linearly deﬁendent
upon the rows of C and the tg, i=1, ee. (j=1), is
exceptional.

Linearly dependent tg could be avoided altogether
at eaph stage by forming a Ta matrix, in the théorem,
from C, and the t;, i=1, ... (j=1), and augmenting this
with (n-m-j) other rows, chosen arbitrarily, but linearly
independent of these, and then solviﬁg the polynomial
equation in dj’ which yields all the values of dj giving
linear dependence. If dj is thgn chosen so as not to ‘
have any of these values, nor’any of the eigenvalues
of A, it may otherwise be chosen freely. However; the

extra trouble involved in this process does nbt seem to

be Justified.
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CHAPTER 6.

LINEAR FUNCTIONAL OBSERVER.

6.1 Introduction.

A controllable single-inﬁut linear éystem can have
all closed-loop eigenvalues assigned by staté vector
feedback. It follows that, if an observer is to be
used with such a system, all that is required is to
develop an estimate of a single pre-specified linear
functional of the state vector. Furthermore, any
controllable multi-input system in which the A matrix
is non-derogatory can have a single input distributed
amongst the system inputs in such a way that the
system is completely controllable.with respect to this
input. This statement follows from the fact that, if
(AyB) is controllable, and A is non-derogatory, there‘
exists a vector g such that (A,Bg) is controllable [W1I .

If the A matrix is derogatory, but (A,B,C) is‘- |
controllable and observable, afbitrary output/input
feedback K can be applied ini%ially to separate the
system eigenvalues, ahd make the system matrix
non-derogatory [Dé] - This feedback will not affect
the controllability, as ((A+BKC),B) will be controllable.
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It follows from these remarﬁs that any controllable,
observable linear time-invariant system can be tréated
as a single-input system, as far as pole.assignment is
concerned, so that pole assignment can be achieved in
any ;uch system by feeding back a specified linear
functional of the state vector. |

One way to obtain the required linear functional -
feedback is to use a state observer, and.derive‘an
estimate of the linear functional from this.
Luenberger [iu] , however, has shown that an estimate

of any specified linear functionalvof'the state vector

of a linear system can be provided by means of an observer

of order (p-1), with arbitrary dynamics, where p is
the 'observability index' of the system, defined as

the least integer p for which the mpxn matrix Q has

rank n, where:
Q = CA ‘ (601.1)

caP~1
L ]

Such an observer, which is known as a 'linear

functional observer', may ‘be of épnsiderably lower
ordér than the corresponding stafe observer, for a

multioutput system.
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Luenberger [ih] gave a method for designing
a linear functional observer, based on the reduction
of the system to a special ‘canonical form, one of
the companion forms. | _ .

A method will now be'dgscribed; which does
not require any change in #ﬁé'representationvof the -
system, and'which can be éppiied to any observable
linear time-invariant syétem, An extension of the
method leads to a procedure fbr deéigniné linear
functional observers of order lower than (p-1).
Again, the method forms the'basis of an approach to
the design of degeneraﬁe observeré, to provide' |
estimates of a number of specified linear‘functionalSV

of the state vector.

~



6.2 Design Procedure for Linear Functional Observer.

6.2.1 System Description.

We consider a linear time-invariant system
described by the equations: ; -

X = AX + Bu - - (6.2.1)

y = Cx - (6.2.2)

where x, u and y are vectors of dimension n, r and n,

representing the states, inputs and outputgﬂ respectively,
and A, B and C are céﬁétant matrices of éppropriate |
dimensions. The system is dbservable,'with oﬁservability
index p, where p is defined as in (6e1e1). | |
6.2.2 Problem Statement. o

The problem is to desiéﬁ for the system (6.é.1),
(6.2.2) an observer with:arbifrary dynémics,‘such that
a suitable combination of y aﬁd the (p-1)-dimensional
observer state vector 2 will.give a specified linear
functional h* of X, i.€., such:that, asymptotically,

ny + gTz = n'x _ v .(6.2.3)“

where fT, gT and nt are row vectors, of which hT is

specified.

The observer is_aescribed by the equation:

% =Dz + Ky + Gu | L (6.2.14)
where D, K and G are constant real matrices.

The observer dynamics are determined by D, which .
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may be chosen arbitrarily, with the mild restriction‘

that its eigenvalues, (d1, eee d ),_are distinct and

p-1
different from the eigenvalues of A. Real eigenvalues

must, of course, be negative, to provide a stable observer,
and complex eigenvalues must occur in conjugate pairs

with negative real parts, for physical realizability

and stability. The matrix K, ﬁhich couples'the system to
the observer, and the matrix G, which couples fhe extcrnal.
inputs to the observer, are.t§ be.found,vas'are the

vectors 7 and gT. S , P

‘0
6.2.3'Solution. '

Let U be a matrix of self-conjugate column

eigenvectors of D, SO that;

D = yay”!  (6.2.5)
where & = diag(@T e dp_1)-
Let: ' T .
LN . (6.2.6)

where e. is the (pé1)-diménsiona1 sum vector [131«.. 1] .
This introduces no loss of gengrality.
Then:
K = UM : (6.2.7)
T ‘ T ‘T : .
where £~ and the rows of M, (m1, cee mp_1), are obtained

as the solution of the set of linear equations (6.2.8).
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1}

S T p-1 7
le mT- L lmT C l (A-d I) hT (A"d .I) (602.8)
1 ’ 1 J=2 j j:‘] J

I is the identity matrix of order n.

The ith m-rowed block of the coefficient matrix

on the left hand side of (6.2.8), for i =4, .. , (p-1), is:

p-1
CT] (A—de)

J=1
J£i=1
G is obtained from:

G = URB (6.2.9)
where R is a (p-1)x n matrix with rows (r?, .. rg_1),
where:

rg = m'gc(A-de)'1 (6.2.10)

J=1, eee (p=-1)

Equations (6.2.8) are consistent, and the solution
is unigque if mp = n, and non-unique if mp >n.
This completes the solution.
Proof.

The matrix T relating the state vectors of the
observer and the original system is the solution of
the observer eqﬁation [Lﬁ] :

TA - DT = KC (6.2.11)
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This equation has a unique sdiﬁﬁion if A and D have
no common eigenvalue. This condition is satisfied.
Setting U'T = R, and U™ 'K = M, (6.2.5) and (6.2.11)
give: "'_ i
RA - AR = MC = N *(6.2.12)
From the rows of (6.2.12), since & is diagonal,
we obtain (6.2.10). EQﬁatiqﬁs (6.2.3) .and (6.2,6)_
give the vector equation: ,' ',
R (642.13)
Substituting (6.2.16).§ﬁto (6.2.13) gives:

-1 S

. T ) T . - . _,1 ,_ T

£°C + Zi%ij(A de);. _ h* - (6.2.14)
J=

Postmultiplication of (6:2;1&) by
p-=1 .
T (A = d4I)
=1 )
and rearranging give (6.2.8). Equation (6.2.7) follows
from the definition of M. From [Ld] s G = TB.
Hence, (6.2.9) follows from the definition of R given
above.
The only unknowns in (6.2.8) are the mp
components of the vector [fT:mﬁi...smg_1] . It can
: 4 ]
be verified by elementary row operations on the

coefficient matrix on the left hand side of (6.2.8)
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that, provided the d, are distinct, this matrix has the

same rank as Q in (6.1.1), namely rank n, by definition.

This statement will now be justified. |
The coefficient matrix in (6.2.8) can be reduced

to the form of Q if there exists a set of p2 ‘real scalars

900’ ce eo(p-1)’ 6‘10’ $e 6‘1(p-1)’ s(p-".\)o’ see

8’(p_1)(p_1), SuCh that’ fOI‘ q_ = 0, ee e (p-1),

=1

o]

6go§?i<A - a1) + v} i?ﬁi(A - a,1) ='AP'Q‘?. (6;2.15)

q
341

[V]

e
i

1

Equating coefficients of like powers of A on both
sides of (6.2.15) gives a set of lineér equations

corresponding to each value of q, in the form:

. - ] . -1 -~
[qu .. 65(9-1)} 1 -2a, Sagd, -Zaaa, .. (-1)P aqeed
sZt  rEsft .
o 1 -Zd'j stdt - (-1)};’-1d§2..dp_1
A s#tA
L | b
0o 1 Egzj SREECE ( 1) ad5-d_,
0 1}  ?Eﬁdj . (-1)9;1d1.dp_2

= Lo 0 0 ..1..0 q] | , . (6.2.16)
thh positioh. '
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Equations (6.2.16) will have a solution for each
value of g if the pXp coefficient matrix on the left
hand side of (6.2.16) has full rank, i.e., if the deter-
minant of this matrix does not vanish. The determinant .

is of degree (p-1)(p-2)/2 in the,dj. It is zero if i
o |

d, = dj, for any i #-j, as this gives identical rows,

i
so that the determinant has the factors:

.(dp—’]

There are (p~1)(p-2)/2 such factors, which is equal to

mdp ) ay g ma g)eee(d, o - d_5)een(dy - a,)

the degree of thevdetermiﬁéﬁf, so that these are the -
only factors, apart from;=§&g31bly, a non=-zero numerical
multiplier. It can:be shéwn}ﬁﬁy comparing the coefficient
of any term, that ﬁhis mﬁitiplier is unity, sb that the
determinant may be written as?,'
Ti(ay - ay), 1>3 5 1=2, oo (p=1) 5 3=1, «.. (p=2)
(6.2.17)

It foilows that ‘the determinant is non-zero under
the given condition of distinct observer eigenvalues.
This completes thé Justification of the statement
concerning the coefficient matrix in' (6.2.8).

Equations (6.2.8), hence, are.consistent. From
(6e141), mp>n. It is clear that the solution is unique -
if mp = n. If mp>n, the solution is non-unique, and

comprises the sum of a particular solution and the
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solutions of the homogeneous form of equation (6.2.8)

multiplied by arbitrary scalar constants.

6.2.L Solution for Real Observer Eigenvalues.

The solution can be simplified slightly if it is
desired that the observer should have only real eigenvalues;
In this case, D may be chosen to be diagonal, so that
D=4, and U = I, giving K = M, G = RB and gT = eT. |

6.2.5 Numerical Example.

The method of solution ié illustréted b& applicétion
to a simple numerical examplé given by.Luenberger [Li] ’
althoggh'the advantages of the proccdure,become more
apparent as larger systems are considered. |

In this example:

-2 1 0 O 0
A = 0=-2 1 0 B- |O
0O 0 -1 1} |0
-1 0 O O_J' o 1

C = 1 0 0 O T [01-0 1]'
o 0 1 0] : -
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p‘= 2, and the single observer:eigenvalue is to be d = =3,
so that the observer is trivially diagonal and, according

to (6.2.6), gr»Il = 1. M has a single row, mT, and (6.2.8)

becomes:
[fT; mT] C(A - Ia)| =n"(a - Ia) .
C
1 1 0 0]
(A-1a)=|0 1 10O
0O 0 2 1
-1 0 0 3
C(A-1Ia)=({1 1 00
' 0O 0 2 1
T .
h*(A - Id) = [—1 11 3]

Hence, if £ [f1 f2:| . and m® = [m‘1 m2], |

(6.2.8) becomes:

-
[f1f2m1m2]f1 1 0 0| = [—1 11 3],
‘ 0o 0 2 1 |
1 00 0
0 0 1 0

which yields f1 =1, £, = 3; m, = -2, m, = -5; whence:
K=M-= ]'_-2-5]
In this case, the solution is unique, because

mp = n.
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The row vector rr -is obtained from (6.2.10) as:

rl = nC(A - Id)”)
=[-2-5] o 0o olf1 1 o g1
oflo 1.1 0
- 0O 0 2 1
-1 0.0 3

il
]
-—
-

]
W
ke
[ ]

Hence, G=r B, = 1e =
These results agree with those obtalned in (le

6.2.6 Conclusion.

The procedure described enablés an observer to
be designed to provide any specified linear functional
of the system state vector. There is almost complete.
freedom of choice of the observer mafrix D, which
may have real or complex eigenvalues, provided only
that these are distinet, and different from those-

of A.

The procedure is particularly suitable for use
with a digital computer, in dealing with large systems.

This procedure has been described in CML;__{



162.

6.3 Low Order Linear Functional Observer.

~Although the method of 6.2 permits the deéign of
a linear functional observer of order (p-1), with
arbitrary dynamics, where p is the observability index,
it has been pointed out by Fortmann and Williamson [F6]
that a reduction in observer order can be achieved By
permitting the observer poles to be determined during
the design process. The method deacribed by Fortmann and
Williamson is based on the companion,canoﬁical form
approach of Luenbergef, and requires the transformation
of the system to a number of'single-output sub-systems

in the general case.

A procedure will now be described for.the design
of an observer of low order tovprovide a specified linear
functional of the state vector of a linear system. The
method 1s based on the procedure. of 6.2, and 1is suitable
for direct application to single-output and multi-
output systems. The procedure yields inforﬁation on
the existence of an observer of given order, énd on
any constraints on the choice of observer'poles. The
method permits the investigation of observers of
increésing order, until_an acceptable solution is

found.
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6.3.1 System Description.

We consider a lineaf't;me-invariapt system
described by the equatioﬁs:
| X = Ax + Bu _

y = Cx ’ | ' (6.3.1) 3
where x, u and y are vectors of:state, inﬁut and
output, of dimension h, r and m, respecﬁively, and A,
B and C are constant matrices. The pﬁir (A,C) is

observable.

6.3.2 Problem Statement.

The problem is to design an observer described
by the equation:

z2 =Dz + Ky + Gu (6.3.2)

where z is the g~dimensional observer state vector,
and D, K and G are constantjmatriées,'sueh that, for
_a specified n-vector hT, (ny + gTz) tends asymptotically
to th. The matrices D, X and G, and the row vectors
fT and gT are to be found such that D has acceptable,
but not necessarily arbitrary, eigenvalues, and the |
dimension, q, of the observer, is to be as small as

possible.

6.3.3 Procedure.

We postulate the existence of an observer of order

a, to provide a linear functional specified by the wvector

nt.
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Let the characteristic polYnomial of D be:

s +ﬁq_1sq-1 + ees + ﬁ1s + ﬁo . (6.3.3)

Then constraints on the coefficients /31 correspond
to constraints on the choice of observer poles.

The following-array is formed:

c

(6.3.4)

We now perform a row reduction of the array (6.3.4).
The last (q_+1) rows are reduced in the process, but are
not used in reducing other rows.

If the last (g+1) rows are reduced to zero, there
are no conditions on the ﬁi’ and the observer poles
can be chosen arbitfarily. Otherwise, each non-zer_b

. q+
provides a linear relationship among the ﬁL given by:

q-1 ' ' . :
Z Pi Ter * V1 =0 - (6.3.5)
1=0 ~

column in the last (gq+1) rows, say, [Il I 1]T,
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s

The set of all equations of the type of (6.3.5)
provides”a set of.congfraints which must be éatisfied
by the f%. If this sét is inconsiétgnt, there is no
solution for the chosen valﬁe of g.

When a set of distinct observer poles has been
chosen to satisfy the constraints, the design may be
compléted by following the procedure deseribed in 6.2,
substituting (g+1) for p ﬁherein, wherevér;it occurs.
The matrix, U, of column eigenvectors of D, may be
chosen arbitrarily, provided that the requiremenﬁévbf
complgx pairing are satisfied. |
Proof.

Postulating an observer of order q leads to the

equations of 6.2, with (q+1) replacing p. The necessary ‘.ﬂ

and sufficient condition for the consistency of
equations (6.2.8), viz., that the vector on the right
hand side lies in the space spanned by the rows of thé
coefficient matrix on the left hand side, is used to
form conditions on the /gi, The coefficient matrix

may be reduced by elementary row operations to the
N t

matrix: ..
Cc

CA , '
. - (6.3.6)

| cal

iy
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and the vector on the right hand side may be written as:
T,q T,q=1 T, T :
htad 4 /2__1hA 4 eeew fnTA+ BN (6.3.7)

where the /31 are the coefficients of the characteristic
polynomial of D, as in (6e3.3).
Let m(q+1) = q' |

Let the first q' rows of the array (6.3.4) be:

T
V1, oo V'g.tc

When the row reductién has been completed, the

last (q+1) rows of (6.3.4) will have the form:

T - K T - XK T - - T

h 1171 12V T cee T Mgy

T ' T T o T
h*A - 0(21v1 - 0122v2 — e - 0\’2q.vq|
Tya _ « T _ - | T
h A q+1,1v1 eeoeoe Nq_'_.]’qaqu

where the °<ij are scalars resulting from the reduction

processe.

Application of the conditions (6.3.5) then gives:



167,

T T _
ﬁ,](hA - °<21v1 - see 2q'v |) +

ﬁ (h - d 1V1 = eee = °<1q|v I) = OT

where OT is an n-dimensional vector of zeros.

Hence,

nTal + /(.?‘1_1111‘.1\‘1-1 + oeee + /a1hTA + /QO?T =

( T

®a+1,171 Vo)

q+1,a q

T
Fq_ 1 1 + e e + a(ququ.)
o T T ) '
/31 24V 1 + eee + 2’q.vq.) + /?o(a<11v1 ¥ oeee + )

which shows that the vector (6.3.7) lies in the space

spanned by v?, o vg.; hence, in the space spanned by

+ eoe + d

the first m(q+1) rows of (6.3.4). This completes the
proof.
The complete row reduction clearly results in the

creation of the least number of conditioﬁs of the form

of (6.3.5), because as many as possible of the columns
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of the last (q+1) rows of (6.3.4) are reduced to zero.
If all the columns of the last (p+1) rows are reduced

to zero, there are no conditions on the /Gi.

6.3.4 Numerical Example.

The procedure is illustrated by application to

an example from [FG] . Here,

0 0 0.0 0O 7 -3 ]

1 0 0 0 =2 5

A= |0 1 0 0-=2 . B=b = -3
0O 0 1 0 -3.5 | 1

0 0 0 1-1.5 | o

C = CT = [O O O O 1] ; hT = [0083 -0.08 -0031 0019 0032]
The array (6.3.4) is formed as:

of = 0 0 0 0 1

cTa = o 0 0 1 =15

T 2 | ,

c"A® = 0O 0 1 ~1.5 =1.25 (6e348)
hT = 0.83 =0.08 <=0.31 0.19 0.32

hTA = =0.08 =0.31 0.19 0.32 =0.365

hTA2 =

-0031 0019 0032 -00365 -003325

Inspection reveals that no solution is possible

if ¢ = O or 1. With g = 2, row reduction in this case
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' obviously leaves only the first two columns non-zero

in the last three rows. This gives the condition:

[-0.31 0.19] + /31[-0.08 -0.31] + f,[0.83 -0.08] = [o q

from which /B = 0.423, /61 = 0.505, and the observer
poles are at (-0.25 % 3j0.6), which agrees with the result
in [ré]

If we are not satisfied with these poles, we may
consider a third-order observer, and this simply involves
.including the fdllowing extré rows in the appropriatg

places in the array (6.3.8):

etad = o 1 ~1.5 =1.25  5.13
nTA3 = 0.19  0.32 =0.365 =0.3325 0.75625

Row reduction in this case leaves bnly the first'
column of the last four rows non-zero, and gives the
condition: _

0.19 - 0.31/32 - o.oaﬂ1 +0.83 48, =0 (6.3.9)
We may then specify observer poles at, say, -1 and =2,
and an unknovn M. Inserting these in (6.3.9) gives
M = -0.81. | |
6.3.5 Conclusion.

The method, which has been described in [ 9]
enables a linear functional observer of low order to

be desighed in a routine manner. The existence of a
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design of any given order is established, and the
constraints imposed on the observer poles are obtained
as a set of linear equations in the coefficients df.
the characteristic polynomial of the D matrix of the
observer.

The numerical ekample demonstrates how the
procedure deals with all possible cases. If it had
been.found that the row reduction of (6.3.8) eliminated
the last row of the array witﬁ q‘= 0, this would have
meant that the required hT héppened to lie in the Space
spanned by the rows of C, so that no.obsérver was needed.
There was, in fact, no solution for q = O or 1, and
q = 2 gave conditions which required the use of a certain
pair of observer eigenvalues, and no others, With q = 3,
the cholce was widened, so that two observer eigenvalues
could be chosen, and the third was then detefmined.

.If ¢ = 4 had been tried, this would have resulted in
elimination of the last 5 rows of the array, revealing
that there were no conditions on the observer‘eigenvalues.
This is consistent with normal 6bserver theory since,

in this case, q = (n-m).
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6.k Linear Functional Observer with Repeated Eigenvalues.

6.L.1 Introduction.

The condition that the -observer eigenvalues are .
distinct leads to the simple solution which has been
described. However, this condition is notvne;essary, and
the method of solutionvin the case in which any numberv
of the observer_eigenvaiues”are repeated will now be

described.

6.L..2 System Description and Problem Statement.

The system. descrlptlon is as glven in 6.2.1, and
the problem statement is as in 6 2.2, except that the
eigenvalues of D are not now required to be dlstlnct,
although they are to be different from the eigenvalues
of A. |
bt o3 Solution.

In the solution, we now assume that A ‘has a Jordan
canonical form, in which each eigenvalue is found in only
one Jordan block; U isithen a matrix of self-conjggate
column eigenvectors ahd generalised eigenvectors of D,
so that D is real. Then:

D = vAy™] (6.b.1)
where, for example, if d1 has multiplicity 3, A may

have the form shown in (6. u 2)
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d, 1. 0 0 . . o]
0 d1 1 0O o« « o :
A = O O d1 O . . . (6.’-‘-.2)
0 0 O du o . . .
Let gT = gly~! - | (5 Le3)

where e® is the (p=1)-dimensional sum vectof 1 11 W 1].
Then: ,i
. , )

p=-1
as the solution of the set of linear equations (6. 4 5)

where £ and the rows of M (m1, ceem ), are obtained

where, for example, d ; dw~ =4 .

Q+2 " Tqt1 a
In (6.4.5), I is theﬂidéhtity matrix of order n.



T T. VT

-

C (A-de) +

I;Aq

05571(A-a31) +
j=1 ,
jéq A

C T:'(A-de)
1

#q |

C 1T (A-4.I)
=1 Y

p-1
- hTTT'(A—de).
j=1 |

G is obﬂained.from:

G = URB

p-1 .:'if Tb
CTT (A= ,I) =~ -

Tr(A-d I) + T‘(A-d I

d#q
JAq+1

T <A-a I)
J£1 |
iast

A,

JAq+2

(6.4.5)"

(6.4.6)

In the coefficient matrix of (6.4.5), each
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eigenvalue of multiplicity v gives rise to v blocks, each

of m rows, where, in each block, the product term is
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replaced by the sum of product terms, each of which
contains ono leas fLoactor (A—dJI) than its prédocossor,
as indicated for the particular case v = 3.

In (6.4.6), R is a (p-1)X n matrix with rows

T T

(r1, ces rp_1), where, for eéch simple eigenvalue of D,

T _ Tara. -1
ry = ij(A de) | (6elLe7)

whilst for each eigenvalue of muitiplicity v, there is

a block of v rows, given by:

T “1 T L, o\=2
» = - .I . ol I oo e
Ty ij(A dy )+ ma+1C(A dj‘) +
T -V
coe * mj+v_1C(A de) .
T T - T . -2 .
ripq = mj+1C(A-de) + mj+2C(A—de) e
T -v+1
cee + mj+v_1C(A de)
T - T C _ _ -.1

Equations (6.4.5) are consistent, and the solution
is unique if mp = n, and non-unique if mp>n. This

completes the solution.



Proof'. | '
The matrix T relating the state vectofs of the observer -
and the original system is the solution of the observer
equation: .
TA - DT = K& S - (6.4.9)
This-equation has a unique solutlon if A and D |
have no common eigenvalue. This condition is satlsfled

1’.’L‘ = R, and U_1K = M, equation

in this case. Setting U
(6.4.9) becomes:
RA - AR = MC - (6.4.10)
A is now in the Jordan form, and equation (6.u;10)
may be solved row-by-row, to give (6.&,7) and (6.&.8).

The vector equation (6.2.13) applies in this case:

16 + ¢™R = h' ' (6.Le11)
Substituting (6.4.7) and (6.4.8) in (6.l4s11)

gives, for example, when d3 = d2 = d1, and dh is simple,
£7C + m?C (A—d1I)-1 + mgcj(A-d1I)'1 4 (A—d1I)—2}
T _ -1 _ -2 _ -3} Tra_q —y=1
+ m3C§(A d1I) + (A d1I) + (A d1I) + mu(A th)

= ht ' (6.4.12)

Post-multiplicstion of (6.4.12) by:

p-=1
T (A-4.I)
=1 Y



176.

and rearranging give (6.4.5). Equation (6.4.4) follows
from the definition of M. From [Lu] TB. Hence,
(6.4.6) follows from the definltlon of R given above.

The only unknowns in (6.4.5) are the mp elements
of the vector [fT'm?: cee mg 1] e It will now be' shown

that the coefficient matrix on the left hand side of

" (6.4+.5) has the same rank as Q@ in (6.1.1), namely rank

n, by definition. This is done by showing that the
coefficient matrix can be reduced to the form of Q by

elementary row operations. We first note that this

_matrix can be reduced to the form:

..p_1 -
cTl (A-dJI)
=1

-
c n (A-dJI)

:j#q

j£q+1
3#3}2

p-1 (6.4.13)
cT\" (A-de) '
J;é
3£3+1

p-1

CT (A-d,I)
=1
J#q

p=2
cll (A-de)
j=1 .

~— ond
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The proof will be facilitated by introducing a
more general notation. Suppose the linear functional
observer eigenvalues are to be: |

d1 with multiplicipy v1,_
_d2 with multiplicity Y,

dw with multiplicity Vi’
so that:

VitV ke e o Vg =P - 1

With this notation, and a rearrangement of the m-rowed

blocks, the matrix (6.4.13) may be written as in
(6elietly).
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- 7
v A' v
1 2 _ w
C(A-d1I) (A-azl) . . e .. (A de)
v.,-1 v v
C(A-a,I) 1 (A-a,T) 2. .0 . (ama D)

2

V1— V2 Vw
C(A-d1I) (A-dZI) . e e (A-de)

C(A-d11)(A-d21)v2(A-a31)v3 .. (A-de)vw

v v v
2 3 _ w

v1 v2—1 vw
C(A-d1I) (A-dzl) . e ee (A—de) (6lye 1)

V1 V3 Vw
C(A—d1I) (A-dZI)(A-dSI) .o (A-de)
v v v
1 3 - w
C(A—d1I) (A-dSI) . es  o. (A de)

. . .

v v v _

w-1
i

The first m-rowed block of (6.4.14) contains all the
factors of the type (A-de) raised to powers equal to their
multiplicities, vj. In successive m-rowed blocks, one such
factor has its power reduced by one at each step until zero
power is reached, whilst the other factors remain unchanged.
This process is repeated for each factor in turn, with all

other factors raised to powers equal to their multiplicities.

We wish to show that the mpx n matrix (6.4.14)
can be reduced to that of (6.1.1) by elementary row

operations. The following lemma is required in the

proof.



Lemma .

Given the vector R in (6.4.15):

-2
(s-d1)v1 (s-dz)v2 .

R = (s-dz)vz(s-ds)v3 ..
| -1
(s-d1)v1(s-d2)v2

in which s is a scalar variable; dj A0, 3=1, eeo W,

and 4 P4 dj’ 1 £ j, then there exists a constant pXp

2

(s-d1)v1(s-d2)v2 ce e

v.-1 v .
(s-d1) 1 (s-d2) 2 -,

(s-d1)(s-d2)v2(s-d3)v3 |

v v -
<s-d1) 1<S-d3)'3' RERA
. e
v v R
(s-d1) 1(s-d2) 2 }..

) (S"'dw-

(s-dw>vw

(s-dﬁ)vw

(Sfdw)vw

v
w
<S-dw)

. Vw
(s=d,)

vw
(s-éw)

v
(s=q,) "

w

(s-dw)vw

v
w-1
1)
o
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(644415)
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matrix @, such that:

8
2
8
A
R = (6.14416)
V1+V2+...+Vw
8
where:
w
p = (1+ %1”)

The formation of the scalar factors in (6.4.15)
coincides with that described for the m-rowed blocks

of (60}40 “-l—) .

Proof.

We first note that each row of (6.4.16) represents
a polynomial equation of degree (p-1) in s, so that we
may seek to determine the p elements of each row of'%
by substituting different values of s in this equation,
or its derivatives with respect to s, so as to provide
p conditions. When these substitutions are made in
(6.4.16), the conditions are applied to all p rows of
% Simul taneously.
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The method of proof is to substitute different
values of s in equation (6.4.16), and its derivati?es
with respect to s, according to a.particular schemé which
will be described, until the required number of cpnditions
are applied. The p vector cquatlons obtaingd aro writton
as a single matrix equation, and this is examined for
the existence of a solution for'a. The matrix equation-

has the form:

A ~ )
where R and S are constant pXp matrices.

The columns of R and § are formed as follows,
where, for brevity, S represents the right hand side
of (6.4.16):

The first columns of § and %.are obtained by setting
s=0 in R and S respectively.

The second columns of‘ﬁ and % are ohtained by'
differentiating R and S (v1-1) times with respect to s,
and setting s=d1.

The third columns of‘ﬁ and % are obtained by
differentiating R and S‘(v1—2) times with respect to s,
anoﬂsetting s=d1. '
We continue in this way, until the (v1+1)th columns

~

of R and S are obtained by setting s=d

] in R and S

respectively.
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L3

A . .
The (v1+2)th columns of R and § are obtained by

differentiating R and S'(v2-1) times with respect to s,
C | ‘

4

" and setting s=d2.
This process is contihued to completion, giving
p columns in (6.4.17).
It is clear that R is a lower triangular matrix,
and this matrix will be non-singular if each diagonalvv

element is non-zero. The diaggnal elementé, in order, are:
v v _ : v

(-a,) Y=a5) 2 .. a0 0wl (et

v, . : v
(v,=1)i(a,-a,) e ee e (a;-4,) W

o ‘ v, | v

(vi=2)iama) 2 e e (ame) "

V2 Yw

(d1—d2) ee ese o (d'l—dw) .(6.14.18)

( ' v, v3 Vi '
vy=1)i(dy=d ) (d2—d3) o (dy-d.)
( t V1 'V'3 ' VW
vy=2)i(dy-d,) (dzde), o (dp-a,)

' v, ' v3 : Vi
(dp=ay) (dy=ds) o (dp=d )

v ’ v
1 . V_
(@) Ha,~a,) 2 (gma,_y) v
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These diagonal eléments.are all non-zero,
under the given conditions: |

a; £0, J=1, ee. W, and

a, #ay, 143, |
so that R is non-singular. Hence, (6.4.17) can be
so;yed for‘%. This completes the proof of the lemna.

Proof of the Main Result.

The proof of the nain result follows at once
from the lemma, since the row operations implied by-'
the constant transformation matrix T of the iémma,
when ‘applied to the m-rowed blocks of (6.l4.1L), will
reduce (6.4.14) to the form of (6.1.1).

It follows that equationé,(6.u.5) arq,consistentf
The solution is unique if mp = n, and non-unique
if mp >n.

Note.

This generalvproof'alép provides an alternative
to the proof givén in 6.2.3i£or the particular case .‘
of a linear functional §b$éf;§r with distinct eigen-
values. o

6.4.4 An Observer Theorem.

From the results of this section and 6.2, the



18l.

following theorem can be stated.

Theorem.

For any controllable, observable, linear time-
invariant system, there exists an observer of 6rder
(p-1), where p is the observability index, such that,
by the use of constant feedback to the. system inputs
from the system outputs and the obsér#e: state
vector, the eigenvalues of the composite system can
be assigned arbitrarily. |

The proof is gilven on'the following page.
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Proof., _
The system (A,B,C) may be assumed?to be controllable
through a single inpﬁt. If this condition +is not gatis-_
fied at the outset, it may be achieved by applyihg;
almost arbitrary feedback between the system outpﬁts
and inputs [D2]| . This feedback will not disturb the
observability of the system. If the ,application of this
feedback makes any 6f the system eigenvalues equal to
those required for the observer, the feedback is.changed,'
so as to make the system elgenvalues distinct from‘thé -
requiped observer eigenvalues, whilst‘retaining tﬁe
single-input controllability [D2] .
The system is now represented by ((A+BKC),b,C),
where K is the feedback matrix, and b is the input
vector through which the system is'controllable.
A linear functional observer of order (p-1), with
arbitrary simple or multiple stable eigenvalues will
then permit the arbitrary assignment of the closed-loop
system eigenvélues, using: 'the results of 6.2 and 6.4,
because a single linear functional of thc~staté vector

is sufficient to achieve the required eigenvalue

assignment.
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6.4.5 Conclusion.

Although the ﬁse of an observer with rebeated
eigenvalues is unlikely to be a reguirement, the results
of this section permit the génefélisation of the technique
presented in 6.2, and lead to the theorem of 6.4.4, from
" which it may be concluded that, if pole assignment is =~
the only consideration, this can always be %fhieved
for a controllable observable system with an observer
of order (p-1), where p is the observability index.
In other words, the results obtained by Brasch and Pearson'

[B31', using general dynamié compensation, can be |
achieved with an dbsérver;'ﬁifh its attendant'advantage
of not imposing its»pole$ oﬁi£ﬁe input-output transfer

functions of the overall'systém.
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CHAPTER_ 7.

DEGENERATE OBSERVER.

7.1 Introduction.

The generalisation of a linear functional observer,
in which estimates of more than one linear functional
of the state vector of a linear systqm are required, is
termed a ‘'degenerate' observer. Such an observer may be
" needed in connection with pole and zero assignment. For
example, in the cases considered in 4.3 and 4.4, of
proviﬁing a desired scalar transfer function between
one input and one output, two linear functionals of the
state vector are required. |

The problem of designing a degenerate observer in
the general case is considerably more difficult than
that of designing either a linear functional observer
or a state observer, and the question‘of achieving a
minimum order design has not yet been solveé.
Cumming [95] obtained a sufficient condition for the
existence of a degenerate observer to provide estimates
of specified linear functionals, although this condition
does not ensure that thé observer will be stable.

Fortmann and Williamson [Fé] obtained necessary and
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sufficient conditions for the existence of an observer
with specified poles, in the case of é single-outppt
system. |

By an extension of the procedures described in
6.2 and 6.3, methods will now be described for the-
design of stable degenerate observers to provide eatimates.
of any required number of linear functionals of the
state vector. The procedures may result in désigns of
quite low order, but there is no reason to suppose that
they provide minimum-order designs in general. Two
procedures are given, one for the design of a degenerate
observer with arbitrary poles, and another for the case .
in which some constraint. on the choice ofv.observer ‘
poles is accepted in order to achieve reduction in
observer order.

{.2 Degenerate Observer with Arbitrary Poles. -

The problem consideréd is the design of an observer

of reduced order; with apbit}ary dynamics, to provide
estimates of a number of spééified linear functionals,
T o o :

h1x, h2 -
linear system described by the matrix triple (4,B,C).

x, etc., of the state vector, x, of a time-invariant

One possible solution is to design a state observer of -
dimension (n-m), where n and m are the dimensions of

the system state vector and output.vector, respecfively,
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L]

and‘to obtain the requiréd linear functionais from this.
Another approach is to design a separate linear functional
observer for each lin;ar functional required. Either of
these methods may, however, result in an:. observer of
unnecessarily large dimensions.

In the present method, a solution of lower order 
is sought by designing a'euccession of‘obeervers,vone
for each linear functional, in which each observer is
driven by all the préceding observers, as well as"by'

the system outputs and inputs.

[.2.1 Design Procedure.

At the first stage, a linear functional observer
is designed for the system (A,B,C), using the procedure
of 6.2, to provide an estimate of the first linear
functional, hﬁx. The dimension of thie observer is
(p1-1), where D, is the observability'index of (4,C).

At each subsequent stage, say the jth,'a lihear 4

functional observer'is designed for the system:

A,B,[c ),
‘I‘1 '
using the procedure of 6.2 to provide an estimate of

h x. The dimension of this observer is (pj-1), where Dy

o d

=\
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is the observability index of: -

A T,
?1
T,
|31

In the procedure, at each stage, the matrix T‘_j is found, ,
corresponding to the matrix T in 6.2. | i

The validity of the procedure is esté%lished by
the following theorem;
Theorem. |

| .An s-stage observer designed acco:ding to the

above procedure yieids asympﬁptic estimates of thg linear
functionals.h? gx, ..; h£¥; The complete observer

has as its poles the poles of all the individual linear

X, h

functional observers.
Proof. | |
The state vector, zj, ofhthe jth linear functional
observer is governed by the differential equatiqn: -
31 -
éj = Djzj + ij +_:E;Kjizi + ng (7.2¢1)
1=

o l‘ . .
where Kj, the Kji’ and L. are matrices coupling this

J
observer to the system outputsy, the state vectors of

the other observers Z5 and the external inputs u.
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Lj = TjB. The summation is zero for J = 1.
The estimate of h?x is obtained asﬁ .
T J T | - ’
ij + ZE:gjizi (7.2.2)
i=1 ,
Nefining v, = = 17.x, it is easily shown from (7.2.1),

g -ll-b 'j —_ 23 J
the original system equations,and the'relationships obtained

in 6.2, that:

v.] [0, 6 o o o |[v,]

V.] 1 \ L N ] V1

v, Koy Dy 0 0 .o 0 ]y .
L K3 K32 D3 0 «eo O |lvyg (7.2.3)
% K K L J L ] L D v

| 's] L's1 "s2 sjL s

It is clear from (7.2.3) that the complete observer
has as its poles the eigenvalues of (D1, oo Ds).
Provided that these eigenvalues are chosen to be stable,

vj~»0, as t-»a@, so that zjﬁaT

jx. This completes the proof.

Remark.

The observability index at each stage, pj, is lesé
" than or eqﬁal to that for the preceding stage, Py_q
because Tj—1 must contain at least one row which is
linearly independent of the rows of C, and of the Ti’

i=1, eee,(j-2). Otherwise, the (j-1)th linear functional
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: : . T .
observer would have been unnecessary, s1nce_hj_1x._

could have been obtained from y and the 21,'... Z5.0°

7.2+.2 Conclusion.

As an example of the saving invobsérver dimensions
which may be achievéd by using this procedure, a system
of dimension 12, with 3 outputs, having an observability
index 4, for which 2 linear functionais were fequifedé
would need a state observer of dimension 9, or twd separate
linear functional observers of dimension 3, giving a total
observer dimension of 6. Using the procédure described;
if the observability index at the Fecqnd stage were 3,
the total dimension of the observer would be 5. If three
.linear functionals were required with this system,.the
corresponding dimensions would be 9, 9 'and 7.

This procedure has been described in [M8] .

/+3 Low Order Degenerate Observer.

The method of 6.3 may be applied at.each stage of
the procedure described in 7.2, so that, instead bf
designing a linear functional observer of dimension
(pj—1) at the jth stage, an attempt is made to achieve
a lower order design; by investigating the resulting
constraints on the choice of observer poles. |

| The procedure may or may not give an overall

degenerate observer design of lower order, depending_
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upon the particular problem, Reduction. in the order of
the jth stage linear functional observer will give a
smaller number of rows to TJ, *and this will make it
less probable that a reduction ‘in order of the (j+1)th
stage can be achleved. | '

The procedure has been reported in [ﬂ1d]

7¢3+«1 Numerical Example.

The procedure described for the design of a
degenerate observer of low order may be illustﬁated h
by gxtending the exampié of a low-order linear’functional'
observer given in 6.3.4. |

The design in 6. De L4 may be completed by ch0081ng

the eigenvector matrlx of D as:

-0.8350j 0.82350j
U = ) : '
005 - 0.21014.j 005 + 0021014-3.
giving :
-0.5040 1] ‘
D = »
"‘OoLl»221 O
- [0.28u9]
gl = [70.50uo - ]
—003763
K =

-0001“‘71



194.

0.3195
—0008

-0.1801 0.4604 -0,1560 =0.1157 0.1242
0.3696 0.0760 -0.1943 0.6585 0.0u488

The observability index of:
@, |8 | (73.1)

is 2, so that a linear functiohél observer of order 1.
may be designed for the system (7.3.1), with arbitrary
dynamiés, to provide an estimate of any specified linear
functional of the system state vector.

Thus, the two linear functionéls may b& providcd
by a degenerate observef of total order 2.+ 1 =3, for
a system of order 5, with.oné output. This reﬁresenté a
séviﬁg, in this case,‘of 1 6fder, compared with.a sfate
observer, from which the two'l;near fﬁnctionals could

have been obtained, with arbitbary observer dynamics. -
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CHAPTER 8.

DUAL OBSERVER.

8.1 Introduction.

The concept of the dual observer, which is attributed
to Brasch, has been reported by Luenberger [LS] « The
dual pbserver is a special kind of controller which,
when used with a time-invariant linear system, permits
the assignment of all the closed-loop poles of the_composite
system. The important feature of the dﬁallobserver is
that,.whereas, in the case of an observer, the dimension
of the observer is determined by the number of system
~outputs, or by the obserVabilify index, the dimension
of the dual observer is determined by the number of system
inputs, or by the conﬁrollability index. The dual observer,
thus, may offer an advantage in cases in which the system
has more inputs than outputs, or where the controllabilityv
index is lower than the observability index;

8.2 Linear System with Dual Observer.

We consider a linear time-invariant plant described

by the equations:

b'd Ax + Bu

y = Cx o (8.2.1)

1
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where x, y and u are veétprsAof dimension n, m and r,
representing the system states, oﬁtputs and inputs,
respectively. Thevpriple (A;B;Q) is controllable and
observable. : -ff

The arrangement of £he.dﬁél obsefver, together with

the plant, is shown in Figﬁ 8.1.

O

Fig. 8.‘1.
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The dual observer is of dimension’,ﬂ, and is

governed by the following equatiohs:

z = Fz + Mw (8.2.2)
w =y + CPz ' (8.2.3)
u =Jz + Nw (80201-]-)

where z is the /O-dimensional dual observer gtate'vector{
‘and P is the solution of the matrix equation:
AP - PF = BJ (8.2.5)
The dimensions of the bonstant maﬁrices'F, J;'M,
N and P, and of the variable vector w, will be clear
from the equations. The matrix L is defined as:
L = PM + BN : ~ (8.2.6)

Equations (8.2.1) to (8.2.6) give:

X = AX + BJz + BNCx + BNCPz o (8.2.7)
z = Fz + MCx + MCPz - (8.2.8)
Pre-multiplying (8.2.8) by P, and-adding to (8.2.7), -
glves: '
(x + Pz) = (A + LC)(x + Pz) (8.2.9)

Setting x = v - Pz, the overall differential
cquation of the systom with dual:robserver 1s:
v| = [(A +1C) O [v]

. (8.2.10)
z MC F

Z
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It is clear from (8.2.10) that the elgenvalues of
the composite system are those of F, and those of (A + LC).'
The dual observer thus exhibits the separatlon property
possessed by the observer. Note that no assumption has,
so far, been made concerning the value of /Q.

It is now necessary to show that the eigenvalﬁes
of the composite system can be assigned arbltrarily.
Luenberger ELs] has given the following theorem, as
Theorem 5: 'Corresponding to an nth-order completely
controllable and completely observable system having r
linearly independent inputs, a dynamic feedback system
of order (n-r) can be constructed such that the (2n-r)
eigenvalues of the composite system take ény‘preassigned.
values.' A proof of this theorem will now be given, by
using a construction which is a dual of Cummiﬁg's method
for designing state observers. The construction also
constitutes a procedure for designing a dual observer
of ofder (n-r).

8.3 Construction of Dual Observer of Order (n-r), and

Proof of its Properties.

.It has been shown that the.éigenvalues of the
composite system are the eigenvalues of (A + LC) and
the oigenvalues of F. Lat /‘ = (n-r). It thon follows
that, since (A,C) is observable, the (2n-r) eigenvalues
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of the composite system can all be given preéssigned
values if the matrix L and the eigenvalues of F c.an be
chosen arbit_:rarily. Let L be determined, by using modal
control theory, so that (A& + LC) has an& desired set of
eigenvalues. The foilowing problem then remains:

Given A, B, C and L, in equations (8.2.1) to
(8.2.6), to find J, M, N, P and F, such that F has
arbitrarily chosen eigenvalues. | '

Choose any n x (n-r) constant matrix @, such that
the nxn matrix [BEQ] is non-singular. It may be assumed,
without loss of generality, that the columns of B are
lineafly independent. |

Form the matrix:

[BEQ] “lag = [g] | (8.3.1)
where the partitioning is such that S is rx(n-r), and
T is (n-r) X (n-r).

and the matrix:

[BEQ]-1AB = [3]  (8.3.2)
where the partitioning is such that U is rxr, and V
is (n-r)x r. Then: '

T + VR (8.3.3)
S + UR - RF (8.3.4)

F

and J

where R is an r X (n-r) matrix to be determine.d.'
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It wiil be shown.théf'gﬁg pair (T;V) is controllable,
and so, from equation (8.3.3);.the eigenvalues of F may
be assigned arbitrarily by using modal control theory.
When R and F have been determined in this way; J may

be found from (8.3.4). M and N are found from (8.3.5):

[ﬁ] = [B H(Q + BR’)]'1L | . (8.3.5)
This completes the construction. R | o
Proof. 1
Let Q be‘chosen.as described,vénd let:
P =Q + BR © (8.3.6)

Substituting in (8.2.5) givés:
AQ + ABR = [B:Q] [(J'%:-Blj‘z] (80307)

Pre-multiplication by the in%érse of [B;é] and partitioning
as in (8.3.1) and (8.3.2) gives (8.3.3) and (8.3.4).
Equation (8.3.5) followé from (8.2.6) and (8.3.6).
The inverse exists in (8.3.5) because the rank of the
matrix to be inverted is the.same'as that of [BEQ] ’

namely n, due'to the way in which Q was chosen.

Proof of Controllability of (T,V).
Let:

b - i e

where the partitioning is such that D is rxn, and E is
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(n=r) xn. It follows that:
DB = I_ ; DQ = O

r (8.3.9)
EB =0 HEE EQ = In_r ' .
From (8.3.1) and (8.3.2),
T = EAQ ; V = EAB - (8.3.10)

The pair (T,V) is controllable if the (n-r))f(n-r)p

matrix H has rank (n-r), where:

H = :VETVETZV an'I""v] C (8e3.11)
Substituting from (8.3.10) in (8.3.11),
H = [EAB EAQEABEAQEAQEAB, ... | (8.3.12)
Since:
éEQ]Eﬂ = In’
QE = I - BD (8.3.13)

Substituting from (8.3.13) in (8.3.12),
12 ‘.3 . 2 2 :
H = E|AB/IA°B - ABDAB!AB - ABDA®B - A°BDAB + ABDABDAB'...|.
4 { ]

By elementary column operations, it may be shown

that H has the same rank as:
G = E[ABEA2B5A3Bf EAn‘I’B]. (8.3.14)
Now consider the matrix product: '
E[B;AB;A‘QBE fAn"“B] | (8.3.15f)
The rank of E is (n-r), and the rank of the

second matrix in (8.3.15) is n, because (A,B) is



controllable and the columns of B are linearly independent.
Hence, the product matrix has rank (n-r). But EB = O,
from (8.3.9), and s0 G has rank (n-r). This completes

the proof.
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8.4 Design Pfocedure forchdﬁééd-Order ﬁual Observer.
Since the dual observer is a particular form of
dynamic_compensator, it is to be expected, from the
results obtained by Brasch and'Péarson,{éjl, that a duaiu
observer of order (q-1) could be designed to permit
arbitrary assignment of. the (n+q-1) poles of thehcomposite
sysfem, where q is the controllability index} A procedure
is now described that gétablishes the existence of such
a design, and prov}dessa copvenienf.cpmputationai
procedure, for the case in which the system A matrix

is non-derogatory.

8.4.1 System Description.

A linear time-invariant plant is described by the

equations: _
% = Ax + Bu . (8ele)
y = Cx | (8.4.2) .

where x is an n-dimensional plant state vector, uiis an
r-dimensiona} input vector, and y is an m-dimensional
output vector. The triple (4,B,C) is observable.and
controllable, with a controllability index q, where

q is the least integer for which the matrix Q has rank

n, where:

a = [3iaB}a%B] ...éAq'-1B] | (8.4.3)
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The matrix A is non-derogatory.
The dual observer and its coupling with the plant

are described by the equations:

z = Fz + Mw : (8alals)
w =y + CPz v (8el4a5)
u = Jz + Nw < (8.4.6)

where z is the (g-1)-dimensional state vector of the
dual observer. P is a n><(q-1)-constant'matrix that
satisfies the equation: _ |

AP - PF = BJ ’ - | (8.l4e7)
and the nXm constant matrix L is given by: '

L = PM + BN | ' ' (8.4.8)

The dimensions of the constant matrices ¥, M, J

and N, and of the variable vector w, will be clear from
the equations.

8.4.2 Problem Statement.

Given A, B and C, the problem is to find L, M, J,
P, N and F, such that the (n+q-1) eigenvalues of the
composite system have preassigned values.

8.4.3 Solution.

It is shown in 8.2 that the eigenvalues of the
composite system are the n eigenvalues ofl(A'+ 1C) and

the eigenvalues of F. We now assume that /’ = (a-1):
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Since the pair (A,C) is observable and A is non-
derogatory, there exists an m-dimensional row vector lT,
such that the pair (A,17C) is observable [W1] . Let 17
be chosen, otherwise arbitrarily, to satisfy this
condition, and let L = th, where h is an n-dimensional
column vector to be determined; Then the eigenvalues
of (A + LC) can be given preaésigned values b& using
known results in modal control theory to determine h.»
Let: |

M

T .
8l } - (841449)
flT : '

and _ N

so that equation (8.4.8) becomes:
Pg + Bf = h | , (8.4.10)

Choose the matrix F to give the desired dual-observer
dynamics. The eigenvalues of F may be real or complex,
with the mild restriction that they shoulq be distinct
and different from the eigenvalues of A. They should,
of course, be real and negative, or occur in.complex-.
conjugate pairs with negative real parts.

Let U be a matrix of self-conjugate column
éigenvectors of ¥, so that:

F = UAUT] - (8aka11)

‘0
where A = dlag(f1, 7'7-fq-1)’ in which (f1, cee fq_1)
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are the eigenvalues of F.
Let g = Ue, where e is the (g-1)-dimensional
column sum-vector [111..11]T. Then:
T =1u! (8. L4.12)
where f and the columns of T, (t1, cos tq_1), are obtained

as the solution of -the set of linear equations (8.4.13):

7‘ (A-r I)B.1T'(A f I)B,...,TT (A-f, I)B r} 1 %%1(A f. I)h
.J- ' . t j=1
-tq-1 |
(8.4.13)

where I is the identity matrix of order n, and the ith
term in the coefficient matrix on the left-hand side is:

q-1
TT  (A-r1)B,  i=2, ..., q.

J=1
J£(i-1)

P is obtained from:

P =Ry (8.l. 1)
where R is a nx(q-1) matrix with columns (r1, ces rq_1),
given by:

ry = (A-ij)-1Btj , 3=1, eey (@=1)  (8.4.15)

Equations (8.4.13) are consistent, and the solution
is unique if rq = n, and nonunique if rqyn. This completes

the solution.
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Proof.

Equation (8.4.7) has a unique'solution.if A and ¥
have no common eigenvalue. Setting PU = R, ahﬁ JU =-T,
‘equations (8.4.7) and (8.4.11) give: |

AR = RA = BT o C (8.4.16)

From the columns of equation (8.4.16), since A is
diagonal, we obtain equation (8.4.15). Substituting
(8+4.15) into (8.4.10) gives: | o

q-1 | |
=1 = h- .
Bf + EEE(A - £,0)7'Bt, = n- | (8b.17)

Premultiplication of (8.4.17) by:

%fJ(A - £.I)

3=1 ! o
and rearranging gives (8.4.13). The relations of (8.4.12)
and (8.4.14) follow from the definitions of R and T.

The only unknowns in equations (8.4.13) are the

rq elements of £, and the_ts;Lj=1, cee ,-(q—1).
It can be verified'by eleméﬁtg?y column operations on.
the coefficient matrix on the left-hand side of (8.4.13),
_are distinect, this matrix

J
has the same rank as Q in (8.4.3), namely n, by definition.

that, privided that the f

Hence equations (8.4.13) are consistent. From (8.4.3),

rgzn. It is clear that the solution is unique 1f rgq = n.

2
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If rqY n, there are (rq-n) degrees of freedom in the
nonunique solution; which maylbe obtained in the usual
way as the sum of a particulgr sélution and the solutions
of the homogeneous equation multipligd by arbitrarj
constants.

8.h.4 Solution for Real Dual Observer Eigenvalues.

The solution can be simplified slightly if it is
desired that the dual observer should have only real
eigenvalues. In this case, F may be chosen to be diagonal,
so that F=A , and U =TI, givingJ =T, P =R, and g =

8.l4.5 Conclusion.

The existence of a dual observer of order (a=1)
has been established for a system of controllébility index
q. The (n+q-1) eigenvalues of thé composite system may
be given any preassigned values, with the mild restriction
that the (gq~1) eigenvalues of'the dual observer should
be distinct, and different from the eigenvalues of the
original system. A procedure for the design of such a
dual observer and all the associated coupling matrices ;
has been described. The dual observer is a farticular
form of dynamic feedbaék compensator, and the existence
of such a compensator df»order (q—1), permitfing arbitrary-
eigénvalue assignmenf, is éénsistent with the éonclusions

reached by Brasch and Pearson [EBJ . Thls procedure has

been descrlbed in [M5]
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CHAPTER 9.

OBSERVERS FOR SYSTENS WITH INACCESSIBLE‘INPUTS.

9.1 Introduction. -

In the’theory.of'obgeﬁfé%s, as discussed in Chapters
5-7, it is a requirgment‘thatﬂfhe external inputs applied
to the observed system shduld'élso»bé applied to the
observer. The inputs are éppliéd in such a way as to
correspond to the transformation of the system state'vector
to which the observer state vector tends asymptotiéaily.
There are some situations in which it is physically
impossible to obtain signals representing inputs for
application to the;obs&rver. Examples‘are wind gusts in
' the case of aircraft control, and ihtérnally generated
noise or disturbances in the.system itself.

A closely related problem arising in the theory ofi'
optimal control was studied by Johnson [Ju][75] [76] ,
who used the idea of repreéenting the unknown inputs by
finite power series in time, f; Hostettef and Meditch |

[Hﬁ][ﬁ#]lﬁ1i} have placed this technique in the context

of observer theory. o '

The treatment of this chapter follows the apbroach
of Hostetter ‘and Meditéh, but from a more general view-
point, and aomé new results are presonted.concqrﬁing the

oxlatence of obaervers for aoyotems with inuccassiblc_inputa.
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9.2 0O-0Observers and k-0Observers.

9.2.71 Definition of 0-Observer.

A linear time-invariant system is described by
the equations:

X = AX + Bu ~ (9.2.1)

y = Cx + Du ' . (9.2.2)
in which x, y and u are vectors of dimensions n, m'and.
r, respectively, and A, B, C and D are constant'matrices;
The inputs u are unknown and not accessible for direct
measurement. Then the systemf -

.E = Fz + Gy + Hu : : o (9.2.3)

w =Ly + Mz (9.2.&)_
is a O-observer for the system (9.2.1), (9.2.2), if,
for constant u, and for some initial z, depending upon
the initial conditions and inputs of the 6bserved system,

there exists a linear transformation T, such that:

u

b'd ' ' :
w =T [ } ' (9.2-5)'

9.2.2 Definition of k-Observer._

A kth-degree observer, or k-observer, is defined
similarly to the O-observer, except that now the'system"
(9.2.3), (9.2.4) is defined as a k-observer for the
system (9.2.1), (9.2.2) if, for inputs u in the form of

any linear combination of powers of time t, up to and
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including tk, e.g., the jth element of u may be:
W, = o+ At o+ eee b X EE ' (9.2.6)
j = o ’ eee 4 ﬁk

there exists a linear transformation T such that (9.2.5)
is satisfied, for some initial z, depending upon the
initial conditions and inputs of the observed systemn.

9.2.3 Note.

For the purpose of this section, it is® assumed that
all the system 1nputs are inaccessible., Any inputs which-
are accessible may be treated in the usual way, and applled

to the observer, so that sueh inputs- need not be con81dered

further. - iy
9.2.4 System Augmentatlon :
An input of the form (9 2 6) may be represented as

a differential equation of~the_form.'

-‘ - r‘ . . - -
. o 01 0 . . .
. - . . . . . . » (902.7)
uj (k+1z -O ’ O O . . O i \-uj (k+12-

i

where uj1 = uj, and the other variables are defined as
the derivatives of this with respect to time.

The system (9.2.1), (9.2.2) may then be augmented

so as to include the equations (9.2.7). The resulting
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system is shown in (9.2.8),(9.2.9), for a system with
two inputs, and with k¥ = 1, for clgrity, although the
generalisation is obvious. Here, B = b, bz], and

D = da, d ] , where the b's and d's are vectors of

2
dimension n and m, respectively. The uij are scalars.

(x | = [A v,0 p,0] [x )
ﬁ11 O 1 0 O uy g
1:112 o 0 0 0 O u,, (-9.2.8)
Uy 4 _O O 0 1 u, 4
Lﬁz% | 0 0 0 0] uz5 |
y = [C d10 d20:| "X
ug, (9.2.9)
Y12
U421
722

9.,2.5 Principnles of the O-Observer and k-Observer.

A stable observer designed for the free system
(9.2.8), (9.2.9) will provide an asymptotic estimate
of the state vector of this augmented system. The rate
of convergence of the estimate will depend upon the
observer dynamics. The signals used to drive this observer -

are all obtained from the available outputs of the original



213.

system, without augmentafion, énd so the observer will
provide an asymptotic estimate of the state yed?or'of
the original'system, and of the system inputs and their
derivatives with respect to time, provided that these
inputs are represqntaﬁle by power series in t of degree
not greater than k. -

9.3 Conditions for Existence of O-Observer and k-Observer.

9.3.1 Single-Input, Single-Outvut System.

Hostetter and Meditch [Hﬁ] have investigated the 
conditions forrthe existence of a O-observer and a
k-observer, by using the Luenberger canonical form.
They. have obtained a.neqessary and sufficient condition
in two forms, accofding to whether or not the A matrix
is singular. In the following treatment, the canoﬁical
forms are not used, and a single necessary and sufficient
condition is obtained, which is valid in all cases. This
same single conditibn is also expressed in an alternative
form, for use when the system equatidns are in the |
Luenberger éanonical form. | | |

In this case, in equations (9.2.1), and (9.?.2),
B becomes a vector b, C becomes a vector cT, and D is
a scalar, d.
Theorem. |

The necessary and sufficient condition for the exist-

“ence of a O-observer or a k-observer for an observable

.
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single-input, single-output system is that:
et (adjA)b £ d.deth (943.1)

If the system is in the Luenberger canonical form

in which:

A= . c 10 . . (9¢3.2)

"'ao 0 O 0 0 O'-

el = [1 00 . . . Q]

the condition reduces to:

b £ -d.a (9.3.3)

where bn is the elemént in the nth row of b in this
canonical representation, and a, is the constant term
in the monic characteristic polynomial of A.
Proof.
For clarity, the proof ﬁill be given for a 2-observer,

the augmented equations of which will have the form:

ES A b 0 0] [x ]
{111 = 0] 1 0 u11 (903-&)
&]2 0O 0 0 1 u,.,
Lu13- N 0 0 OJ Lu‘ljj
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© (9¢3.5)
Y9

Uq2
| "13]

. The 2—obscrver'exists for the system represented
by (9.3.L4), (9.3.5) if and only if this augmonted system
is observable. Writing the observability matrix for this

system gives;

ol d 0 0

cTA ch d ' -0 ,
G cTAb eTo a (9.3.6)
cTAn+2 cTAn+1b QTAnb CTAn-1tL

The condition for observability 'is that this
(n+3) X (n+3) matrix should have full rank.

If the characteristic polynomial of A is:

n - '
s? 1 * oeeet ays +oa

(9.3.7)

o)

then, from the Cayley-Hamilton theorem,

s Y G RNV S S (9.3.8)
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Applying (9.3.8) to the row-reduction of (9.3.6) gives:

i
oT a 0 o
cTha et a 0
cTA2 cTAb _ch o d _ _
. . o ' [ ] (9.3'9)
oTpn—1 oTAl2y  (Tpn3y, o (Tanby
0 h b'e X
0 0 h |
0 0 0 °
S N
where
n=c™A" b v a_ctA" b 4+ L v a0 v ad’ (9.3.10)

and the x's denote numbers which are not of interest.
Since:the original;éySﬁém is observable, the matrix:

e w—

T

c :

cTA

T n-1
_© A .

has rank n. It follows that (9.3.9) has rank (n+3) if and
only if h # O. The condition, thus, is:

-

. i
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Ta My 4 a__c"A" P+ L. +a,c’b +ad£0 (9.3.11)

Now,.adj(—A).= PRl a£_1An-2 + oo ayI ‘ (9.3.12)

Combining (9.3.11) and (9.3.12) gives:
cTadj(-A)b + ald £ 0 - 0 (9.3.13)

)n-1

since adj(-A) = (-1)" 'adjA, and a_ = (-1)"detA, the

o
condition (9.3.13) becomes: . ‘

cT(ade)b £ d.detA , (9-3.1h)
as required. ' |

If A is in the Luenberger canonica;'form of

(9.3.2), the condition (9}3.1&) rédu¢esvto:

(=102 N, £ a.(-1)a,
or v : 3 ,
b # -d.a, (9.3.15)
as required. '

It is clear from the structure of (9.3.9) that

the existence condition is the same for a O-observer or
for a k-observer, since, for each addition of 1 to:k,‘
a new column is formed in the observability matrix (9.3.9),
which has a non-zero element in the abpropriate place
if the condition (9.3.14) is satisfied.
9.,3,2 Multi-Input, Multi-Output Systeq.

3
In this .case, the system representation is as
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shown in (9.2.8), (9,2.9), whefe, for clafity, only
two inputs are shown, and it is assumed thét k = 1. |
However, the generalisation is obvious. The following
theorem gives a sufficient condition for the existence:
of a O-observer or a k-observer, in this case.
Theorem. »

Let the observability index of the pair (A,C) be

P, so that the matrix: ' '

CA

. (9.3.16)
caP~1

i 4

has rank n.

Then there exists a mx pm matrix Q@ such that:

caP = qlc |
CA (9.3.17)
caP-1

A suffiqient condition for the existence of a O-observer
or a k-observer for the system (9.2.1), (9.2.2), having

r inputs u,, cee u,, is that the following'r m-vectors
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be linearly independent:

-

CAP-1bj -Q 'Cdj ] :
cp. - (9.3.18)
3 | ,
CAD .
3
caP~%p
L j—‘

j=1,--.I‘
Proof.:

The observability matrix for the augmeﬁted system
(9.2.8), (9.2.9) is:

[~ ™

c a, 0 a, o
CcA Cb, a, Cb,, a,
ca® CAb Cb, CAb, Co,,
caP~1 CA?'zb1 AP, cAP%y,  caPu,
cAP ca® o, CAP*zb1 ca® b,  caPTEp,
| caP*t. caPo, ca®~ %, APy, CA?'1b2

(9¢3.19)



Application of the relationship of (9.3.17) and

row-reduction of (9.3.19) gives:
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_ .
c a, 0 a, 0
CA Cb, a, Cb, o a,
>
CA CAb Cb, Cab, Cv,
caP~1 caP™2y, - caP3p.  caP %y caP=3y
. 1 CAT by 2 B2
0 “n, % h, x
o J 1 o n, |
(9.3.20)

where h, is the vector of (9.3.18) with j=1, and h, is "’

the corresponding vector with j=2. It is clear from

(9.3.20) that the matrix has full rank if h1 and h,
are linearly independent. It is also clear that this
condition cannot be satisfied unless m=r, and that the
condition for a k—obéerver is the same as that for a
O-observer, by the same réasoning aé was used in the
single-input, single-output case. |

In the particular case of a system with a single'
input and multiple outputs, the condition reguires that

the vector (9.3.18), with j=1, should have at least one

non-zero element.



0 221.

9.4 Steady-State Freguéncy:Response of k-Observer.
In [HL]_, a numerical example is given of a

second-order syste$ havingtggglar input and output,
and a 1-observer of dimeﬁsidﬁih The results of a simul-
ation study of this system indicate, as might be expect-
ed, that the estimates of the system state variables
and of the scalar input given by the observer are very
good, after the decay of inittai transients, when the
input }e in the form of a ramp, a sgquare wave, or a
triangular wave. These inputs are all of the type for
which the 1-observer 1s intended. Itvis sufprising,
howe&er, that thq'reﬁults for a sinusoidal input also
appear to be very satisfactory. In view of this'result,
the system has been examined a 1ittle more closely from
the point of view of steady-state frequency response,
principally to discover whether the results reported in

[Hﬁ] were merely the outcome of a fortunate choice of
"~ input frequency. The,system’considered°has:
= 1] 1

A= : ' b
-3 0 v 1

c = [ d] a=1

Full details of the 1-observer are not given, but

(9.u.1)4

it ise roported to have four oigenvaluee at =3. Based

on this information, the observer equation is:
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z = Fz + ky, where

(=3 16 45 O] =29
27 0 91 0] 1 : =751
= 16 k= .:lg )
-189 0 =189 16 | - |189 (9.4.2)
-324 0 =324 0 | 3

It is easlly shown that the Laplace transform of

the system state, X, with zero initial conditions, is:

%= (sI=-a)yTm ' (9.4.3)
and the Laplace transform of the observer state’véctor,
Z, with zero initial conditions, is:
% = (sI = F) k(ct(sI - A)'_'1 ) (9alsely)
23 is the estimate of W, and, inserting s = jvf in
' (9.4.l4) yields the frequency response shown in Table 9.L4.1.
Table 9.4.1.

Freg.w in
-1 0 |0.5 1.0 2.0 245 3.0
rad sec

Z5 (%) '
AR 1.0{0.9957|0.9946 1. 1047 | 1.2056| 1.2970

T(jw )
Freg. in ' .
-1 3¢5 Le5 5.0 5.5 7.0 10.0
rad sec
Zo(Jw) : h
3 13614 14046 {13938 1.3696|1.2566|1.0142

(W) | -
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The poles of the system are located at (-1 z 31.u1h),
and those of the observer at -3. The input frequency

reported in [Hu] was about 1 rad sec !

» and it 1is seen
from Table 9.4.1 that, at this frequency, the amplitude
of the estimated input is very nearly correct. The phase
error also is small. At frequencies just above this,
however, there is a sharp inéréése in the amplitude
ratio, which reaches a peak of abdut 1.4 at aifrequency
of 4.5 rad sec” '. The phase .error then also becomes
considerable.
_Gomparison of %, the estimate of 3‘:1;0 by finding

the amplitude ratio:

7,(3% )

%, (3)
as a function of>frequendy?f§ields Table 9.4.2.
Table 9.L4.2. o

Freg.woin .
-1 0.5 1.0 2,0 . 3.0 4.0 5.0
rad sec

Z4(3°)  14,0389/1.0899]1.2553 |1.5237|1.7227| 1.8204
x,(3%)

The estimate of E1 is quite reasonable up to a
frequency of 1 rad seq-1, although not as good as the

estimate of 1. Abpve Fhis frequency, however, the
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amplitude ratio riseé sharply.

It is not intended to investigate this matter 
in detail here, but enough has been included to indicate
that there is an interesting field of study in the
investigation of what order of k-observer ls needed,
and how the observér eigenvalﬁes should be chosen, so
as to provide a good frequency responsevover a wide
frequency band. This would ensure a satisfactory response

to general input signals.
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9.5 Conclusion.

Hosoetter and Meditch obtalned the condltlon |
for the ex1stence of a- O—observer or a k-observer 1n.the
case of a 31ngle—1nput,'31ng1e—output system in the
form of two criteria, the choice of which is determlned
by the singularity, or otherwi§e, of the A matrix.

In applying their method, the system must first be
transformed into the Luenberger canonical form.

The single criterion obtained herein is more éompact,
and is given in a general form, requiring no preliminary
tranéformation of;theisystem state vector, and ip a
special version suitable for use when the sygtem is
represented in the Luenberger canonical form.

The treatment of mulfi—input, mulﬁi—output systems:
by Hostetter and Meditch requires thatlthe system has
the same number of outpﬁts as inputs. If this condition
is not satisfied at the outset, some adjustment is needed. -
The problem is then treated in the manhef suggested'by |
Luenberger, by obtaining a representation Of’tﬂe.system
as a number of single-output sub-systems, coupled
only at their inpﬁts; The method presented here is more
general, and does not impose any upper limit on the

number of system outputs.
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The question of the dimensions of a O-observer
and of a k-observer has been discussed by Hostetter and
Meditch {Hi] .« The éonclusions reached are equivglent
t0 the statement fhat such an observer, with arbitrary
dynamics,_caﬁ be designed to observe the state vector,
or a linear, functional of the state vector, of the.
augmented system, and that the oBscrver'dimension
corresponds to thuf which one would expect from applying
Luenberger observer theory to this dase.

The results reported [Hu] from.a simulatioﬁiofia
system with a 1-observer to which various inputs.are
applied are surprisingly good. With a maintained sine
wave input to the system, an input for which the
1-observer is not syecifically d?signed, the observer
rapidly adjusts, and subsequently reproduces the state
vector and the system input with little error.'It-is
argued that the higher the value of k, the more faith-
fully will the state vector_éf the augmented system be
reproduced. This seems, intuitively, to be likely,
and this subject presents an interesting field for

further study.
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CHAPTER 10.

GENERAL POLE ASSIGNMENT BY OUTPUT_ KFEEDBACK.

10.1 Introduction.

In Chapter 3, the problem of closed-loop pole
assignment with restricted measurement access was
discussed, for the case of a single-input system. Multi-
input systems were included only as an extension of the
single-input case, giving unity-rgnk_feedback.'This
restriction results in a reduction in the number of
variable paramcters in the rxm feedback gain matrix K
from rm to (r+m). This chapter deals'with the general
casse, in which the rank of K is unrestricted, so that
full advantage can be taken of all available,variabié
parameters.

10.2 Output Feedback Derived From State Feedback.

10.2.1 The Methods of Munro and Vardulakis.

Munro and Vardulakis [M18] have consldered the’

following problem. Given the system described by the

equations:
% = Ax + Bu ' : (10.2.1)
y = Cx (10.2.2)

in which (A,B) is controllable, f£ind the necessary and

sufficient conditions for arbitrary assignmeht of all

~
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the system poles, usling only constanﬁ-éutput foédbuck,
and find a formula for the feedback gain matrix.

The approach used is first to find any state feed-
back gain matrix K _ such that-the matrix (A'—'BKX) has -
the desired cigenvelue spectrum, end then tb sock a
solutlion to the matrix equation: | '

KyC K, A (10,2.3)

i

where Ky is the output feedback gain matrix. The‘matrix_
C has dimensions mXn, where m<n, and may be assumed,

without loss of generality, to have rank m. The so-called |
g-inverse, Cg1, of C, is used, defined by the property:-: N

e lo = ¢ o (10.2.4)
The condition for the consistency of (10.2.3) is
expressed as the condition that: |
€1

The solution for K is given as: °

g1 - 2.6
K, = K.C . : (10.2.6)
and it is stated that othé?”solutions for Ky can be
obtained from the eguation: |

g | 8. i :
= 1. - Ay '
Ky = KO 2(Iy CG.1>111 . (1012°7)

where 2 is an arbitrary rxm matrix.

~
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It will now be shown that the degrees of freedom
in the solution for Ky represented by the matrix Z in
(10.2.7) are not available if C has rank m.

In equatioﬁ (10.2.4), let CCg1 = R, where R is an unknown
mXm matrix. Then:
RC = C (10.2.8)

Since C has rank m, the columns on both sides of
(10.2.8) may be rearranged, if necessary, to give:

R [01 302] - [01 0, ] (10.2.9)
where C1 is non-singular.
Hence, RC, = C,, and R = I , so that, in (10.2.7),
CCg1 = Im’ and the bracketed term is a null matrix.
Thus, (10.2.7) always reduces to (10.2.6), and there is
no arbitrary 2.

The condition for the consistency of equation
(10.2.3) expressed as in (10.2.5), in terms of the g,-
inverse, seems to be unnecessary, because, as the authors
have noted, this condition is equivalent to the condition
that, in (10.2.3), the rows of K, should lie in the row
space of C. This latter condition is clear from (10.2.3),
and is easy to apply directly.

Patel [Pﬁ] has pointed out that the condition for
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the consistonc& of (10.2.3) may be stated as the condition .-
that there exists a state vector transformation x = Tz,
such that, in the z-co-ordinates, the output feedback
becomes incomplete state feedback, obtained from m'state
variables. This fact is self-cvident from a consideration
of (10.2.3), when it is remembered that a state-vector
transformation of the type considered will change (10.2.3)
to: | ' ' '
KyCT‘= KT | (10.2,10)

Reverting to (10.2.3), since C has rank m, we may
perfofm a column reduction on both sides of (10.2.3)
until there are precisely m non-zero columns in the
reduced form of C. Fo; consistendy, all the zero columns
of the reduced C must have corresppnding éero coluﬁns
in the reduced T. Noting that the column reducfion can
be expressed as the product of elementary matrices, which’
will form T, the result follows.

Unfortunately, the conditions obtained in {M1é]
are necessary and sufficient conditions for the existence
of a solution to (10.2.3), and not necessary and sufficient
conditions for arbitrary pole assignment. It is first
necessary to find Kx to 'satisfy the conditions. No
guidance is given in this most important matter, although

€1

it is suggested that, since C is non-unique, other



g1—inverses could be tried, and a method for
generating other g1—inversés is given. However,
Seraji [éé] has pointed out that, if any one g4~
inverse fails to satisfy the condition of (10.2.5),

then no g1—inverse exists which satisfies this, so

that there is no point in seeking other g1—inver§es._

This conclusion aiso fbllows from the fact that the -

necessary and sufficient condition for satisfaction
of (10.2.5) coincides with the condition that K,
lies in the row space of C. |

. Munro [M19] has extended the approach of [M18]

and has reached the conclusion that the output feed-

back must be chosen in such a way that the pair
(A,,B) has the same controllability indices as the
pair (A,B), and that the pair (AC,C) must have the
same observability indices as the pair (4,C), where
A, is the system matrix with feedback, (A-BKyC).
These conditions are sufficient to permit the deéign
of the feedback using the method of Anderson and
Luenberger, so that the canonical structure of the

system is unchanged. However, the necessity of the

condition does not follow.

231.
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10.2.2 The Method of Bengtsson and Lindahl.

Bengtsson and Lindahl [BH]-have described a differ-r
ent method which is also based 6n the initial determination
of state feedback. As far as possibl@,'the notafion of .

lBu] will be used in discussing this mefhod. The authors
distinguish between a ‘single constrained feedback .
structure', and a'multiple constrained feedback structure'.
The latter refers to the use of local'fe§dbéck in systems
which comprise subsystems geographically faf aparﬁ, such
as electrical power systems. The approach to the single
constrained feedback structure forms the bééis of tﬁat
used in the multiple.case, and the present discussion
'is limited to the former, as this permits coﬁparison
with the other methods considered. |

For the system represented by (10.2.1), (10.2.2),
the first step is to determihe:the rxn matrix L such
that the state feedback u = Lx gives the desired
eigenvalue spectrum to the matrix (A + BL). The problem

then centres on donsideration of the equation corres-

i

ponding to (10.2.3), which, in the present ‘notation,
becomes: ?
KC = L o _ (10.2.11)
where the output féedback:f. |
w=k. C (10.2.12)



233.

is applied, and K is r;(h, and C mxn, with rank m.
Let Q be a nxp matrix of vectors forming a real
basis for the eigenspace corresponding to a set of p

symmetric eigenvalues of (A + BL). Then if K is a

solution of the equation:

KCQ = IQ | © (10.2.13)
the set of p eigenvalues will also be eigenvalues of
(A + BKC). In this way, if a solution of (10.2.13)
exists, a matrix K is found Which preserves p of the
closed~loop eigenvalues assigned-by the application of
the state feedback L. ) |

If there is more than one solution to (10.2.13),
that solution which minimises the feedback gains is |

given by the generalised inverse [Nél as:

x = La(r~'0q) R~ (10.2.14)
where R is a non-singular m Xm matrix used to scale the
output variables.

Where a solution to (10.2.13) does not exist, an
approximate solution is obtained by use of the generalised
inverse [Né] as: _ |

K = LQw(CQw)+  (10.2.15)

This solution minimises the norm:

“(KCQ - Pg)wﬂ , (10.2.16)
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El

Here, W is a diagonal matrix to weight the columns of
Q, so as to influence the importance of the different
eigenvalues. The norm 'is defined by::

e = (so(iF))? | | (10.2.17)

In both of these cases, the effect of neglecting
(n-p) eigenvalues is quite unpredictable. It is claimed‘l
that these remaining eigenvalues can be restricted to
the less dominant modes, Butg;t is not<sfated how this>
can be assured. » | : | .

In the second case, it does not follow that the
minimisation of (10.2.16) yields a matrix K giving the
best possible fit of p eigenvalﬁes of (A + BKC) t§ the
desired set; This staﬁement will be justified by coﬁsidér-
ing the case in which, for simplicify, all eigenvalues |
are real and distinct, and it is desired to preserve:
all the eigenvalues of (A + BL) in (A + BKC). We may

write:

(A + BL)Q = QAL | (10.2.18)
where /\? is a diagonal matrix of the eigenvalues of
(A + BL). This follows from the definition of Q.
Now suppose the application of ouéput feedback K gives
" an eigenvalue spectrum represented by fhe diagonai

matrix j\. Then:

~-
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(A + BKG)Q, = QA o (10.2.19)
where Q_ is a matrix of eigenvectors of (A +_BKC).
Introducing a diagonal.weighting matrix W, and noting
that Q and Q_ are non-singilar, (10.2.18) and (10.2.19)
glve: : e

(A - AW = Q;1(A+BKC)Q§W£% Q=1 (a+BL)qw (10.2.20)

The norm of (10.2,1?)-é§p11ea to (10.2.20) clearly
gives the square robt of.fhe;ﬁeighted sum of squares
of the differences between thé,actuél and'desired_eigen- '
values, and so is a measure of the 'fit' of the eigenvalue
spectrum provided by the feedback K. Minimisation of
this norm would yield yhe 'least squares’ sdlution.”

This solution would in%olve determining bofh Qo and K.
The introduction of thé assumption @, = @ in (10.2.20)

reduces this expréssion to:
Q”'B(XCQ - LQ)W (10.2.21)

The variable factor of this expression, (KCQ-LQ)W,
coincides with the matrix of which the norm is minimised
in the method of Bengtssbn and Lindahl. Clearly, this
could not be expected to yield the matrix K which gives
the best possible fif of the eigenvalue spectrum. This
point is confirmed in 10.7.3 » where the eigenvalue

spectrum corresponding to a solution for X obtained by
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a direct algorithni is éompared with the results'given
n [a] . |
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10.3 Patel's Method.

Patel [b?] has described an interesting recursive
pole—-assignment procédure for multi-input,.multi-output
systems, which places no restriction on the rank 6f the
feedback gain matrix. For a system described by the
equations (10.2.1) and (10.2.2), the rxm output feed-
back gaih matrix X, such that: | )

u = Ky | (10.3.1)
is sought, for arbitrary pole assignmenﬁ; The matrix'K

'is partitioned into rows as:

K = (10.3.2)

k
L T

It is shown that the characteristic polynomial

‘with feedback, Dc(s), and the characteristic polynomial
without feedback, Do(s), are related by:

_ T T T
Dc(s) = Do(s) + k1¢1(s)b1 + kzﬁz(s)b2 + oee + krﬁr(s)br
(10.3.3)
where the mXn polynomial matrix ﬁq(s) is given by:

Qq(s) = Cadj(sI - A+ §§§+1bpkgq) (10.3.4)

fOI‘ g = 1, 2, vee (P_1)’




238.

and:

ﬁr(s) = Cadj(sI - A) | . | (1033.5)

bi’ i=1y «.. r, is the ith column of the input
distribution matrix B in (10.2.1).

It follows that the change in the closcdfloOP H‘
characteristic polynomial, z&Di(s) resulting_from a change
z&k? in the ith row of K 1o givcn by

anl(s) = axipi(s)y;, (10.3.6)
where: | |
i . =1 L | |
#,(s) = Cadj(sI - A + pZ=1bpkpC + PE;prkpC) (10.3.7)

By equating coefficients of like poWers.ofvs on;
each side of (10.3.6), a numerical equation is obtained
as: |

gtax] = at | " (10.3.8)
where Ji is an nXm matrix of coefficients obtained from
the m-dimensional column Dolynomiél vector ﬁi(s)b., and
di is an n-dlmen51ona1 column vector of coeffficients |

of A&I) (s), excludlng the coefficient of sn. The least-

squares solution of (10 3. 8) is obtained as:
. + . . . - .
Aki = [Jl] at - V (10.3.9)

Ralh ‘ .
where [J{]. is the pseudoinverse of Jt. .
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0

The ith row of_K’then becomes kE +'¢§i§, and:

szi+1(s) =.£XDi(s)'~'£S%§ %(s)bi , or
L LT A - (10.3.10)

Starting from some arbigrary initial K,.this |
process is fépeated untii;‘tdicomplete one cycle of
operations, each row of‘KﬁhaéiBeen included. The cycles
are continued unﬁil the norm 6f the'di, ”d” , at any
step becomes sufficiently small, or fails to decrease
over a cycle.

It is shown thatafhe recursiﬁe process4is'conﬁergent,
and a modification is included whiph permifs the specific-
ation of‘individual poles, instead of the coefficients
of the characteriétic?bolynomial. Thg reason for consider-
ing this alternative approaéh is staéed as the desire
to avoid computational inaccuracy which‘sometimes
accompanies the use of characteristic polynomial coeffic—
ients as a means of specifying pole positions.

10.4 Comment.

In the absence  of ény direct way of’ensuringvthat
the étate feedback éain'matrix lies in the row space
of the C matrix, the approach used by Munrd and |
Vardulakis doce not scem to -be of great uﬁsistancc in

the general pole-assignment problem.
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A disadvantage of an approach Eased on the initial
determination of state feedback, as used by Munro and
Vardulakis, and by Bengtsson and LinQahl, 1s that some
of the freedom. in designing the Jﬁtput feedback is lost
when the state feedback is determined; The state feed-l
back for a given closed-loop pole configuration often
is nbn—unique, so that the qhoice of a different state.
feedback could yield a better solution to the output
feedback problenm. o

Patel's method does not suffer from this disadvantage,
and it represents a useful approach. This is a recursive
method, however, and, if such a method is to be used,
it 1s worth while ensuring, as far as possible, that
the recursive algorithm includes all the design constraints-
it is desired to impose. The use of an algorithm in
which one row of the feedback matrix K is considered
at a tlme does not lend itself readlly to this. '

A further consideration is that, even if a direct ..
general solution of the problemvof pole assignment in
multi-input, multi-output systems were found, it would
be of limited use in practice. The reason for this is
that the rigid specification of all closed-loop poles
requires the designer to specify his problem more‘completely
than he is, with knowledge, able to do. The practical
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situation usually is thaﬁ*theflocat;ons of some closed-
loop poles, normally those néér the origin of the complex
plane, are critical. The locations of the remaining poles,
within broad limits, are not critical. If the designer
is forced to specify these poles rigidly, hé may be
undonsciously imposing severe constraints on the‘system,
tending.to make the critical pole locations difficult
to achieve, and déman&ing high feedbgck gains.

The foregoing considérations suggest an approach
in which the desired closed-loop poles are specified .
with weighting factors, so that their relative importanéé
mey be taken into accbunt, and in which the elements
of the feedback matrix K are. considered 6ne at a tiﬁe.
It then becomes possible to apply limits to the values
of the elements of K, ahd to allow for the‘incluéion 
of only certain elements of K, if desired. An example
of a case in which this facility would be useful was
given by Bengtsson and Lindahl, in the problem,of the
control of three interconnected power statiomns, geograph-.'
ically far spart. Another situation in which it is useful
to have freedom to consider the elements of K individually
1s in the problem of determining the feedback gains |
needed to maintain stability of the system, in the event

of loss of some of the feedback loops, due to malfunction.
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In the next section, a general recursive pole-assign-~
ment procedure is described, in which one element of X
is considered at a time. This procedure is intended to
meet the requirements set out in the preceding paragraph.
This may be regarded as a direct, practical approach to
the problem of closed-loop pole assignment by output |
feedback, in which advantage is taken of the availability

of the high-speed digital computer.
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10.5 A General Procedure for Pole Assignment in Multi-

Input, Multi?Output Syétems;

10.5.1 System Déscriptioh and Problem Statement.

A 1inear timéeinvariantisystem is described by the

equations:

L]
X =

y =

AX + Ba + Bu' - .0 | © (10.5.1)
cx - . . (10.5.2)

where x, ¥y, u and u' are vectors of dimension n, m, r

and r, respectively.

B =
and

C =

The
K, where:

ul
such that

‘b1 see br] . | ; o . (10.503)
C1 . '

. : . . (10.5.4)
.T ’

°m

L] i“ .
problem is to find the feedback gain matrix

2L3.

Ky ' (10.5.5)

the poles of the closed-loop system approach'

as closely as possible a'given set of desired poleé,_

A%, .o Ag. A negative sign for the feedback gain in

(10.5.5) is introduced for convenience.

The

relative importance attached to the deviation

of each po;e from the desired value is to be capable of

adjustment. Arrangements arevto be provided to permit

only certain chosen elements of K fo be included, if



desired, and provision is to be made to limit the values
of the elements of K, so that these do not exdeed some
arbitrarily chosen values.

10.5.2 Development of the Algorithm.

The problem is equivalent'to that of finding X so
that, subject to the constraints, the eigeQValues of the
matrix (A - BKC) approach as closely as possible the
desired set A&, cee ,kg. Coﬁsidering one eleﬁent of K
alone, say kij’ and setting all other elemersts of K to

zero, reduces this matrix to:

The characteristic polynomial of (10.5.6) is:
det(sI - A + k, 13P1 j) (10. 5.7)
and this may be written as.;;;
T
det(sI - A) ‘I + (sI - A) kijbica
- - - - Ay~ 1 :
= det(sI - A)(1 + kijcj(si_. A)” bi) , (10.5.8)
using a matrix identity proved in (M1]
The expression (10.5.8) may be written as:
det(sI - A) + k, ,c-adj(sI - A)b, ~ (10.5.9)

id J
It is desired that the closed-loop characteristic

hE

polynomiél (10.5.9) be zero when s takes each of the values
A%, ...'Ag. Departure from the zero value is a measure

of how lmperfectly the probiem has been solved. A criterion
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of success is given as.the weighted sum of the squares
of the moduli of the expression (10.5.9),.evaluated for
each of the desired poles, A%, ces ,\g.

Let: .
g(s) = det(sI - &) | (10.5.10)
and £(s) = cyadi(sI - A)b, ~ (10.5.11).

The sum of the squares of the moduli for all poles

‘xg, real or complex, is given by:

25w (A + ey 2CADNEAY) + 1 F(AD)  (10.5.12)

where Wy is a positive weighting factor. '
Differentiating the expression (10.5.12) with respect .

to kij gives:

2, { g (80 AY) + gy APDIECAD + w0y @AY + k57 ,\gnf(,\g)}

(10.5.13)

The expression (10.5.13) may be re-writien as:

2. z(wq<g< 3+ x fQADIEAD) + v (a(3D) + 1y 7 (AINFADS

(10.5.14)

and, since each complex ,Xg will have its conjugate, ,\g,

included in the summation, with the séme weighting factor,
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the summgtion may be w#itten, in general, as!
' : d : dyyvays \d
2 . [ L ]
§j1wq<g< A + kg LCADITCAD (10.5.15)
q= : R :

' The wgighted sum fothéfsquares of the moduli of the

characteristic'polynomiaiihés{é stationary value where:

2w s ADFOD
> vt (ADED

There is clearly ohly one stétionary value, and the

K,, = =

iy = (10.5.16)

weighted sum of squaresqof the moduli tends to + infinity
as kij tends to + gr - infinity, sé that the stationary
value given by (10.5.16) is a minimum. It follows that
the value of kij given by (10.5.16) ié the 'best' value,
according to the chosen criterion, wherc only the element
kij is permitted to change.

The specification of repéated poles calls for a
modification of the expreséions. A pole of multiplicity
p will satisfy the characterisﬁic polynoﬁial (10.5.9) |
and ifs first (p-1).derivatives with respeét to s. Hence
the squares of these derivatives are included in the |
summation for the criterion._The:summationé of (10;5.16)

then will include the terms:
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580 ADTCAD) + wpe (ADTCAD + oo

@@ OGEE-D A (10.5.17)

in the numerator, and:
iy £ iy e
W TCADECAD) + w ot CADE CAY) +

A a ,\g_)f(-‘? L ) (10.5.18)
in the denominator.

It should be noted that the existence of repeated.
eigeﬁvalues of A is immaterial.-‘

The weighting factors applied to the various
derivatives need not be equal, but thé weighting factors
for a complex pole must be equal to those for the
conjugate pole in the original expressions and the
derivatives. .

The algorithm for polé assignment can now be;

stated.
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10.5.3 Algorithm for Pole Assignment.

The algorithm is described as follows.
1. Starting with a particuiar element of X, say k11,
find the corresponding f£(s).and g(s),'using the Leverrier
. method. :

2. Calculate k.., from (10.5.16).

11
3. Replace A by (A - k,.b cT); and return to 1, but,

1171
this time, using, say, k12. |
4. Continue in this way, déaling with each desired elenment
of K in turn, according to some regular scheme. When all
the elements have been computed once,.jhe cycle is
repeated.
5. The process continues for a definite number of cycles;
or until the absolute values of all the computed kiﬁ
increments are less than some preassigned number, over a

cycle. At each step, the total valué of the elenent

kij

assigned limit wvalue. If the limit is exceeded, the

calculated may be compared with a corresponding

calculated value is replaced by the limit value, and
the process continued. .

6. In order to avoid the accumulation of'errors, at
each step, the matrix (A - BKC) is calculated, using
the latest matrix K. |
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10.5.4 Refinements of the Algorithm.

When applied to simple test problems, the algorithm
was found to give rather rapid variationsvin the elements.
of K initially, and then to settle to0 a slow. asymptotic
type of approach to the final values.

Once the steady approach stage had been reached,
it was found that a considerable acceleration of conver-
gence was achieved by the use of Aitken’s extrapolation;
formula [Aj] . This formula takes three values of each
element of K, equally spaced in number of iterations,
and uses these to predict the final values of thesev
eleﬁents. K is then adjusted so that each element has
this calculated finel valpe;:gpd the iterations are
continued. The eitrapolatiohfformula is applied as
often as neéessary untiljthéfﬁﬁtrix K is stationary.

The extfapolafion fdfmula takes'the.follbwing
form. If a variable y has'threelvalues, Yi» Yo and y3,
where the interval of the indeéeﬁdent variable between
N and Yo is equal to that between,y2 and y3; thg
predicted final value of Ys Tpor assuming that the approach
to fhe final value is gxponential,'is obtaiﬁed as:

' - 2
(y2 .-; Y1)

yf=y- )
! Y3 = 29y + V4
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In an algorithm in which each element of X is
computed separately, there is a tendency for the elements
of K which happen to be'computed early in the process
to be given large values. This tendency was reduced
by the use of a 'slow turn on' feature. Here, during
the early part of the proceduré;'the computed values
of the elements of K were multiplied by positive
constants of magnitude less than 1. These multiplying:
constants were gradually increased to 1 as the process
continued, so that the full calculated valﬁes were
then applied. "

10.6 Comment. a 0

| The algorithm is conceptually very simple as, at
each step, the variation of one scalar feedback gain
only is involved, and thisbcorresponds'to the familiar
scalar root locus approach,-rhe algorithm finds the
value of this scaiar gainTwh;Eh brings the set of clbﬁed—
loop poles as close. as pé$$i§ié to the desired set,
taking account of the weighting factors. At the next
step, the action is similar, except that a different
scalar gain is involved, and a different set of root
loci would apply.

Variation of the SPecified weighting factors;'

5

or of the desired poles, provides the designer with a



means whereby he‘may acquire a feel for the system.
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It is not nccessary, at the outeet, to have a knowledge . .

of the quantitative effects of varying the weighting
' factors. This will be acquired after a few trials.

It is not a necessary part of the procedure tb
compute the system poles, but a program to do this is
included, so that the progreés of the algorithm can be

monitored at intervals.

As a by-product of the program, the numerator and

denominator polynomial of every input-output transfer
function of the system with feedback can be obtained,

as this information is already availablé.
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10.7 Avplications of the Pole Assignment Algorithm. .

10.7.1 Example 1, 3rd Order System.

y:)
The algorithm was applied to an example considered

by Patel {Pf] . In this example,

1 1 -2

10|
B = o of

o 1

1 0 0
C = *

o 1 0

The specified olosed-loop poles are -6 and (-12- 35)
Patel obtained the solution:
32.0 11.8681
-108.407 -49.7246 |

K =

The solution to'this problem is non-unique.
A solution was obtained u51ng the algorithm Wlth
equal pole wei htlngs, and no gain constraint This gave

the result:



253.

32,0000 167.748
3.50537 =5.75702

with the poles:
~6.0000 and -12.0000%35.0000
This solution was obtained after 151 calculatiohs
of the matrix K. |
In order to investigate the operation of thé
feedback gain limit feature, the feedback gain limit
matrix was set as:
100 20
1000 1000
The same problem was run again, but with fhe
gain 1limit in operation, and the algorithm set off
as before, but encountered the feedback'gain limit
on k12 at -20. This 1limit was applied '323 times, and
the algorithm then left this limit and found a solution
in which the gain matrix was:
32.0000 12.629u
e -105.961 -51.4096
giving the closed-loop poles:
-5.9999 and -12.0000%35.0000.
| This program required 1,536 calculations of K,

and the execution time on the CDC7600 computer was

2.827 seconds.
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10.7.2 Example 2, 3rd Order System — Repeated Poles.
) k A

To check the operation of the algorithm for a
problem in which repeated poles were specified, it was
applied to the same system as was considered in 10.7.1, .
but with the specified closed-loop poles: -6, -12 and -12.

A solution was obfaiped at a count of 512 célcul—

ations of the XK matrix as:

32,0000 203.142
9.68123 35.9605

XK =

giving the closed-loop poleé: -6.0000 and -12.0000th.OOOO.
The execution time for this.program, on the CDC7600
computer was 0.913'8econd.
It appears from this example that the gaiﬁ matfix
is slower to converge for repeated poles than for Siﬁple

poles.



-10.7.3 Boiler Control Problem.
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The algorithm was applied to a steam boiler control

problem described by Bengtsson and Lindahl [Bu] s in

which the elements of the state vector, input vector

and output

pH Ur

& M
= U

=]
n

Y9
o

vector have the following physical significance:

drum pressure (bar)

drum liquid level (m)

drum liguid temperature (deg. C)
riser wall temperature (deg. C)
steam quality (per cent)

heat flow to the risers (kJ/sec.)
feedwater flow (kg/sec.)

*1

X5

For a power station boiler with a maximum steam

flow of 350 t/h, drum pressure 140 bar, operating at

90% full load, the matrices A, B and C are a3 follows:




o

0.000 0.396 x 10"
4

~0.129
0.329x 1072 0.000 -0.779 X 10
0.718% 10”1 0.000 =0.100
0.411% 10”1 0.000 0.000

0.000 0.139 X 10"‘?
0.000 0.359 x 10°H
B = 0.000 ~0.989 x 1072
0.2h9x 10°*  0.000
| 0.000 ~0.543 x 1072
1 0o 0 0 o0
C =
o 1 o 0 o

0.250 x 10~}

0.122% 1072 -0.621
0.887x 107> ~3.851

~0.822 x 10~1

| 0.361% 1072 0.000 0.350% 10™* 0.426 x 107 -0.743% 107 ]

—

The desired closed-loop eigenvalﬁes are:

~0.190 %10~

~0.755 x 10" |

© =0.141 % jo.170x 107!

I j0.511x10"

1

256.

-~

0.191x 107"

0.000
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In Figs. 10.1 to 10.6, the closed-loop poles are
shown on the complex plane. In each figufe, the desired
poles, which are the same in every case, are shown as'
croéses, whilst the poles which_Were.obtained are shown
as circled points. - |

Bengtsson and Lindahl[Bd] first attempted tb
aésign only three poles, leaving the other two to assume
any values. This was done by applying the first of their
methods, and yielded the closed-loop poleS{Vl

~0.493075 x 1071 |
-0.594323 x 10™
~0.955001 x 107 !

1 1

1+

30.5L4265 x 10~
©3O. 113494

These are shown in Fig. 10.1, and it is seen

I+

that, whilst the real pole is correctly located, the
complex poles are not near the desired locations.
The next two results in [Bu] were obtained by
using the second method desc:ibed in this reference,
which comprised a least squares technigque with weighting.
These yielded the closed-~loop polés: ,
~0.326633 x 1071 v 4 .

' 30.553355 x 1071
1 4]

-0.592370 X 10~
~0.121923 = 30.576148 X 10~

which are shown in Fig. 10.2, and:
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-0.251520 x 10~

~0.589330 ><1o'-"1 .i jo.'5u9513 x10~
1

1

~0.131879 < 30.288136 %10~

which are shown in Fig. {0.3.
The algorithm devéloped in this chﬁpter was épplied

to the problem initially with equél weightings,lénd.

yielded the gain matrix:

0.481513 x10°  0.112829 x 10°

K = 5

0.528289 x 102 0.322502 x 107

which gave the closed-~loop poles:

~0.360368 % 10~

~0.7L6516 x1o"1' I 50.490695 x10~
1

1

-0.142585 £ 50.169954 %10~

These are shown in Fig. 10.4, and are seen to
coincide with the specified values, except for the |
real pole, the value of which is specified as -O.u9><10-1.

A second run was taken with pole weightings 5,2,2,1,1,
so as to bring the real pole closer to the specified |
value. This gave the gain matrix: |

0.550159 x 10°  0.940841 x 10°
= Jo610184x 102 030799 x 107

with corresponding closed~loop poles:
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~0.39215L x 107

~0.736004 x 1071 £ 30.474900 x 10~
0. 147478 % J0.159734 %107

1

These are shovn in Fig. 10.5.
A third run was taken with weightings 10,2,2,1,1,"
8o as to bring the real pole nesrer still to the specified

value. This gave the galn matrix:

0.596941 x 10°  0.757852 X 10°
X = :
>

0.66536L X 102 0.290672 x 10°

with corresponding closed-ioop poles:

~0.416929 x 10~

~0.724652 x 10~ £ 30.460L415 %10
' 1

1 .

~0.150899 T j0.141252 %10~

These are shown in Fig. 10.6.

In each application of the algofithm, the K matrix
was calculated approximately 1,000 times, with a run of
256 calculations of K before switching in the fast -
convergence algorithm. The execution time on the QDC76OO
computer was limited to 6 seconds. |

Examination of Figs. 1 to 6 reveals that thé pole
locations obtained by using the algorithm are considerably
closer to the desired locations than thoée achieved by
the methods described in [Bu] . The effects of varying

the weighting factors have been demonstrated. In this
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example, feedback gain limits were not imposed, as it
was desired to make a direc.t comparison with the results

obtained in [BL] .
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10.7.4 Power System Control Problem.: '

A power systenm controllpﬁOblem was also considéred
by Bengtsson and Lindahl [Bul . In a reduqéd model of
the Scandinavian network, there are three generators,
one on North Sweden (GNOSVE), one in South Sweden (GSYSVE),
and one in Norway (GNGE). The genefators in® North Sweden
and Norway have hydr§iéurbines,'and the generator in
South Sweden has a stéam turbine. The.linearized eiuations

for the power systém'are:

X =Ax +Bu & (10.7.1)
y=0x (10.7.2)

The vectors x, u and y'ére of dimension 15, 7 and
10, respectively, and the.variables'hgve the following

significance:

x1 rotor angle, GNOSVE

X, rotor angu%ér velocity; GNOSVE

Xy flux linkage of field‘winding,VGNOSVE
xu‘ excitation voltage, GNOSVE

Xg velocity of water, GNOSVE

Xg rotor angle, GSYSVE
rotor angular velocity, GSYSVE
flux linkage of field winding, GSYSVE

excitation voltage, GSYSVE



U'F -FF \,f I\J‘:

steam pressure, GSYSVE

rotor angle, GNGE

rotor angular velocity, GNGE

flux linkage of field' winding, GNGE .

excitation‘voltage, GNGE

velocity of water, GNGE

excitation input; GNOSVE
gate opening, GNOSVE
excitation input, GSYSVE
steam valve sevting, GSYSVE
fuel flow, GSYSVE
excitation input, GNGE

gate opening, GNGE

rotor angular velocity, GNOSVE
terminal voltage, GNOSVE
excitation voltage, GNOSVE
rotor angular velocity, GSYSVE
terminal voltage, GSYSVE ’
excitation voltage, GSYSVE'

steam pressure, GSYSVE
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4 Vg rotor angular velocity,_GNGE

y9 terminal voltage, GNGE

Y10 excitation voltage, GNGE
The operating condition considered corresponds

to the expected peak load in 1975, with high transmission

from North Sweden to South Sweden. The numerical values

of the elements of A, B and C, for this condition, are .

given in Appendix I.
0

It was established that satisfactory operation
was obtained with state feedback giving the system
poles: |

—7c33 X'\O-B
1

—2.77 %1071

4

~2,09'X 10"
1

1+ ;

L §3.55 107
-3.17x10" "

1 1

I+

-3.83%x 107" ¥ j2.53 x 10

~5.14 x 107!
-1.36 T 33.12
-1.37 = jL4.18
-1.49 £ j3,79x 10~
-2.4613

1+

2

Considering the_ﬁide geographical separation of

the three generating plants; there are obvious advantages



in uéing only local feedback at éach»generating plant,
instead of feedback of the full state Yector. The
problem, then, is to find the feedback matrix K, where
u = - Ky | © (10.7.3) -
such that the system has approximately the desired set
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of poles, but where the form of the matrix X is restricted

to have non-zero elements in only.the following pogitions:

Kyq Kqp Ky

Koy Kop Kog |
k3), K35 K36 K37
fun ¥ys e By
51 K55 K56 K57
68 *s8 ¥6,10
k8 ¥79 E7,10
Using thelr method, the authors of [Bu] found

a K matrix which gave the following system poles:

-5.56 % 10’8

I+

§2.70 x 10~
1

~3.33% 10"

-3, % 107

~3.8 %10~

I+

j2.52 % 10"

I+

j2.10% 107"
~L.65 %1071 |

~7.95%x107"

Lt

33400
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~1.19 T j4.05
-1.47
-1.66
~2.4l

The algorithm deveiopéd in this.chapter was
applied to this problém.then the desired poles as.
given were 1nserted in the nrogram, it was found that,
even after a long run, there were some noles which
were not approaching the desiped locations. The reason
for this was that the particuiar poie pattern specified. '
had some poles which were'almoSt-indistinguishable u
from multiple poles. An example is the complex pair
. _ .. ' :

£}

-1.49 % 33.79 x1072

which is very cloqé tq-being a double pole at - 1.49.
There is also a cluster of 8 poles crose to fhe origin |
of the complex plane.

The situation was improved by specifying the

fol;owing set of desired closed-loop poles:

-7-33 X 10-3 .
~2.53 x 10" 1 double real pole
~3.33%x 1071 & J3.0L x10~1 qouble complex pair

~5.14 % 1071




-1.37 *
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3418

-1.49 double real pole

-2.4613

using wvarious weighting factors.

It became reasonably clear that the specified poles

were not attainable, with the given constraints on the

form of X. It

followed'that there was no point in

specifying the desired closed-loop poles in the pole-

assignment algorithm as those which were actually required.

False desired pole locations could be used with advantage

to 'draw' the closed-loop poles towards desired values.

Using this technique, and after trying various weightingl

factors, the following result was obtained:

The closed-loop poles specified as desired in the

algorithm were:

-0.60 +
-1.49 +
-1.36 =
-1.37 %
-2.46 +

JO0.00 , with multiplicity 8
j0.00 , with multiplicity 2
j3.12
.18
jO.00

The corresponding weighting factors were:

1 2

10°, 10!, 10,

6 -2

102, 10%*, 102, 10%, 107, 1072, 1071,

107, 107, 107, 107%, 107H.
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The choice of weighting factors was based initially
on consideration of the magnitudes which would be‘assumed
by the moduli of the specified poles when.raised to the
relevant powers.

There is a possibility, when using an algorithm of
this type, in which one element of the K matrix is
considered at a time, that the desired pole locations
could be achieved by the first few values of K computed.
This would have the effect of imposing'the fuli burden
of control on the first genérating plant, an undesirable
condition. The use of the slow turn-on feature would make
this eventuality unlikely, but, as an additional attemp?t
to spread the control burden as evenly as pbssible, the
sequence in which the elements of K were coﬁputed.was
arranged in a way which covered the three generating .
plants in every four steps, as shown in Fig. 10.7.

This shows the elements of the K matrix as numbers,

indicating their order in a single cycle of computation.

1 5 9
13 17 21
2 1 L4 16
6 18 8 20
10 22 12 24.
3 7 11
Pig. 10.7. 15 19 23



.K(
X(
K(

K(
K(

K(

X(
K(

X(

0

The following closed-loop poles were obtaiged;

-1.320188
-0.635L77
-1.803196

+

i+

Lk

0.030663 +

-0.125816
~0.638L4 1
~0.697708
-2.094821

The corresponding K matrix is:

1, 1)
1, 3)-
2, 2)
3, 4)
3, 6)
b, 4)

1

1+ 1+

I+

+

3l 150066
12.760519

30748796
jO.00 ..t i

30.388958 -

jO.186223
j0.033927

-0.336957+03  X(
0.774286+01  K(
0.101597-01  K(

~0.110809+04  K(
0.286085+01 K(

-0.187359+01 K(

L, 6) = 0.112062+00 K(

5, 4) = 0.319288+03 T-K(
5, 6) = 0.201785+02 X(

6, 8) = 0.110463+03 -~ X(
6,10) = 0.190445+01 K(
7, 9) = =0.185914+00 K (

30.541223

2, 1)
2; 3)
3, 5)
3, 7)
4, 5)

L, 7)

5, 5)

5, 7)

&, 9)
7, 8)
7,10)

O.12351i+02
0.239819+00
-0.276290-01
0.287821+02
-N,788294+02
~0.2088614+00
0.2414979+01
~0.525062+01
0.394995+03,
0.142131+02

~0.403856+00

-0.807061-01
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The above solution was obtained in”a single run
of' the program, in wﬁich the K matrix was computod
300 times. The fast coﬁvergénce algorithm was activated
after 150 computations of K.'The total execution time
on the CDC7600 computer was less than L4LO0 seconds.
This time included the monitofiﬁg operétion of finding
the roots of the fifteenth order characteristic polynomial
three times. |

The solution obtained is seen to give é-closed-
loop pole pattern reasonably close to the‘desired pattern,
but unacceptable without modification, due ﬁo the )
presence of an unstable pole. Other solutigns were
obtained which were éompletely stable, but which had
lightly damped poles;'lt should be noted that the solution
obtained in [B&l includes & pole which is very close
to the origin of the complex plane, and so represents
a dominant time constant many times greater than that
said to be fequired. | 3

The present design}waéiéompleted by computing
additional mild feedback between the output and input
of generator GSYSVE only; so as to meet the requirement
for local feedback. The additional feedback was cqmputed

in the following way:

&
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The input matrix for GISYSVE, say BZ; consists of
the three middle columns of B. It was decided to calculate '
the feedback on the basis of a single-input system, and
so a distribution vector, g,.was chosen-arbitrarily, SO
that the equivalent single-input vector b = Bzg, where
g was chosen to be: | |

1
1
-1
" The negative sign invthe laSt élement was chosen
so as to avoid having rather.small elements in b. Using
the method of [H1] , the state feedback vector was found
which would maintain all the closed—loop'poles unchanged,
except the unstable real pole, which would be moved to
the desired position —0-733><10—2. The positi#e feedback
vector, hT, required for this was found to-bez '
-0.224632-02 |
=0.577750+00
-0.129410+00
~0.485069-01
~-0.136880+00
~0.778877-03
~0.231656+00
- =0.929728-02
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~0,209143-02
0.133485-01
-0.496277-02
-0.688096+00
-0.724758-01
-0.101034+00
-0.16264.7+00
The state vector is not available for feedback,
and the use of observers is not permitted, so that an
approximation to this feedback, using only the available
outputs from GSYSVE, was obtéined, using the generalised
inverse. If the output matrix of GSYSVE, the middle four
rows of C, is represented by G,, and the output feedback
vector is kT, then k was found as:
k = (C,05)7 'c, h.
This gave the solution for k as:
0.573343-01
-0.104032+01
-0.209143-02
0.133485-01
Applying this feédback, the eigenvalues of the

overall system matrix (A - BKC + Bzngcz)_were found to be:
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I+

Jh-91u08L
j2.824345
jo.074121
J0.606576
JO.755744
30.536374
30.00 .'
30.335272

-1.172409
-0.909607
-2.157151
-1.310579
-0.877863
40.285257

I+ i+

I+

-0.577581

This solution appears to be more satisfactory than

o+

that obtained in [Eﬁl » as the closed-loop pole pattern
1s reasonably close to the desired pattern, and the '

dominant time-constant is considerably smaller.
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CHAPTER 11.

CONCLUDING REMARKS AND RECOMMENDATIONS.

11.1 Computer Programs.

Computer programs were written, where appropriate, .

for the procedures described in. this thesis. The language
used was FORTRAN L, and several suﬁroutineéofor the
standard operations were adapted from those publlshed

by Melsa and Jones [M1&].. The programs were run on

an ICL19034A comouter and on a CDC76OO machine.

11.2 General Conclusions and“Recommendatlons for

Further'Research.'

The probleh of cléégdéiﬁﬁp pole assignment by
state vector feedback mayfnowxbe regarded as solved.
There is a choice of technigques available, and the
combination of initial arbitrafy'feedback to remove
multiple poles, and to render the system 'nOpmal',
in the sense that it is, controllable from every input,
followed by the use of the explicit gain forﬁula for
single-iﬁput systems, érovides a solution in every
case, provided the“sysgem is controllgble. '

The case in which there is restricted measurcment
access may be approached through the results of
Davison [D3] , for the assignment, or near-assignment,

of m poles, where the system has m independent outputs,
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permitting the use 6? the;eingie—input explicit gain
fermula in a restricted form. The remaining (n-m)
closed-loop poles must be}detennined, as tney move
in an unpredictable way. A solution has been presented
for this problem, in which the feedback gains are
obteined, whilst, at the same time, the coefficients
of the residual characteristic polynonial, from which
the remaining (n-nB poies may be found, are given.
Very recently, Kimura [K21 has showvn that a
controllable, observable, system with r independent
inputs and m independent outputs, can have all n poles’
made egual to, or arbifrarily close to, any assigned
values by proportional feedback, if m+r=n+1.
A similar conclusion'hae been reached by Davison and
Wang [bs] , Who have also shown that, for almost 511 n
(B,C) pairs, min(n, m+n—1) poles can be assigned érbitrarily.»
The approach, used by Davison, of considering the assign-
ment of poles arbltrarily close to desired values, SO
avoiding the difficulties associated with the hyoper-
surfaces of unattainable poles, has contributed greatly
to the understanding of the theory in this arca. | |
Although the precise assignment of poles has no meaning
in engineering applications, due to limitations in the

accuracy of the parameters concerned, changes in their
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values with time, and so on, the theorefical existence
of a solution which approachés arbitrarily close to an
unattainable value may be accompanied by practical -
difficulties, such as the usé of unduly high Lloop
gains. Conclusions about the properties of 'almost all'
systems could be regarded as having doubtful value,
 since the engineering designer will draw iittle comfort
from the knowledge that most other systems would have
a desirable property if the system with which He is
confronted lacks this property. He wpuld; presumabiy,
be encouraged to look for other outputs or inputs; in
the hope that the changed system would have the property
required. The results obtained by Kimura and by Davison
and Wang are important, but they do not represent a
final answer to the general problem of the condltions
which must be satisfied by the (4,B,C) matrices to
permit arbitrary closed-loob pole assignment. There 1is
scope for further interesting research in this direction.
' Thé assignment of zeros as wellbas poles is an
obvious development of state vector feedback, and two
procedures are presented [M?) fér the design of state
vector feedback to provide, as far as possible, a
specified scalar input-output transfer'function. These

procedures are useful in the commonly occurring case
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where, as in scalar system design, one input-output -
transfer function is of major importance. The problem
has been approached more generally by Wang and Desoer,
and there are some cases in which more than one transfer
function can be specified. However, the limited nﬁmber
of variable parameters a&ailable in state vector feedback™
makes it unlikely that very much further progress will
be made in this direction.

The complete freedom of pole assignment providéd
by state vector feedback makes the use of observers very
attractive, especially since, provided that an observer
is fed with the system inputs, its presenceidoes not
increase the order of the input-output transfer functions,
The design method of Cumming for a state observer is
satisfactory where full computer facilities are available,
but it is cumbersome otherwise. A simple step-by-step
| procedure for the design of reducéd—order state observers
suitable for pencil-and-paper design,.aSSisted by an
electronic calculator, or a time-sharing cbmputer
terminal using a simple programming language, has been
»resented.

A design procedure has been given for the linear
functional observer with arbitrary dynamics, which

avolds the nceed to transtorm the systom Into a apecial
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canonical form. This pfécedure has been_ekten@ed to

permit the design of lbwforder linear functional observerS'

in which the reductioh of oﬁserver order is achieved

by accepting restpictions_on‘ﬁpe choice éf the observer

poles. The ppoblei of thefdeéién of the 1inear functional

observer maybbe regarded?éﬁfséived. The techniques

have been used to prcvide-évstgp-by-step procedure

for the design of degenerate observers in general, to

provide more than one speéified;linear functional of

the state vector. This procedure may, in most cases,

be expected to result in a worthwhile reduction in the

order of the degenerate observer, but it is ﬁot claimed

to yield é design of thé lowest possibie order. There is

scope for further geseérch in the problem of desiéning

a degenerate observer of minimum order to provide a

set of specified linear functionals of the state vector.
The properties of the dual observer are different

from those of the ordihary.observer and, wnilst its

field of application is 1¢ss extensive than that of the

ordinary observer, it'could be useful in regulator

systems having mqre'inpufs than outputs. A design

procedure for a dual obéerver is presented, and itihas

been shown thgt a design of order (g-1) can be obtained,

where q is the controllability indekvOf the systenm,



281.

such that the poles of the overall system are'ass;gned
arbitrarily.

The need for an observer to be fed with the
external inputs which are applied to the observed_system
is a disadvantage in practicalvcases. The‘deéign of
O~observers and k~observers is an attempt to overcome
"this by designing the observef for a suitably augmented
system. The work of Hostetter and Meditch in this field
has been examined, and some new conditions for the .
existence of these observers have been presented.

This is a promising field for further research.

Approaches to the general pole assignment problem -
for a~multi-input,'multi-output system by output feedback
through the initial determination-of state Tfeedback
have been examined, and do not seem verj'promisiﬁg.

On the other hand, the availability of modern digital
computers operating at high speceds makes it}possiblev

to employ a simple algorithm which is based on a direct
approach to the solution. Such an algorithm is presented.
It 1o itorative, but not incremental in opovuﬁion, Qnd

is shown to be agceptably fast, to yield solutions

which are superior to those obtainable by other methgds,
and to accommodate design constraints without difficulty.

Further research based on the application of this type
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of approach to large systems and to non-linear systems
is likely to'be rewarding. |

From a more general point of view, there is a
need for further r?seafch to improve the relatioqships
between the general tﬁeoretical work and pracfical
numerical problems. Many of the theoretical resultis,
for example, in Kalman's controllability'énd observability
criteria, and in Luenberger’s'canonical forms, rest upén
the idea of the linear iﬁdependence of vectors. Iﬁ
practical numer;cal work, this questioh'does not always’
have a clear-cut ansﬁer,gas has been demonstrated ‘
recently by LaPorté and'Vignes [i6] » who have considered
the related problem of determining whether a numerical
matrix is singular. They havé glven examples in which
a singular matrix would, if treatea in the usual way
on a finite word leﬁgth digital computer, be regarded
as non-singular, and of the converss éasé ol a nén—
singular matrix which would be regardéd as singular.
A gquantitative measure of the linear independence‘of a
vector relative to a given set of linearly independent
vectors 1s clearly very useful, and such a measure 1s
provided by the ratio of the Granm getarminant including
the candidate vector to that without it. This ratio [GB]

‘glves the square of the length of the component of the
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candidate vector normal to the space spanned by the
given vectors. By the repeated application of this
procedure, 'best' sets of linearly independent vectors
can Be built up for use, for example, in connection
with Kalman's tests, or Luenberger's canoﬁical forms.
Such ideas as these could be applied to the general
theory of control systems so that they wéuld no longer
be regarded'as simply controllable or uchntrollable,
ctca, 5ut as having these properties in varying degrees,

subject to quantitative measurement.
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APPENDIX T.

The numericsal values:of thé elements of the A, B
and C matrices of the system considereq in 10.7.4-are
given in this Appendix. The signed integer at.the right
hand side of each-number indicates the power of ten bj

which it is to be multiplied.

A-MATRIX.
A( 1, 2) = 0.314159+03 A 2, 1) = -0.24224,9-01
A( 2, 2) = =0.322929+01 A( 2, 3) = o.162980+oo
A( 2, 5) = 0. 340985+00 A( 2, 6) = 0.113810-01
A( 2, 7) = -0.864848-02 A( 2, 8) = -0.68,4552-02
A( 2,11) = 0.128439-01 A( 2,12) =-—o.998u26-02
A( 2,13) = -0.712887-02  A( 3, 1) = -0.213677-01
A( 3, 2) = -0.676581-01 A( 3, 3) = -0.304433+00
A( 3, 4) = 0.250453+00  A( 3, 6) = 0.147243-01
A( 3, 7) = -0.884903-02  A( 3, 8) = 0.554234-03
A( 3,11) = 0.664346-02°  A( 3,12) = 0.672120-02
A( 3,13) = 0.827741-02 A( 4, 4) = -0.769231-01
A( 5, 5) = -0.140858+01 A( 6, 7) = 0.314159+03



7, 1)
7y 3)
75 7)
7510)
7,12)
8, 1)
8, 3)
8, 7)
8, 9)
A( 8,12)
A(C 9, 9)
A(11,12)
A(12, 2)

A(12, 6) -

A(12, 8)
A(12,12)
A(12,15)
A(13, 2)
A(13, 6)
A(13, 8)
A(13,12)
A(13,14)
A(15,15)

0.310481-01
~0.138751-01

~0.2427L9+01

0.159024+00
~0e141278-01
0.180088-02

0.695069-02 -

~0.282597-01
0.336L492+00

0.390225-02
~0.100000+00
0.314159+03 -
~0.106559-01"
0.61,9000-02
-o.u6296u§dgf

~0.887218+00
0oLl 1134400
0.410596-02
0.723718-02
-0.930530-04L
~0.536106-01
o.gh7o§1+oo

-0.183560+01 .

7, 2)

75 8)
7,11)
7,13)
8, 2)
8, 6)
8, 8)
8,11)

A(10,10)
A(12, 1)

= A(12, 3)
‘¥2A(12,.7).
TUA(12,11)
- 1A(12,13)

413, 1)
A(13, 3)
A(13" 7)

A(13,11)

A(13,13)
A(1h,1h)

7, 6)

8,13)

-0.207229-01

~0.499094~01

0.465573-01
0.188614~01

:23_.

J

-0.993110-02 .

'0.602946-02
-0.227243-02
~0. 360985+00
Oo.u71 545-03

-0.732244=02
0.130472~01

-0.791938-02"

-0.511231-02
~0.195372-01
© 0.165L03+00
0.728335-02
0.636214-02
~0.444029-02
~0. 114520501
-0.288581+00

~0.769231-01



The 156 elements of the A-matrix which are not

listed are zero.

R=-MATRIX.

B(
B
B(
B(
B(

2,
5,
9,
10,
1L,

3)
5)
6)

The 95

2)

i

~0.227323+00
0. 140858+01
0. 100000+00
0.730000~02
0.769231-01

B(
B(

L, 1)
7, L)

B(10, L)
B(12, 7)
B(15, 7)

I

0.769231-01
0.162229+00

-0.783733-02
~-0.294089+00

0.183560+01

elements of the B-matrix which are not

llsted are zero.

C~MATRIX.

1, 2)
2, 2)
2, 6)
2, 8)
2,12)
35 4)
5, 1)
55 3)
5, 7)
5511)

0.100000+01
0.932214+00
0.194903-01

0.734920-02

0.227022-01
0. 100000+01
-0,9136L49-01
0.233823+00
0.277790+00

~0.709931-01

c( b, 7)°

2, 1)
2, 3)

2, 7)

2,11)

2,13)

5, 2)
5, 6)
5, 8)
5512)

i

i

-0.212729-01

0.889955+00

-0.100683-01

0.178260-~02

- 0.232592-~01

0.100000+01

0.240934+00 -

0.162358+00

0.286660+00

0.159072+00

- 286.
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c( 5,13) = 0.143982+00 C( 6, 9) = 0.100000+01
c( 7,10) = o.100000+oi° c( 8,12) = o.1oOoob+o1
G( 9, 1)'= 0.108115-01  C( 9, 2) = 0.11L4114-01
c( 9, 3) = 0.151u57-9ﬁ' c( 9, 6) = 0.126540~01
6( 9, 7) = -0.743007-02  G( 9, 8) = 0.117922-02
c( 9,11) = -0.234655-01 c( 9,12) = 0. 102604+01
c( 9,13) = 0.912437+00 - C(10,14) = 0;100000+o1

The 116 elements of C which are not listed are zero.

EIGENVALUES OF A. »
~1.2L064Y 134.132591
~0.754666 = §2.970554 -
~2.383217 + 30.00

I+

I+

~1.408580 + 30.00
~1.835600 + J0.00
0.518948 1072 + J0.00
~0.732187 1072 + 30.00
~0.332077 + 30.00
~0. 100000 + §0.00
~0.369861 + 30.00
~0.076923% + 30.00
~0.1422286 + 30.00

-0.076923 + 30.00
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