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ABSTRACT 

This thesis is ooncerned with pole and zero. 

assignment by proportional feedback in linear time-

invariant multivariable systems, and the associated 

problem of observer design. 

The eigenvectors of a single-input system with 

feedback are given in a new form, and the associated 

re-diagonalized system is obtained directly. The 

problem of pole assignment in systems with restricted 

measurement access is assisted by a solution which 

yields the feedback gains for the assignment of a 

limited number of poles, together with the coefficients • 

of a residual characteristic equation, yieVing the 

unassigned poles. 

Two solutions are given to the problem of the 

assignment of the poles and zeros of a scalar transfer 

function. 

A simple step-by-step design procedure for state 

observers is given, and a general solution for the 

design of a linear functional observer, which removes 

the need for reduction to a canonical form. The procedure 

is extended to the design of low-order linear functional 

observers, yielding explicitly the constraints on the 

observer poles corresponding to any proposed observer 
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order. A design procedure for general degenerate observers 

is also given. 

The properties of the dual observer are examined, 

and a new design procedure is presented, which yields 

a design of lower order than that available hitherto. 

The problem of observers for systems with 

inaccessible inputs is considered, and new conditions 

for the existence of a type of observer suitable for 

such systems are obtained. 

Finally, a simple general algorithm for pole 

assignment by output feedback is given, which exploits 

the high speed of operation of modern digital computers. 

This algorithm permits the inclusion of practical 

design constraints. 
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CHAPTER 1.  

' INTRODUCTION TO POLE AND ZERO ASSIGNMENT AND  

OBSERVER DESIGN.  

1.1 Introduction.,  

The pioneering work of Rosenbrock [R11 and Wonham 

[Wil on pole assignment, and of Luenberger [L11 on the 

theory of observers, has led to a large volume of 

published work on these and related topics in a little 

over ten years. Although much progress has been made, 

complete answers to all of the questions arising have 

not yet been obtained. For example, the necessary and 

sufficient conditions for the assignment of all poles 

of a linear system by output feedback are not known. 

The situation has now been reached where some workers 

in the field of control theory are expressing doubts 

as to the value of the state space approach, upon which 

the ideas of pole and zero assignment and observer 

theory are based. This probably is a natural reaction 

to the fact that the high hopes which were held at 

one stage have not been completely fulfilled. However, 

there can be little doubt that these techniques have 

value, and must take their place alongside other 

techniques, such as those based on frequency response, 

in the design of linear systems. 

.a 
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The systems considered in this thesis are linear 

and time-invariant, and the signals are deterministic. 

The matrices (A,B,C), which characterise the system, 

in the usual notation, are regarded as fixed, and not 

open to the choice of the designer. All external signals 

continue to be applied to the system after the feedback 

is applied, and no interchanging of external inputs, 

so as to apply them to other inputs,'is permitted. 

The problems thus take a reasonably realistic form. 

The broad aim of the research was to find methods 

for the design of feedback for such systems so as to 

obtain desired sets of closed-loop poles. The assign-

ment of zeros is also considered, in so far as this 

can be achieved by simple feedback. Because of the 

importance of the position occupied by state vector 

feedback in pole and zero assignment, the question of 

the design of state observers, degenerate observers 

and dual observers has received attention. In such a 

wide subject, some measure of selection is necessary, 

and an important topic that has not been considered 

in this thesis is that of decoupling by output 

feedback. 
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Towards the end of the thesis, the qtlpstion of 

closed-loop pole assignment by output feedback is re-

examined, and an algorithm is presented which becomes 

practicable now that modern high-speed digital computers, 

such as the CDC7600, are available. This algorithm 

may be regarded almost as the opposite approach to that 

of modal control, which formed the starting point of 

this thesis. The modal control approach is based on an 

eigenvalue-eigenvector analysis of the system to be 

controlled, and depends upon the Jordan form into which 

the system matrix can be transformed. The algorithm 

presented here requires no preliminary transformation 

of the system equations, is completely general, and can 

deal with all system poles, whether they be real or 

complex, simple or multiple, before or after the. feed-

back is applied. When this algorithm is used, the general 

theory of mode controllability and observability provides 

a background which helps in the understanding of the 

problems, but it does not form the basis of the technique. 
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1.2 Outline of the Thesis.  

In Chapter 2, the problem of pole assignment 

where the system state vector is fully accessible for 

measurement is considered. After a brief review of the 

available methods, the explicit gain formula for the 

single-input case, which was reported in [M11 , [1,12] 

is developed, for completeness. New formulae are obtained 

for the eigenvectors of the system after the application 

of state vector feedback. These formulae are an advance 

on those given previously FM21 , in that they apply 

whether particular system eigenvalues are changed or not. 

These results will be useful in theoretical work, and a 

canonical form is obtained for the re-diagonalized 

system with feedback, which avoids the need for the 

re-calculation of eigenvectors by the usual methods. 

Relationships are established between recent 

work of Fallside and Seraji and earlier work of Bass 

and Gura; also, between a method due to Willner, Ash 

and Roy and a technique proposed by Luenberger. The 

connection between this last method and the explicit 

gain formula of [1,111 	(M2} , is demonstrated. 
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Other recently reported work on pole assignment 

by state vector feedback is reviewed, and the connections 

with existing methods are indicated. 

The problem of pole assignment with restricted 

measurement access is discussed in Chapter 3, including 

the important results of Davison and Sridhar and Lindorff 

concerning the number of poles which can be assigned. 

A procedure for pole assignment for this case is given, 

which yields the feedback gain vector and, at the same 

time, the coefficients of the residual characteristic 

polynomial, from which the unassigned poles may be 

determined. The sensitivity of the unassigned poles 

to small changes in the assigned poles is also examined. 

The techniques available for multi-input systems are 

reviewed, and the limitations of some recently reported 

work in this area are pointed out. 

The assignment of zeros as well as poles is 

considered in Chapter 4. The basic limitations arising 

from the limited number of variable parameters are 

discussed. Attention is then directed to the problem 

of designing the feedback gains to give a desired 

single scalar input-output transfer function. Two 

methods are presented, one of which is based on the 

concepts of modal control, and permits the results of 



modal control theory, such as the explicit gain formula 

for a single-input system, to be applied directly to 

the problem of zero assignment, as well as pole assign-

ment. The second method presented is based on the 

transformation of the system to the companion form. 

Both techniques provide information on the possibilities 

available for zero assignment in individual cases. 

In Chapter 5, the properties of state observers 

are reviewed, and the techniques available for the 

design of state observers of full dimension and of 

reduced dimension are discussed. Cumming's method, 

which is satisfactory for the design of reduced-order 

observers where full digital compUter facilities are 

available, is discussed in some detail. A different 

approach is appropriate for design by pencil and paper, 

assisted by an electronic calculator, or a time- 

sharing computer terminal, using a limited programming 

language. A very simple step-by-step design method is 

presented, which is useful in such cases. 

The linear functional observer is considered in 

Chapter 6. The established results are reviewed, and 

a design procedure is presented for an observer with 

arbitrary dynamics to provide any pre-specified linear 

functional of the state vector of a multi-output system. 
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This procedure differs from that originally proposed 

by Luenberger in that it does not require the transform-

ation of the system to a special canonical form. The 

procedure, incidentally, can be used to provide an 

alternative proof of Luenberger's result concerning 

the existence of a linear functional observer of order 

(p-1), where p is the observability index. The procedure 

is extended to the case of a low-order linear functional 

observer, and provides sets of conditions which must be 

satisfied by the coefficients of the characteristic 

polynomial of the system matrix of the observer, if 

a linear functional observer of given order is to exist. 

This work parallels that of Fortmann and Williamson, 

which is based, like Luenberger's earlier work, on 

the use of canonical forms. 	 • 

The more general problem of designingodegenerate 

observers, to provide more than one pre-specified linear 

functional of the state vector, is considered in Chapter 7. 

The approach used in Chapter 6 is applied to this problem, 

to provide a routine design procedure for degenerate 

observers. It is not claimed .however, that this 

procedure will yield the degenerate observer of lowest 

possible order in any given case. 
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The dual observer is considered in Chapter 8. 

The properties of the dual observer are examined; in 

particular how these differ from those of the ordinary 

observer. A new technique for the design of a dual 

observer of reduced order is presented, and the existence 

of a design of lower order than that given by previous 

workers is established.• 

Chapter 9 deals with observers for systems with 

inaccessible inputs. A serious disadvantage of observers 

is their need to be provided with the inputs which are 

applied to the observed system. The work of Hostetter 

and Meditch on 0-observers and k-observers, intended 

to overcome this difficulty, is reviewed, and extended 

by the provision of a simplified criterion for the 

existence of a k-observer for a single-input, single-

output system, and a sufficient condition for the 

existence of a k-observer for a• multi-input, multi-

output system. 

In Chapter 10, a return is made to the problem 

of pole assignment in multi-input, multi-output systems. 

Recent work is reviewed, and its limitations indicated. 

A general algorithm for closed-loop pole assignment 

is presented, which makes use of the availability of 

the modern high-speed digital computer. The algorithm is 
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applied to some numerical examples. 

In Chapter 11, the work covered by the thesis 

is reviewed, and some general conclusions are reached. 

Recommendations are made for future research, where 

this is considered to be promising. Some more general 

comments are also included, concerning the problems 

that arise in applying linear systems theory to 

practical numerical cases. 

Concerning notation, this has been made as 

consistent as possible, within the limits imposed 

by the available symbols. According to convenience, 

the feedback gain matrix is sometimes defined with 

a negative sign, and sometimes with a positive sign: 

The convention used is stated in each case, and so 

this should not cause confusion. 
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1.3 Contributions of the Thesis.  

In Chapter 2, the formulae for the eigenvectors 

for the system with feedback, and the canonical form ' 

for the re-diagonalized system equations, are new. 

In Chapter 3, the procedure for pole assignment for 

a system with restricted measurement access, which 

yields both the feedback gains corresponding/ to the 

assigned poles and the coefficients of the residual 

characteristic polynomial corresponding to the un-

assigned poles, is original. The treatment of the 

sensitivity of the unassigned poles to small changes 

in the assigned poles has, as far as is known, not 

been given before. 

The two techniques for transfer function synthesis 

in the scalar case by state vector feedback are original, 

in Chapter 4. 

In Chapter 5, the simple step-by-step design 

method for state observers is new. The design method 

for the linear functional observer in Chapter 6 is 

original, as are its extensions to the design of low-

order linear functIonal observers and, in Chapter 7, 

to the general problem of degenerate observers. 

In Chapter 8, the design method for dual observers 

is new, as is the result that a dual observer of order 
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(q-1) exists, where q is the controllability index, 

permitting the arbitrary assignment of all poles of 

the overall system comprising the system and the dual 

observer. Some new conditions for the existence of 

k-observers and 0-observers are established in Chapter 

9, particularly for the multi-input, multi-output case. 

The algorithm for pole assignment for multi-

input, multi-output systems by output feedback given 

in Chapter 10 is original. It is very simple, and 

becomes practicable only with the availabillty of 

the modern high-speed digital computer. 



20. 

CHAPTER 2.  

POLE ASSIGNMENT WITH FULLY ACCESSIBLE STATE VECTOR.  

2.t Introduction.  

We consider a linear time invariant system described 

by the equations: 

x = Ax + Bu' + Bu 

y = Cx 

where x, u', u and y are vectors of dimensions n, r, r 

and m, representing the state, feedback input, external 

input, and output, respectively. The matrices A, B and C 

are constant, and the problem is to find a constant 

feedback matrix K such that, if 

u' = Ky 	 (2.1.3) 

the closed-loop system has desired poles. 

There are two broad types of approach to this problem, 

the first based on eigenvalue/eigenvector dialysis, which 

we shall call 'spectral' methods, and the second based 

on directly changing the coefficients of the character-

istic polynomial, which we shall call 'coefficient' methods. 

2.2 Spectral Methods.  

It is obvious that, if r = m = n, and B and C are 

non-singular, K can be found without difficulty. For, if 
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W is a matrix which transforms A into Jordan form, i.e., 

W-1AW = A, where A is a Jordan matrix, then the change 
of state vector to z, where z = W 1x, in (2.1.1) and 

(2.1.2) gives the equations as: 

=Az + W-1BKCWz + W-1Bu 	(2.2.1) 

If now A1 is a diagonal matrix of desired eigenvalues 

of the closed-loop system, we have only to put: 

K = B-1W(1%1 :-A)W-1C-1 	(2.2.2) 

to achieve the required result. 

In practice, it is rarely possible to use the result. 

in (2.2.2), because the numbers of inputs and outputs 

available are usually very much less than the system 

order n. Porter [P11 has set out the conditions which 

must be satisfied for such a simple approach to be 

extended to systems in which m and r are less than.n, 

and these are clearly very restrictive. 

Rosenbrock [13.1] , in his original paper on modal 

control, dealing with the case in which the eigenvalues 

of A are distinct, suggested a procedure for obtaining 

arbitrary assignment of m eigenvalues by choosing C as 

the first m row eigenvectors of A, and B as the first m 

column eigenvectors. This permits the assignment of m 

eigenvalues without affecting the remaining (n-m) eigen-

values. Rosenbrock suggested a procedure for approximating 

-• 
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to this in practical cases. This procedure requires a 

separate feedback loop, between one input and one output, 

for each eigenvalue which is to be assigned. The method 

is obviously limited by the number of inputs and outputs 

available, and by the success one can achieve in approx-

imating to eigenvectors in the input and output matrices. 

Takahashi, Rabins and Auslander [T11 have described 

a similar approach, in which they distinguish between 

'ideal' control, in which all the canonical states which 

are not having eigenvalues changed are both uncontrollable.  

and unobservable with respect to the inputs and outputs 

used for the feedbacks, and 'non-ideal' control, in which 

either uncontrollability or unobservability is achieved, 

but not both. It is shown that, in the non-ideal case, 

although the system eigenvalues are changed in the desired 

manner, cross-couplings are introduced between the canon-

ical states, which would not otherwise exist. The approach 

depends, in practice, upon a process of finding suitable 

measurement nodes, with respect to which certain canon-

ical states are unobservable, or control nodes, with 

respect to which certain canonical states are uncontrol-

lable. It would appear to be useful in giving some 

guidance in the choice of a control structure, although 

the amount of freedom of choice may be 'so limited in 
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practice as to make this- of no great value. This method, 

and that of Rosenbrock, are included in this chapter, 

because they represent partial applications of (2.2.2). . 

Simon and Mitter LS1) set out the theoretical 
foundations of modal control, based on the application 

of the fundamental work of Kalman [K11 , Gilbert [all , 

Wonham [W1] and Luenberger [1.'1] to the ideas suggested 

by Rosenbrock. They introduced the important concepts 

of mode controllability and mode observability, and 

showed that the conditions for these coincide with those 

for state controllability and state observability derived 

by Kalman and Gilbert. Simon and Mitter gave an important. 

theorem covering the case in which the A matrix is derog-

atory. They showed that the minimum number of inputs 

necessary to permit full eigenvalue assignment in a 

controllable system in which the state vector is fully 

accessible, is equal to the greatest number of Jordan 

blocks having the 0samq eigenvalue, in the Jordan canon-

ical form representation. They gave an algorithm for 

changing a number of eigenvalues simultaneously, which 

requires the solution of a set of linear equations, and 

a recursive algorithm, in which one eigenvalue is changed 

at a time, and the system restored to canonical form 

at each step. Although they showed that.  a single-input 
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system in which A has distinct eigenvalues can have all 

n eigenvalues assigned by state vector feedback, they 

did not obtain an explicit expression for the feedback 

gains necessary for this. 

The problem of finding the feedback, gains explicitly 

was solved by Mayne and Murdoch Dull 	, and by Crossley 
and Porter [C11 , independently. These solutions are for 

the distinct eigenvalue case. The solution was extended 

to the multiple eigenvalue case by Retallack and Mac-

Farlane [R2] , and by Gould, Murphy and Berkman [G2] . 

.The derivation of the result for the distinct 

eigenvalue case is given in the following section, as 

this will be required subsequently. 

2.3 Explicit Gain Formula for Single-Input System.  

A single-input system is described by the equations: 

X = Ax + bu' + bu 	(2.3.1) 

y = Cx 	 (2.3.2) 

We require to find the feedback gain vector kT,  

whore: 

u1 = kTy, 

such that the closed-loop system matrix (A + bkTC) 

has a desired set of eigenvalues. x and y are n-vectors, 

If and u are scalars, A has distinct eigenvalues, C is 
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nonsingular, and the pair (A,b) is controllable. 

Let W be a matrix of self-conjugate column eigen- 

vectors of A, corresponding to the eigenvalues (X 	.A ) 1,  ..  n • 

then: 

Let W lb = °C.  = [eel  .. otriT, and 

kTCW p rpi  fin-) 
If the eigenvalues of (A + bkTC) are ( A di  • 	A dn  ) • 

= 
J=1,..n 

__n 
it (A"i  

1=1  
Ti

n
(A 1=1 i 

iAj 

-A 
(2.3.3) 

—A ) 

Proof.  

We introduce a new state vector z, such that x = Wz. 

Then, (2.3.1) becomes, with feedback, 

z = (A6+41. F T)z + au 	(2.3.4) 

y = CWz 	 (2.3.5) 

where d),= diag( Ai, 

The system poles are the eigenvalues of (A + pT). 
The characteristic polynomial of this matrix is: 

det(si —A — cy T ) 	 (2.3.6) 
Is' 	det(I - 	)-1 cepT) 	(2.3.7) 

Applying the matrix identity det(I + EF) = det(I + FE), 

which is proved in [M1-1 , (2.3.7) becomes: 

ITn(8  - 	)f1 	21.1'4131 	ji(s - Xi) 	(2.3.8) 
i=1 	i=18 	f i 	i=1 
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Setting s = Ai  and rearranging gives (2.3.3). This 

proof is due to Mayne EMI] . 

2.3.1 Comment.  

As (A,b) is controllable, and A has distinct eigen- 

values, o(j 	0, j=1, 	n. It follows that the (3i  can 

be determined from equation (2.3.3) for any set of 

i=1, 	n. There is no restriction on the Al', 

which may be distinct.  or repeated. For physical realiz-

ability, the Al  will be real, or in complex conjugate 

pairs; as will the 4. Some of the )ct"may be set 

equal to the A if desired, which simply corresponds 

to leaving some eigenvalues unchanged. kT is found from: 

- 1 -1 kT = TW C . (2.3.9) 
If the. pair (A,b) is not completely controllable, 

the formula (2.3.3) can still be used, as the derivation 

does not require that 04:i 	0. It is clear from the 

Ai . expression that, if op( = 0, at least one of the A 

must be set equal to 	in in order to make the expression 

zero. pi  then becomes indeterminate, but the solution 
can otherwise be completed as for the controllable case. 

The expression clearly applies equally to the case 

in which kTC is regarded as fixed, while b is varied. 

If the system is observable through kTC, complete eigen- 



27. 

value assignment is possible. 

2.4 New EiKenvectors With Feedback.  

It is useful to have the new row and column 

eigenvectors of the system with feedback, i.e., the 

row and column eigenvectors of (A g OT) in the 
canonical z co-ordinates. These are useful if it is 

desired to restore the system to diagonal form after 

feedback is applied, or if eigenvalue and eigenvector 

sensitivity studies are to be made. 

Simon and Mitter [S11 obtained the new eigenvectors 

after changing a single eigenvalue, in connection with 

their recursive algorithm. Murdoch [M2] obtained the. 

eigenvectors for the general case, when some or all of 

the eigenvalues are changed, where the eigenvalues of A 

are distinct. Using the results obtained in EM2] , and • 
the feedback gain expression (2.3.3), the following 

expressions are obtained for the new eigenvectors for 

a completely controllable system with distinct eigen-

values both before and after the application of feedback. 

Thus, oC 	0, i=1, 	n, 
j Ad i j.  

A 	A i 	, and i 	i t  

2.4.1 Formulae for Eigenvectors.  

(a) If V is a matrix of row eigenvectors of 	+ a(ST) 
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the element in the ith row and the jth column of V is 

given by: 

V. 1 

 

--n d 
II ( A, - A ) 
q=1 
gAl (2.4.1 ) 

0( j  Tin( A - A ) j 
qj 

 

(b) If W is a matrix of column eigenvectors of (A. + I2/ 0
T) 

the element in the ith row and the jth column of W is given 

by: 

1i11( /1` - 	) 
q=1  
0!Ai wij  (2.4.2) 

 

 

11- (Ad - A d) 

q=1 	"q 
qAj 

  

The expressions (2.4.1) and (2.4.2) have been so 

chosen that: 

VW = I, 

where I is the identity matrix. 

There is no requirement that the 	be not equal 

to the Ai. If such equalities exist, these will result 

in the cancellation of some factors, and zero values for 

others, as appropriate. 



Substituting for vrj  from (2.4.1), with i = r, this equation 

is equivalent to: n 
TT ( Au 	A.\  

q=1 	J 

vroL 	j  = ( Xr,  _ X) ci/r.  
J 	n 

q- 	J 
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Proof.  

The proof is in three parts. (a) We first prove that 

, a general row of V, vr, is a row eigenvector of A + 04-p T) 

corresponding to the eigenvalue ;0‘d, where the jth element 

of vr is given by (2.4.1), with i replaced by r. (b) We 

then prove that a general column of W, wr, is a column 

eigenvector of (A + 0( (3T) corresponding to the eigenvalue 

Ad, where the ith element of wr is given by (2.L-.2), with 

j replaced by r. (c) Finally, we show that vrwr  = 1. 

(a) Row Eigenvector.  

\ 
vr is a row 	eigenvector of 	+ a 

T
) corresponding 

to the eigenvalue r if and only if the following equation 

is satisfied: 

vT(A + o[ 1(4T)A
dvT  (2.4.3) r 

The jth element on the left hand side of this equation 

is: 

vrj j + vr (3 j 

where p. is the jth element of (3T, and that on the right 

hand side is: 

td 
rvr j 
Hence, we wish to show that: 

	

( x
/Nd 
	Aj)vrj 

vr°4  j 	r 

Since °C. / 0, this may be written as: 
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vrd 

n 
Tr (Ad  

0/ 	_ q=1 	q  

j (3j 	n 

TV ( )%n  - 	) 
q=1 

01/i 

(2.4.4) 

Using (2.3.3), with the appropriate change of symbols, 

the left hand side of (2.4.4) becomes: 

n Tr  ( Ad _ 
T 	q=1 	cl.  
v
r
a< 

n 

TT ( X 
_ ‘ 1 

r■j) 

1 q  

q/j 

Clearly, the equation is satisfied if and only if 

v0<. = 1 . 

Substituting for the elements of vTr, from (2.4.1), the 

left hand side of this equation becomes: 

n d  

n 	-IT (A, - A3 ) 	n 

q=1 	si 

>1 ci/r 	= 	 - j  pi 
Adr  n 

j=1 	IT (X0  - Xj) 	j=1 

q=1 	- 

(1/i 

from (2.3.3). 

(2.3.8) gives the identity: 

n 	 n 

i15i 	 51(s  - A.c)  `7-77, oz 	 (2.4.5) 
	t 	= 	1 - 

n 

j=1 B  - >j 	 II (S - Xj) 

j=1 

td 
Setting s = A

r 
in this identity completes the proof 

for the row eigenvector. 

(1q) Column Eigenvector.  

wr  is a column eigenvector of (A. + of (3
T
) corresponding 

to the eigenvalue
r 

d 
 if and only if the following equation 

X j ) 

A j 

is satisfied: 



which may be written: 

n 
i 7 (Ar -  A 
Q=1 

( Ad  - Ad) q  q=1 
qjr 
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(A + a(sr)wr  = Arwr 	(2.4.6) 

The ith element of this equation on the left hand side is: 

Aiwir  + ctit3Twr, where 40(i  is the ith element of 0C, 

and that on the right hand side is: 

Adw r ir 

Hence, we wish to show that: 

-Tw  = 	- 	lw  
r ` 	ir 

Substituting  for wir  from (2.4.2), with j = r, gives, on 

the right hand side: 

oLi Tr ( 
Q=1  
n 

( A 
9/r 

- A ) 

- At) 

The left hand side becomes: 

 

n 
n d  

oe 	( A 	Aq) 
PI pi 

Q/13  
n _ id \ 

q=1 
q/r 

 

p=1 

Clearly this equation is satisfied if and only if: 
n 

oe 
P I p 

Ad  - p=1 r 

but this was shown to be true in (a), and so the proof 

is complete for the column eigenvector. 



32. 

(c) Product of Row Eigenvector and Column Eigenvector.  
n 

T v w = r r v w rp pr 
p=1 

Where vrp  is obtained by putting i = r and j = p in (2.4.1) 

and w
Pr 

 is obtained by putting i = p and j = r in (2.4.2). 

Then: 
n 	A 	 n 	A  _Fr  ( Au. _ A  ) Tr  ( Au _. A  ) n 

	

= ›..-] q=1 g 
	P q=1 r 	q 

q/r vTw q/D 

 

	

r r 	n 	n 
P=1 	11 (An  - A ) -Ti-  (Ad - Ad) 

q=1 	- 	P  q=1 	q 
q/P 	q/r 

Using (2.3.3), this may be written: 

	

n 	n 
IC ( Aci, — >kg ) 	 
q=1 	44(1013P  

( 4 - Ap )2  i  ( Adr -A) 
q=1 
clAr 

(2.4.7) 

(2.4.8) 

Differentiating the identity (2.4.5) with respect to s 
tc1,  and setting s = A , with j = p, gives: 

n 	n Tr  ( Adr - )rd it  ( ivi
r - Acid 

n q=1 	-1- q=1 
4141D (i l) 	 q/r  
d 

L--1(  Xr - X )
2  = 	n 	d 

P 	(jc ( Ar  - Aci»2  p=1 
q=1  

From (2.L1..8) and (2.4.9), it follows that: 

vTw = 1. r r 
This completes the proof. 

(2.4.9) 
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2.4.2 Numerical Example.  

To illustrate the application of the formulae of 

(2.4.1) and (2.4.2), consider the case in which: 

Ai  = 0 p 	4X = 1 , 	A3  = -3 

Adi 	= 	>■31  = -3 
49 	 = 2. (1 = 1  ' 	a = -1 2 	' 4(3 

This example includes one eigenvalue which is 

unchanged by the feedback. 

Application of the formulae gives: 

-2 

-V = 	-1 
_2 

41•111 -3 0 

-2 0 
_3 1 
2 12 

-2 3 0 

W = 	1 -2 0 

2 -12 12 
IND 

It is readily verified that VW = I. 

The feedback vector required to give these new 

eigenvalues may be obtained from (2.3.3) as: 

^

T = 
[2 6 0] 

whence the new system matrix with feedback is:. 

•• 
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L = 

0 

0 

0 

1 

0 

0 

1 

-1 

0 0 -3 2 

2 6 0 
-2 -5 0 
4 12 -3_ 

It then follows that: 

-1 0 0 

VLW = 0 -2 0 

0 0 -3 
OW 

as required. 

This procedure is described in M11] • 

C2 



vij = 	 (ad _ xi) 
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2.5 Rediagonalization of Controllable System With Feedback.  

If, in the system discussed in 2.4, a new state 

vector , p, is introduced, where z = Wp, and W is as 

given in (2.4.2), equation (2.3.4) becomes: 

(2.5.1) 

where 	= diag( A51 	>i). 

Derivation.  

The new system matrix is diagonal, because the Ad  

are distinct, and W is a matrix of coluMn eigenvectors. 

The new input distribution vector is IN4 , where V is 

given in (2.4.1),  or, equivalently, as: 

Then the ith element of the new input distribution 

vector is: 

En  ti
i1i 
 = 

j=1 ( 	- A,) 
(2.5.2) 
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Proof.  

From (2.3.8), 

n g 
)(1 -

o(
j, ) = 11(s - 

j=1 	j=1 • 	j=1  s - Ai  

(2.5.3 ) 

First assume 4.  . 	j=1, 	n, and set 

s = Al. Equation (2.5.2) follows. 

Now let 4.  tend to one of the Aj. The expression 

(2.5.2) is unaffected, because the term ()t - Aj) is 

always a factor of oti/Si, for each j,. j=1, 	n. 

The expression (2.5.2) is therefore true generally. 

2.6 Coefficient Methods.  

An explicit solution to the problem of finding the 

feedback gains for arbitrary pole. assignment in a control-

lable single-input system was given by Bass and aura [B1] 

For the system described by (2.3.1) and (2.3.2), in which 

C = I, the feedback gain vector kT, where: 

u, = kTy 	 (2.6.1) 

is given by: 

k = - 2: (l_i 	ai_i)(AT)i-id 
i=1 

where: d = [D en 
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in which en 
is the last column of the identity matrix, 

ai-1 and  ai-1 are coefficients of' s
i-1 in the character-

istic polynomial with and without feedback, respectively. 

D is the controllability matrix: 

1 D = ibrAbiA2 	 (2.6.10b ••• 1 	 (2o6e 
I 	I  

This result can be obtained alternatively by 

transforming equation (2.3.1) to the phase-variable form. 

Using the method of Ramaswami and Ramar tR3], the system 

may be placed in the phase-variable form: . 

p = Acp + 0.1u 
0 	0 

1 	1 

(2.6.5) 

   

by the transformation p = Tx, where T is the observability. 

matrix of 4A), i.e., 

tT  

t1
A 

(2.6.6) 

 

  



0 	1 0 0 . . 0 
0 	0 1 0 . . 0 

= . 	• • . . . 	. 

-a0-a1 . • • 

(2.6.7) 
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and tT is the last row of the inverse of the controllability 1 

matrix (2.6.4). Ao  has the form: 

Ac 

• 1 
	 I • • 

The transformed state feedback gain vector is kTT-1, 

and it is clear from (2.6.5) that this gives the desired 

set of coefficients (iro, 	an-1) to the closed-loop 

characteristic equation if: 

(2.6.8) kTT-1 = - 	. . 	[ 	. . o 1 	a 1  + a a n- 	o a1 	a ] n- 
Hence: 

kT  = - l(ao-a0) (al  a ) 	6111-1-an-1)]T 	(2.6.9) 

Substituting for T from (2.6.6) gives: 

kT = 4.11 	T 0-ao)t i  -(611-a1 )t1A 	- Csin-1a 	
T 

)t1A 
n-1 

(2.6.10) 

Transposing (2.6.10) gives (2.6.2). 

2.7 The Method of Anderson and LuenberAer.  

The formula (2.6.2) cannot be used with a system 

which is not controllable through a single input. 

1 
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Anderson and Luenberger it‘i] considered the general case 

of a multi-input system, and derived a canonical form, 

based on generalised phase-variable forms obtained by 

Luenberger fL2} . In the single-input case, this form 

coincides with the phase-variable canonical form, and 

is unique. In the multi-input case, the canonical form 

is not unique, as it depends upon the scheme used in 

selecting sets of linearly independent vectors from 

the controllability matrix. 

Power LP2] has described an extension to this method, 

in which advantage is taken of the possibility of 	, 

replacing some zero terms by non-zero terms in the 

canonical forms, without affecting the characteristic 

polynomial, so as to obtain extra design freedom. 

One difficulty that may arise in using the method 

of [Ail is that the initial- non-unique.  formation of the 

canonical form decides the size of the real companion , 

matrices of which it is composed. This places limitations 

on the choice of system poles to achieve realizability. 

Power [P3] has suggested an extension to the method to 

overcome this difficulty, and provide increased design 

freedom. 
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2.8 The Method of Fallside and SeraJi.  

This method EF1] is based on the relationship: 

kTg(s) = F(s) - H(s) 
	

(2.8.1) 

where F(s) and H(s) are the open-loop and closed-loop 

characteristic polynomials of the system, kT is the 

feedback gain vector, and g(s) is an n-vector, the 

elements of which are the numerator polynomials of the 

transfer functions from the input concerned to each 

state.variable. The relationship (2.8.1) was given by 

Bass and Gura fiq . Multi-input systems are treated 

as single-input systems, by distributing scalar feedback 

amongst the inputs, as is done in other. schemes. The 

method then involves equating coefficients to achieve 

a desired F(s). 

Although it appears to be simple, this method 

probably involves, for large systems, about the same 

amount of work as the use of the phase variable canon 

ical form, due to the need to find F(s) and g(s) 

initially. It is obviously closely related to the method 

of Bass and Gura. 
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2.9 The Method of Willner, Ash and Roy.  

Willner, Ash and Roy EW2] have described a pole-

placement algorithm which they claim to be new. This is 
o 

neither a spectral nor .a coefficient method. For a single- 

input system, this method is based on the solution of the 

equation: 

or: 

TF - AT = bkT 

T2T-1 = A + bkTT-1  

The vector kTT-1 now represents the state feedback gain 

vector. 

F is chosen to have the desired set of elgenvalues, 

and kT  is set to the sum vector [1 1 1 . . 	. 
Equation (2.9.1) is then solved for T. 

This method is very similar to a method first 

described by Luenberger ILI] . 

In extending their method to multi-input systems, 

the authors use a technique of converting the multi-

input system into a single-input system by distributing 

a scalar feedback amongst the inputs in such a way as 

to preserve controllability. It'is claimed that this 



Ag + a
(1-  1 Ag

-1 	+ a 1A 	= 0. (2.9.3) 
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method can be used with any controllable system, but 

Murdoch CM3] has pointed out that this is a fallacy. 

As shown by Simon and Mitter ES1] , there is no single 

input through which the system could be controllable 

if the A matrix is derogatory. The significance of 

this statement is that, for a derogatory A matrix, 

there exists no vector d such that the pair (A,d) is 

controllable. This is easily proved because, since A 

is derogatory, there exists a polynomial in A of degree 

q, less than n, such that: 

Post-multiplying (2.9.3) by the column vector d, 

and rearranging, 

Agd = -a Ag-ld - 060 	Ad - and 	. 	(2.9.4) 

It follows that the controllability matrix 

L.01 Ad A
2d . . An id] is singular, because the (q+1)th 

column is linearly dependent on the preceding columns. 



2.9.1 Alternative Derivation'of Explicit Feedback  

Gain Formula.  

The method of Winner, Ash and Roy applied to a 

controllable single input system with distinct eigenvalues 

provides an interesting alternative derivation of the 

explicit feedback gain formula (2.3.3) 

Consider the controllable single input system 

described by equations (2.3.1) and (2.3.2). 

Let A = WAW-1  , where W is a matrix of self-conjugate 

column eigenvectors of A, and A = diag( )14, ... An), 
where ( 	... An) are the eigenvalues of A, assumed 

distirict. Then (2.9.1) becomes: 

TF - WAW 1T = bkT 
	

(2.9.5) 
or: 

W 1TF - AW 1T = W-1bkT 
	

(2.9.6) 

Let W- lb = oC = &CI  . . 01;12, and let 

kT  = [1 1 1 . ..11. 

Let F = Ad = diag( gl 	' 	l Ad) where (Xd' • . - Ad) 1    
are the desired closed-loop eigenvalues. 



44. 

Let W-1T = 1'. Then (2.9.5) becomes: 

r Ad  - A r = 	Ei 1 1 • . 	 2.9.7) 

Assuming that the 	and and the Alai  have no terms 

with common values, we may solve for the elements of 

r", obtaining, for the term in the ith row and jth 
column: 

di  Yli  = 	
Ai - 

(2.9.8) 

Writing (2.9.7) in the form: 

rAci r-1  = A.+ 	5 1 1 . . 7r-1 	(2.9.10) 

and comparing with equation (2.5.4), we find: 

pT  = 	1 1 	r-1 	(2.9.11) 

For clarity, we shall write this in full for a 

third order system: 

• 



• 
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0C
2 2 c<2 

(2.9.12) 

Suppose we wish to find pi. This is the sum of the 

terms in the first column of the inverse of the 3x3 

[fi1 A p3]= 
0<1 	aC1 	 Ice — 

Ac21— A3— AI 

Aq- >\2 	?%3̀1— A2  

(2.9.13) 

matrix in (2.9.12). Hence, we may write: 

1 	1 	1 
oe2 	0C2 	c<2 

'1 ‘_ "2 A2 Id
_ '>`2  

0C 3  • 	ee  3 
	0e3 

A — 	Ac2 X3 4—  A3 

‘d_ A 	Id_ Al  
01 1 '12 	43 

°e2 	oe2 	042 

4- 2 X2- A2 A3— A2  
3 	043 

_ A 	d 1 
3 	'1

I
2
_ 
'13 
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By removing the factors 0(2  and 0(3, and considering 

the formation of identical columns and identical rows, 

it is clear that the numerator determinant of (2.9.13) 

has the following form, disregarding signs: 

a 2  oe 3( A2-  A3) ( Aci/-  12)( A2-  4) ( 4- xdi- ) 
( 	A2)( 	A3)( A2- Az)( A2- A3)( 	A2 )( A3_ A3) 

(2.9.14) 

Similarly, the denominator determinant has the 

form of (2.9.14), multiplied by: 

°L1( A2-  )0( A3-  A1) 

 

(2.9.15) 
( )4- Al)  ( A2- A1 )( A3- A1 )  

 

The ratio is thus: 

  

 

A2- A1) ( 43- A1) 

 

(2.9.16) 

   

 

1(A2-  Ai) ( A3- Ai) 

0 
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The sign is determined by considering the effect 

of X
1 
 becoming large in magnitude. 

(2.9.16) is the formula (2.3.3) for n=3, j=1, 

The corresponding expressions.  for /22  and p3  can be 

found in a similar way, and the generalisation to larger 

systems can be understood from the form of (2.9.14) and 

(2.9.15). We shall not deal with the case where some of 

the Ai are specified as equal to some A. In such 
cases, it is only necessary to replace the appropriate 

l's in kT  by 0's. 

In this procedure, we were solving for the new 

column eigenvectors of the system with feedback, and 

finding the feedback gains in the process. 

• 
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2.10. Other Recent Work on Pole Assignment by State  

Vector Feedback.  

Paraskevopoulos and Tzafestas [P5] have recently 

described a procedure for closed-loop pole assignment 

based on finding the transformation matrix T such that, 

for given A, B and L, the matrix equation: 

A + BF = TLT"1 
	

(2.10.1) 

is satisfied. L is chosen to be in the diagonal or the 

Jordan form, with the desired set of eigenvalues. A and 

B have their usual significance, and F is the unknown 

feedback gain matrix. Although claimed to be new, this 

is, similar to the method described by Willner, Ash and 

Roy EW21 , and by Luenberger [L11 . The method of )P5] 

differs from earlier procedures in that the system is 

first transformed to the phase-variable form, or to the 

generalised phase-variable form of Anderson and Luenberger 

[Al] . However, when this is done, there seems to be no 

advantage in going to the trouble of finding the transform- 

ation matrix T, since the last rows of the companion blocks 

of the A matrix can then be changed directly to give any 

desired set of coefficients to the closed-loop characteristic 

polynomial. 

It is claimed that the method described, yields 



the full degrees of freedom in the choice of F, but this 

claim does not seem to be justified in the numerical 

examples which have been given. For example, in Ex. 3 

of 	[P5] , the system 

Illy 

given is .described 

■•• 

by the equation; 

0 1 0 0 0 0 

11 30 0 0 1 0 
-= X + (2.10.2) 

0 0 0 1 0 0 

0 0 7 12 0 1 

in which the desired closed-loop poles are to be at 0, 1, 

-1 and 2. The authors reach the conclusion that: 

F = 
[-II 

0 

-29 

0 

0 

-5 

0 

-11 
] 

(2.10.3) 

However, it is clear that this is not the most general 

form of F possible, because the last two elepents of the 

first row could be given any values or, alternatively, 

the first two elements of the second row could be given 

any values, without affecting the closed-loop poles of 

the system. This is clear from the quasi-upper-triangular 

or quasi-lower-triangular structure of the system matrix, 

respectively, in the two cases. No indication is given in 

[Pg] as to how the degrees of freedom in F may be used. 
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The problem of output feedback is also treated in [P51 , 

and this will be discussed in Chapter 3, 

Flower [F71 has described a procedure for pole 

assignment for a single-input system, based on the fact 

that the coefficients of the characteristic polynomial 

of a matrix are given by the generalised traces, i. e., 

the sums of all possible determinants which can be formed 

from the original matrix by omitting columns and corres-

ponding rows. As is well known, the coefficient of (-1)ns°  

is obtained by omitting no column or row, giving the 

determinant of the matrix itself, and the coefficient of 

-sn-1  is obtained by omitting (n-1) rows and columns, 
giving the usual trace. 

When this technique is applied to the matrix: 

‘ (A 	bkT  ), 

a set of linear equations in the elements of kT is obtained, 

so as to give a desired set of closed-loop poles. 

The method becomes rather cumbersome with high-order 

systems, due to the large number of determinants, of 

different orders, which have to be computed. Apart from 

the small advantage of avoiding complex arithmetic, this 

method seems to have no advantage over the naive technique 

of inserting each desired closed-loop eigenvalue in turn, 

to form the matrix: 
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Di  = (A - Adj-I) = 	(2.10.4) 

and then forming the set of linear equations in the elements 

of kT , k1,  k2, etc., in which each equation is of the 

form: 

IDJ I 	+ kilb;dj2ido  .1 	I 	:b!di3 ..I + 	= 0 

(2.10.5) 

In practical applications, it is unlikely that the 

closed-loop system will be required to have multiple poles. 

If this is required, however, this simple method can be 

adapted by considering the derivatives of Di  + bkT with 
I respect to Ad  the corresponding number of which must 

also be set to zero for a multiple eigenvalue. These 

derivatives correspond, to the generalised traces considered 

in IF7I , but, of course, in this alternative approach, 

these need be considered only when multiple eigenvalues 

are specified. 

• 
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2.11 Conclusion.  

The coefficient methods have the advantages that 

they involve only real numbers, and that they admit of 

pole assignment in systems in which the A matrix has 

multiple eigenvalues, provided that it is nonderogatory, 

without any 'change in the method.. 

The spectral methods provide greater insight and, 

although they generally involve complex arithmetic, it 

would, in any case, be necessary to compute the open-. 

loop poles when contemplating feedback, and so the 

disadvantage of this is not great. 

On the question of accuracy, some earlier workers 

in this field tended to avoid the use of eigenvalues 

and eigenvectors, and to favour the coefficient methods. 

Direct methods of computing the transformations to the 

phase variable form D2,T2,C2,J1,R/43 involve repeated 

multiplications by the A matrix, and this can cause 

numerical difficulties. The problem of the powers of 

the A matrix tending to become more nearly singular, 

or the converse of their having very large determinants, 

can be overcome by the use of time scaling, which simply 

involves multiplying the A matrix by a constant. This 

procedure has been suggested by Davison and Chow [D1] . 
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The reason for the'avoidance of eigenvalue methods 

probably was due to the lack of a'satisfactory method 

. for computing the eigenvalues of a non-symmetric matrix. 

However, the introduction of the QR transform method of 

Francis [F21 has resulted in the availability of reliable, 

accurate programs for determining eigenvalues. The 

situation now is that the determination of eigenvalues 

by the direct matrix method is preferred to procedures 

which first find the coefficients of the characteristic 

polynomial, and then find the roots of this to obtain 

the eigenvalues. 

It should be remembered, however, that, if it is 

desired to use methods based on the coefficients of the 

characteristic polynomial, these coefficients and the 

transforming matrices needed to give the phase variable 

form can be found by taking advantage of the accurately 

determined eigenvalues which are now available. 

Procedures based on the use of this inforMation have 

been described by Johnson and Wonham [J21 for the 

distinct eigenvalue case, and an extension to the multiple 

eigenvalue case has been given by Mufti fM16] . These 

methods require the computation of the determinant and 

of the inverse of the Vandermonde matrix, and explicit 
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solutions to both of these problems are available.  

In the problem of determining the feedback gain 

vector for a single-input system, one may choose to trans-

form to the phase variable form, or some variant of this, 

and then determine the elements of the feedback gairi 

vector directly. Alternatively, one may choose to use 

the spectral method, with accurately computed eigenvalues 

and eigenvectors. At the final stage of this process, 

however, one has to compute the feedback gains from an 

expression of the type (2.3.3), which involves the 

products and quotients of differences between eigenvalues, 

which could introduce undesirable magnification of errors. 

Basically, the feedback gains which are to be found, 

consist of such products, and are, therefore, closely 

related computationally to the coefficients of the 

characteristic polynomial. 

A result obtained recently by Davison and Wang ED21 

reveals that almost all feedback laws make a controllable 

observable system controllable through a single input, 

and cause it to have distinct eigenvalues. The effect 

of this is that, if closed-loop pole assignment is the 

only consideration, any controllable observable system 
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can be treated as a single-input system with distinct 

eigenvalues. The preliminary step of applying almopt 

arbitrary feedback to achieve this condition can always 

be assumed to be possible, provided that the system is 

controllable and observable. Any change of system poles 

caused by this initial feedback can be allowed for in 

the final pole assignment. 

• 

•o 
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CHAPTER 3.  

POLE ASSIGNMENT WITH RESTRICTED MEASUREMENT ACCESS.  

3.1 Introduction.  

This chapter is concerned with pole assignment in 

the system described by equations (2.1.1),(2.1.2) and 

• (2.1.3), in which m4tn. 

Davison [D3) has shown that a controllable observ-

able system with m independent outputs (i.e., rankC = m), 

can always have m closed-loop eigenvalues made arbitrar-

ily close, but not necessarily equal to any desired set, 

by suitable choice of K, subject, of course, to complex 

conjugate pairing to ensure realizability. An algorithm 

for finding K is given, but nothing can be said about 

the remaining (n-m) unassigned eigenvalues, which will, 

in general, have been changed by the feedback in an 

unpredictable way. Jameson [33] has reached a similar 

conclusion, and has given an algorithm for finding K 

based on a least-squares fit of the actual eigenvalues 

achieved to the desired set. 

The application of the method of Fallside and 

Seraji to this case is discussed in 3.4. 
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• 

3.2 The Result of Sridhar and Lindorff.  

Using the approach of Retallack and MacFarlane 

[R2] Sridhar and Lindorff (S3] have given a, proof 

that, in a controllable, observable linear time-invariant 

system, max(m,r) closed-loop poles can be assigned. 

almost arbitrarily. 

This result follows at once from Davison's result 

[D31 , that m closed-loop poles can be assigned alMost 

arbitrarily. This is so because the eigenvalues of 

% (A+BKC) and of (AT+CTKTBT) are the same. Hence the 

conditions of [01 that C has rank m and (A,B) is 
controllable, when applied to.the transposed matrix, 

coincide with the conditions that B has rank r and 

.(A,C) is observable. Thus, if r,>m, it follows that 

r eigenvalues can be assigned almost arbitrarily. 

A further comment in ES33 is that Davison's 
conclusion that the poles which cannot be assigned 

correspond to the zeros of the various transfer functions 

existing in the multivariable system applies only to 

single-input, single-output systems, and is not general, 
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3.3 Pole Assignment and Determination of the  

Residual Characteristic Equation.  

The Method based on obtaining a least-squares 

fit of closed-loop poles, suggested by Jameson, 

is mathematically attractive, and would be expected 

to give satisfactory results if the desired poles 

were suitably weighted. This type of approach is 

• considered more generally in Chapter 10. 

Davison's method is not entirely satisfactory 

as, although it permits the assignment, or near  

assignment, of m poles, itgivesino information 

about the remaining (n-m) poles. There is, therefore, 

the necessity to compute all the system poles after 

the feedback has been determined, a process that 

will probably reveal some unsatisfactory poles, 

calling for reconsideration of the m assigned poles. 

A reasonable approach seems to be to•use a 

method which assigns the m poles, while facilitating 

the finding of the remainder. In the following procedure, 
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the feedback vector is found so that m poles are assigned 

to be arbitrarily close to a desired set, and, at the 

same time, the coefficients of the residual characteristic 

equation are found, the roots of which are the remaining 

(n-m) unassigned poles. 

3.3.1 System Description.  

A linear time invariant system is described by the 

equations: 

• x = Ax + bu' + bu 
	 (3.3.1) 

y = Cx 
	 (3.3.2) 

where x is a nX1 state vector, u' and u are scalar 

feedback and external inputs, respectively, and y is 

an m x1 output vector. A has distinct eigenvalues 

( )11, .. An), C has rank m, and the triple (A,b,C) 

is controllable and observable. 

3.3.2 Problem Statement.  

The problem is to find for the system (3.3.1), 

(3.3.2) the lxm feedback gain vector kT  = 	...kt] , . 
ouch that the feedback input: 



Pi  = - 

J=1,..n 04  711( A. - Ai) 
ii=1 
ij 

__ m 
u ,(- 
1=1 	- (3.3.8) 
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u?  = -kTy 	 (3.3.3) 

gives m preassigned eigenvalues ( )cil  , . . . Amd) to 

the closed-lpop system matrix: 
C 

(A - bkTC) 	 (3.3.4) 

We also require to find the (n-m) coefficients 

(a 9 . . an-m-1) of the residual characteristic 

equation: 

8
n-m + a

n-m-1
sn-m-1 + . 	+ a1 s + ao = 0 

	
(3.3.5) 

The roots of (3.3.5) are the remaining (n-m) 

unassigned eigenvalues of (3.3.4)., 

110 Solution.  

Let W be a matrix of self-conjugate column 

eigenvectors of A. Let A= diag( 	. 

let.: 

= [ c( 	QC ... cer]T = w71 

and 

(3.3.6) 

Let P = 
	T 	 (3.3.7) 

where: 
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Then the elements of kT and the coefficients 

ao, • • an-m-1 are given as the solution of the set 

of linear equations: 

{:viTCT p A n-m-1 P, dkr% 
0: I  A 	] 

I 	8  

 

3.3.4 Proof.  

Let the eigenvalues of (3.3.4) be ( e1/44 , . 4), 
d d of which ( 	. . Ad) are specified, whilst ( Ara+  I  • An)  

are unspecified. Let: 
T 

= L 
r  Pi . . /30= kir= 
	 (3.3.10) 

Introducing the transformation x = Wz, equations 

(3.3.1),(3.3.2) and (3.3.3) give: 

• z = 	- W-lbkTCW)z + W lbu (3.3.11) 

From (3.3.6) and (3.3.10), this.becomes: 

• T% z = 	- 04 	)z + at u 	(3.3.12) 



n T(A — Ac.1) 1=1 	j 

Pi 
j=1, ..n TT ( A — A ) 1.1 

(3.3.13) 
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From (2.3.3), we have: 

ij 

As the system is controllable, aj  X 0, j=1, ..n, 

ans so 

A di  
(3.3.13) determines the fri  uniquely, from the 

Transposing (3.3.10) and substituting from (3.3.13), 

5 A l  — Acl) 
i=1 

WTCTk = 

cie Tin  ( Al  — Ai ) 1i=2  

(3.3.14) 

n 
( An  Adi) 

i1 - 
n-1 
(An  - Ai) 

i=1 
00 
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The jth element in the vector on the right hand 

side of (3.3.14) may be written as: 

Ti m( A - 	. 	Tirn( 	-4  A d) 
1=1 	i=m+1 (3.3.15)'  

ixi 

Consider the polynomial: 

n • 
(«a - d) sn-m + an-m-1 

	+ . . • 	
i=m+1 

(3.3.16) 

Comparison of (3.3.16) with the factors of the form 

7 (A i  - Ad) 
i=m+1 

in (3.3.15) shows that, in each case, the coefficients 

of the powers of A, are the coefficients of the 

corresponding powers of s in (3.3.16). 

Let P be defined as in (3.3.7) and (3.3.8). 

Then rearrangement of (3.3.15) and the use of (3.3.16) 

give (3.3.9). This completes the proof. 
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1„1,5  Comment.  

If equations (3.3.9) are inconsistent, the desired 

set of m specified eigenvalues cannot be obtained. 

However, Davison's result [D31 shows that consistency 

can always be achieved by making small adjustments to 

i the specified Ad  i=1, 	m. 

If the choice of the Ad  is such that all the elements 

of P are non-zero, it follows, since the Ai  are distinct, 

that the last (n-m) columns of the coefficient matrix 

in (3.3.9) are linearly independent, and the vector 

on the right hand Bide is independent of these columns. 

Also, since W is non-singular and C has rank m, the first 

m columns are a linearly independent set. 

The condition for consistency may be stated in the 

form that, if the augmented coefficient matrix is written, 

echelon reduction of the columns of this should annihilate 

the last column. This may be used as the basis of a 

procedure for finding relationships amongst the Adi  

which represent inadmissible choices. Avoidance of choices 

41 . of IN
i 
satisfying these relationships will then guarantee 

the admissibility of the set of All.  chosen. 



I 	El+ xl)(1.... 

-2(2+ Aq)(2+ xj) 

4(3+ ?4)(3+;q) 	2(3+ A)(3+ A 

(3.3.17) 

Ad2-) 

x`21) 
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The procedure is illustrated by application to 

the simple third order system with two outputs, used 

as an example in 3.2. In this example, 

fale 
0.11,  

0 	0 1 

A= 0 	—2 	0 B= 1 = 
—1 

0 	0 	—3 1 

o 

The augmented coefficient matrix for this system, 

assuming that Adi and 4 are to be specified, is: 

• 

which, on echelon reduction of the first row, becomes 

(3.3.18), overleaf. 



0 	 0 Adi)(14. A2) I 	0 

1  + 2(2+ X11 )(2+ Add 	2(2+ gi)(2+ Add 

(1+ A)(1+ 	 (1+ Ad)(1+ A) 2 

(2+ gi)(2+ Al) i -(2+ Adi)(2+ A2) 

Acil)(3+ X2I) 	(3+ Acil)(3+A2) 

(3.3.18) 

(3 Xl ) (3+ kl ) 

(1+ X11)(1÷ A2) 

1  (3+  Adi )(3+  Add  

(1+
(1 	

Id\ 
1" ' '121  
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It is clear that echelon reduction of the last 

column by the first two columns will not be possible, 

in this case, if the 2)(2 matrix in the bottom left hand 

corner of the augmented coefficient matrix is singular. 

This condition yields: 

1 + Aa 	3 + 	
(3.3.184 

3+ 	+ A2  

Thus, any choice of Al- and 	satisfying (3.3.18) 

is inadmissible. We note that this condition is satisfied 

by the choice ( 4=0, A2=-14.) which was used in the 

example. 

It would be possible to use this method of check-

ing for inadmissible choices, or a variation of it, in 

	

which some of the Al., 1=1, 	m, are given numerical 

values, for large systems. However, this would be 

cumbersome, and a simple trial and error search procedure 

probably would be satisfactory. The problem of avoiding 

td inadmissible choices of Ai is a general one, and has 

been discussed by Davison [D31 . 
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3.3.6 Numerical Example  

The occurrence of inadmissible choices of eigen-

values is exceptional, and we now demonstrate the use 

of this method in the normal case, by application to 

a simple example. 

Given the system: 

0 1 

A= 0 0 1 

[-6 -11 -6 	

b = 	1 	C = 

1 

1 0 

The matrix A has the eigenvalues: 

= -1, 	= -2, = -3. 

It is required that XI = -4, 	= -5. We wish 
to find the feedback gain vector kV = Ck1  k22, where 

u =-kTy, to give these eigenvalues, and to find the 

coefficient of the residual characteristic equation 

which, in this case, is of degree 1. 

A matrix of coltimn eigenvectors of A is: 

[ 1 

	1 	A 

W = -1 -2 -3 , 
1 4 9 

and W 

1 2 
I 

11 
2 2  3 

-;3 -4 -1 
/ 
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W 44 = W b = 

which shows that the system is controllable, and 

CW = [0 -1 -2 
2 5 10 

which shows that the system is observable. Whence: 

0 2 

-1 5 
-2 10 

WT T C = 

From (3.3.8), 

+ 5) -2 
+ 3) 

2 

+ 5) 6 
5 

+ 3) 

12 
- 	5 

+ 5) 

+ 2) 

131 = 	
(-1 + 14)(-1  

3(-1 + 2)(-1 

and Xipl  = -1 X -2 

P2 = 
	(-2 + 4)(-2 

-5(-2 + 1)(-2 

and X2p2  = -2X - 6  

P3  = - (-3 + 4)(-3 

2(-3 + 1)(-3 

and >p
3 

= -3>c -2 
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Equation (3.3.9)  then becomes: 

	

[0 

	2' 

	

-1 	5 

-2 10 

	

-2 	k11=[ 1  

	

6 

	12 

 ao 	
2 

which has the solution: 

k1  = 4'  k2 	19 = :14'  ao  = 19' so that the residual 

characteristic equation is: 

s+ 	= 0, 

and the third eigenvalue is 	19' 
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3.3.7 Sensitivity of Unassigned Poles to Changes  

in Assigned Poles.  

In the solution given in 3.3.3, the (n - m) 

unassigned poles will often be found to be unsatis-

factory, because they represent an unstable, slow, 

or inadequately damped response. 

The next step is to adjust the values of the 

assigned poles, in order to improve the locations 

of the unassigned poles, with a view to arriving at 

an acceptable compromise. In this process, it is 

useful to have some idea of the likely effect of 

changing each of the assigned poles. In particular, 

knowledge of the direction of the change, and the 

relative effects of changing different assigned 

poles would be helpful. This information is given, 

for small changes, by the following relationships. 

The partial derivative of each element in the 

vector of unknowns in (3.3 9) with respect to 

variation of one of the assigned poles, ), 11.1.q‘lm, 

is given as the solution of the set of linear 

equations (3.3.19). 



W TC  T 1 k 

km 
••■ 

(3.3.19) 

0E1 

4.4 

.10 

Aa o 

4 an-m-1 

(3.3.20) 
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I [AdiIETcT:P : I 	1\p! . 
q 	I 	I 	I 1 

The small changes in the unassigned eigenvalues, 

4i4, 1 = (m+1), 	n, corresponding to given small 

changes in the coefficients of the residual character-

istic equation, blao f 000 4an-m-1 , are given as the 

solution of the following set of linear equations: 

-1 	-1 	-1 

A
n-1 

l 	A1" 
1=m+2 	1=m+1 	1=m+1 -1  

1/01+2 

• • 

(-1)n -m&..41 
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The element in the ith. row and the Jth column 

of the (n - m))((n - m) coefficient matrix is the 

surd of all products of Ad  m+1 9  " , taken (i - 1) 

at a time, excluding XI, multiplied by (-1)i. 

Proof.  

Differentiating (3.3.9) partially with respect 

to one of the assigned eigenvalues Xi, 14:1141m, gives: 

[ 0 	 A vP 
-d'' -di 

qi 	q . • . 
• 

km 

a
o•  

a 	• n -m -1 

. 
A n-7 -1 'DP • • 

  

[ 

alt-m el)  
( 1 ';DI  

q 3.3.21) 
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Differentiating (3.3.8), we obtain: 

141( 1 _ kci) ni  

b p = iq  

bAtcl 	T1( A — 
i=1 
ij 

j=1, 	n 

q=1, 	m 

(3.3.22) 

from which: 

( ),dg7 Ai) aPj = 

agcl 

j=1, 	n 

q=1, 	m 

3.3.23) • 

Equations (3.3.23), (3.3.21) and (3.3.9) then 

give (3.3.19). 

Equation (3.3.20) is obtained by writing the 

coefficients of the residual characteristic equation • 

0 
as the sums of the products of the unassigned eigen-

values, with appropriate signs, and finding the total 

.differential of each of these expressions. 
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3.3.8 Comment.  

The expression (3.3.19) for the partial 

derivatives of the feedback gains and of the 

coefficients of. the residual characteristic equation 

is convenient to use, as, apart from the diagonal 

matrix ( 	-A), the two coefficient matrices 

are already available from. (3.3.9). The kl, j=1, 	m, 

were obtained in the solution of (3.3.9), together 

with the al, 1=0, .. (n-m-1), which yield the A:spit *  

p=(m+1), 	n, required in (3.3.20). 

The only part of (3.3.19) which has to be 

altered to yield the sensitivities with respect to 

a different assigned eigenvalue is the difigonal 

matrix ( AdI -A ) on the left hand side. 

The expressions provide guidance in the direct-

ions in which to change the assigned eigenvalues, and 

in the choice as to which assigned eigenvalues have 

the greatest effect on the unassigned eigenvalues 

it is desired to influence. 

It is important that the steps chosen in the 

changes introduced in the assigned eigenvalues are 

not so large that the derivatives fail to provide a 

reasonably valid prediction. The step size can be 

reduced if necessary, after initial trials. 
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The sensitivity expression also gives guidance 

in the adjustment of the assigned eigenvalues to effect 

a reduction in some of the feedback gains, where it was 

found that these were undesirably high. The effect of 

any proposed change on the unassigned eigenvalues can 

be seen at the same time. 

3.3.9 Numerical Example., 

We now apply the sensitivity expressions (3.3.19) 

and (3.3.20) to the example considered in 3.3.6. Here 

we have: 	= -4. 
For changes 

0 	0 

0 	0 

0 	0 	-1 

in 

0 

-1 

-2 

td 
A 1 

2 

10 

(3.3.19) 

4•11. 

-2 

_ 6 
5 

- 

I I- 

a wl 
Dk2 

Sao 

becomes: 

0 

-1 

-2 

2 

5 

10 

L. 

Ltk 
19 

from which: 2a 	60 o = 
1 9
2 

*.  
1 



77. 

For changes in 4, we have: 4 = -5, and (3.3.19) 

is similar to the foregoing expression, except for the 

diagonal matrix on the left hand side, which is: 

0 	0 

0 	0 

0 0 -2 

Iwo 

from which: Zao  20 
D%:I 192  

In this case, equations (3.3.20) give: 

44 = - 
C4 4A

An  
0  

We conclude that the unassigned eigenvalue is 

three times more sensitive to changes in )4 than to 

changes in 4. Also, the signs are such that, if we 

wish to move the unassigned eigenvalue to the left, 

along the real axis, this can only be achieved by 

moving either or both of the assigned eigenvalues 

to the right. These conclusions are, of course, 

only valid over a limited range. 



k1  

k2 
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-3, and 

p1  = -1 
2 

P2 = 
p3  = 0 

If we now reassign the eigenvalues es: 

= _24, we obtain: 

and (3.3.9) becomes: 

0 

-1 	5 	2  5 

-2 10 0 
OM • 

MI% 

from which: 

k = 	k 1 - 2 	2 = 2  

Hence, A3 = 

ao = • 

It is interesting to see how th-) prediction from 

the sensitivity analysis compares with the exact result 

found above. We have: 

Ad  A + 	kd 

	

dA 1)3 = aid 4-A1 	Ad 4412 
r11 	• 	2 

60 	20 	80 

	

= - X 1 	 2 X 1 = - 2 --
19 	19  19  

-1 

5 

0 
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and the new A3 • is given by: 

Ad _ _ 	_ 80 
3  - 	19 	192  

It is seen that, in this case, the agreement is 

very good. 

,4  The Method of Failside and Sera ji Applied to the 
Restricted Measurement Access Case.  

This method will be discussed by application to 

the numerical example 3.3.6. 

In this procedure, it is first necessary to 

transform the state vector so that the two outputs 

are the first two elements of the new state vector. 

This is achieved by making the transformation: 

z = [Z1  z2  z31 = Tx, 

1 	1 0-  

where: 

T = 1 0 1 

and: 

0 0 1_ 

IPD 

0 1 -1 

T-1 1 -1 1 (3.4.1) 
0 0 1 • 

41•11 ••• 

- -1.96. 



become: 

Ao = 

Co  = 

1 

-10 

-11 

0 

0 

1 

-1 

4 

5 

(3.4.2) 	. 
i 0 

o 

80. 
• 

so that the A, b and C matrices in the new co-ordinates 

We next find the vector g(s) of the numerators 

of the transfer functions from the scalar input to the 

states. This is given by: 

g(s) 	1 [100 g2(3) g3(13] 

F(s). 	F4S) 

= 	- 
o. 

(3.4.3) 

where F(s) is the open-loop characteristic polynomial. 

Hence, 

(s-+82+7) 

g(s) 	1 	(62-10s+1) 
F(s) 63+682+118+6 (82-11s+6) 

(3.4.4) 
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The third element of the vector in (3.4.4) will 

not be used, as feedback is taken only from zi  and z2. 

Then, with feedback -kTy = -kCx = -k1z1-k2z2, we use 

the relationship: 

H(s )  = F (s) + 'YOB)  + k282(st 

where H(s) and F(s) are the closed-loop and open-loop 

characteristic polynomial, respectively. Let: 

H(s) = s3  + a2s2 	o + a's + a' , where the a'j  are  
fixed by the choice of closed-loop poles. Then, 

3 	2 	• 	3 2 	0 2 s +a2s +a1s+ao = s +6s +118+6 + k1 	+8s+7) + k2(s2-10s+1).  

Equating coefficients, 

a2 = 6 + k1 + k2 

a' = 11 + 8k - 10k 1 	1 	.10k2 

ao = 6 + 7k1  + k2 

(3.4.5) 

from which we obtain: 

3a(')  - aj - 13e. + 71 = 0 	(3.4.6) 



• 

• 
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Equation (3.4.6) represents a constraint on the 

coefficients of the new characteristic polynomial. 

If this polynomial has as roots the assigned poles 

-4 and —5, and the unassigned pole -E., it may be 

written: 

63  + (9+0132  + (20+9/0 )s.+ 20p 
	

(3.4.7) 

Substituting from (3.4.7) into (3.4.6) giyes: 

33 	 33 to= 	, so that the unassigned pole is at - 	. 
■■■ 

19 	 19 

We then find: 

aL = (9+r ) = 

a; = (20+9 	
677 

) = 19  

660 
ao = 20r = 

19 

and, from (3.4.5), we obtain: 

14 
k1  =4, k2 = 	. 

19 

These results agree with those obtained in 3.3.6. 

204 

19.  
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3.4.1 Comment.  

Although the method of Fallside and Seraji is 

fairly simple to apply in the case of systems of low 

order, as in this example, the following points should 

be noted. 

(a) There is the initial transformation of the 

state vector so that the first m elements of the new state 

vector are the m system outputs. 

(b) The formation of the vector g(s) would,: in 

larger systems, involve the use of the Levarrier 

algorithm, or some similar process suitable for use 

with a computer. 

(c) There are, in general, (n-m) constraint 

equations corresponding to (3.4.6), in the coefficients 

of the new characteristic polynomial. These equations 

involve sums of products of the assigned and unassigned 

poles, and are not easy to interpret. In the example 

considered, there was a single unassigned pole, and 

this fact simplified the solution. 
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3.5 Multi-input Systems.  

For a controllable, observable system with 

restricted measurement access, and more than one input, 

the result given in 3.3.3 for the single-input case 

with distinct eigenvalues can be used as follows. 

If the system has multiple eigenvalues, almost 

arbitrary feedback can be applied initially to give 

distinct eigenvalues, as shown by Davison and Wang 

[ID 3 

If the system is controllable through a single 

input, this input can be used for the feedbacks. 

Otherwise, a vector of can be found such that (A,Big ) 

is controllable. Wonham LW11 has shown that such a 
vector always exists for a controllable system in 

which the A matrix is non-derogatory. In fact, there 

is considerable freedom in choosing DC, which can be 

chosen in such a way as to provide desired relative 

magnitudes of control signals applied to the various 

inputs. This can be done, of course, even if the 

system is controllable through a single input. 

04 can be chosen initially from this point of view, 

and modified as necessary to achieve controllability. 
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This corresponds to the 'relative tightness' of control 

referred to by Fallside and Seraji [Fl] . 

A procedure has been described recently by 

Paraskevopoulos and Tzafestas [Pq . This is, as follo'Ns: 

Suppose, in the usual notation, that y = Cx, 

where y is an m-vector, mgCn, and rank C = m. We seek 

a non-singular mxm transformation S such that: 

SC = 115: 0] 
where 'a is non-singular, and the remaining elements of 

SC are zero. It is claimed that such a transformation 

always exists, but this claim is unjustified, since '6 
will be singular if the first m columns of C form a singular 

matrix. It would be possible to obtain a non-singular 

C by re-ordering the elements of the state vector, but 

it is not, in general, possible to obtain the required 

zero elements elsewhere in SC. The method proceeds as 

follows: 

(1) Solve the eigenvalue problem using state vector 

feedback, i.e., the input u = Fx 	. 

(2) Partition F as F = EF;F! where F has m 

columns. Then the gain matrix P of the output feedback 

Py is obtained from: 

p = %8]-1 

(3) The arbitrary elements of F are then restricted 
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by the equations involved in .F = 0. 

Even if the above steps can be carried out in special 

cases, it is claimed only to permit m closed-loop poles.  

to be pre-specified. Nothing can be said about the remain- 

ing (n-m) closed-loop poles. It is seen that the method 

is based on invalid assumptions and, in any case, it 

is of little use to assign some of the closed-loop poles, 

if the remainder may move to unacceptable locations. 

In a numerical example, Ex. 5 of EP51 , a system 

is considered which has two inputs and two outputs, 

and which is of order three. It is found that two of 

the eigenvalues can be changed to desired values, whilst 

the third eigenvalue remains unchanged. The reason given 

is that two eigenvalues only can be controlled because 

the rank of the C matrix is two. This reason is incorrect. 

In the particular example chosen, the third eigenvalue 

is unobservable, and so could not be affected by output 

feedback. 

It is interesting to note, as has been pointed 

out by E. J. Davison (in a verbal communication), that 

a third order system with two independent inputs and two 

independent outputs, which is controllable and observable, 

can always have its eigenvalues made equal to, or 

arbitrarily close to, any prescribed set of values, by 
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the use of constant feedback between output and input. 

In the usual case, therefore, one would expect to be 

able to assign all three eigenvalues in the example 

given in [1)5] . 
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CHAPTER 4.  

POLE AND ZERO ASSIGNMENT BY STATE VECTOR FEEDBACK.  

4.1 Introduction.  

Although the problem of designing constant state 

vector feedback to achieve desired closed-loop pole 

assignment is now well understood, the question of 

designing such feedback to achieve desired transfer 

function zeros, as well ,as poles, is currently the 

subject of investigation. The problem of zero assignment 

is clearly very much more difficult than pole assignment. 

Suppose it is detired to assign:all poles and the 

zeros in q scalar transfer functions by state vector 

feedback applied to r inputs. To obtain a*rough idea 

of the problem, it may be assumed that each transfer 

function has the maximum of (n-1) zeros, so that the 

total number of (zeros + poles) to be assigned is 

q(n-1) + n. If state vector feedback is applied to the 

r inputs, the number of available feedback gain parameters 

is nr, so that, to provide sufficient parameters for 

the zero-pole assignment, it is required that: 

nr 	q(n-1) + n 

or 	a 	nni(r-1) 
	

(4.1.1) 
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For a system of appreciable order, 	 Vz1, so n-n  1 

that the number of scalar transfer functions is limited 

to about (r-1). Whilst there will be exceptional cases 

in which it is possible to achieve assignment of all 

zeros and poles in a greater number of scalar transfer 

functions than this argument suggests it is clear that, 

in general, there are enough feedback parameters to 

permit assignment of zeros and poles in only a very 

limited number of transfer functions. This fact was 

pointed out, in a slightly different way, by Chen EC3) . 
It is apparent from the form of (4.1.1) that 

systems of low order will give more favourable results 

than high order systems. Thus, the illustration of 

proposed techniques by application to, say, second or 

third order systems, which is quite common in the 

literature, does not give a true picture of what can 

be expected in general. 

Simon and ;,flitter ES141 have considered the synthesis 
of transfer function matrices with. invariant zeros, by 

making use of the property of invariance of transfer 

function zeros in the presence of feedback to the input 

concerned. This approach, however, is limited to systems 

in which each input controls only a subset of the system 

eigenvalues, and the subsets are disjoint. The field 
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of application thus is not very great. 

Rosenbrock [115] has investigated the allocation 

of poles and zeros in the McMillan form of the transfer 

function matrix, but his method is based on the choice 

of the system output matrix C, a choice which is not 

usually available to the designer. This approach, also, 

seems to have limited application. 

Loscutoff, Schenz and Beyer CL3] have studied 
the effects of invariant zeros in connection with 

closed-loop pole assignment. They have provided means 

for identifying invariant zeros, and have proposed to 

overcome their undesirable effects, where these arise, 

by cancellation,with poles, when they are in the left 

half-plane. 

Power [4 has investigated the effect of state 

variable feedback on the numerators of transfer functions, 

but his approach is purely analytical, and makes no 

contribution to the problem of zero assignment. 

An interesting approach was used by Chen [C3I , 

yielding a sequential zero-pole placement technique. 

This provides a means for checking zero assignability, 

and permits more than one input-output transfer function 

to have complete Dole-zero assignment in some cases, 

but gives little guidance as to how to proceed in 

those cases in which there is no solution. 
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Furthermore, although the method is general in principle, 

the solution is found as a system of linear algebraic 

equations only in the case of a 2-input system. When 

the number of inputs is greater than 2, the equations 

become non-linear, and hence difficult to soPve. 

Fallside and Seraji [F31 have studied the problem 

of pole and zero assignment using unity-rank feedback. 

By this it is meant that a linear functional of the 

state vector or of the output vector is formed, giving 

a single scalar variable. This.scalar variable is then 

applied to the system inputs through different constant 

gains..It has been shown that unity-rank feedback is 

very restrictive and that, for an nth-order system, 

with full state-vector feedback applied to r inputs, 

there are only (r-1) dogreco of freedom available to 

meet specifications other than pole assignment. Thus, 

for a system with two inputs, only one zero could be 

assigned, together with all the poles. If more zeros 

are required to be assigned, this can .only be achieved 

at the exoense of pole assignment. Fallside and Patel 

CFL] have described a procedure for achieving an aoprox- 
imation to a desired pole-zero pattern. However, there 

is no guarantee that a satisfactory approximation 

can be achieved in the general, case. 
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Wang and Desoer &41 have given a complete 

solution to the problem of 'exact model matching', 

by which is meant finding a state feedback law for a 

given system which makes the overall system transfer 

function exactly equal to a given transfer function. 

In this context, 'transfer function' means transfer 

function matrix. Their procedure is in two stages. 

First, by using an rIer gain matrix between the external 

inputs and the system inputs, an rxn state feedback 

gain matrix, and a co-ordinate transformation, the 

system is put in a special canonical form, in which 

the A Matrix is quasi-diagonal, with each diagonal 

block of companion form, but with all eigenvalues zero. 

In the second step, a further rxr input gain matrix 
and rxn state feedback gain matrix are found, so as 

to give the desired transfer function matching, where 

this is possible. The required laws are given as the 

solution of a matrix equation, the conditions for 

solvability of which give the conditions for the 

existence of a solution of the problem. 

The method is of considerable interest, but it 

is subject to limitations similar to those given in 

(0i.1.1). The introduction of the additional design 

freedom represented by the r>Cr input gain matrix 
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changes the condition on q to: 

2 

c11.51  nnl(r  - 1 	) 
	(4.1.2) 

For a system of low order, the introduction 

of the input gain matrix may permit an appreciable 

increase in q. For a high order system with.a relatively 

small number of inputs, the increase is not likely to 

be very great. 

The method of Wang and Desoer does not give any 

clear guidance as to how to proceed when the conditions 

for solvability are not satisfied, and the introduction 

of the 'various gain matrices and the co-ordinate 

transformations tend to make the problem rather obscure, 

in such cases. 

Moore and Silverman [M15] have approached the 

exact model matching problem in a different way, 

without using initial co-ordinate transformations. 

They have also considered 'dynamic state feedback', 

by which is meant feedback obtained from the original 

system augmented by the addition of a number of 

integrators, and have given a sot of necessary and 

sufficient conditions for one system to be transfer 

function equivalent via such dynamic state feedback 

to a specified model system. 
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In this thesis, the pole-zero assignment problem 

considered is that of finding state vector feedback 

to provide completely specified poles and zeros in 

a single scalar,input-output transfer function. It 

is clear from the foregoing discussion that, in general, 

the possibilities of zero assignment in high order 

systems with a relatively small number of inputs are 

rather limited. There are many practical cases in 

which the number of inputs available for manipulation 

is small, and where one input-output transfer function 

is of major importance, whilst other input-output 

transfer functions are of secondary importance. The 

most unfavourable case of this sort arises where 

there are just two inputs, the desired transfer function 

between one of these inputs and some output being 

specified. The second input is available for the 

purpose of applying feedback so as to permit the 

numerator of the transfer function from the first 

input to be changed. It is this case which is considered. 

Two methods are described, the first of which 

permits the results of 'modal control' theory to be 

applied directly to the problem of assigning transfer 

function zeros. The second method is based on the 
•0 

transformation of the system to the companion form 
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and the formation of a set of linear equations from 

which the coefficients of the characteristic polynomial 

corresponding to the desired transfer function numerator 

coefficients can be found. State vector feedback can 

then be calculated to provide this set of characteristic 

polynomial coefficients when applied to the second 

input. In both methods, the second stage is to find 

the state vector feedback which, when applied 'to the 

first input, will give the desired closed-loop poles. 

This feedback does not affect the numerator of the 

transfer function, which was established in the first 

stage. 

It is well known that the numerator of a transfei,  

function is unaffected by state vector feedback applied 

to the input to which the transfer function applies. 

However, a simple proof of this is given in the next 

section, as the result is used in the pole-zero 

assignment procedures which follow. 

4.2 Proof of Invariance of Transfer Function Numerator.  

Given a linear system described by the equation: 

;*c = Ax + Bu, where B = 	, 

let state vector feedback be applied to the first 

input, so that the equation becomes: 

= (A + bikT)x + Bu 	(4.2.1) 
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The input-statc transfer functions are obtained by 

taking the Laplace Transform of (4.2.1), with zero 

initial conditions, giving: 

(sI - A - b
1  kT)1 = Ba 	(4.2.2) 

The transfer function from tho firut input is obLained 

from: 

(sI - A - bikT)R = b1u1 	(4.2.3) 

Each element of Tc may be found by using Cramer's 

rule, as the ratio of two determinants. The denominator 

' determinant is det(sI -A-b1k
T) and the numerator 

determinant corresponding to xi  is the same determinant, 

but with the ith column replaced by b1. It is obvious 

that, in this numerator determinant, all the remaining 

elements of kT can be removed by subtracting suitable 

multiples of the ith column from all the other columns, 

without changing the value of the determinant. Hence, 

the transfer function numerator is invariantGwith 

respect to kT. 

It is clear that the removal of the remaining 

elements of kT  would not have been possible if the 

transfer function considered had related to an input 

other than that to which the, feedback was applied. 

Use of both of these results is made in the 

pole-zero assignment techniques to be described. 
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4.3 Pole and Zero Assignment by State Vector Feedback.  

4.3.1 Introduction.  

A procedure is now described which enables 

specified poles and zeros of a scalar transfer function 

of a controllable, observable, linear system to be 

obtained by using state vector feedback to two inputs. 

The number of zeros is equal to the number of zeros 

in the transfer function, before feedback isoapplied, 

from one input or the other to the output concerned, 

whichever is the greater. Those zeros which can be 

changed, and those which cannot, are identified. 

The former can be made equal to, or arbitrarily close 

to, any assigned values, and the poles can be assigned 

arbitrarily. 

This procedure is described in EM61 and EM123 . 
4.3.2 System Description.  

A linear time-invariant system is described 

by the equations: 

k = Ax + Bu 	(4.3.1) 

y = c x 	(4.3.2) 

where x is an nx 1 state vector, u = i  u2  1 T  is 
a 2 x 1 input vector, and y is a scalar output. 

B ={b1'b2J, where the n-vectors b1  and b2  are 
linearly independent, and the system is aompletely 

controllable through b2  alone. This latter condition 



98. 

can always be met by the use, if necessary, of suitable 

feedback ED14.1 , since (A,B) is controllable. cT  is 

a constant measurement vector. 

4.....1.3211oblem Statement. 

The problem is to find the feedback vectors kT  
1 

and kT  such that the system: 
2 

{13 b 
1, 2 	4 

kj"  
2 

+ Bu ; y = 6
T
x, (4.3.3) 

has a transfer function between-  y and u1  with, as far .  

as possible, specified poles and zeros. 

4.3.4 Procedure.  

Two sequences of scalars'S 1  and S2 ' are formed: 

Si  = c
T
bi , c

T
Abi, c

T
A
2
b
11 

... , 
0T
A
p-1

b 1 and 

_ 
S2  = c

T
b2, c

T
Ab
2' 

c
T
A
2
b
2' 

0460 , 
uAq-1, 

"2 

where, in each case, the sequence terminates at the 

first non-zero term. The method to be described requires 

that q%P.p. If this Condition is not satisfied, a 

proportion h of the input ui  is added to u2' so that 

b
1 
becomes (b

1 
+ hb

2
). This will make q = p. It 

will, from now on, be assumed that this has been done, 

if necessary, and that b
1
.has been changed accordingly. 

The procedure is in two stages. 
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Stage 1. 
o 

4" is first determined so as to locate the zeros. 
Lot k1 

 be a zero vcctor at this stage. Using a result 

obtained by Brockett [B21, the zeros of.the transfer 

function relating y to u1  are eigenvalues of the 

matrix: 

k2) 	(4.3.4) 

It is proved in L1.3.8 that, since q>1) , 

cT(A + b24)P-1  = cTAP-1 
	

(4.3.5) 
The matrix (4.3.4) may thus be written:.  

Ao + bok2 
	 (4.3.6) 

{ I 

where: 

Ao = A 

(4.3.7) 

c A T p-1 

T p1 b c A • - 1 	• 

1 

The pair (A0,b0) is checked for controllability,. 

using any method that permits the identification of 

the uncontrollable eigenvalues. Kalman's canonical 

[I 
b2 
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decomposition method is suitable, or Gilbert's method, 

extended, if necessary, to the case of multiple 

eigenvalues. It is proved in 4.3.9 that Ao  has the 
eigenvalue 0 of multiplicity at least p, and it is 

further proved in 4.3.10 that the eigenvalue 0 of 

multiplicity p is uncontrollable through bo. The 

remaining (n-p) eigenvalues of (4.3.6) are the zeros 

of the transfer function. Of these, any that are 

uncontrollable through 1)0  cannot be changed, whilst 

all the rest may be assigned arbitrarily by using 

modal control theory [M11 ,p21 	to determine k2. 

The eigenvalue 0 of multiplicity p has no physical 

significance, and arises only because the degree of 

the numerator of the transfer function is (n-p). 

Stage 2.  

The system poles will have been changed by the 

application of feedback k2, and k71  is now determined 

.so as to locate the poles as required. It is first 

necessary to check for controllability the pair: 

((A + b k) b ) 2 2 ' 1 (4.3.8 ) 

If this test is satisfied, k' may be found, by again 

using modal control theory [Mil , [R21 , to move the 

poles to any desired locations. As was shown in.4.2, 

the application of the feedback 14 will have no 
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effect on the zeros which were established in Stage 1', 

because this feedback is applied to the input from 

which the transfer function is taken. 

If the test for controllability of (4.3.8) 

fails, controllability can be achieved by making 

small adjustments to k2, which means that the. zeros 

in Stage 1 can now be made only arbitrarily close 

to assigned values, and not necessarily equal to them. 

This statement is justified by the following theorem. 

4.3.5 Theorem.  

If the pair (A,b2) is controllable, and b1 / 0, 

a vector kT can be chosen, with elements arbitrarily 

close to those of a given vector k2 such that 

((A 	b2kT)'b1)  is controllable. 

Proof.  

Applying to this case a lemma of Heymann [1111 , 

. 
there exists a vector kT such that ((A + b2k

T),bi) 

is controllable. Let kT  be so chosen. Now change the 

first element of kT, noting that there is a finite 

number of values of the change which give uncontrollability. 

We may. therefore, choose a value which makes this 

element either equal to or arbitrarily close to the 

first element of k2' whilst preserving controllability. 

Repetition of this process for each element of kT  in 
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turn, retaining the changed value at each step, 

completes the proof. 

4.3.6 Coefficient of sn-P in the Numerator Polynomial.  

The coefficient of the highest power of s, sn-P, 

in the transfer function numerator polynomial, is 

cT A-D-1 b
1' and this is independent of k

T and k2' so 

that this coefficient cannot be assigned by the state 

vector feedback. 

Proof.  

Let the characteristic polynomial .of 

(A + b1k1 + b2  k2) kT) be: 

sn +. d1s
n-1 + 	+ do-1s  + do 	(4.3.9) 

Let the adjoint of this matrix be: 

D(s) = sn-1Do + sn-2D1 + 	+ sDn-2 + Dn-1 (4.3.10) 

where the D are n›Cn constant matrices. 

The matrix coefficient of sn-P  in the transfer 

function numerator polynomial is then: 

cTD D-1b  1 	 (4.3.11) 

From the Faddeev-Leverrier algorithm [FlEZ11 

Do = I 

D1  = Do(A + b1k' + b24) dlI 

D2 = D1(A + b1  kT  + b2 2  kT) + d2  I 

T. = (A + b1kTI 	b2k2)2  + d1  (A +  b1 1  kT  + b kT) + d2  I 

and so on. 
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Continuing in this way gives: 

Dp-1 = (A + b1  kT  + b2 2  kT)-1  + d1(A + bikTi  + b2kI)P-2  + 

+ dp-1I 	(4.3.12) 

It then follows from (4.3.12), and the rules 

of formation of the sequences Si  and S2  that the 

coefficient of sn P' cTD0-1b1' is cTAP-lb1' This 

completes the proof. 

4.3.7 Numerical Example.  

The procedure is illustrated by a simple example, 

in which: 
ve 

1 2 0 0 3 
0 2 0 0 1 1 

A = 0 -3 -1 0 b1  = 0 b2 = 0 
0 5 0 -3 2 3 

4 

cT  = [1 -1 1 -1] 

The transfer function between y and u1  is to have • 

zeros at -2 and -4, and poles at -1.5, -2.5, -3.5 and 

Forming the sequences Si  and S2  reveals that 

p = q = 2, so that there will be two zeros. 

Applying (4.3.7) to this case gives: 

• 
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-2 -10 -3 27 -11 

-1 -2 -1 9 -4 
Ao = 0 -3 -1: o bo = 0 

-2 -3 -2 15 7, 

Ao has the eigenvalues 0, 0,.0:101 and 9.899, of which 

only the last two are controllable through bo. These 

are the zeros of the transfer function without feedback. 

Using modal control theory to move these eigenvalues 

to -2 and -4 gives: 

k2  = 	8.125 0 0] 	, and (A kT) 2 2 becomes: 

-5 	34.5 	0 0 
-1.5 	10.125 	0 0 

0 	-3 ' 	-1 0 

-4.5 29.375 	0 -3 

This matrix has the eigenvalues 4.8952, 0.2298, 

-1 and -3, all of which are controllable through b1. 

Again using modal control theory to move these eigenvalues 

to -1.5, -2.5, -3.5 and -4.5 gives: 

kT  = [-6.146 6.433 -2.188 -0.5601 

This completes the procedure. 

4.3.8 Proof of (4.3.5).  

By considering vectors of the form: 
cT(A 	kT 	kT _ 

'
TA, if  

'2 2
)  
/ 	

cTA 	
' '2 2 	' '2 	0,  

cT(A + 	T 	= cTA2 	cTA1324: . cTA2,  c kA b2k2) = c A(A 	4 b2) 
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if cTb2  = 0 and cTAb2  = 0., and so on, it is easily' 

seen that, since: 

cTAib2 = 0, for i = 0, ... (q-2), 

cT(A + b2 2  kT)i  = cTAi, for i = 0, 	(q71). (4.3.13) 

Equation (4.3.5) follows, since q? p. 

4.3.9 Proof that Ao  has the Ei0;envalue 0 of Multiplicity  

At Least o.  

The eigenvalues of Ao  al-;'e the roots of the 

characteristic equation:. 

b1cT A- 
o 

cTAp-1b 
1  

 

(4.3.14) 

 

 

which may be written: 

I s I — .A1 	I + 
(sI - A)-lb1  cTAP 

 

= 0. T c A- b1  

 

   

Using the result, proved in LM1J , that 

I I + fgTI = (1 + gTf), where f and gT  are column 
and row vectors, respectively, the equation becomes: 

T , 	x-1 c A-lo(sI - A) -1b 	, 1 I sI - Al i 1 + 	-1 	
1 	= O. T o 	. 

c A- b1  

Setting s = 0 makes the expression in brackets 

zero, so that 0 is a root. Differentiating the expression 

in brackets with respect to s, and setting s = 0, makes 
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this expression zero, because c
T 	2 A- b1 = 0. Repeating 

this operation (1)71) times, and remembering that 

cTAib1 
= 0, for i = 0, ... (P-2), shows that the 

expression in brackets has the root 0 of. multiplicity 

p, so that Ao has the eigenvalue 0 of multiplicity 

at least p. 

4.3.10 Proof that, in (4.3.6), the Elgenvalue 0 of  

Multiolicity n is Uncontrollable Through be.  

The matrix (4.3.4) is of the same form as Ao, 

except that A is replaced by (A + b24). It follows 

from (4.3.13), and from the rules of formation of 

the sequences S1  and S2, that the values of p and q 

are unchanged if, in these sequences, A is replaced 

by (A + b24). Thus, by the same argument as in 

4.3.9, the matrix (4.3.4), and hence (4.3.6), has the 

eigenvalue 0 of multiplicity at least p, for all kj72. 

This statement implies that the eigenvalue 0 of multi- 

plicity p is uncontrollable through bo. . 

4.3.11 Conclusion.  

The procedure described permits the identification 

of those zeros which can be changed, and those which 

cannot. All the zeros that can be changed can be made 

equal to, or arbitrarily close to, any assigned values, 

and the poles can be assigned arbitrarily, by using 

the established techniques of modal control. 
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It follows from these results, and from 4.3.6, 

that the transfer function is completely determined 

on completion of the procedure described. 

4.4 Transfer Function Synthesis by State Vector Feedback.  

4.4.1 Introduction.  

A procedure is described for the design of state 

vector feedback for a time-invariant linear system 

to give a desired scalar input-output transfer function. 

Any constraints on the design are revealed, and 

means are provided for checking all other transfer 
0 

functions. The problem considered is the determination 

of the state vector feedbacks needed to give a desired 

scalar transfer function between one input and one . 

output of a system which has two inputs. The number 

of inputs available often is limited in practical 

cases, and so the system considered may be regarded 

as renresenting the most unfavourable multi-input 

case. The procedure gives guidance at each stage on 

any constraints on the design. Means are Provided for 

monitoring all other input/output and input/state 

transfer functions during the design process. 

4.4.2 System Description.  

A linear system is described by the equations: 

x = Ax + Bu 
	(4.4.1) 

y = Cx 
	 :(4.4.2) 
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where x is an nx 1 state vector, 

	

u= u1 	is a 2)c 1 input vector, 

u2 

	

Y1 
	is an m x 1 output vector, 

Ym  

Y = 

B = [b b 1 2 

and C = 2T 
1 

(4.4.3) 

(4.4.4) 

•0 

cm  -m 
The system is, observable, and is completely controllable 

through b2  alone. The n-vectors'b1  and b2  are linearly 

independent. 

Note.  

If (A,B) is controllable, (A+BK,b2) can be made to be 

controllable by the use of suitable initial feedback 

K [D43 

4.4.3 Problem Statement.  

The problem is to find the feedback vectors kT  

and k2 such that the system: 

= (A 	b b 	kT  )x + Bu, 	y = Cx, 	(4.4.5) 1.-2 -1 

kT -2 
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has a transfer function relating y (s) to u1(s) 

given by: 

pn-1
sn-1  

Pn-2s n-2 + 	+. 	÷ Po 

sn + an-1s
n-1 + a-t  s + ao 

(4.4.6) 

in which the pj, j = 0, ... 	(n-2), and the 

al, i = 0, ... , (n-1), are to be given preassigned 

values,-as far as possible. The value of p 	is n-1 
c1b1' and cannot be assigned. 

4.4.4 Preliminary Results.  

A system of the type represented in (4.4.1), 

(4.4.2) has a transfer./function relating an input 

corresponding to a general column b of B to an output 

corresponding to a general row cT  of C given by: 

cT(sI - A)-1b 	(4.4.7) 

1 ' 	adj(sI - A) 
where (sI - A) 	=  	(4.4.8) 

det(sI - A) 

Now, adj(sI - A) = Is11-1  + Gn_2sn-2  + 	G1s + Go 

(4.4.9) 

where the G can always be computed in a routine 

manner, e.g., by the Faddeev-Leverrier algorithm, 

but, in the case in which the A matrix is in the 

companion form, Ac, the G have a particularly simple 
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form, so that they can be, written down. The formulae 

for writing these matrices are given in 4.4.6. 

The matrix A for a fifth order system is of the form: 

O 1 0 0 0 
O 0 1*  0 0 
O 0 0 1 0 
O 0 0 0 1 

-a -a -a -a -a, o 1 2 3 4 

Ac = (4.4.1o ) 

and the G matrices are given in full for this case 

in equations (4.4.11). 

G = 
a4  1. 0 0 0 
O a4  1 0 0 

G
3 
 = 0 0 a4  1 0 

O 0 0 a4  1 
-ao-a1-a2-a3  0_  

• a3  a4  1 0 0 
O a3  a4  1 0 

G2 = 0 0 a3  a4  1 
-ao-a1-a2 0 0 
O -ao-a1-a2 0 

; Go = 

a.1  a2  a3  a4  1 
-ao 0 0 0 0 
O -ao  0 0 0 
O 0 -ao 0 0 
O 0 0 -ao  0  

(4.4.11) 

a2  a3  a4  1 0- 
O a2  a3  a4  1 

G1  = -a-a1 0 0 0 
O -ao-a1 0 0 
O 0 -ao-a1 0 



From (4.4.7) and. (4.4.9), the coefficient 

p of s- in the transfer function numerator polynomial 

is given by: 

pq = cTG qb 	(4.4.12)  

This relationship enables all the coefficients to 

be found for all the transfer functions, by the approp-

riate choice of cT, b and G 
a
. Where the A matrix 

is in the companion form, it is clear that the G 

are functions of theal  ., the coefficients of the 

characteristic polynomial of the A matrix. It is 

then possible to formulate a set of equations from 

which theal  . can be found so as to give desired 

coefficients D in a given transfer function-numerator 

polynomial. TheSe equations are set out in full in 

(4.4.13), for a system of fifth order, where: 

	

c = [c1  c2 	c5I 

and 	= [1)1  b2 	. 

In 4.4.7, formulae are given which enable the 

equations to be written down for a system of any 

order. 



a3  

a2 

a, 
• 

ao 

(c1b11-c2b2÷c3b34-c4114) 	-c51p4 
-c5b3  -c5b2 

(c1  b2 +c2.) J  
b_+c,b

4 
 ) 

(c1b3 c2b4) 

c
1
b
4  

(c1b1
+c
2
b
2
+c
3
b
3
) 

(c i 	113)  

c1b
3 

"* (C4103+C5b4) ''' (C4132+C5103) 

	

-(c4b1+c5b2  

(c1b1+c2b2) -(c3b2+c4b3+c5b4) -(c3b1+c4b2+c 3 )  

c1b2 
	c1b1 

	-(c2b1+c3b +c4b3+c5b4) 

••• 

1 0 0 0 
••• 

c1 c2 c3 . C4 b2 

0 1• 0 P2 c1 C2 c3 b-, 

0 0 1 P1 0 0 c1. c2 b
14- 

0 0 0 1 Po 0 0 0 c1 b5 
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4.4.5 Procedure.  

The design proceeds in two stages. In the first 

. stage, the feedback vector kT  2  is found, so as to give 

the desired numerator polynomial to the transfer 

function: 

cT(sI - A - b22  k)- 1 	(4.4.14) -1   

This feedback changes the system eigehvalues to some 

new set. In the second stage, the feedback vector kTI  

is found so as to change the eigenvalues to the desired 

set corresponding to the reqUired system poles. 

. Since the system (4.4.1), (4.4.2) is controllable 

through b21  it can be transformed into the companion 

form by the state vector transformation z = Tx, so that 

the b2  vector becomes, in the z-space, T122  = en, where 

en  is a unit column n-vector with a 1 in the last row, 

and zeros elsewhere. In this form, the feedback vector 

k2T-I calabewrittendowntochangethea.in the last 

row of the Ac matrix ito any desired values. 

Let cT = oTT-1, and b = Tb1, in equations --1  
(4.4.13). If these equations are consi-tent, they may 

be solved for the ,ai  to give the desired D . Otherwise, 

row reduction of these equations will provide a set of 

linear constraints on the p which must be satisfied to 

give a solution. 
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The right hand side of equations (4.4.13) has 

been arranged in such a way that, if the row reduction 

operations on the left hand side coefficient matrix are 

carried across to the right hand side also, each zero 

row on the left hand side on completion of the row 

reduction yields a linear condition on the p . 

kT is now found to give the desired closed-loop'  

poles. As has been shown in 4.2, the application of this 

feedback will not disturb the numerator polynomials 

relating to this input, which were obtained in the first 

stage. It is first necessary to check for controllability 

the _Pair ((A + b24),b1). If this test is satisfied, 

T ,t , may be found so as to give any preassigned set of 1 
closed-loop poles. Otherwise, small changes in k2, 

and hence in the p , must be introduced, so as to 

achieve controllability. The validity of this procedure 

has been established in 4.3.5. 
The determination of kT may be achieved by 

transforming the matrix (A + b2k2) to the companion 

form, by a suitable co-ordinate transformation, so 

that the vector b1  becomes en. Thus, the denominator  

coefficients ai are assigned as desired. 

• 



4.4.6 Rules for 7iriting the Gj  Matrices.  
0 

Gn-1 = In, and an  = 1.  

For j<C(n-1), 

The first (j 	1) elements on the main diagonal are 

aj+i, and the rest are zeros. 

The first (j + 1) elements oh the i'th diagonal above 

the main diagonal are aj+i+1'  and the rest are zeros. 

For (j + i + 1),>n, all diagonal entries are zero. 

The last (n 	j - 1) elements on the i'th diagonal' 

below the main diagonal are -aj 	1, and the rest 

are zeros. 

For (j - i + 1)<O, all the diagonal entries are zero. 

4.4.7 Rules for Writin'g the Linear Equation Set.  

The general term in the i'th row and the j'th 

column in the coefficient matrix on the left hand side 

of the equations generalised from (4.4.15) is: 

n-i 
s;71  c 

P
b 
 

P=1 

n 

- 	c b 
P P+i-i 

for jG i , and: 

for j>'i. 

'p= n-i+1 

The formation of the generalised right hand' side 

will be clear from equations (4.4.13). 

115. 
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4.4.8 Derivation of the Formulae for the G and 

the Linear Equation Set.  

The formulae for the G may be derived by applying 

the Faddeev-Leverrier algorithm D11 to the case in 

which the A matrix is of the companion form, Ac. 

According to this algorithm, 

Gj  = 	+ aj4:1I 

and 	Gn-1 = I 	(4.4.15) 

Now, 

Ac = H - en  i:ao  a1  ... an-1] 

where. H is a matrix with l's in the first diagonal 

above the main diagonal, and zeros elsewhere. en  is 

a unit column n-vector, with a 1 in the last row, and 

zeros elsewhere. 

Hence, in (4.4.15), 

G. = Gji.111 - Gji.lenCac  al  ... an_li + aj+1I 

The G are obtained by starting with j = (n-2), and 

working downwards in j. The effect of post-multiplying 

Gj+1 by H is to shift all columns one place to the right, 

and to make the first column zero. Lot the resulting 

matrix be Gj. Gj+len  is the last column of 	which . 

is found to be ..̀.j.1.2 , a unit column n-vector with a 1 

in the (j+1)th row, and zeros elsewhere. Hence, the 

INE■0 

(4.4.16 ) 
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vector Do  a1  ... an_i] is subtracted from the (J+2)th 

row of 	 to to form 1-5 	say. The addition of aj+1 to 

each diagonal elementiof '5j  then gives Gj. The formation 

of the G matrices will be understood from this, and 

from a consideration of the matrices in (4.4.11). 

The formulae in 44446 are derived from this. 

The linear equation set is derived by forming 

the coefficient of each power of s in the transfer function 

numerator polynomial by using cT, b and the Gi , equating 

this to the desired coefficient, and performing simple 

algebraic manipulation. The formulae in 4.4.7 are 
obtained by considering the generalisation of the 

process of formation of the equations (4.4.13). 

4.4.9 Numerical Examole.  

The procedure is illustrated by application to 

the same numerical example as was used in 4.3.7. 

Here, 

A = 

1 

0 
0 

0 

2 

2 

-3 
5 

0 

0 

-1 
0 

0 

0 

0 
-3 

. 

; 

3 
1 

0 
2 

; b -2 = 

4 
1 

0 

3 

= C1 -1 1 -13 
The transfer function between y. and u1  is to have 

zeros at -2 and -4, and poles at -1.5, 42.5, -3.5 and -4.5. 



118. 

- • We first note that p3  -.cT  b 1  = 0, :.>o that there ire - 1- 
at most two zeros. The transformation matrix T to 

give the companion form representation of A, b2  is: 

T = 
1 

-15 
-15 
-15 
-15 

69 
33 
141 
57 

20 
-20 
20 
-20 

-3 
9 

-27 
81 .. 

240 
4.  

and.: 

-18 -12 10 4 

T-1 = -3 -1 3 1 
9 -6 -3 0 
1 -3 -1 3_ 

whence: 0.075 
0.025 
0.175 
0.725 

  

p 
I? 

and 

The 

now 

The 

cTT-1  = 1 	[-7 -14 	5 

linear equation set corresponding 

formed as: 

0 	0 	0 	0 
-2.625 -0.875 -0.125 -0.375 
-1.225 -0.175 -0.525 	0.925 

first row gives the constraint 
= 8. 
is unnecessary to perform the 

a] 

a2 
a1 
ao 

row 

a3
••• 

to 	(4.4.15) 

1 	0 	0 
[2,1 

0 	0 	1 

p2  = 1. We require 

reduction in 

is 

p2 
p1 

 - 

0 

this 

1.0 
-11.375 
-5.075 

p1 = 6, 
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simple case, as the two'romaining equations obviously 

aro consistent. Tho solution is non-uniquo, and so 

additional specifications can be included. In this 

case, however, for the purpose of permitting direct 

comparison with the method of L..3, two of the 

eigenvalues of (A A- b2  k2) will be specified as -1 --2 

and -3. This gives the following set of equations: 

1 
27 
2.625 
1.225 

-1 
-9 
0.875 
0.175 

1 
3 
0.125 
0.525 

-1 
-1 
0.375 
-0.925 

. 	. 
a
3 
a2  
a1  
ao - 

=  

- - 	1 
81 

-17.375 
-15.075.  

The solution is: 

 

a3 	-1.125' 

a2 	-16.375 
a1 	-10.875 

aon 	3.375 

 

 

•to 

   

Without feedback, the coefficients of the characteristic 

polynomial of A are.: 1, 	-1 and 6. Hence, 

k2T-1  = [(-3.3754.6) (10.875=1) (16.375-7) (1.125+1)] 
• 

whence: 

2 = [-1.5 8.125 0 01 - 

This result agrees with that obtained in 4.3.7. 

The second stage of the procedure, to locate the 

poles, is the same as in 4.3.7. 
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4.L.10 Conclusion.  

The procedure described gives a general method 

of approach for determining the state vector feedbacks 

required for the synthesis of the scalar transfer 

function. It is clearly closely related to the 

method of CW4) 	but gives more information at each 

stage of the design process. Constraints on the design 

are revealed, and can be allowed for at the appropriate 

stage. By the use of the relations of the form (4.4.7) 

and (4.4.9), the coefficients of the numerator 

polynomials of any transfer functions can be examined. 

Where'these transfer functions relate to the input ul, 

the numerators will not change when the feedback 01  is 

applied. The numerators of transfer functions relating 

to other inputs in general will change when ki  is applied. 

Hence, (4.4.7) and (4.4.9) must be used accordingly. 

Although the solution of the linear equation set 

. is generally non-unique, as in the numerical example 

considered, the scope for including additional specified 

requirements is rather limited. It is possible to obtain 

another linear equation set corresponding to another 

row of C, to permit specification of the transfer 

function to another output, from the same input, and to 

seek .a solution of both sets of equations. In this case, 
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linearity is preserved. With low-order systems, 

this may sometimes permit the specification of two or 

possibly more scalar transfer functions from the same 

input, depending upon the orders of the numerators of 

the transfer functions. 

The procedure.  has been described in 0:113] . 
L 

4.5 General Comments.  

Either of the procedures 4.3 or 4.4 gives a 

complete solution to the problem pf designing state 

vector feedback for a system with two inputs, to 

provide, as far as possible, a specified scalar input-

output transfer function. Thefirst method achieves this 

by making direct use of the technique of modal control. 

The problem of locating zeros is transformed into a 

Problem of locating the eigenvalues of a related matrix. 

The procedure of. 4.4 reduces the zero assignment 

problem to the solution of a set of linear equations. 

The consistency of these equations provides full 

information regarding any constraints on the choice 

of coefficients of the transfer function numerator 

polynomial. 

The non-uniqueness of the solution appears in 

4.3 where only the controllable eigenvalues of the 

matrix used to determine the zeros are assigned by 
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means of an n-vector of state feedback gains. 

In 4.4, the non-uniqueness appears more directly 

in the solution of the linear equation set', and permits 

the consideration of other linear equation sets for 

simultaneous solution, if desired, to enable other 

transfer functions to be specified also. The method 

of 4.4 also provides convenient means for checking 

all transfer function numerators, using information 

available in the procedure. 
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CHAPTER  

STATE OBSERVERS.  

5.1 Introduction.  

The Pole assignment and pole-zero assignment 

procedures described in the preceding chapters nearly 

all require feedback of specified linear functionals 

of the system state vector. In most practical cases, 

the number of available 'outputs is less than the 

system order, so that it is not possible to form any 

arbitrarily chosen linear functional of the state 

vector as a linear functional of the system outputs. 

One solution to this problem for deterministic systems 

is provided by the state observer, which is a linear 

dynamic system driven from the inputs and outputs of 

the system under consideration, so as to permit the 

construction of an estimate of the system state vector 

continuously in time. 

5.1.1 Observer Properties. 

The arrangement of an observer is shown in Fig. 5.1. 

The system is described by the equations: 

X = Ax • Du 

y = Cx 	 (5.1.1) 
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where x, y and u are vectors of dimension np m and r, 

respectively, representing the system states, outputs 

and inputs.- 

The state observer is described by the equation: 

= Dz + Xy + Gu 	(5.1.2) 

where z is the observer state vector, of dimension 1. 

The matrices A, B, C, D 	and :G are constant, and of 

appropriate dimensions. 

         

G 

y K 
	 z B 4 

   

           

Fig. 5.1. 
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The theory of state observers was given by 

Luenberger [0][L41[LI and the following brief treatment 

is included for completeness. 

Combining (5.1.1) and (5.1.2) gives the overall 

system differential equation as: 

[51 	A 	0 [x 

KC D z 
(5.1.3) 
•• 

Taking the Laplace transform of (5.1.3), and 

denoting the Laplace transform of a time variable by a 

bar, gives the solution as: • 

[7] -Kg 	
.x(:0) 	(sin  -A) 	0 	— 

+ 
•.z(o) -KC (sIf-D) 

(5.1.4) 

whence: 

	

= (sin-A)-1x(0) 	(sIn-A) 1Ba 
	

(5.1.5) 
and: 

= (sIi-D)-1KC(sIn-A)-1x(Q) + (sIi-D)-1z(0) 

+ (sIl-D)-1KC(sIn—A)-1Ba + (sI1HD)-1Ga (5.1.6) 

Now let G = TB, where T satisfies the matrix equation: 

TA - DT = KC 	 (5.1.7) 

	

and let z(0) = Tx(0) 	w(0) 	(5.1.8) 

G can be chosen by the designer, and (5.1.8) introduces 

no loss of generality. 
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Substituting for G, KC and z(0) in (5.i.6) gives: 

= (sIi-D)-1(TA-DT)(sin-A)-1x(0) + (sii-D)-1(Tx(0)+w(0)) 

+ (sIi-D)-1(TA-DT)(sIn-A)-15d + (sIi-D)-1TBa 	(5.1.9) 

= (sIl-D)-1w(0) + (sIi-D)-1(TA-DT)(sIn-A)-1x(0) 

+ (sIi-D)-1T(sIn-A)(sIn-A)-1x(0) 

+ (sIi-D)-1(TA-DT)(sIn-A)-1Ba + (sIi-D)-1T(sIn-A)(sIn-A)-1Ba 

(5.1.10) 
= (sIl-D)-1w(0) + (sIi-D)-1(TA-DT+Ts-TA)(sIn-A)-1x(0) 

+ (sIi-D)-1(TA-DT+Ts-TA ) (sIn-A)-1Ba 	(5.1.11) 

= (sIl-D)-1w(0) + T(sIn-A)-1x(0) + T(sIn-A)-1Ba (5.1.12) 

= (sIl-D)-1w(0) + T7 	 (5.1.13) 

from (5.1.5). 

If the observer is stable, i.e., D represents a 

stable system, the time response corresponding to the first 

term of (5.1.13) will represent a decaying response to 

the initial 'mismatch' w(0). When this response has 

decayed,_there remains: 

1 = T7, and so z = Tx 	(5.1.14) 

due to the linearity and uniqueness properties of the 

Laplace transform. In the time domain, equation (5.1.13) 

becomes: 

z = eDtw(0) + Tx 
	

(5.1.15) 
The equation (5.1.15) expresses a fundamental, property 
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of the observer, which is.that, after any initial mismatch 

has decayed, the state vector of the observer becomes and 

remains a fixed linear transformation of the system state 

vector, for all system inputs. 

A question arises 'as to whether the matrix T can 

be found as a solutionbf the equation (5.1.7).. 

Gantmacher [0] has shown that an equation of the form 

of (5.1.7) always has a unique solution 	the matrices 

A and D have no common eigenvalue. Now, D is at the 

disposal of the designer of the observer, so that the 

conditions (i) D should have all eigenvalues with 

negative real parts and (ii) D should have no eiaenvalue 

in common with A are easily met. Apart from these two 

conditions, D can be chosen arbitrarily. However, these 

conditions only ensure that there will be some solution 

matrix T. The general problem of observer design is 

concerned with the dynamics of D, and with the nropertios 

of T. 

Observer Used with Feedback.  

Since the observer is to be used for applying 

feedback, it is important to consider the properties 

of a linear system with observer and feedback. The 

general arrangement is shown in Fig. 5.2. 

Feedback lis obtained both from the 'system outputs and 

the observer state vector. 
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Fig. 5.2. 

This system is represented by the following equations: 

= Ax + Bu + BF1  y + BF2z 

= Dz + Ky + TBu + TBF1  y + TBF2z 

Setting y = Cx, and KC = TA - DT, gives: 

[X] 	(A+BF1C) 	BF2  1{1 	B u 

(TA-DT+TBF1C) (D+TBF2) z 	[TB] 
(5.1.18 ) 

[

Introducing a change of state vector to x , where: 

• 
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In 0 ][x 

T I w 1 	i 

gives the differential equation in the form: 

[ 

_ (A+BF1C+BFT) BF2  .x 	B u - 
- 	 + 	(5.1.19) 

.0 	0 

The form of (5.1.19).r  eveals that the overall 

system with feedback has the eigenvalues of (A+BF1C+BF2T). 

and the eigenvalues of. D. This is the 'separation' 

property, and permits the feedback to be designed as 

for the original system,.but with the measurement matrix 

C augmented to C . 

[ 
To obtain the transfer, functions, the Laplace 

transform of (5.1.19), with zero initial conditions,- 

is taken. This gives: 

(sIn-A-BF1C-BF2T) -4Fa  -1  B a 
(5.1.20) 

0 	(sii-D) 	0 . 

[ (sIn-A-BF1C-BF2T)-  (sIn-A-BF1C-BF2T)-1BF2 (sI -D)-1  
0. 	 (s.11-D)-1  

(5.1.21) 
whence: 

= (sIn-A-BF1C-BF2T)-1Bri 
	(5.1.22 ) 
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Equation (5.1.22) shows that, as far as input-state, 

and hence input-output transfer functions are concerned, 

the system with observer behaves as a system of order n, 

with the measurement matrix augmented as described. It 

is this property which, together with the separation 

property, makes the observer particularly useful in 

connection with pole assignment and pole-zero assignment 

by feedback. 

5.1.3 State Observer Design.  

So far, nothing has been said about the value of 1, 

the order of the observer. The objective is to reconstruct 

the state vector, and the simplest solution is to let T = I. 

This gives z = x, and the observer equation .(5.1.7) 

takes the form: 

A - D = KC, 

or 	D = (A - KC) 	(5.1.23) 

From modal control theory, if the pair (A,C) is 

observable, the matrix D in (5.1.23) can be given any 

arbitrary set of eigenvalues, by suitable choice of K. 

Recognising that some linear combinations of the 

state variables are already available in the outputs Y, 

Luenberger showed that the entire state vector could 

always be recorwtructed for an observable system by 

means of an observer of order (n-m), where m is the 
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number of linearly independent system outputs, and that 

the observer dynamics could be chosen almost arbitrarily, 

subject only to the conditions (i) and (ii) in 5.1.1. 

Luenberger gave a design procedure based on the transformation 

of the system to a canonical form in which the A matrix 

assumes one of the companion forms, or has diagonal 

blocks of this form. 

The design problem will now be considered based 

on the equation (5.1.7) directly. The approach is 

somewhat similar to that used by Newmann LA . 

First suppose, in (5.1.7), that D is of dimension 

(n-m), and that T is chosen with rows linearly independent 

of the rows of C. This will enable the state vector to 

be recovered, if the observer functions correctly, 

from: 	x = 

T 

[C1-1 11 

z 

. 

Then, 	(5.1.7) 

[K D] 

gives 

= 	TA [C] -1 	(5.1.24) 

Hence, K and D are uniquely determined. If the solution 

for D obtained in this way represents an unstable or 

otherwise undesirable observer, another T must be tried. 

This approach is, therefore, unsatisfactory. 

Now suppose that, for an observer of the same 

dimension, in (5.1.7), D and K are chosen. The equation 
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may then be solved for T. For example, if both A and D 

have distinct eigenvalues, A may be written A = WAN-1, 

and D may be written U,A.d 1  U , where Aa and A are 

diagonal matrices of eigenVaiudt and W and U are matrices 

of column eigenvectors. The. equation (5.1.7) then becomes: 

 TWAa,'X-1 - UAU-1  T= KC, or: 

 U-1TWAa - A U-1  TV/ = U 1KCW 
	(5.1.25) 

which may be solved, element by element for the matrix 

-1 U TN, and hence for T. The method may be adapted to 

cater for multiple eigenvalues, but is, in any case, 

unsatisfactory, because?  although D can be chosen to 

have satisfactory dynamics, there is no control over 

the solution T. If this is found to have rows which are 

linearly dependent on the rows of C, the choice of 

dynamics of D will have to be changed, and the 

process repeated. • 

The general solution to this problem was obtained 

by Cumming, and is described in the next section. 

The approach used in establishing this method of 

solution is different from that used by Cumming. 
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5.1.14. Cumming's Method.  

In Cumming's method [C14.1 [C5] 	a vector zo is 

formed as: 

z = z + Ry 
	 (5.1.26) 

where . R is a constant matrix to be determined, and so 

z = zo - RCx 

The (n-m)xn matrix To is chosen arbitrarily, 

with rows linearly independent of the rows of C. The 

action of the observer is to make zo tend asymptotically 

to Tox,dand z tends to Tx, so that: 

T = To  - RC  
Inserting (5.1.27) in (5.1.7) 

(To  - RC)A - D(To  - RC) = KC 

(To  - RC)A = [(K - DR)iD]p 
To 

gives: 

(5.1.27) 

and so: 

[(K - DR) ;D1 = To C -1  , 
To 

- ROT ] 

o 9T -1 
(5.1.28) 

= [Kliq - 17'[ iK4] 	(5.1.29)' 

where the partitioning on the right hand side coincides 

with that on the left. Then, from (5.1.29), 

D = K2 - RK 

and K = DR + K - RK 1 	3 

(5.1.30) 

4 

 

(5.1.31) 



is n x (n-m) . 

Since: 

Pi = I n 

[

C 

To 
L.  

CP = Im ; CQ = 0 

(5.1.33) 

1 3 4. . 

In (5.1.30), according to modal control theory, 

D can be assigned any arbitrary set of eigenvalues by 

suitable choice of R, if the pair (K2,K4) is observable. 

It will now be proved that (K2,K4) is observable if 

(A,C) is observable. 

Proof.  

Let (A,C) be observable, and let C have m rows, 

which are linearly independent. This introduces no loss 

of generality, since linearly dependent rows can be 

ignored. 

Let: 

-1 
[P;4] (5.1.32) 

0 

where the partitioning is such that P is nxm, and Q 

ToP = 0 ; 	ToQ = In-m 
	(5.1.34) 

From (5.1.29), 

K2 	o 	; = T AQ • 	K4  = dAQ 
	5 . 1 . 3 5 ) 

The pair (K ,K4)18 observable if the matrix H 
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has rank (n-m), where: 

••■ 

K 

K
4

K2 
K4K2 

 2 

• 
n -m -1 K4K2 

Substituting from (5.1.35), 

CAQ 
CAQT0AQ' 
CAQT0AQT0AQ 

• 

H = 

H = 

(5.1.36) 

(5.1.37) 

Since: 

= In (5.1.38) 

QTo = In PC (5.1.39) 

Substituting from (5.1.39) in (5.1.37), 

H = CA 

CA2 - CAPCA 

CA3 - CA2PCA - CAPCA2  + CAPCAPCA 

IMO 

  

  

Q 

(5.1.40) 
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By elementary row operations, it can be shown that H 

has the same rank as: 

G = CA 

CA2. 

(5.1.41) 
CAn-m  

Now consider the matrix product: 

G1  = C Q 

CA 

CA2 (5.1.42) 

CAn-m  

The rank of Q is (n-m), because this comprises 

[

(n-m) linearly independent columns of C -1  , and the 

rank of the first factor in (5.1.42) is n, because 

(A,C) is observable and C has rank m. Hence the rank of 

the product matrix Gi  is at least n - n + (n-m) = (n-m). 

The rank also is at most (n-m), because Q has this rank. 

Hence G1 has rank (n-m). But, from (5.1.54), CQ = 0, and 

so G has rank (n-m). This completes the pro8f. 

T 
0 
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5.2 Simple Design of State Observer.  

Although Cumming's method provides a complete 

solution to the problem of designing a state observer 

having arbitrarily chosen eigenvalues, which is suitable 

for programming on a digital computer so as to provide 

an automatic solution, it is not an easy procedure 

for pencil and paper calculations. The matrix operations 

and the embedded modal control problem may present 

considerable difficulties when dealing with high-order 

systems without the aid of a full computer program. 

The availability of electronic calculating machines 

of the hand and desk types, and of time-sharing computer 

terminals which provide packages for standard matrix 

manipulations, but not specialised programs for control 

engineering work, makes it useful to consider methods 

of design which permit these facilities to be used to 

aid pencil and paper design. 

In the method which is now to be described, a state 

observer is designed as a succession of scalar observer 

designs. The eigenvalue of each scalar observer must be 

real, but this is no disadvantage in most practical cases. 

Otherwise, the eigenvalues can be chosen almost arbitrarily, 

and the computations involved are very simple. 
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5.2.1 Properties of Scalar Observer.  

For a linear system described by the equations:..  

X = Ax + Bu 

y = Cx 
	 (5.2.1) 

where x, y and u are vectors of dimension n, m and r 
• 

respectively, a scalar observer is described by the 

equation: 

= dz + kTy + gTu 	(5.2.2) 

where z and d are scalars, and kT .and gT are row vectors. 

The system (5.2.1) is controllable and observable. 

In this case, equation (5.1.7) takes the form: 

tTA - dtT  = kT  C 	 (5.2.3) 

where tT  is a row vector of dimension n, such that z 

tends. to tTx. 

d is the eigenvalue of the observer, and equation 

(5.2.3) may be solved for tT, if d is not an eigenvalue 

of A, as: 
tT = kTc(A - Id)-1 	(5.2.4) 

The scalar observer design requires that d is 

chosen to be negative and real, and that the pair (A,kTC) 

is observable. Since (A,C) is observable, a kT can always 

be found to satisfy this condition iff A is non-derogatory. 

However, since, in the case under consideration, the 
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state observer is being designed for the purpose of 

providing feedback for pole/zero assignment, there is 

no reason why arbitrary feedback from the system outputs 

should not be applied initially so as to separate the 

eigenvalues of a derogatory A matrix, and so render it 

non-derogatory [D2] . The final design of 'feedback can 

allow for this initial feedback. 

The design procedure rests on the following theorem: 

Theorem.  

The observer eigenvalue d in (5.2.L1) can be chosen 

so that the vector tT is linearly independent of any 

arbiti.ary set of (n-1) linearly independent vectors Ta. 

Proof. 

If tT is linearly dependent on Ta, the determinant: 

tT  = 0 	 (5.2.5) 
Ta 

Substituting in (5.2.5) from (5.2.L.), 

  

kT0(A - Id)-1  
Ta 

= 0 	 (5.2.6) 

  

Assume initially that A has distinct eigenvalues. 

d is not an eigenvalue of A, so that the inverse exists. 

Let W be a matrix of column eigenvectors of A. Then 

(5.2.6) may be written: 



••• 

kTCW 

140. 

0 A.-d (1:  

	

1 	x1271  

	

0 	0 

(5.2.7 ) 

. 
TaW 

at MOW ■M• 

Let kTCW = YT =1 	rn1 	(5.2.8) 

and let TaW = Tw 	 (5.2.9) 

Tw has (n-1) linearly independent rows, because W is 

non-singular. It then follows from (5.2.7) that: 

1 	2 

77171  A2 -d  
= 0 	 (5.2.10) 

e.• 	11=6. 	Ow ■ •■ 	 ••••••• 	■■•■ 

Tw 

In (5.2.10), the Yj, j=1,...n, are all non-zero, 

because (A,kTC) is observable. Expanding the determinant 
n 

by the first row, and multiplying by 	( A.-d), yields 
j=1  

a polynomial equation in d of degree (n-1), which is not 

identically zero because, since Tw  has (n-1) linearly 

independent rows, at least one of the co-factors of the 

terms in the first row is non-zero. It follows that there 

are at moot (n-1) valuos of tho obsorvor oigonvaluo d 

giving a tT  which is linearly dependent upon Ta. This 
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completes the proof for the case in which A has distinct 

eigenvalues. 

Where A has multiple eigenvalues, but is non-

derogatory, the Jordan form will have a Jordan block 

corresponding to each different multiple eigenvalue. 

There will be no two blocks with the same eigenvalue. 

The proof will be extended to this case by considering 

one such block, of dimension 3, for definiteness. W then 

includes generalised eigenvectors. 

Corresponding to a third-order Jordan block with 

eigenvalue X, the inverse in (5.2.7) will have a 

diagonal block of the form: 

	

1 	_ 	1 	 1  

	

1t1  -a. 	( Al-d)2 	( Al-d)3  
0 	1 	 1 	' 

A -a 	( 
0 	0 	1  

A1  -d 

(5.2.11) 

whence the corresponding part of the first row of 

(5.2.10) will assume the form: 

(5.2.12) 
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The condition of observability implies that ) 	0, 

whilst the values of Y2 and Y3 
 are immaterial. It again 

follows that expansion of the determinant by the first 

row, and multiplication by ( Al-d)3, and by factors 

corresponding to the other eigenvalues yields a polynomial 

equation of degree (n-1), which is not identically zero. 

Hence the theorem is true generally. 

5.2.2  Design Procedure.  

kT is first chosen so as to preserve observability. 

This value is retained throughout the procedure. 

The first observer eigenvalue d1  is chosen, and 

the corresponding t
T  vector, t 1 

is found from (5.2.4). 

t 1
T   is then checked for linear independence of C, by echelon 

reduction, or otherwise. If it is found to be linearly 

dependent, a different value of d1 is chosen, and the 

process repeated. When linear independence is established, 

the next observer eigenvalue d2  is chosen, and t2  is 

found from (5.2.4). t2  is then checked for linear 

independence of C 	,,and so on. 

/ 
tT  1 

The process is continued until (n-m). eigenvalues 

have been chosen. The state vector can then be estimated 

by inverting the non-singular matrix: 
. - 
C 
T 
t1 
.T 

 
to-m 	. 

ON. 
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Each scalar observer has-the external inputs applied 

to it as: 

.gT  = tTB 	 (5.2.13) 

Whore means are available for finding eigenvectors 

and A has distinct eigenvalues, the process can be further 

simplified so as to avoid the matrix inversion for each 

value of d chosen. Equation (5.2.4) may then be written 

in the form: 
• 

tTW = kTCW 1  0 0 (5.2.14) -dj 1 
0 

o o 

0 

IMP 

This method will involve complex arithmetic if A 

has complex eigenvalues. 

5.3 Numerical Example.  

A simple numerical example, which is a modified 

form of an example given by Luenberger [L57 , will now 

be used to illustrate the design of state observers 

by both Cumming's method and the simple method of 5.2. 

In this example, the state vector is to be estimated 

by a minimum-order observer having the eigenvalues 

-1 and -2, if possible. 



[C 1.1 	1 0 0 = 
To 	0 0 1 

0 1 0 
...0 0 0 

and: 

ToA 

CA [C 
To  

[1 0 1 0 0 
0 0 0 1 

1 1 -2 C.) 
0 0 0 

[1 0 0 01 
0 0 1 0 

1 

1144. 

Here, 

-2 1 0 0 0 C- 1 
[.0 

0 0 0 

A = 0 -2 1 0 = 0 0 1 0 
0 0 -1 1 0 

-1 0 0 0 1 

5.3.1 Cumming's Method.  

Choose To = 0 1 0 0 
0 0 0 

Then: -1 0 0 0 [Cj 
0 0 1 0 
0 1 0 0 

0 0 1.1  

0 
0 

.0 
1 

--2 1 0 0 1 0 0 0 
0 -2 1 0 0 0 1 0 
0 0 -1 1 0 1 0 0 

_-1 0 0 0 _0 0 0 1_ 

-2 1 0 0 1 0 0 0 
0 -2 1 0 0 0 1 0 
0 0 -1 1 0 1 0 0 

-1 0 0 0 0 0 0 



1 0 
0 1 

[2 0 
0 0 
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[-2 0 1 
0 -1 0 

••, 

Thus: 

K1 = 
0.1 -1 

= {-2 
0 -1 

This gives: 

D = 	-2 

[ 

0 -R 
0 0 

K2  has the eigenvalues 0 and -2, and D is to have the 

eigenvalues -1 and -2. This is achieved with: 

 R = 	0 [ 0 ] 

- 	0 1 

and then: D = -2 .0 
0 -1 • 

0 
0 

and: K = DR + K1 - RK3 
= 	1[0 

0 -1 0 1 

[ 

and G = TB = 0 1 0 0 
0 0 -1 1 

0 1 	0 1 -2 
1 -.0 	0 1 	0 -1 

1  

= 



d1 = -1 

Id1)-1  

1 -1 1 0 0 
0' 1 0 
0 0 0 1 
-1 0 0 1 

2 -21 

First scalar observer: 

tT  = kTC(A - 

=G 0 

= [1 1 

-1 

• 

so is acceptable. 

g1 = t1B = [1  1 1 2 -2] 0 
0 
0 
1 

= -2 

Second scalar observer: 	d2  
T tT = k C(A - Id2) 

= [1 0 1 01 -1 0 1 0 0 
0 0 1 0 
0 0 1 1 
-1 0 0 2 

2  
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5.3.2 Simple Scalar Method.  

We first choose any kT such that (A,kTC) is 

observable. kT = [1 1] satisfies this requirement. 

Then: 	kTC = [1 	r i 0 0 01. 	0 1 0]  

LO 0 1 0 

This is linearly independent of the revs of C, and 
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This is linearly independent of the rows of 

[C 	, and so is acceptable. 
T t1 

g2  = t2B = 0 
0 

= -1 
0 
1 

The overall design obtained by this method is thus: 

D 
 = [

-1 01 ; 	K= 	1 1] ; 
0 -2 	1 1 

G = 

The corresponding design obtained by Cumming's 

method was: 

[ 

D = -2 0 
0 -1 

[ 

G = 	0 	. 
1 

1 K = 	0 1 	; 
[-1 0 
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.5,4  Conclusions.  

Cumming's method has been derived in a uniform 

treatment based on Luenberger's observer equation, and 

a proof of observer eigenvalue assignability has been 

given. Where the observer is used for providing feedback, 

the matrix R introduced in Cumming's method need have 

no physical existence. For example, if the overall 

feedback is to be Fly + F220, this is equal to 

Fly + F2(Ry + z) = (F1  + F2R)y + F2z = 	+ F2z, so 

that the effect of R can be included in a new system 

output feedback gain matrix 	R 1may.then be regarded 

as an artifice used to facilitate the design of the 

observer. 

Cumming [C41 has shown that the condition that 

the observer should have no eigenvalue in common with 

the original system is not necessary. Although this 

point is of some theoretical interest, it is not important 

where the observer is used in connection with closed-loop 

pole assignment. Since all the closed-loop poles are to 

be assigned, there seems to be no merit in choosing 

observer poles which coincide with those of the original 

system. 

Whilst Cumming's method undoubtedly provides a complete 

and satisfactory solution to the problem of state observer 
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design in general, there' are advantages in considering 

a computationally simpler method. The simple scalar 

design method presented in 5.2 permits a minimum- 

order observer to be designed in every case, with almost 

arbitrary real eigenvalues, whilst using only routine 

matrix operations which are available in most time-sharing 

and similar computer libraries. Whilst the method 

involves an element of trial and error, this is not a 

serious disadvantage, because, as is clear from the theorem 

given, the occurrence of a tT which is linearly dependent 

upon the rows of C and the ti, i=1, 	(J-1), is 

exceptional. 

Linearly dependent tT could be avoided altogether 

at each stage by forming a Ta  matrix, in the theorem, 

from C, and the t., i=1, 	(j-1), and augmenting this 

with (n-m-j) other rows, chosen arbitrarily, but linearly 

independent of these, and then solving the polynomial 

equation in di, which yields all the values of di  giving 

lineardependence.lfd.is then chosen so as not to 

have any of these values, nor any of the eigenvalues 

of A, it may otherwise be chosen freely. However; the 

extra trouble involved in this process does not seem to 

be justified. 
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CHAPTER 6.  

LINEAR FUNCTIONAL OBSERVER.  

6.1 Introduction.  

A controllable single-input linear system can have 

all closed-loop eigenvalues assigned by state vector 

feedback. It follows that, if an observer is to be 

used with such a system, all that is required is to 

develop an estimate of a single pre-specified linear 

functional of the state vector. Furthermore, any 

controllable multi-input system in which the A matrix 

is non-derogatory can have a single input distributed 

amongst the system inputs in such a way that the 

system is completely controllable with respect to this 

input. This statement follows from the fact that, if 

(A1,B) is controllable, and A is non-derogatory, there 

exists a vector g such that (A,Bg) is controllable CW1I . 

If the A matrix is derogatory, but (A,B,C) is 

controllable and observable, arbitrary output/input 

feedback K can be applied initially to separate the 

system eigenvalues, and make the system matrix 

non-derogatory ED2] . This feedback will not affect 
the controllability, as ((A+BKC),B) will be controllable. 
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It follows from these remarks that any controllable, 

observable linear time-invariant system can be treated 

as a single-input system, as far as pole assignment is 

concerned, so that pole assignment can be achieved in 

any such system by feeding back a specified linear 

functional of the state vector. 

One way to obtain the required linear functional 

feedback is to use a state observer, and derive an 

estimate of the linear functional from this. 

Luenberger [L41 , however, has shown that an estimate 

of any specified linear functional of the state vector 

of a linear system can be provided by means of an observer 

of order (p-1), with arbitrary dynamics, where p is 

the 'observability index' of the system, defined as 

the least integer p for which the mpxn matrix Q has 

rank n, where: 

   

Q= 

C 

CA 

CAP-1  

(6.1.1) 

   

   

Such an observer, which is known as a 'linear 

functional observer', maybe of considerably lower 

order than the corresponding state observer, for a 

multioutput system. 
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Luenberger [L4] gave a method for designing 

a linear functional observer, based on the reduction 

of the system to a special'canonical form, one of 

the companion forms; 

A method will now be described, which does 

not require any change in the representation of the 

system, and which can be applied to any observable 

linear time-invariant system. An extension of the 

method leads to a procedure for designing linear 

functional observers of order lower than (p-1). 

Again, the method forms the basis of an approach to 

the design of degenerate observers, to provide 

estimates of a number of specified linear functionals 

of the state vector. 
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6.2 Design Procedure for Linear Functional Observer.  

6.2.1 System Description.  

We consider a linear time-invariant system 

described by the equations: 

x = Ax + Bu 

y = Cx 
• 

where x, u and y are vectors of dimension n, r and m, 

representing the states, inputs and outputs, respectively, 

and A, B and C are constant matrices of appropriate 

dimensions. The system is observable, with observability 

index p, where p is defined as in (6.1.1). 

6.2.2 Problem Statement.  

The problem is to design for the system (6.2.1), 

(6.2.2) an observer with arbitrary dynamics, such that 

a suitable combination of y and the (p-1)-dimensional 

observer state vector z will give a specified linear 

functional hT of x, i.e., such that, asymptotically, 

fTy + gTz = hTx 	(6.2.3) 

where fT, gT and hT are row vectors, of which hT is 

specified. 

The observer is described by the equation: 

z = Dz + Ky + Gu 
	

(6.2.14) 

where D, K and G are constant real matrices. 

The observer dynamics are determined by D, which 
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may be chosen arbitrarily, with the mild restriction 

that its eigenvalues, (d1 , 	dp_1), are distinct and 

different from the eigenvalues of A. Real eigenvalues 

must, of course, be negative, to provide a stable observer, 

and complex eigenvalues must occur in conjugate pairs 

with negative real parts, for physical realizability 

and stability. The matrix K, which couples the system to 

the observer, and the matrix G, which couples the external 

inputs to the observer, are to be found, as are the 

vectors fT and gT. 

6.2.3 Solution. 
	 .42  

Let U be a matrix of self-conjugate column 

eigenvectors of D, so that: 

D = ULIU-1 
	

(6.2.5) 

where Li = diag(d1 	dp_ 

Let: 

gT = eTU-1 	 (6.2.6) 

where eT  is the (p-1)-dimensional sum vector [1.1 ... 11 

This introduces no loss of generality. 

Then: 

K = UM 	 (6.2.7) 

where fT and the rows Of M, (mT ' 	p mT-1 ) are obtained 1  

as the solution of the. set of linear equations (6.2.8). 
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s 

Ti {f° 	, 

I 
T1 
1, 

I 
T on , p-11 

C 1( 	(A -d 4I) 
j=1 

p -1 
CV (A -d4I) 
j=2 	4  

p-1 
CTIF (A-d4I) 
j=1 
jX2 

p-2 
C-fr (A-diI) 
j=1 

ea 

= h
T.1

(A -d.I) 
j=1 

(6.2.8) 

I is the identity matrix of order n. 

The ith m-rowed block of the coefficient matrix 

on the left hand side of (6.2.8), for i = 4, 	, (p-1), is: 

p-1 
C H 	(A-d,I) 
j=1 
jAi-1 

G is obtained from: 

G = URB 	 (6.2.9) 

where R is a (p-1)x n matrix with rows (4, .. rp-1 )  

where: 

rrrj  = miriC(A-djI)-1 	(6.2.10) 

j=1, 	(p-1) 

Equations (6.2.8) are consistent, and the solution 

is unique if mp = n, and non-unique if mp,sn. 

This completes the solution. 

Proof.  

The matrix T relating the state vectors of the 

observer and the original system is the solution of 

the observer equation [I,41 : 

TA - DT = KC 	 (6.2.11) 
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This equation has a unique solution if A and D have 

no common eigenvalue. This condition is satisfied. 

Setting U-1T = R, and U-1K = M, (6.2.5) and (6.2.11) 

give: 

RA - AR = MC 	°(6.2.12) 

From the rows of (6.2.12), since A is diagonal, 

we obtain (6.2.10). Equations (6.2.5).and (6.2.6) 

give the vector equation: 

fTC + eTR = hT 	(6.2.13) 

Substituting (6.2.10) into (6.2.13) gives: 

p-1 
• T fT C + 	m-C(A - 

J 
j=1 

(6.2.14) 

Postmultiplication of (6.2.14) by: 

I1 (A - d I) 
j=1 

and rearranging give (6.2.8). Equation (6.2.7) follows 

from the definition of M. From CL41 G = TB. 

Hence, (6.2.9) foilowS from the definition of R given 

above. 

The only unknowns in (6.2.8) are the mp 

components of the vector 	T. [fT:mT...:mT 1 . It can 
1, 	p 

be verified by elementary row operations on the 

coefficient matrix on the left hand side of (6.2.8) 
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that, provided the d are distinct, this matrix has the 

same rank as Q in (6.1.1), namely rank n, by definition. 

This statement will now be justified. 

The coefficient matrix in (6.2.8) can be reduced 

to the form of Q if there exists a set of p2 real scalars 

9 00, 	0  0(p-1) , 	10 ,  '" 	1(p-1)' 	(p-1)o' e"  
6.(1)..1)(p_1)9 such that, for q = 0, ... (p-1), 

,n  13-1 -1 
V(A - d 1) + 	 - d 1) = 	6.2.15) ,/ oi=  

1-1 

 p 

j=1 i=. jai 

Equating coefficients of like powers of A on both 

sides of (6.2.15) gives a set of linear equations 

corresponding to each value of q, in the form: 

IND 

1 -dj  Zdsdt  -2drdsdt 	(-1)P-1d1•p-1 
sit 	rs/t 

0 	1 	- 1.jd• 	;Ed d' 	(-1)P-1(1 	a j 	s t 	p-1 
j1 st/1 

e Zdj  .  

.j/2 

[ego • • • ek(p-1)] 

. 	. 	. 	• 	. 

. 	• 	• 	• 

0 1 -2d 
. . , J 	. 	(-1)P-1d1.dp-2 . 
jAP-1 

0 0 0 .. 1 .. 0 0.] 
qth position 

(6.2.16) 
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Equations (6.2.16) will have a solution for each 

value of q if the p>cp coefficient matrix on the left 

hand side of (6.2.16) has full rank, i.e., if the deter-

minant of this matrix does not vanish. The determinant 

isofdegree(p-1)(p-2)/2inthedj.It is zero if 

di = 	for for any i 	j, as this gives identical rows, 

so that the determinant has the factors:

-  (dp-1 - dp-2)(dp-1 - dp-5)...(dp-2 	dp-5)...(d2 - d 1) 1 
There are (p-1)(p-2)/2 such factors which is equal to 

the degree of the determinant, so that these are the 

only factors apart from 'possibly, a non-zero numerical 

multiplier. It can be shown, by comparing the coefficient 

of any term, that this multiplier is unity, so that the 

determinant may be written as: 

11(di  - di), i>j ; i=2, 	p-1) ; j=1, 	(p-2) 

(6.2.17) 

It follows that the determinant is non-zero under 

the given condition of distinct observer eigenvalues. 

This completes the juptification of the statement 

concerning the coefficient matrix in:  (6.2.8). 

Equations (6.2.8), hence, are.consistent. From 

(6.1.1), mpZ.n. It is clear that the solution is unique 

if mp = n. If mp,)n, the solution is non-unique, and 

comprises the sum of a particular solution and the 
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solutions of the homogeneous form of equation (6.2.8) 

multiplied by arbitrary scalar constants. 

6.2.4 Solution for Real Observer Eigenvalues.  

The solution can be simplified slightly if it is 

desired that the observer should have only real eigenvalues. 

In this case, D may be chosen to be diagonal, so that 

D = Li, and U = I, giving K = M, G = RB and gT  = eT. 

6.2.5 Numerical Example.  

The method of solution is illustrated by application 

to a simple numerical example given by Luenberger [L51 , • 

although the advantages of the procedure become more 

apparent as larger systems are considered. 

In this example: 
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p = 2, and the single observereigenvalue is to be d = -3, 

so that the observer is trivially diagonal and, according 

to (6.2.6), gT  = 

becomes: 

1. M has a single row, mT, and (6.2.8) 

[fT:mT] C(A - Id) = hT(A - Id) 
C 

(A - Id) = 
1 	1 	0 	0- 
0 	1 	1 	0 
0 	0 	2 	1 

11 	0 	0 	3_ 

[1 	1 	0 	0 C(A - Id) = 
0 	0 	2 	1 

hT(A - Id) = [1 	1 	1 	31 

Hence, if fT = [Pi  , and mT = E' 
(6.2.8) becomes: 

1-  

[f1 f2 m1 m2 _I 1 	1 	0 	0 
0 	0 	2 	1 

= 	[ 1 	1 	1 3] 	, 

1 	0 	0 	0 
0 	0 	1 	0_ 

which yields f1  = 1, f2  = 3, mi  = -2, m2  = -5; whence: 

K = M = 	E2-5] 

In this case, the solution is unique, because 

mp = n. 



0 1 0 0 -1 

1 

01- 1 

0 0 1• 1 0 

0 .0 2 1 

z1 0 0 3 

rT = m
TC(A Id)-1  

= [-2 -51[1 o 
0 0 

16 1 . 

The row vector rT is obtained from (6.2.10) as: 

Hence, G = rTB, = 1. 

These results agree with those obtained in CL51 . 

6.2.6 Conclusion.  

The procedure described enables an observer to 

be designed to provide any specified linear functional 

of the system state vector. There is almost complete 

freedom of choice of the observer matrix D, which 

may have real or complex eigenvalues, provided only 

that these are distinct, and different from those 

of A. 

The procedure is particularly suitable for use 

with a digital computer, in dealing with large systems. 

This procedure has been described in [M41 . 
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6.3 Low Order Linear Functional Observer.  

Although the method of 6.2 permits the design of 

a linear functional observer of order (p-1), with 

arbitrary dynamics, where p is the observability index, 

it has been pointed out by Fortmann and Williamson [F6] 

that a reduction in observer order can be achieved by 

permitting the observer poles to be determined during 

the design process. The method described by Fortmann and 

Williamson is based on the companion canonical form 

approach of Luenberger, and requires the transformation 

of the system to a number of single-output sub-systems 

in the general case. 

A procedure will now be described for the design 

of an observer of low order to provide a specified linear 

functional of the state vector of a linear system. The 

method is based on the procedure of 6.2, and is suitable 

for direct application to single-output and multi-

output systems. The procedure yields information on 

the existence of an observer of given order, and on 

any constraints on the choice of observer poles. The 

method permits the investigation of observers of 

increasing order, until an acceptable solution is 

found. 
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6.3.1 System Description.  

We consider a linear time-invariant system 

described by the equations: 

Ax + Bu 

y = Cx 	 (6.3.1) 

where x, u and y are vectors of state, input and 

output, of dimension n, r and m, respectively, and A, 

B and C are constant matrices. The pair (A,C) is 

observable. 

6.3.2 Problem Statement.  

The problem is to design an observer described 

by the equation: 

= Dz + Ky + Gu 	(6.3.2) 

where z is the q-dimensional observer state vector, 

and D, K and G are constant matrices, such that, for 

a specified n-vector hT, (fTy + gTz) tends asymptotically 

to hTx. The matrices D, K and G, and the row vectors 

fT and gT are to be found such that D has acceptable, 

but not necessarily arbitrary, eigenvalues, and the 

dimension, q, of the observer, is to be as small as 

possible. 

6.3.3_Procedure.  

We postulate the existence of an observer of order 

q, to provide a linear functional specified by the vector hT. 
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Let the characteristic polynomial of D be: 

sl 	+ 	+ 	+ fo 	(6.3.3) 
Then constraints on the coefficients A correspond 

to constraints on the choice of observer poles. 

The following  array is formed: 

C 
CA 

CA(1  

hT 

hTA 

hTAg. 

(6.3.4) 

We now perform a row reduction of the array (6.3.4). 

The last (11+1) rows are reduced in the process, but are 

not used in reducing  other rows. 

If the last (q+1') rows are reduced to zero, there 

are no conditions on the A l  and the observer poles 

can be chosen arbitrarily. Otherwise, each non-zero 

column in the last (q+1) rows, say, [ 	ci  9 
provides a linear relationship among  the 	given by: 

q-1 

i=0 
(3i 11+1 4. lq+1 = 0 	(6.3.5) 
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The set of all equations of the type of (6.3.5) 

provides a set of constraints which must be satisfied 

by the pi. If this set is inconsistent, there is no 

solution for the chosen value of q. 

When a set of distinct observer poles has been 

chosen to satisfy the constraints, the design may be 

completed by following the procedure described in 6.2, 

substituting (q+1) for p therein, wherever it occurs. 

The matrix, U, of column eigenvectors of p, may be 

chosen arbitrarily, provided that the requirements of 

complex pairing are satisfied. 

Proof.  

Postulating an observer of order q leads to the 

equations of 6.2, with (q+1) replacing p. The necessary 

and sufficient condition for the consistency of 

equations (6.2.8), viz., that the vector on the right 

hand side lies in the space spanned by the rows of the 

coefficient matrix on the left hand side, is used to 

form conditions on the /3i. The coefficient matrix 

may be reduced by elementary row operations to the 

matrix: .c  

CA 
(6.3.6) 

• 
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and the vector on the right hand side may be written as: 

hTAq 4.  a 1hTAq-1 	... 	/31  hTApohT 	(6.3.7) 

where the /3i  are the coefficients of the characteristic 

polynomial of D, as in (6.3.3). 

Let m(q+1) = q' 

Let the first q' rows of the array (6.3.4) be: 

v1 p *es ye. 

When the row reduction has been completed, the 

last (q+1) rows of (6.3.4) will hive the form: 

	

hT  - 4.11vT1  - 	 12v2  - 

	

h
TA - T 

 - 
	

T - 21v1 	22v2 

42( 
1q' 

v 
 q' 

2q' 
vT  
q' 

• 

h
T
Aq  - acq+

1,1v1 
 - — oe 

q+1,q' vq' 

where the oe 	are scalars resulting from the reduction ij 

process. 

Application of the conditiont (6.3.5) then gives: 
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T  (hAcl  - a 	T , 
q+1,1v.v- 	("(c1+1,evTat) + 

(hTAci -1 	
(1  (1?1-1 	v 	nivT ) + 
,1 1 	,q, qt  

• . 	• • 	• • 	• . 	• • 	• • 
	• • 	• • 

+ (3(hTA - 	vT  1 	°.‹ 21 	- 	-.4<aevTe) 

/20(hT  - 0411v71  - 	- 
12<levire)  = °T  

where 0T is an n-dimensional vector of zeros. 

Hence, 

Tq h A + /3q_1h
T  A -o-1  + 	+ TA 	/2011T = 

(c4clim1,1v + 
	+

T 
11+1 0  1:11 VQ"  

	

+ /3,1_ 1( 044,1117.1  + 	+ OCil,elje) 

+ A l( 21 1 v 	042,a,je) + /70(oClivi  + 	+ T 
 

which shows that the vector (6.3.7) lies in the space 

spanned by vi , 	ve; hence, in the space spanned by 

the first m(q+1) rows of (6.3.4). This completes the 

proof. 

The complete row reduction clearly results in the 

creation of the least number of conditions of the form 

of (6.3.5), because as many as possible of the columns 
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of the last (q+1) rows of (6.3.4) are reduced to zero. 

If all the columns of the last (p+1) rows are reduced 

to zero, there are no conditions on the fli.  

6.3.4 Numerical Example.  
The procedure is illustrated by application to 

an example from [F61 	 Here, 

0 0 0,  0 0 	- --3 
1 0 0 0 -2 5 

A= 0 1 0 0 -2 B = b = -3 
0 0 1 0 -3.5 1 
0 0 0 1 -1.5  0 

C = cT = Co 0 0 0 1] 	; hT = [0.83 -0.08 -0.31 0.19 0.32] 
The array (6.3.4) is formed as: 

T c 	= 	0 

cTA 	= 	0 

0 

0 

0 

0 

0 

1 

1 

-1.5 

cTA2  = 	0 0 1 -1.5 -1.25 (6.3.8) 
hT 	= 	0.83 -0.08 -0.31 0.19 0.32 

hTA 	= -0.08 -0.31 0.19 0:32 -0.365 
hTA2 = -0.31 0.19 0.32 -0.365 -0.3325 

Inspection reveals that no solution is possible 

if q = 0 or 1. With q = 2, row reduction in this case 
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obviously leaves only the first two columns non-zero 

in the last three rows. This gives the condition: 

[-0.31 0.161 + /1J-0.08 	+ /10[0.83 -0.08] = [0 01 

from which /30  = 0.L.23, /C1  = 0.505, and the observer 

poles are at (-0.25 ± j0.6), which agrees with the result 

in [F6] . 

If we are not satisfied with these poles, we may 

consider a third-order observer, and this simply involves 

including the following extra rows in the appropriate 

places in the array (6.3.8): 

eTA3 0 1 -1.5 -1.25 5.13 

hTA3 = 0.19 0.32 -0.365 -0.3325 0.75625 

Row reduction in this case leaves only the first 

column of the last four rows non-zero, and gives the 

condition: 

0.19 - 0.31/12  - 0.08/q1  + 0.83/40  = 0 	(6.3.9) 

We may then specify observer poles at, say, -1 and -2, 

and an unknown X. Inserting these in (6.3.9) gives 

= -0.81. 

6.3.5 Conclusion.  

The method, which has been described in [149] 

enables a linear functional observer of low order to 

be designed in a routine manner. The existence of a 
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design of any given order is established, and the 

• constraints imposed on the observer poles are obtained 

as a set of linear equations in the coefficients of 

the characteristic polynomial of the D matrix of the 

observer. 

The numerical example demonstrates how the 

procedure deals with all possible cases. If it had 

been.found that the row reduction of (6.3.8) eliminated 

the last row of the array with q = 0, this would have 

meant that the required hT  happened to'lie in the space 

spanned by the rows of C, so that no observer was needed. 

There was, in fact, no solution for q = 0 or 1, and 

q = 2 gave conditions which required the use of a certain 

pair of observer eigenvalues, and no others. With q = 3, 

the choice was widened, so that two observer eigenimlues 

could be chosen, and the third was then determined. 

If q = L. had been tried, this would have resulted in 

elimination of the last 5 rows of the array, revealing 

that there were no conditions on the observer eigenvalues. 

This is consistent with normal observer theory since, 

in this case, q = (n-m). 

• 
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6.4 Linear Functional Observer with Repeated Eigenvalues.  

6.4.1 Introduction.  

The condition that the observer eigenvalues are 

distinct leads to the simple solution which has been 

described. However, this condition is not necessary, and 

the method of solution in the case in which any number 

of the observer eigenvalues are repeated will now be 

described. 

6.4.2 System Description and Problem Statement.  

The system description is as given in 6.2.1, and 

the problem statement is as in 6.2.2, except that the 

eigenvalues of D are not now required to be distinct, 

although they are to be different from the eigenvalues 

of A. 

6.4.3 Solution.  

In the solution, we now assume that 4 has a Jordan 

canonical form, in which each eigenvalue is found in only 

one Jordan block. U is'then a matrix of self-conjugate 

column eigenvectors and generalised eigenvectors of D, 

so that D is real. Then: 

D = uau- 
 1 	 (6.4.1) 

where, for example, if d1  has multiplicity 3, A may 
• 

have the form shown in (6.4.2 
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Oa 

d1  1 0 0 . . . 
O d1  1 0 . 	. 
O 0 d1  0 . . . 

O 0 0 O4 
o . . 

. 	• 	• 	• 	• 
• • 	. 	. 	. 

(6.4.2 ) 

  

MI% 
MO. 

Let gT = eTU-1 	(6.4.3)  

where eT is the (p-1)-dimensional sum vector [1 1 1 .. 

Then: 

K = UM 	 (6.4.4) 
where fT  and the rows of M, (m1' 	mpT  _1), are obtained 

as the solution of the set of linear equations (6.4.5) 

where, for example, da+2  = (1411.1  = dq. 

In (6.4:5), I is the identity matrix of order n. 
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* I 	• 
. T [fT.  ..,I  m . 1. , -1 

 

CTruk-d I) + 	(A-dI) 	11-(A-d I) tit  , 
j=1 	

p-1 

j=1 	

p-1 

j/c1 	

4 

 
j/q4- 1 	

j=1 

j/q+1. 
jA14.2 

-1 
C II (A-a41) 	

P-rr (A-d I) 
j=1 	j=1 

jXq 
jq+1 

p-1 
C 1T(A-d4I) 

j=1 

p-2 C -n- 
j=1 

TP-1  = h 	(A-d I) . 
j=1  

(6.4.5) 

G is obtained from: 

G = URB 	 (6.4.6) 

In the coefficient matrix of (6.4.5), each 

eigenvalue of multiplicity v gives rise to v blocks, each 

of in rows, where, in each block, the product term is 

4' • 



rj+v-1 = mj+v-1 	0_ 

174. 

replaced by the sum of product . terms, each of which 

contains one less factor (A-djI) than ito predecessor, 

as indicated for the particular case v = 3. 

In (6.4.6), R is a (p-1)Xn matrix with rows 
T .r 	% k , 	rTp_1), where, for each simple eigenvalue of D, 

rT  = mTC(A-d I)-1  j 	j (6.4.7) 

whilst for each eigenvalue of multiplicity v, .there is 

a block of v rows, given by: 

j 	+ mTj4.1C -d 1)-2  + rT = mTC 

+ 

rT 	= mT C(A- .1)-1  + mT C(A-d 1)-2  + j+1 	j+1 	do 	j+2 	j 

+mj+v- 
-d I )-v+1 

6.4.8) 

Equations (6.L1..5) are consistent, and the solution 

is unique if mp = n, and non-unique if mp;)n. This 

completes the solution. 



175., 

Proof.  

The matrix T relating the state vectors of the observer 

and the original system is the solution of the observer 

equation: 

TA - DT = KC 	(6.4.9) 

This equation has a unique solution if A and D 

have no common eigenvalue. This condition is satisfied 

in this case. Setting U
- 1
T = R, and U 1K = M, equation 

(6.4.9) becomes: 

RA - LJR = MC 	(6.4.10) 

6, is now in the Jordan form, and equation (6.4.10) 

may be solved row-by-row, to give (6.4.7) and (6.4.8). 

The vector equation (6.2.13) applies in this case: 

fTC + eTR = hT 	(6.4.11) 

Substituting (6.4.7) and (6.4.8) in (6.4.11) 

gives, for example, when d3  = d2  = d1, and d4  is simple, 

fTc mTc  1 (A-d1  I)-1  I)-1  + mTCi(A-d )-1  + (A-d1I)-9 

+ m
3
Ci(A-d/I)-1  + (A-d1  I)-2  + (A-d1  1)-51 + mT(A-d4  I) 
T / 

=hT  

Post-multiplication of (6.4.12) by: 

p-1 
Tr (A-d.;I) 
j=1 

(6.4.12) 
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and rearranging give (6.4.5). Equation (6.4.4) follows 

from the definition of M. From [144] , G = TB. Hence, 

(6.4.6) follows from the definition of R given above. 

The only unknowns in (6.4.5) are the mp elements 

' T , ... of the vector fT1 
1  

,111 • 	:m
T 
-1 . It will now be shown 

[ 
. p 

that the coefficient matrix on the left hand side of 

(6.4.5) has the same rank as Q in (6.1.1), namely rank 

n, by definition. This is done by showing that the 

coefficient matrix can be reduced to the form of Q by 

elementary row operations. We first note that this 

matrix. can be reduced to the form: 
Iowa 

p -1 

Crr (A -d_;I) 

j=1 

p-1 C r.; (A-d.I) 
j=1 

JA. 
A.+1 
jA14-2 

(6.4.13) p-1 
air (A-d4I) 
j=1 	d  

JA1-1-1 

p-1 

C 	(A-d I) 
j=1 

jn 

p-2 

fr (A-d,I) 
j=1 	d  
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The proof will be facilitated by introducing a 

more general notation. Suppose the linear functional 

observer eigenvalues are to be: 

di  with multiplicity v1, 

d2  with multiplicity v2, 

dw  with multiplicity vw, 

so that: 

v1 	1r2 + 	+ . . . + vw = p - 1 

With this notation, and a rearrangement of the m-rowed 

blocki, the matrix (6.4.13) may be written as in 

(6.4.14). 
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MI/ 

C(A-diI)
v„  

1(A-d2I)
v,  
` . . 

C(A-d1  I)v 
1-1 

 (A-d2I)
vo  
` . 

C(A-d1I)v1-2 (A-d2I)v 
 `o 

• • 

• • 

• • 	• 

(A-dwI) w  

(A-dwI) w  

(A-dwI) w  

C(A-diI)(A-d2I)v2  (A-d3
I) 

C(A-d2I)
vo  
"(A-d

3
I)v3  • .. 

C(A-d1I)
v „  
I(A-d2I)

vo-1  

C(A-d 1 

 I)v „ 
l(A-d2I)(A-d3

I)v3 

C(A-d I)v , '(A-d
3
I) 
v, 

1 

C(A-diI)
v, 

I(A-d2I)v2  

(A-dwI) w  

(A-dwI) w  

(A-dwI) w  

(A-dwI) w  

(A-dwI) w  

v 
(A-dw-1

I) w-I 

• • • 

• • 

• • 

• • (6.4.14) 

The first m-rowed block of (6.).14) contains all the 

factorsofthetype(A-dJ) raised to powers equal to their 

multiplicities, v.. In successive m-rowed blocks, one such 

factor has its power reduced by one at each step until zero 

power is reached, whilst the other factors remain unchanged. 

This process is repeated for each factor in turn, with all 

other factors raised to powers equal to their multiplicities. 

We wish to show that the mpx n matrix (6.4.14) 

can be reduced to that of (6.1.1) by elementary row 

operations. The following lemma is required in the 

proof. 
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Lemma.  

Given the vector R in (6.4.15): 

(s-d )
v 1
(s-d2)

v 2 
 

v -1 	v 
(s-d1) 1  (s-d2) 2  

v -2 	v 
(s-d1) 1  (s-d2) 2  

vo  
(s-d1)(s-d2) '(s-d3) 

(s-d ) 2(s-d3)v3  
v i 	vo-1 

(s-d i ) '(s-d2 )  

.• •• •• (s-d 

V 

•• 	•• 	•• 	(s-d ) w  

vw  
e o • .. 	•• 	(s-d,„) 

. 

V 
•• •• (s-dW  ) 

W  

V 
•• 	 •• 	•• (s-dw  ) w  

V 
•• 	 •• 	•• (s-d ) w 

0 

• • 

(s-di)
vi  

1(s-d3)
vx 

 

(s-di)
v i  
s(s-d2) 

vo 
 

•v 
•• .• (s-dw) w  

.• 	(s-dw) w  

v A  
(s-d 	w- 

w-11- 

(6.4.15) R = 

in which s is a scalar variable, d i4  0, j=1, 000 W, 

and di d i 	j, then there exists a constant pxp 
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T, matrix T, such that: 

1 

s 

s2 

(6.4.16) 

v11-v2+ ...+vw s 

where: 
w 

P = (1 + Z vj) 

j=1 

The formation of the scalar factors in (6.4.15) 

coincides with that described for the m-rowed blocks 

of (6.4.14). 

Proof.  

We first note that each row of (6.4.16) represents 

a polynomial equation of degree (p-1) in s, so that we 
A 

may seek to determine the p elements of each row of T 

by substituting different values of s in this equation, 

or its derivatives with respect to s, so as to provide 

p conditions. When these substitutions are made in 

(6.4.16), the conditions are applied to all p rows of 

simultaneously. 

A 
TR = 
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The method of proof is to substitute different 

values of s in equation (6.4.16), and its derivatives 

with respect to s, according to a particular scheme which 

will be described, until the required number of conditions 

are applied. The p vector equations obtained are written 

as a single matrix equation, and this is examined for 

the existence of a solution for T. The matrix equation 

has the form: 

6.4.17) 	- 

A 
where TR and S are constant pAp matrices. 

The columns of R and S are foimed as follows, 

where, for brevity, S represents the right hand side 

of (6.4.16): 

The first columns of R and S are obtained by setting 

s=0 in R and S respectively. 

The second columns of R and S are obtained by 

differentiating R and S (v1-1) times with respect to s, 

and setting s=d1. 

The third columns of R and. 1.5 are obtained by 

differentiating R and S (v1-2) times with respect to s, 

and. setting s=d1. 

We continue in this way, until the (v1+1)th columns 

of 1/ and S are obtained by setting s=d 1  in R and S 

respectively. 



• • 	(d1-dw) w ' 

•  • • 	• • ▪ (d1  -dw  ) w   • 
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The (v1+2)th columns of R and S are obtained by 
differentiating R and S (v2-1) times with respect to s, 

and setting s=d2. * 

This process is continued to completion, giving 

p columns in (6.4.17). 
A 

It is clear that R is a lower triangular matrix, 

and this matrix will be non-singular if each diagonal 

element is non-zero. The diagonal elements, in order, are: 

(-d W) 

v 
( v171)1(d1-d2

)2 

v, 
(v1-2):(d1 -d2 ) ` 

v„ 
(d1-d2) • • 	• • • • (di-dw) w  (6.4.18) 

Nt 	 N (v2-1):(d2-d1 )v1  kd2-d3,v3  

(v2-2):(d2-d1)
vi  

l(d2-d3)
v7 

 

v • 
• (d2-dw) w  

▪ (d2-dw) w  

• • • 

(d2-d1)
vi 

I(d2-d3)1r3 	(d2-dw) w  

(dw-di) dw-d2 -d w w- w -1 
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These diagonal elements are all non-zero, 

under the given conditions: 

di 	0, 1=1, 	w, and 

di dj' iAj, 
A 

so that R is non-singular. Hence, (6.4.17) can be 
A 

solved for T. This completes the proof of the lemma. 

Proof of the Main Result.  

The proof of the main result follows at once 

from the lemma, since the row operations implied by 

the constant transformation matrix 

 

A of the lemma, 

when'applied to the m-rowed blocks of (6.4.14), will 

reduce (6.4.14) to the form of (6.1.1). 

It follows that equations (6.4.5) arqo consistent: 

The solution is unique if mp = n, and non-unique 

if mp >n. 

Note.  

This general proof also provides an alternative 

to the proof given in 6.2.3 for the particular case 

of a linear functional obserirer with distinct eigen-

values. 

6.4.4 An Observer Theorem.  

From the results of this section and 6.2, the 
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following theorem can be stated. 

Theorem.  

For any controllable, observable, linear time-

invariant system, there exists an observer of order 

(p-i) where p is the observability index, such that, 

by the use of constant feedback to the. system inputs 

from the system outputs and the observer state 

vector, the eigenvalues of the composite system can 

be assigned arbitrarily. 

The proof is given on the following page. 

0 
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Proof.  

The system (A,B,C) may be assumed - to be controllable 

through a single input. If this condition•is not satis- 

fied at the outset, it may be achieved by applying 	• 

almost arbitrary feedback between the system outputs 

and inputs ED2J . This feedback will not disturb the 

observability of the system. If the application of this 

feedback makes any of the system eigenvalues equal to 

those required for the observer, the feedback is changed, 

so as to make the system eigenvalues distinct from the 

required observer eigenvalues, whilst retaining the 

single-input controllability [D21 . 

The system is now represented by ((A+BKC),b,C), 

where K is the feedback matrix, and b .is the input 

vector through which the system is controllable. 

'A linear functional observer of order (p-1), with 

arbitrary simple or multiple stable eigenvalues will 

then permit the arbitrary assignment of the closed-loop 

system eigenvalues, using the results of 6.2 and 6.4, 

because a single linear functional of the state vector 

is sufficient to achieve the required eigenvalue 

assignment. 
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6.4.5 Conclusion.  

Although the use of an observer with repeated 

eigenvalues is unlikely to be a requirement, the results 

of this section permit the generalisation of the technique 

presented in 6.2, and lead to the theorem of 6.4.4, from 

which it may be concluded that, if pole assignment is 

the only consideration, this can always be achieved 
o 

for a controllable observable system with an observer 

of order (p-1), where p is the observability index. 

In other words, the results obtained by Brasch and Pearson 

LB31 .0  using general dynamic compensation, can be 

achieved with an observer, with its attendant advantage 

of not imposing its poles on the input-output transfer 

functions of the overall system. 
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CHAPTER 7.  

DEGENERATE OBSERVER.  

7.1 Introduction.  

The generalisation of a linear functional observer, 

in which estimates of more than one linear functional 

of the state vector of a linear system are required, is 

termed a 'degenerate' obserVer. Such an observer may be 

needed in connection with pole and zero assignment. For 

example, in the cases considered in 4.3 and 4.4, of 

providing a desired scalar transfer function between 

one input and one output, two linear functionals of the 

state vector are required. 

The problem of designing a degenerate observer in 

the general case is considerably more difficult than 

that of designing either a linear functional observer 

or a state observer, and the question of achieving a 

minimum order design has not yet been solved. 

Cumming [C5] obtained a sufficient condition for the 

existence of a degenerate observer to provide estimates 

of specified linear functionals, although this condition 

does not ensure that the observer will be stable. 

Fortmann and Williamson [F6] obtained necessary and 
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sufficient conditions for the existence of an observer 

with specified poles, in the case of a single-output 

system. 

By an extension of the procedures described in.  

6.2 and 6.3, methods will now be described for the 

design of stable degenerate observers to provide estimates 

of any required number of linear functionals of the 

state vector. The procedures may result in designs of 

quite low order, but there is no reason to suppose that 

they provide minimum-order designs in general. Two 

procedures are given, one for the design of a degenerate 

observer with arbitrary poles, and another for the case • 

in which some constraint on the choice of observer 

poles is accepted in order to achieve reduction in 

observer order. 

7.2 Degenerate Observer with Arbitrary Poles.  

The problem considered is the design of an observer 

of reduced order, with arbitrary dynamics, to provide 

estimates of a number of specified linear functionals, 

h
l
x
' 

h
2
x
' 

etc., of the state vector, x, of a time-invariant 

linear system described by the matrix triple (A,B,C). 	• 

One possible solution is to design a state observer of 

dimension (n-m), where n and m are the dimensions of 

the system state vector and output vector, respectively, 
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o 
and to obtain the required linear functionals from this. 

Another approach is to design a separate linear functional 

observer for each linear functional r.equired. Either of 

these methods may, however, result in an observer of 

unnecessarily large dimensions. 

In the present method, a solution of lower order 

is sought by designing a succession of observers, one 

for each linear functional, in which each observer is 

driven by all the preceding observers, as .well as by 

the system outputs and inputs. 

7.2.1 Design Procedure.  

At the first stage, a linear functional observer 

is designed for the system (A,B,C), using the procedure 

of 6.2, to provide an estimate of the first linear 

functional, hTx. The dimension of this observer is 

(p1-1), where p1  is the observability index of (A,C). 

At each subsequent stage, say the jth, a linear 

functional observer is designed for the system: 

T1 

■ 

T
j-1 

using the procedure of 6.2 to provide an estimate of 

jx. The dimension of this observer is (p.-1), where p 
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is the observability index of: 

  

A, C 

T1  

 

T 

Iritheproceduresat each stage, thematrixT.is found, 

corresponding to the matrix T in 6.2. 

The validity of the procedure is established by 

the following theorem. 

Theorem.  

An s-stage observer designed according to the 

above procedure yields asymptotic estimates of the linear 

functionalshTx, hTx' 	s h X. The complete observer 1 	2  

has as its poles the poles of all the individual linear 

functional observers. 

Proof.  

The state vector, zj, of the jth linear functional 

observer is governed by the differential equation: 

'j-1 
zj  = D.z. + K y + 	K ji  zi  + L.0 

	(7.2.1) 
1=1 

where K , the K
ji 
 , and L. are matrices coupling this 

observer to the system outputsyt the state vectors of 

the other observers zi"and the external inputs u. 
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L. = T.B. The summation is zero for j = 1. 

The estimate of h.x is obtained as: 

j 
fly + 	gjizi  

i=1 

(7.2.2) 

nefining .j  = z j  = T.x, it is easily shown from (7.2.1), 

the original system equations,and the relationships obtained 

in 6.2, that: 

IMP 

v1 

v2 

I./3 

• • • 	0 D1 	0 

K21 D2 	0 	0 	• • • 	0 

K31 K32  D3 	0 	• • • 	0 

. 	• 	• 	. 

v1  

v2 

v3  (7.2.3) 

• • 	. 	• 	• 

s _Ks1 Ks2 	Ds  s- 

It is clear from (7.2.3) that the complete observer 

has as its poles the eigenvalues of (D1, sow 	Ds). 

Provided that these eigenvalues are chosen to be stable, 

v 	as t-ip.co, so that z
J 	

This completes the proof. 

Remark.  

The observability index at each stage, pj, is less 

than or equal to that for the preceding stage, pj_i, 

because Tj_1  must contain at least one row which is 

linearly independent of the rows of C, and of the Ti, 

i=1, ...,(j-2). Otherwise, the (j-1)th linear functional 
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observer would have been .unnecessary, since h
T 
-1x j 

could have been obtained from y and the zi , 

7.2.2 Conclusion.  

As an example of the saving in observer dimensions 

which may be achieved by using this procedure, a system 

of dimension 12, with 3 outputs, having an observability 

index 4, for which 2 linear functionals were required, 

would need a state observer of dimension 9, or two separate 

linear functional observers of dimension 3, giving a total 

observer dimension of 6. Using the procedure described, 

if the observability index at the secqnd stage were 3, 

the total dimension of the observer would be 5. If three 

linear functionals were required with this system, the 

corresponding dimensions would be 9, 9 and 7. 

This procedure has been described in [M8] . 

7.3 Low Order Degenerate Observer.  

The method of 6.3 may be applied at each stage of 

the procedure described in 7.2, so that', instead of 

designing a linear functional observer of dimension 

(p,-1) at the jth stage, an attempt is made to achieve 

a lower order design, by investigating the resulting 

constraints on the choice of observer poles. 

The procedure may or may not give an overall 

degenerate observer design of lower order, depending 
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upon the particular problem. Reduction. in the order of 

the jth stage linear functional observer will give a 

smaller number of rows to Ty'and this will make it 

less probable that a reduction in order of the (j+1)th 

stage can be achieved. 

The procedure has been reported in CM101 . 
7.3.1 Numerical Example.  

The procedure described for the design of a 

degenerate observer of low order may be illustrated 

by extending the example of a low-order linear functional 

observer given in 6.3.4.. 
The design in 6..4 may be completed by choosing 

the eigenvector matrix of D as: 

U 
-0.8350j 

0.5 - 0.2104j 
0.8;50j 

0.5 + 0.2104j 

giving: 

D = 

gT = 

K = 

[

-0.5040 

-0.4221 	0 

[0.2849] 

[70.5040 . 2] 

[-0.3763 

-0.01471 
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G = 

[

0.3195 

-0.08 

 

  

and: 

-0.1801 0.4604 -0.1560 -0.1157 0.1242 
T = 

0.3696 0.0760 -0.1943 0.6585 0.0488 

The observability index of: 

(A, [e]) 	(7.3.1) 

is 2, so that a linear functional observer of order 1 

may be designed for the system (7.3.1), with arbitrary 

dynamics, to provide an estimate of any specified linear 

functional of the system state vector. 

Thus, the two linear functionals may bg provided 

by a degenerate observer of total order 2 + 1 = 3, for 

a system of order 5, with one output. This represents a 

saving, in this case, of 1 order, compared with a state 

observer, from which the two linear functionals could 

have been obtained, with arbitrary observer dynamics.' 
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CHAPTER 8.  

DUAL OBSERVER.  

8.1 Introduction.  

The concept of the dual observer, which is attributed 

to Brasch, has been reported by Luenberger [L5] . The 

dual observer is a special kind of controller which, 

when used with a time-invariant linear system, permits 

the assignment of all the closed-loop poles of the composite 

system. The important feature of the dual observer is 

that, whereas, in the case of an observer, the dimension 

of the observer is determined by the number of system 

outputs, or by the observability index, the dimension 

of the dual observer is determined by the number of system 

inputs, or by the controllability index. The dual observer, 

thus, may offer an advantage in cases in which the system 

has more inputs than outputs, or where the controllability 

index is lower than the observability index. 

8.2 Linear System with Dual Observer.  

We consider a linear time-invariant plant described 

by the equations: 

= Ax + Bu 

y = Cx 	 (8.2.1) 

• 

0 
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where x, y and u are vectors of dimension n, m and r, 

representing the system states, outputs and inputs, 

respectively. The .triple (A,B;C) is controllable and 

observable. 

The arrangement of the dual observer, together with 

the plant, is shown in Fig. 8.1. 

CP 

B 

A 

Fig. 8.1. 
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The dual observer is of dimension (, and is 

governed by the following equations: 

= Fz + Mw (8.2.2) 

w = y + CPz (8.2.3) 

u = Jz + Nw (8.2.4) 

where z is the r-dimensional dual observer state vector, 

and P is the solution of the matrix equation: 

AP - PF = BJ 	(8.2.5) 

The dimensions of the constant matrices F, J, M, 

N and P, and of the variable vector w, will' be clear 

from the equations. The matrix L is defined as: 

L = PM + BN 	(8.2.6) 

Equations (8.2.1) to (8.2.6) give: 

= Ax + BJz + BNCx + BNCPz 	(8.2.7) 

= Fz + MCx + MCPz 	(8.2.8) 

Pre-multiplying (8.2.8) by P, and adding to (8.2.7), • 

gives: 

(X + PZ) = (A + LC)(x + Pz) 
	

(8.2.9) 

Setting x = v - Pz, the overall differential 

equation of the system with dualobserver is: 

= [(A + LC) Tvi 
(8.2.10) 

z 	MC 	F z 
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It is clear from (8.2.10) that the eigenvalues of 

the composite system are those of F, and those of (A + LC). 

The dual observer thus exhibits the 'separation' property 

possessed by the observer. Note that no assumption has, 

so far, been made concerning the value of f. 

It is now necessary to show that the eigenvalues 

of the composite system can be assigned arbitrarily. 

Luenberger [L5] has given the following theorem, as 

Theorem 5: Corresponding to an nth-order completely 

controllable and completely observable system having r 

linearly independent inputs, a dynamic feedback system 

of order (n-r) can be constructed such that the (2n-r) 

eigenvalues of the composite system take any preassigned 

values.' A proof of this theorem will now be given, by 

using a construction which is a dual of Cumming's method 

for designing state observers. The construction also 

constitutes a procedure for designing a dual observer 

of order (n-r). 

8.3 Construction of Dual Observer of Order ( 	, and  

Proof of its Properties.  

It has been shown that the eigenvalues of the 

composite system are the eigenvalues of (A + LC) and 

the oigenvnluos of F. Lot t. = (n-r).• It then follows 

that, since (A,C) is observable, the (2n-r) eigenvalues 
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of the composite system can all be given preassigned 

values if the matrix L and the eigenvalues of F can be 

chosen arbitrarily. Let L be determined, by using modal 

control theory, so that (A + LC) has any desired set of 

eigenvalues. The following problem then remains: 

Given A, B, C and L, in equations (8.2.1) to 

(8.2.6), to find J, M, N, P and F, such that F has 

arbitrarily chosen eigenvalues. 

Choose any n (n-r) constant matrix Q, such that 

the nxn matrix [B:Q] is non-singular. It may be assumed, 

without loss of generality, that the columns of B are 

linearly independent. 

Form the matrix: 

[B: Q.] -1AQ = N.] 
	

(8.3.1) 

where the partitioning is such that S is r x (n-r), and 

T is (n-r) X (n-r). 

and the matrix• 

[B■Qj -1AB = V 	 (8.3.2) 

where the partitioning is such that U is r x r, and V 

is (n-r) x r. Then: 

F = T + VR 	 (8.3.3) 

and J = S + UR - RF 	 (8.3.4) 

where R is an r x (n-r) matrix to be determined. 
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It will be shown that the. pair (T,V) is controllable, 

and so, from equation (8.3.3), the eigenvalues of F may 

be assigned arbitrarily by using modal control theory. 

When R and F have been determined in this way, J may 

be found from (8.3.4). M and N are found from (8.3.5): 

[5] = [B i(Q + 	 (8.3.5) 

This completes the construction. 

Proof.  

Let Q be chosen as described, and let: 

P = Q + BR 	 (8.3.6) 

Substituting in (8.2.5) gives: 

AQ + ABR = 1B: Q] 	(8.3.7) 

Pre-multiplication by the inverse of [B!Q] and partitioning 

as in (8.3.1) and (8.3.2) gives (8.3.3) and (8.3.4). 

Equation (8.3.5) follows from (8.2.6) and (8.3.6). 

The inverse exists in (8.3.5) because the rank of the 

matrix to be- inverted is the same as that of b*,] , 
namely n, due to the way in which Q was chosen. 

Proof of Controllability of (T,V).  

Let: 

PQ] -1= 	- 	(8.3.8) 

where the partitioning is such that D is rxn, and E is 
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(n-r)Xn. It follows that: 

DB = Ir ; 	DQ = 0 

EB = 0 ; 	EQ  = in-r 
From (8.3.1) and (8.3.2), 

T = EAQ 	, 	V = EAB 

(8.3.9) 

(8.3.10) 

The pair (T,V) is controllable if the (n-r))((n-r)r 

matrix H has rank (n-r), where: 

' H = [VI :TV 	V ... iTn-r-1111 	(8.3.11)  I 	I 
Substituting from (8.3.10) in (8.3.11), 

H = [EAB;EAQEABIEAUAqailAB: 	 (8.3.12) 

[B:Q] [14 = In , 

QE = In  - BD 	 (8.3.13) 

Substituting from (8.3.13) in (8.3.12), 
$ 

H = E[AB:A2B - ABDAB:A.)B - ABDA2B - A2BDAB + ABDABDAB;:j. 

By elementary column operations, it. may be shown 

that H has the same rank as: 

G = E[AB;A2B!A3Bi 	 (8.3.14)  

Now consider the matrix product: 

(8.3.15) 2 E[8.AB,A 111: 	flix1-1)8,1 

The rank of E is (n-r), and the rank of the 

second matrix in (8.3.15) is n, because (A,B) is 



controllable and the columns of B are linearly independent. 

Hence, the product matrix has rank (n-r). But EB = 0, 

from (8.3.9), and so 0 has rank (n-r). This completes 

the proof. 
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8.14 Design Procedure for Reduced-Order Dual Observer.  

Since the dual observer is a particular form of 

dynamic compensator, it is to be expected, from the 

results obtained by Brasch and Pearson,IBil, that a dual 

observer of order (q-1) could be designed to permit 

arbitrary assignment of:the (n+q-1) poles of the composite 

system, where q is the controllability index. A procedure 

is now described that establishes the existence of such 

a design, and provides a convenient computational 

procedure, for the case in which the system A matrix 

is non-derogatory. 

8.4.1 System Description.  

A linear time-invariant plant is described by the 

equations: 

= Ax + Bu 	(8.4.1) 

y = Cx 	 (8.4.2) . 

where x is an n-dimensional plant state vector, u is an 

r-dimensional input vector, and y is an m-dimensional 

output vector. The triple (A,B,C)'is observable and 

controllable, with a controllability index q, where 

q is the least integer for which the matrix Q has rank 

n, where: 

Q = 
	

(8.4.3) 
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The matrix A is non-derogatory. 

The dual observer and its coupling with the plant 

are described by the equations: 

z = Fz + Mw (8.4.4) 
w = y + CPz (8.4.5) 

u = Jz + Nw (8.4.6) 

where z is the (q-1)-dimensional state vector of the 

dual observer. P is a nX(q-1) constant matrix that 

satisfies the equation: 

	

AP - PF = BJ 	 (8.4.7) 

and the nxm constant matrix L is given by: 

	

L = PM + BN 	 (8.4.8) 

The dimensions of the constant matrices F, M, J 

and N, and of the variable vector w, will be clear from 

the equations. 

8.4.2 Problem Statement.  

Given A, B and C, the problem is to find L, M, J, 

P, N and F, such that the (n+q-1) eigenvalues of the 

composite system have preassigned values. 

8.4.3 Solution. 

It is shown in 8.2 that the eigenvaltes of the 

composite system are the n eigenvalues of (A + LC) and 

the eigenvalues of F. We now assume that /° = (q-1). 
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Since the pair (A,C) is observable and A is non-

derogatory, there exists an m-dimensional row vector 1
T, 

such that the pair (A,1TC) is observable PI . Let 1
T 

be chosen, otherwise arbitrarily, to satisfy this 

condition, and let L = h1T, where .h is an n-dimensional 

column vector to be determined. Then the eigenvalues 

of (A + LC) can be given preassigned values by using 

known results in modal control theory to determine h. 

Let: 

M = glT 
	

8.4.9) 
and 
	

N = flT  

so that equation (8.4.8) becomes: 

Pg + Bf =h 	 (8.4.10) 

Choose the matrix F to give the desired dual-observer 

dynamics. The eigenvalues of F may be real or complex, 

with the mild restriction that they should be distinct 

and different from the eigenvalues of A. They should, 

of course, be real and negative, or occur in complex- 

conjugate pairs with negative real parts. 

Let U be a matrix of self-conjugate column 

eigenvectors of F, so that: 

F = UAU-1 	(8.4.11) 

where A = diag(f1, 	/1(1_1), in which (f1 , 060 f 	) q-1 
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are the eigenvalues of F. 

Let g = Ue, where e is the (q-1)-dimensional 

column sum-vector [111..11r. Then: 

	

J = TU-1 
	

(8. 4.12) 
where f and the columns of T, (t1' 	tq-1), are obtained 

as the solution of-the set of linear equations (8.4.13): 

[q-1 

	

,q-1 	,q-2 	- - q-1 
Tr 

 1j 	1 j 

	

(A-f I)BilT(A-r1 	(A-f.I)B 
, 

tl 	

= TT (A-f.i)h 
=1 	=2 	=1 j=1 

where I is the identity matrix of order n, and the ith 

term in the coefficient matrix on the left-hand side is: 

q-1 

(A-f I)B , 

j=1 
j/(1-1) 

i=2, ..., q. 

P is obtained from: 

P = RU-1  (8.4.14) 
where R is a nx(q-1) matrix with columns (r1 , 	rq_1), 

given by: 

rj  = 	, J=1, 	(q-1) 	(8.4.15) 

Equations (8.4.13) are consistent, and the solution 

is unique if rq = n, and nonunique if rq) n. This completes 

the solution. 
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Proof.  

Equation (8.4.7) has a uniquo solution if A and F 

have no common eigenvalue. Setting PU = R, and JU = T, 

equations (8.4.7) and (8.4.11) give: 

AR - Ri, = BT 	 (8.4.16) 

From the columns of equation (8.4.16), since A is 

diagonal, we obtain equation (8.4.15). Substituting 

(8.4.15) into (8.4.10) gives: 

q-1 
Bf + 2-14(A - fiI)-1Btj  = 

j=1 

Premultiplication of (8.4.17) by: 

 

(8.4.17) 

q-1 
Tr (A - f.I) 
J=1 •o 

 

and rearranging gives (8.4.13). The relations of (8.4.12) 

and (8.4.14) follow from the. definitions of R'and T. 

. The only unknowns in equations.(8.4.13) are the 

rq elements of f, and the t 	j=1, 

It can be verified by elementary column operations on. 

the coefficient matrix on the:left-hand side of (8.4.13), 

that, privided that the f are distinct, this matrix 

has the same rank as Q in (8.4.3), namely n, by definition. 

Hence equations (8.4.13) are consistent. From (8.4.3), 

rqan. It is clear that the solution is unique if rq = n. 
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If rq) n, there are (rq-n) degrees of freedom in the 
nonunique solution, which may be obtained in the usual 

way as the sum of a particular solution and the solutions 

of the homogeneous equation multiplied by arbitrary 

constants. 

8.4.4 Solution for Real Dual Observer Eigenvalues.  

The solution can be simplified slightly if it is . 

desired that the dual observer should have only real 

eigenvalues. In this case, F may be chosen to be diagonal, 

so that F = A , and U = I, giving J = T, P = R, and g = e. 
8.4.5 Conclusion.  

The existence of a dual observer of order (q-1) 

has been established for a system of controllability index 

q. The (n+q-1) eigenvalues of the composite system may 

be given any preassigned values, with the mild restriction 

that the (q-1) eigenvalues of the dual observer _should 

be distinct, and different from the eigenvalues of the 

original system. A procedure for the design of such a 

dual observer and all the associated coupling matrices 	• 

has been described. The dual observer is a i'articular 

form of dynamic feedback compensator, and the existence 

of such a compensator of order (q-1), permitting arbitrary 

eigenvalue assignment, is consistent with the conclusions 

reached by Brasch and Pearson, [B3] . This procedure has 

been described in [M5,1 



209. 

CHAPTER 9.  

OBSERVERS FOR SYSTEMS WITH INACCESSIBLE INPUTS.  

5.1 Introduction.  

In the theory of observers, as discussed in Chapters 

5-7, it is a requirement that the external inputs applied 

to the observed system should also be applied to the 

observer. The inputs are applied in such a way as to 

correspond to the transformation of the system state vector 

to which the observer state vector tends asymptotically. 

There are some situations in which it is physically 

impossible to obtain signals representing inputs for 

application to the•obsQrver. Examples are wind gusts in 

the case of aircraft control, and internally generated 

noise or disturbances in the system itself. 

A closely related problem arising in the theory of 

optimal control was studied by Johnson LJ41[J5J [T6] , 
who used the idea of representing the unknown inputs by 

finite power series in time, t. Hostetter and Meditch 

[H3]iH4][173 have placed this technique in the context 

of observer theory. 

The treatment of this chapter follows the approach 

of Hostetter and Meditch, but from ,a more general view-

point, and some new results are presented concerning the 

existence of observers for systems with inaccessible inputs. 
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9.2 0-Observers and k-Observers.  

. 9.2.1 Definition of 0-Observer.  

A linear time-invariant system is described by 

' the equations: 

X = Ax 	Bu 	 (9.2.1) 

y = Cx Du 	 (9.2.2) 

in which x, y and u are vectors of dimensions n, m and 

r, respectively, and A, B, C and D are constant matrices. 

The inputs u are unknown and not accessible for direct 

measurement. Then the system: 

z = Fz + Gy + Hu 
	 (9.2.3) 

w = Ly + Mz 
	

(9.2.4) 
is a 0-observer for the system (9.2.1), (9.2.2), if, 

for constant u, and for some initial z, depending upon 

the initial conditions and inputs of the observed system, 

there exists a linear transformation T, such that: 

x 
w = T 
	 (9.2.5). 

9.2.2 Definition of k-Observer.  

A kth-degree observer, or k-observer, is defined 

similarly to the 0-observer, except that now the system 

(9.2.3), (9.2.4) is defined as a k-observer for the ' 

system (9.2.1), (9.2.2) if, for inputs u in the form of 

any linear combination of powers of time t, up to and 
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. 

(9.2.7) 

j(k+1) 

O 1 0 

O 0 1 0 

. 	. 	• 	• 

. 	. 	. 	. 	. 

O 0 0 . 

uj 1 

uj(k 1 
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including tk, e.g., the jth element of u may be: 

uj  = ceo  + dit + 	+ a<k 	(9.2.6) 

there exists a linear transformation T such that (9.2.5) 

is satisfied, for some initial z, depending upon the 

initial conditions and inputs of the observed system. 

9.2.3 Note.  

For the purpose of this section, it isoassumed that 

all the system inputs are inaccessible. Any inputs which• 

are accessible may be treated in the usual way, and applied 

to the observer, so that such inputs need not be considered 

furthe'r. 

9.2.4 System Augmentation. 

An input of the. form (9.2.6) may be represented as 

a differential equation of the form:.  

where uj1 = uj' and the other variables are defined as 

the derivatives of this with respect to time. 

The system (9.2.1), (9.2.2) may then be augmented 

so as to include the equations (9.2.7). The resulting 
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system is shown in (9.2.8),(9.2.9), for a system with 

two inputs, and with k = 1, for clarity, although the 

[generalisation is obvious. Here, B = b1  b21, and 

D = [d.1  d2  ] , where the b's and d's are vectors of 

dimension n and m, respectively. The ui0  are scalars. 

" 
X 

U11 

12 

21 
A22 

y= {C d1  

A 

0 

0 

b1  0 

0 	1 

0 	0 

0 	0 

0 	0 

d2  0 

b2 

0 

0 

0 

0 

0 

0 

0 

1 

0 
01111. 

x 

v.11 

u12 
u21 
u22 

me 

X 

u 1 1 
u12 
u21 
u22 

(9.2.8) 

(9.2.9) 

9.2.5 Principles of the 0-Observer and k-Observer.  

A stable observer designed for the free system 

(9.2.8), (9.2.9) will provide an asymptotic estimate 

of the state vector of this augmented system. The rate 

of convergence of the estimate will depend upon the 

observer dynamics. The signals used to drive this observer 

are all obtaihed from the available outputs of the original 
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system, without augmentation, and so the observer will 

provide an asymptotic estimate of the state yector of 

the original system, and of the system inputs and their 

derivatives with respect to time, provided that these 

inputs are representable by power series in t of degree 

not greater than k. 

9.3 Conditions for Existence of 0-Observer and k-Observer.  

9.3.1 Single-Input, Single-Output System.  

Hostetter and Meditch [114] have investigated the 

conditions forrthe existence of a 0-observer and a 

k-observer, by using the Luenberger canonical form. 

They have obtained a necessary and sufficient condition 

in two forms, according to whether or not the A matrix 

is singular. In the following treatment, the canonical 

forms are not used, and a single necessary and sufficient 

condition is obtained, which is valid in all cases. This 

same single condition is also expressed in an alternative 

form, for use when the system equations are in the 

Luenberger canonical form. 

In this case, in equations (9.2.1), and (9.2.2), 

B becomes a vector b, C becomes a vector c
T, and D is 

a scalar, d. 

Theorem.  

The necessary and sufficient condition for the exist-

ence of a 0-observer or a k-observer for an observable 

• 
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single-input, single-output system is that: 

cT(adjA)b d.detA 	(9.3.1) 

If the system is in the Luenberger canonical form 

in which: 

-an-1 1 0 . 

▪ 0 1 '0 . A = 

. • • • 
(9.3.2) 

-ao 0 0 0 . 0 

cT = [1 0 0 . 

the condition reduces to: 

bn / -d.ao 

• • 

(9.3.3) 

where bn is the element in the nth row of b in this 

canonical representation, and ao  is the constant term 

in the monic characteristic polynomial of A. 

Proof.  

For clarity, the proof will be given for a 2-observer, 

the augmented equations of which will have the form: 

• ••• 
X 

u11 
u 2 

u13 

A 

0 

b 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

0 
Mao 

••■ 

x 

u11 
u 

u13 

(9.3.4) 
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x y = T d 0 0 

(9.3.5) u11 
u12 

u13 

. The 2-observer exists for the system. represented 

by (9.3.14), (9.3.5) if and only if this augmontod system 

is observable. Writing the observability matrix for this 

system gives; 

cT d 	. 	0 	0 

cTA 	cTb 	d 	0 

cTA2 	cTAb 	cTb d 

• 

b cA Tn+1 	cTAn-1b cTAn+2 	c TAnb   

(9.3.6) 

The condition for observability'is that this 

(n+5)>c(n+3) matrix should have full rank. 

If the characteristic polynomial of A is: 

sn + an-1 s
n-1 + 	+ als + ao (9.3.7) 

then, from the Cayley-Hamilton theorem, 

An = -an-1 -A
n-1  - 	- a1A - aoI (9.3.8 ) 



216. 

Applying (9.3.8) to the row-reduction of (9.3.6) gives: 

cT 
	

0 
	

0 

cTA 	cTb 
	

0 

cTAb 	cTb cTA2  

(9.3.9) • • 	 • 	• 

. 	. 	. 

cTAn-1 cirAn-2b cAb cAb T n-3 	T n-4 

O h 	x 	x 

O 0 	h 	x 

O 0 	0 	h 	o  

where: 

T n-1 	• 	T h =cA b+ an-1c  A ..• 	a1  c
Tb + and 	(9.3.10) 

and the x's denote numbers which are not of interest. 

Since the original system is observable, the matrix: 

cT 

cTA 

• 

• 

cTAn -1 

has rank n. It follows that (9.3.9) has rank (n+3) if and 

only if h 0. The condition, thus, is: 

• 
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cTAn-1b + an- cTAn-2b + 	+ a1  c
Tb + and. 	(9.3.11) 

Now, adj(-A) = An-1  + 	1A  n-2 + 	a1I 
	(9.3.12) 

Combining (9.3.11).and (9.3.12) gives: 

cTadj(-A)b.+ and / 0 	. (9.3.13) 

Since adj(-A) = (-1)n-1adjA, and 3.0  = (- )ndetA, the 

condition (9.3.13) becomes:. 

cT(adjA)b A d.detA 	 (9.3.14) 

as required. 

If A is in the Luenberger canonical form of 

(9.3.2), the condition (9.3.14) reduces to: 

or 
bn / -d.ao 
	 (9.3.15) 

as required. 

It is clear from the structure of (9.3.9) that 

the existence condition is the same for a 0-observer or 

for a k-observer, since, for each addition of 1 to k, 

a new column is formed in the observability matrix (9.3.9), 

which has a non-zero element in the appropriate place 

if the condition (9.3.14) is satisfied. 

9.3.2 Multi-Input, Multi-Output System.  

In this-case, the system representation is as 
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shown in (9.2.8), (9,2.9), where, for clarity, only 

two inputs are shown, and it is assumed that k = 1. 

However, the generalisation is obvious. The following 

theorem gives a sufficient condition for the existence 

of a 0-observer or a k-observer, in this case. 

Theorem.  

Let the observability index of the pair (A,C) be 

p, so that the matrix: 

C 

CA 

(9.3.16) 

CAP-1  

has rank n. 

Then there exists a mx pm matrix Q such that: 

CAP = Q 

CA 
	

(9.3.17) 

CAP-1  

A sufficient condition for the existence of a 0-observer 

or a k-observer for the system (9.2.1), (9.2.2), having 

r inputs u1, 	ur, is that the following r m-vectors 
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be linearly independent: 

CAP-1b - Q 

  

J 
Cb . 

CAb . 
J 

(9.3.18) 

   

CAp-2b 

j=1,...r 

where B = [31  ... 13] , and D = Ed/  ... dr] 

Proof.  

The observability matrix for the augmented system 

(9.2.8), 

IMO 

(9.2.9) 	is: 

C d1  0 d2 0 

CA Cb1   d1  Cb2 d2 
CA2 CAb1  Cb1  C CAb2 Cb2  
. . 

. . . . 

CAP-1  CAp-2b1  CAP-313 1  CAP-2b2  CAP-3b2  

CAP CA p-1b1  CAP-2b1  CAP-1b2  CAP-2b2  

CAP+1  CAPb1  CAP-1b1  CAPb2 	. CAP-1b2....  

(9.3.19) 
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Application of the relationship of (9.3.17) and 

row-reduction of (9.3.19) gives: 

C 	d1 	
d2 	0 

Cb 
1 	

d1 	Cb2  0  CA 	 d2 

CA2 CAb1 	
Cb1 	CAb2 	Cb2 

CAp-1  CAp-2b1 CAP-3b1 CAP-2b2 CAP-3b2  

0 h1 	h2 	x . 

0 	0 	0 	h2 

(9.3.20) 

where h1  is the vector of (9.3.18) with j=1, and h2  is 

the corresponding vector with j=2. It is clear from 

(9.3.20) that the matrix has full rank if hi  and h2  

are linearly independent. It is also clear that this 

condition cannot be satisfied unless m>r, and that the 

condition for a k-obAerver is the same as that for a 

0-observer, by the same reasoning as was used in the 

single-input, single-output case. 

In the particular case of a system with a single 

input and multiple outputs, the condition requires that 

the vector (9.3.18), with j=1, should have at least one 

non-zero element. 



221. 

214Lfac1=Lat- --)server.- 

In [H/4:1 , a numerical example is given of a 

second-order system having scalar input and output, 

and a 1-observer of dimenaion 4. The results of a simul-

ation study of this system indicate, as might be expect-

ed, that the estimates of the: system state variables 

and of the scalar input given by the observer are very 

good, after the decay of initial transients, when the 

input is in the form of a ramp, a.square waye, or .a 

triangular wave. These' inputs are all of the type for 

which the 1-observer is intended. It is surprising, 

however, that the results for a sinusoidal input also 

appear to be very satisfactory. In view of this result, 

the system has been .examinecIra little more closely from 

the point of view of steady-state frequency response, 

principally to discover whether the results reported in 

[1.14] were merely the outcome of a fortunate choice  of 

input frequency. The systemconsidered. has: 

] 
b =  A - 	

1 	
1 (9.4.1) 
1 

cT= r1 oi d= 1 

Full'details of the 1-observer are not given, but 

it is reported to have four oigenvalues at -3. Based 

on this information, the observer equation is: 



-3 16 45 0 -29' 

27 0 91 0 1 -75 
F= 16 k= 

-189 0 -189 16 189 

-324 0 -324 0 324 

1 
Tg 

9.4.2) 
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1 = Fz + ky, where 

It is easily shown that the Laplace transform of 

the system state, 1, with zero initial conditions, is: 

. (sI 	 (9.4.3) 

and the Laplace transform of the observer state vector, 

-2, with zero initial conditions, is: • 

= (sI - F)-1k(cT(sI - A)-1  + 	(9.4.4) 

13 is the estimate of Up and, inserting s = 	in 

(9.4.4) yields the frequency response shown in Table 9.4.1.  

Table 9.4.1.  

Freq. 0.0  in 
-1 rad sec 

0 0.5 1.0 2.0 2.5 3.0 

F3(J")), 1.0 0.9957 0.9946 1.1047 1.2056 1.2970 

Ti(i")  )  

Freq. in 
-1 rad sec 

3.5 4.5 5.0 5.5 7.0 10.0 

5 Ow ) ...1_--- 1.3614 1.4046 1.3938 1.3696 1.2566 1.0142 
171(iv-1) 
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The poles of the system are located at (-1 	j1.414), 

and those of the observer at -3. The input frequency 

reported in [1.14] was about 1 rad sec-1, and it is seen 

from Table 9.4.1 that, at this frequency, the amplitude 

of the estimated input is very nearly correct. The phase 

error also is small. At frequencies just above this, 

however, there is a sharp increase in the amplitude 

ratio, which reaches a peak of about 1.4 at a frequency 

of 4.5 rad sec-1. The phase error then also becomes 
considerable. 

Comparison of 1 the estimate of Tc by finding 

the amplitude ratio: 

as a function of frequency, yields Table 9.4.2. 

Table 9.4.2.  

Freq.win 

rad sec-1 
0.5 1.0 2.0 3.0 4.0 5.0 

1.  Ow ) 1.0389 1.0899 1.2553 1.5237 1.7227 1.8294 

31.1(iLj)  

The estimate of 1  is quite reasonable up to a 

frequency of 1 rad sec-1, although not as good as the 

estimate of u. Above this frequency, however, the 
• 
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amplitude ratio rises sharply. 

It is not intended to investigate this matter 

in detail here, but enough has been included to indicate 

that there is an interesting field of study in the 

investigation of what order of k-observer is needed, 

and how the observer eigenvalues should be chosen, so 

as to provide a good frequency response over a wide 

. frequency band. This would ensure a satisfactory response 

to general input signals. 
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9.5 Conclusion.  

Hostetter and. MeditchCbtained the condition 

for the existence of a 0-obs6rver or a k-observer in the 

case of a single-input, single-output system in the 

form of two criteria, the choice of which' is determined . 

by the singularity, or otherwise, of the A matrix. 

In applying their method, the system must first be 

transformed into the Luenberger canonical form. 

The single criterion obtained herein is more compact, 

and is given in a general form, requiring no preliminary 

transformation of%thel system state vector, and in a 

special version suitable for use when the system is 

represented in the Luenberger canonical form. 

The treatment of multi-input, multi-output systems 

by Hostetter and Meditch requires that the system has 

the same number of outputs as inputs. If this condition 

is not satisfied at the outset, some adjustment is needed. 

The problem is then treated in the manner suggested by 

Luenberger, by obtaining a representation of the system 

as a number of single-output sub-systems, coupled 

only at their inputs. The method presented here is more 

general, and does not impose any upper limit on the 

number of system outputs. 



226. 

The question of the dimensions of a 0-observer 

and of a k-observer has 'been discussedloy Hostetter and 

Meditch [H3] . The conclusions reached are equivalent 

to the statement that such an observer, with arbitrary 

dynamics, can be designed to observe the state vector, 

or a linear. functional of the state vector, of the 

augmented sy tcm, and that the observer dimension 

corresponds to that which one would expect from applying 

Luenberger observer theory to this case. 

The results reported [H4] from a simulation of'.a 

system with a 1-observer to which various inputs are 

applied are surprisingly good. With a maintained sine 

wave input to the system, an input for which the 

1-observer is not specifically designed, the observer 

rapidly adjusts, and subsequently reproduces the state 

vector and the system input with little error. It is 

argued that the higher the value of k, the more faith-

fully will the state vector of the augmented system be 

reproduced. This seems, intuitively, to be likely, 

and this subject presents an interesting field for 

further study. 
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CHAPTER 10.  

. GENERAL POLE ASSIGNMENT BY OUTPUT FEEDBACK.  

10.1 Introduction.  

In Chapter 3, the problem of closed-loop pole 

assignment with restricted measurement access was 

discussed, for the case of a single-input system. Multi-

input systems were included only as an extension of the 

single-input case, giving unity-rank feedback. This 

restriction results in a reduction in the number of 

variable parameters in the rxm feedback gain matrix K 

from rm to (r+m). This chapter deals with the general 

case, in which the rank of K is unrestricted, so that 

full advantage can be taken of all available variable 

parameters. 

10.2 Output Feedback Derived From State Feedback.  

10.2.1 The Methods of Munro and Vardulakis.  

Munro and Vardulakis [M18] have considered the 

following problem. Given the system described by the 

equations: 

= Ax + Bu 	 (10.2.1) 

y = Cx 	 (10.2.2) 

in which (A,B) is controllable find the necessary and 

sufficient conditions for arbitrary assignment of all 
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the system poles, using'only constant output feedback, 

and find a formula for the feedback gain matrix. 

The approach used is first to find any state feed7 . 

back gain matrix Kx  such that.the matrix (A - BKx) has 

the desired eigenvalue spectrum, and then to sock a 

solution to the matrix equation: 

KyC = K 
	

(10.2.3) 

where K is the output feedback gain matrix. The matrix 

C has dimensions m)(n, where m<cn, and may be assumed, 

without loss of generality, to have rank m. The so-called 

g1 g1-inverse, C , of C, is used, defined by the property: 

g CC i C = C (10.2.4) 	• 
The condition for the consistency of (10.2.3) is 

expressed as the condition that: 

g 1 KxC C = Kx 	(10.2.5) 

The solution for K is given as: 

gl  K = C y x (10.2.6) 

and it is stated that other solutions for K can be 

obtained from the equation: 

gli. = K C 	Z(Im - CC
g  ') 

Y x 

where Z is an arbitrary rxm matrix. 

(10.2.7) 
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It will now be shown that the degrees of freedom 

in the solution for K represented by the matrix Z in 

(10.2.7) are not available if C has rank m. 

g1 In equation (10.2.4), let CC 	= R, where R is an unknown 

mxm matrix. Then: 

RC = C 	 (10.2.8) 

Since 

(10.2.8) 

R 

where C 1 

Hence, RC., 

C has 

[C i 	C2] 

is non-singular. 

= 

may be rearranged, 

rank m, the columns 

= 	[C1 	C2] 

and and R = Im, so 

if necessary, 

on both sides of 

to give: 

(10.2.9) 

that, 	in 	(10.2.7), 

CC 1 = Im
, and the bracketed term is a null matrix. 

Thus, (10.2.7) always reduces to (10.2.6), and there is 

no arbitrary Z. 

The condition for the consistency of equation 

(10.2.3) expressed as in (10.2.5), in terms of the g1-

inverse, seems to be unnecessary, because, as the authors 

have noted, this condition is equivalent to the condition 

that, in (10.2.3), the rows of Kx  should lie in the row 

space of C. This latter condition is clear from (10.2.3), 

and is easy to apply directly. 

Patel EP63 has pointed out that the condition for 
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the consistency of (10.2.3) may be stated as the condition 

that there exists a state vector transformation x = Tz, 

such that, in the z-co-ordinates, the output feedback 

becomes incomplete state feedback, obtained from m state 

variables. This fact is selC-cvident from a consideration 

of (10.2.3), when it is remembered that a state-vector 

transformation of the type considered will change (10.2.3) 

to: 

K CT = KXT 
	

(10.2.10) 

Reverting to (10.2.3), since C has rank m, we may 

perforM a column reduction on both sides of (10.2.3) 

until there are precisely m non-zero columns in the 

reduced form of C. For consistency, all the zero columns 

of the reduced C must have corresponding zero columns 

in the reduced T. Noting that the column reduction can 

be expressed as the product of elementary matrices, which 

will form T, the result follows. 

Unfortunately, the conditions obtained in [M181 

are necessary and sufficient conditions for the existence 

of a solution to (10.2.3), and not necessary and sufficient 

conditions for arbitrary pole assignment. It is first 

necessary to find Kx  to .satisfy the conditions. No 

guidance is given in this most important matter, although 

g1 it is suggested that, since C 	is non-unique, other 
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g1
-inverses could be tried, and a method for 

generating other g1-inverses is given. However, 

Seraji CS] has pointed out that, if any one g1-
inverse fails to satisfy the condition of (10.2.5), 

then no g1-inverse exists which satisfies this, so 

that there is no point in seeking other gl-inverses. 

This conclusion also follows from the fact that the 

necessary and sufficient condition for satisfaction 

of (10.2.5), coincides with the condition that Kx  

lies in the row space of C. 

Munro [M19J has extended the approach of P181 

and has reached the conclusion that the output feed-

back must be chosen in such a way that the pair 

(Ac,B) has the same controllability indices as the 

pair (A,B), and that the pair (Ac,C) must have the 

same observability indices as the pair (A,C), where 

Ac is the system matrix with feedback, (A-BK C). 

These conditions are suffic.ient to permit the design 

• of the feedback using the method of Anderson and 

Luenberger, so that the canonical structure of the 

system is unchanged. However, the necessity of the 

condition does not follow..  
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10.2.2 The Method of Bengtsson and Lindahl.  

Bengtsson and Lindahl [B4] have described a differ-

ent method which is also based on the initial determination 

of state feedback. As far as possible, the notation of 

1334] will be used in discussing this method. The authors 
distinguish between a 'single constrained feedback 

structure', and a'multiple constrained feedback structure'. 

The latter refers to the use of local feedback in systems 

which comprise subsystems geographically far apart, such 

as electrical power systems. The approach to the single 

constrained feedback structure forms the basis of that 

used in the multiple case, and the present discussion 

is limited to the former, as this permits comparison 

with the other methods considered. 

For the system represented by (10.2.1), (10.2.2), 

the first step is to determine the rxn matrix L such 

that the state feedback u = Lx gives the desired 

eigenvalue spectrum to the matrix (A + BL). The problem 

then centres on consideration of the equation corres-

ponding to (10.2.3), which, in the present gbotation, 

becomes: 

KC = L 	 (10.2.11) 

where the output feedback:.  

u = Ky. 	 (10.2.12) 
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is applied, and K is rxm, and C mxn, with rank m. 

Let Q be a nxp matrix of vectors forming a real 

basis for the eigenspace corresponding to a set of p 

symmetric eigenvalues of (A + BL). Then if K is a 

solution of the equation: 

KCQ = LQ 	 (10.2.13) 

the set of p eigenvalues will also be eigenvalues of 

(A + BKC). In this way, if a solution of (10.2.13) 

exists, a matrix K is found which preserves p of the 

closed-loop eigenvalues assigned by the application of 

the state feedback L. 

If there is more than one solution to (10.2.13), 

that solution which minimises the feedback gains is 

given by the generalised inverse [Nil as: 

K = LQ(R-1CQ)%-1 	(10.2.14) 

where R is a non-singular mxm matrix used to scale the 

output variables. 

Where a solution to (10.2.13) does not exist, an 

approximate solution is obtained by use of the generalised 

inverse EN21 as: 

K = LQW(CQW) 	 (10.2.15) 

This solution minimises the norm: 

11(KCQ - LQ)WII 	(10.2.16) 
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Here, W is a diagonal matrix to weight the columns of 

Q, so as to influence the importance of the different 

eigenvalues. The norm pis defined by:.  

	

114 = (tr(MMT))-1- 	 (10.2.17) 

In both of these cases, the effect of neglecting 

(n-p) eigenvalues is quite unpredictable. It is claimed 

that these remaining eigenvalues can be restricted to 

the less dominant modes, but .it is not stated how this 

can be assured. 

In the second case, it does not follow that the 

minimisation of (10.2.16) yields a matrix K giving the 

best possible fit of p eigenvalues of (A + BKC) to the 

desired set. This statement will be justified by consider-

ing the case in which, for simplicity, all eigenvalues 

are real and distinct, and it is desired to preserve 

all the eigenvalues of (A + BL) in (A + BKC). We may 

write: 

	

(A + BL)Q = QA1 	(10.2.18) 

where A is a diagonal matrix of the eigenvalues of 

(A + BL). This follows from the definition of Q. 

Now suppose the application'of output feedback K gives 

an eigenvalue spectrum represented by the diagonal 

matrix A. Then: 
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(A + BKC)Q0  = Q0A 
	

0 	(10.2.19) 

where Qo  is a matrix of eigenvectors of (A + BKC). 

Introducing a diagonal. weighting matrix W, and noting 

that Q and Qo  are noh-singular, (10.2.18) and (10.2.19) 

give: 

Pfl)W = Q;1(A+BKC)Q0W.::- Q-1(A+BL)QW 	(10.2.20) 

The norm of (10.2.17). applied to (10.2.20) clearly 

gives the square root of the weighted sum of squares 

of the differences between the actual and desired eigen-

values, and so is a measure of the 'fit' of the eigenvalue 

spectrum provided by the feedback K. Minimisation of 

this norm would yield the 'least squares' solution. 

This solution would involve determining both Q0  and K. 

The introduction of the assumption Q0  = Q in (10.2.20) 

reduces this expressiOn to: 

Q-1B(KCQ - LOW 	 (10.2.21) 

The variable factor of this expression, (KCQ-LQ)W, 

coincides with the matrix of which the norm is minimised 

in the method of Bengtsson and Lindahl. Clearly, this 

could not be expected to yield the matrix K which gives 

the best possible fit of the eigenvalue spectrum. This 

point is confirmed in 10.7.3 	, where the eigenvalue 

spectrum corresponding to a solution for K obtained by 
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a direct algorithm is compared with the results given 

in [B41 . 
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10.3 Patel's Method. 

Patel rP71 has described an interesting recursive 

pole-assignment procedure for multi-input, multi-output 

systems, which places no restriction on the rank of the 

feedback gain matrix. For a system described by the 

equations (10.2.1) and (10.2.2), the rxm output feed-

back gain matrix K, such that: 

u = -Ky 	 (10.3.1) 

is sought, for arbitrary pole assignment. The matrix K 

is partitioned into rows as: 

k1  

(10.3.2) 

kr 

It is shown that the characteristic polynomial 

with feedback, Dc(s), and the characteristic polynomial 

without feedback, D0(s), are related by: 

Do(s) = D0(s) + 401(s)b1  + 402(s)b2  + 	+ 071.0r(s)br  

(10.3.3) 

where the m)(n polynomial matrix 0 (s) is given by: 

0 (s) = Cadj(sI - A + 	b 	(10.3.4) 
p=q+1 P  

for q = 1, 2, .'.. (r-1), 

K = 
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and: 

Or(s) = Cadj(sI - A) 	(10.3.5) 

b., i=1, 	r, is the ith column of the input 

distribution matrix B in (10.2.1). 

It follows that the change in the closed-loop 

characteristic polynomial, ADic'(s) resulting from a change 

Ak1 in the ith row of K is given by: 

ilDcI  (s) = Like  0 (s)b. i 1 
where: 

i-1 m  
01(s) = Cadj(sI - A+ Z b k-C 

p=1 PP 

  

(10.3.6) 

b kTC) (10.3.7) 
p=i+1 P P  . 

By equating coefficients of like powers of s on 

each side of (10.3.6), a numerical equation is obtained 

as: 

T 	i Ji 	= la 	(10.3.8) 

where Ji  is an n>cm matrix of coefficients obtained from 

them-dimensionalcolumnpolynomialvector and 
• 

di is an n-dimensional column vector of coefficients 

of AD!(s), excluding the coefficient of sn. The least-

squares solution of (10.3.8) is obtained as: 

dki = [3-
+
di 
	

(10.3.9) 

1-  where [J1 is the pseudoinverse of J.  
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0 

"T The ith row of K then becomes lcT  . 	LS.k. , and: 

AD14.1(s) = 631i(s) - drO(s)b. , or i 1 

d 	= di 
	6AkTi 	 (10.3.10) 

Starting from some arbitrary initial K, this • 

process is repeated until, to ,complete one cycle of 

operations, each row of K has been included. The cycles 

are continued until the norm of the di, I,dll , at any 

step becomes sufficiently small, or fails to decrease 

over a cycle. 

It is shown that the recursive process is convergent, 

and'a modification is included which permits the specific- 

ation of individual poles, instead of the coefficients 

of the characteridticApolynomial. The reason for. consider- 

ing this alternative approach is stated as the desire 

to avoid computational inaccuracy which sometimes 

accompanies the use of characteristic polynomial coeffic- 

ients as a means of specifying pole positions. 

10.4 Comment.  

In the absence-of any direct way of ensuring that 

the state feedback gain matrix lies in the row space 

of the C matrix, the approach used by Munro and 

Vardulakio loco not Doom to be of groat aosiotanco in 

the general pole-assignment problem. 
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A disadvantage of an approach based on the initial 

determination of state feedback, as used by Munro and 

Vardulakis, and by Bengtsson and Lindahl, is that some 

of the freedom in designing the output feedback is lost 

when the state feedback is determined. The state feed-

back for a given closed-loop pole configuration often 

is non-unique, so that the choice of a different state. 

feedback could yield a better solution to the output 

feedback problem. 

Patel's method does not suffer from this disadvantage, 

and it represents a useful approach. This is a recursive 

method, however, and, if such a method is to be used, 

it is worth while ensuring, as far as possible, that 

the recursive algorithm includes all the design constraints 

it is desired to impose. The use of an algorithm in 

which one row of the feedback matrix K is considered 

at a time does not lend itself readily to this. 

A further consideration is that, even if a direct..  

general solution of the problem of pole assignment in 

multi-input, multi-output systems were found, it would 

be of limited use in practice. The reason for this is 

that the rigid specification of all closed-loop poles 

requires the designer to specify his problem more completely 

than he is, with knowledge, able to do. The practical 
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situation usually is that the locations of some closed-

loop poles, normally those near the origin of the complex 

plane, are critical. The locations of the remaining poles, 

within broad limits, are not critical. If the designer 

is forced to specify these poles rigidly, he may be 

unconsciously imposing severe constraints on the system, 

tending to make the critical pole locations difficult 

to achieve, and demanding high feedback gains. 

The foregoing considerations suggest an approach 

in which the desired closed-loop poles are specified 

with weighting factors, so that their relative importance 

may be taken into account, and in which the elements 

of the feedback matrix K are. considered one at a time. 

It then becomes possible to apply limits to the values 

of the elements of K, and to allow for the inclusion 

of only certain elements of K, if desired. An example 

of a case in which this facility would be useful was 

given by Bengtsson and Lindahl, in the problem of the 

control of three interconnected power stations, geograph-

ically far apart. Another situation in which it is useful 

to have freedom to consider the elements of K individually 

is in the problem of determining the feedback gains 

needed to maintain stability of the system, in the event 

of loss of some of the feedback loops, due to malfunction. 
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In the next section, a general recursive pole-assign-

ment procedure is described, in which one element of K 

is considered at a time. This procedure is intended to 

meet the requirements set out in the preceding paragraph. 

This may be regarded as a direct, practical approach to 

the problem of closed-loop pole assignment by output 

feedback, in which advantage is taken of the availability 

of the high-speed digital computer. 
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10.5 A General Procedure for Pole Assignment in Multi-

Input,  Multi-Output Systems.-  

10.5.1 System Description and Problem Statement.  

A linear time-invariantsystem is described by the 

equations:. 

X = Ax. + Bu 	Bu' 	 (10.5.1) 

y = Cx 	 (10.5.2) 

where x, y, u and u' are vectors of dimension n, m, r 

and r, respectively. 

B = [131 	bri 	 (10.5.3) 
T' and 
c1  C = 

cm 

The problem is to find the feedback gain matrix 

K, where: 

u' = 	 (10.5,5) 

such that the poles of the closed-loop system approach 

as closely as possible a given set of desired poles, 

A1' •• And. A negative sign for the feedback gain in 

(10.5.5) is introduced for convenience. 

The relative importance attached to the deviation 

of each pole from the desired value is to be capable of 

adjustment. Arrangements are to be provided to permit 

only certain chosen elements of .K to be included, if 

(10.5.11.) 



desired, and provision is to be made to limit the values 

of the elements of K, so that these do not exceed some 

arbitrarily chosen values. 

10.5.2 Development of the Algorithm.  

The problem is equivalent to that of finding K so 

that, subject to the constraints, the eigenvalues of the 

matrix (A - BKC) approach as closely as possible the 

desired set )4, ... An. Considering one element of K 

alone, say kii, and setting all other elemeMs of K to 

zero, reduces this matrix to: 

(A - bi cTkij  ) 	 (10.5.6) 

The characteristic polynomial of (10.5.6) is: 

det(sI - A + kiibici) T. 	(10.5.7) 

and this may be written as:.  

det(sI - A) II + (sI -A) 	bi  c.1 

det(sI - A)(1 	- 	(10.5.8) 

using a matrix identity proved in 0,11] . 

The expression (10.5.8) may be written as: 

det(sI - A) + kijcTjadj(sI - A)bi 	(10.5.9) 

It is desired that the closed-loop characteristic 

polynomial (10.5.9) be 'zero when s takes each of the values 

... 41. Departure from the zero value is a measure 

of how imperfeCtly the problem has been solved. A criterion 
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of success is given as the weighted sum of the squares 

of the moduli of the expression (10.5.9), evaluated for 

each of the desired poles, Aq, 

Let: 

g(s) = det(sI - A) 	(10.5.10) 

and 
	

f(s) = cTjadj(SI - A)bi 	(10.5.11).  

The sum of the squares of the moduli for all poles 

Ad, real or complex, is given by: 

w  (,( ‘d) 	k ft id\lt \86\  0 t 	\ 	k Ft id )) (10.5.12) 

where w is a positive weighting factor. 

Differentiating the expression (10.5.12) with respect 

to kij gives: 

274 	(g( „q) 	ft xd)i.7q i) 	w  (74 Id) .1..k 1( 16-1)ft Ndi 

	

„qi 	„q„ 4. 	q.‘ ■ fie 	io 	‘q./ 	qi 

(10.5.13) 

The expression (10.5.13) may be re-written as: 

imil(g( 	+ kijf(A:1))11(Adci) + wq(g(k) + k13. .f(Xd))i(1c1)3 

(10.5.14) 

and, since each complex 	will have its conjugate, Ad  
a' 

included in the summation, with the same weighting factor, 
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the summation may be written, in general, as: 

n 
2 	wq(g( >ta) + ki  f( Ad)if( Ad) q 	q 
q=1 

(10.5.15) 

The weighted sum of the!squares of the moduli of the 

characteristic polynomial'has a stationary value where: 

v,  g(  Ad)7( Xd) q  
w f  ( A d ifs  ( 

"
d 

cl 	g: 

(10.5.16 ) 

There is clearly only one stationary value, and the 

weighted sum of squares of the moduli tends to + infinity 

as kij tends to + or - infinity, so that the stationary 

value given by (10.5.16) is a minimum. It follows• that 

the value of kij given by (10.5.16) is the 'best' value, 

according to the chosen criterion, when. only the element 

kij is permitted to change. 

The specification of repeated poles calls for a 

modification of the expressions. A pole of multiplicity 

p will satisfy the characteristic polynomial (10.5.9) 

and its first (p-1) derivatives with respect to s. Hence 

the squares of these derivatives are included in the 

summation for the criterion. The summations of (10.5.16) 

then will include the terms: 
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wq1g( 4gl)T( 1)q) 	wq2g" kc1N11( XcI)  

w
glo al  
g(p-1)t k 

n
dvi(p-1)(Ad

q
) 

in the numerator, and: 

w  ft idq( )d) 	w (1ft( k 
/N
dcift  01) + ... 2 	g/ 	 1̂.1  

w 
qP 	. f(P-1)( 0

g./
)7(p-1

)( 
Ad) 

(10.5.17) 

(10.5.18) 

in the denominator. 

It should be noted that the existence of repeated. 

eigenvalues of A is immaterial. 

The weighting factors applied to,the various 

derivatives need not be equal, but the weighting factors 

for a complex pole must be equal to those for the 

conjugate pole in the original expressions and the 

derivatives. 

The algorithm for pole assignment Can now be, 

stated. 
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10.5.3 Algorithm for Pole Assignment.  

The algorithm is described as follows. 

1. Starting with a particular element of K, say kii, 

find the corresponding f(s) and g(s), using the Leverrier 

method. 

2. Calculate k11 from (10.5.16). 

3. Replace A by (A — k11  b1  cT), and return to 1, but, 

this time, using, say, k12. 

4. Continue in this way, dealing with each desired element 

of K in turn, according to some regular scheme. When all 

the elements have been computed once, the cycle is 

repeated. 

5. The process continues for a definite number of cycles, 

or until the absolute values of all the computed kid  

increments are less than some preassigned number, over a 

cycle. At each step, the total value of the element 

kij  calculated may be compared with a corresponding 

assigned limit value. If the limit is exceeded, the 

calculated value is replaced by the limit value, and 

the process continued. 

6. In order to avoid the accumulation of errors, at 

each step, the matrix (A — BKC) is calculated, using 

the latest matrix K. 
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10.5.4 Refinements of the Algorithm.  

When applied to simple test problems, the algorithm 

was found to give rather rapid variations in the elements 

of K initially, and then to settle to a slow asymptotic 

type of approach to the final values. 

Once the steady approach stage had been reached, 

it was found that a considerable acceleration of conver-

gence was achieved by the use of Aitken's extrapolation, 

formula EA3] . This formula takes three values of each 
element of K, equally spaced in number of iterations, 

and uses these to predict the final values of these 

elements. K is then adjusted so that each element has 

this calculated final value, and the iterations are 

continued. The extrapolation formula is applied as 

often as necessary until the matrix K is stationary. 

The extrapolation formula takes the following 

form. If a variable y has three values, y1, y2  and y3, 

where the interval of the independent variable between 

yi  and y2  is equal to that between y2  and y3, the 

predicted final value of y, ye, assuming that the approach 

to the final value is exponential, is obtained as: 

(y2  713'1)2  
Yfb 	Yi 

 

y3  - 2y2 
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In an algorithm in which each element of K is 

computed separately, there is a tendency for the elements 

of K which happen to be computed early in the process 

to be given large values. This tendency was reduced 

by the use of a 'slow turn on' feature. Here,'during 

the early part of the procedure, the computed values 

of the elements of K were multiplied by positive 

constants of magnitude less than 1. These multiplying• 

constants were gradually increased to 1 as the process 

continued, so that the full calculated values were 

then applied. 

10.6 Comment.  

The algorithm is conceptually very simple as, at 

each step, the variation of one scalar feedback gain 

only is involved, and this corresponds. to the familiar 

scalar root locus approach. The algorithm finds the 

value of this scalar gain which brings the set of closed-

loop poles as close as possible to the desired set, 

taking account of the weighting factors. At the next 

step, the action is similar, except that a different 

scalar gain is involved, and a different set of root 

loci would apply. 

Variation of the specified weighting factors, 

or of the desired poles, provides the designer with a 
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means whereby he may acquire a feel for the system. 

It is not necessary, at the outset, to have a knowledge 

of the quantitative effects of varying the weighting 

factors. This will be acquired after a few trials. 

It is not a necessary part of the procedure to 

compute the system poles, but a program to do this is 

included, so that the progress of the algorithm can be 

monitored at intervals. 

As a by-product of the program, the numerator and 

denominator polynomial of every input-output transfer 

function of the system with feedback can be obtained, 

as this information is already available. 
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10.7 Applications of the Pole Assignment Algorithm.  

10.7.1 Example 1, 3rd Order System.  

The algorithm was applied to an example considered 

by Patel [P71 . In this example, 

B = 0 0 

 

0 1 

C = 
[.-1 0 0 

0 1 0 

The specified closed-loop poles are -6 and(-12±35). 

Patel obtained the solution: 

32.0 	11.8681 
K = 

-108.407 -49.7246 

The solution to this problem is non-unique. 

A solution was obtained using the algorithm with 

equal pole weightings, and no gain constraint. This gave 

the result: 
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K = • 

[ 

32.0000 167.748 

3.50537 -5.75702 

 

with the poles: 

-6.0000 and -12.0000-±j5.0000 

This solution was obtained after 151 calculations 

of the matrix K. 

In order to investigate the operation of the 

feedback gain limit feature, the feedback gain limit 

matrix was set as: 

100 	20 

1000 1000 

The same problem was run again, but with the 

gain limit in operation, and the algorithm set off 

as before, but encountered the feedback gain limit 

on k12 at -20. This limit was applied '323 times, and 

the algorithm then left this limit and found a solution 

in which the gain matrix was: 

32.0000 12.6294-  
K = 

-105.961 -51.4096 

giving the closed-loop poles: 

-5.9999 and -12.0000±j5.0000. 

This program required 1,536 calculations of K, 

and the execution time on the CDC7600computer was 

2.827 seconds. 
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10.7.2 Example 2, Ord Order System - Repeated Poles.  

To check the operation of the algorithm for a 

problem in which repeated poles were specified, it was 

applied to the same system as was considered in 10.7.1, 

but with the specified closed-loop poles: -6, -12 and -12. 

A solution was obtained at a count of 512 calcul-

ations of the K matrix as: 

32.0000 203.142 
K = 

9.68123 35.9605 

giving the closed-loop poles: -6.0000 and -12.0000±j0.0000. 

The execution time for this program, on the CDC7600 

computer was 0.913 second. 

It appears from this example that the gain matrix 

is slower to converge for repeated poles than for simple 

poles. 
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10.7.3 Boiler Control Problem.  

The algorithm was applied to a steam boiler control ' 

problem described by Bengtsson and Lindahl [B4] , in 

which the elements of the state vector, input vector 

and output vector have the following physical significance: 

x1  = drum pressure (bar) 

x2 = drum liquid level (m) 

x
3 = drum liquid temperature (deg. C) 

x = riser wall temperature (deg. C) 

x
5 = steam quality (per cent) 

u1  = heat flow to the risers (kJ/sec.) 

u2  = feedwater flow (kg/sec.) 

y1 = xl 

Y2 = x2 

For a power station boiler with a maximum steam 

flow of 350 t/h, drum pressure 140 bar, operating at 

90% full load, the matrices A, B and C are as follows: 
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A = 

10.0 

-0.129 0.000. 0.396 x 10-1  0.250 x 10-1  0.191x 10-1  
-2 0.329 x 10 0.000 -4 -0.779 x 10 0.122 x 1 -3  0 -0.621 

0.718 X 10-1  0.000 -0.100 0.887x 10-3 -3.851 

o.411 x 10-1  0.000 0.000 -0.822 x 10-1  0.000 

0.361 x 10-3  0.000 0.350 x 10-  0.426 x -0.743 K 10
-1  

OM. 

	

0.000 	0.139 x 10-2 

o.000 -4  0.359 x10-4  

	

0.000 	-0.989 x 10-2  B = 

0.249 x 10-4  0.000 

	

0.000 	-0.543 x10-5  

0 0 0 0 
C 

rl 

0 1 0 0 0 

The desired closed-loop eigenvalues are: 

-0.490 x10-1 

+ -0.755 x 10 	- jo.511 xio 
1- - j0.170 X10 
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In Figs. 10.1 to 10.6, the closed-loop poles are 

shown on the complex plane. In each figure, the desired 

poles, which are the same in every case, are shown as 

crosses, whilst the poles which were obtained are shown 

as circled points. 

Bengtsson and Lindahl[Bq first attempted to 

assign only three poles, leaving the other two to assume 

any values. This was done by applying the first of their 

methods, and yielded the closed-loop poles:.  

-0.493075 x 10-1 

-0.594323 x10-1  ± i0.544265 X10-1  

-0.955001x 10-1  ± J0.113494 

These are shown in Fig. 10.1, and it is seen 

that, whilst the real pole is correctly located, the 

complex poles are not near the desired locations. 

The next two results in [B4] were obtained by 

using the second method described in this reference,. 

which comprised a least squares technique with weighting. 

These yielded the closed-loop poles: 

-0.326633 x 10-1  

-0.592370 X 10-1  ± J0.553355 x10-1  

-0.121923 ± j0.576148 x10-1  

which are shown in Fig. 10.2, and: 
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—0.251520 x10-1  

—0.589330 x10-1  ± J0.549513 x10-1  

—0.131879 ± j0.288136 x10-1 	• 

which are shown in Pig. 10.3. 

The algorithm developed in this chapter was applied 

to the problem initially with equal weightingsp.and 

yielded the gain matrix: 	... 

0.481513 x.105 	0.112829 x106  [ 

which gave the closed—loop poles: 

—0.360368 x10-1  

—0.746516x10-1 ± j0.490695 x10-1  

—0.142585 ± j0.169954 x10-1  

These are shown in Fig. 10.4, and are seen to 

coincide with the specified values, except for the 

real pole, the value of which is,specified as -0.49x 10-1. 

A second run was taken with pole weightings 5,2,2,1,1, 

so as to bring the real pole closer to the specified 

value. This gave the gain matrix: 

	

0.550159)(105 	0.940841 X105-  
K 

	

0.610184 X 102 	0.307994 x 103  

with corresponding closed-loop poles: 

K = 
0.528289>c102 	0.322502 x 103 
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-0.392154 x 10-1 

-0.736004 x 10-1  ± j0.474900 x 10-1  

-0.147478 ± i0.159734 10-1 

These are shown in Fig. 10.5. 

A third run was taken with weightings 10,2,2,1,1, 

so as to bring the real pole nearer still to the specified 

value. This gave the gain matrix: 

	

0.596941 >: 105 	0.757852)(105  
= 	

0.66536/04 102 	0.290672 x 103 

with corresponding closed-loop poles: 

-0.416929X10-1  

-0.724652)(10-1  ± j0.460415 x10
-1 

 

-0.150899 ± i0.141252A10-1  

These are shown in Fig. 10.6. 

In each application of the algorithm, the K matrix 

was calculated approximately 1,000 times, with a run of 

256 calculations of K before switching in the fast 

convergence algorithm. The execution time on the CDC7600 

computer was limited to 6 seconds. 

Examination of Figs. 1 to 6 reveals that the pole 

locations obtained by using the algorithm are considerably 

closer to the desired locations than those achieved by 

the methods described in [134] . The effects of varying 

the weighting factors have been demonstrated. In this 
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example, feedback gain limits were not imposed, as it 

was desired to make a direct comparison with the results 

obtained in [B4] . 
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Fig. 10.5 
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10.7.4 Power System Control Problem.  

A power system control problem was also considered 

by Bengtsson and Lindahl [-B41 . In a reduced model of 

the Scandinavian network, there are three generators, 

one on North Sweden (GNOSVE), one in South Sweden (GSYSVE), 

and one in Norway (GNGE). The generators in°North Sweden 

and Norway have hydro turbines, and the generator in 

South Sweden has a steam turbine. The linearized equations 

for the power system are: 

( 10.7.1) 
. 	(10.7.2) 

= Ax + Bu 

y = Cx 

The vectors x u and .y are of dimension 15, 7 and 

10, respectively, and the variables have the following 

significance: 

x1 	rotor angle, GNOSVE 

x2 	rotor angular velocity, GNOSVE 

x3 	
flux linkage of field winding, GNOSVE 

x 	excitation voltage, GNOSVE 

x5 	velocity cif water, GNOSVE 

x6 	rotor angle, GSYSVE 

x7 	rotor angular velocity, GSYVE 

x8 	flux linkage of field winding, GSYSVE 

x
9 	

excitation voltage, GSYSVE 



265. 

x10 steam pressure, GSYSVE 

x11 	
rotor angle, GNGE 

x12 rotor angular velocity, GNGE 

x13 flux linkage of field' winding, GNGE 

x14 excitation voltage, GNGE 

x15 velocity of water, GNGE 

	

u1 	excitation input, GNOSVE 

	

u2 	gate opening, GNOSVE 

	

u
3 	

excitation input, GSYSVE 

	

u4 	steam valve setting, GSYSVE 

	

u5 	fuel flow, GSYSVE 

	

u6 	excitation input, GNGE 

	

u7 	gate opening, GNGE 

rotor angular velocity, GNOSVE 

	

Y2 
	terminal voltage, GNOSVE 

	

y3 	excitation voltage, GNOSVE 

	

Y14. 
	rotor angular velocity, GSYSVE 

	

y5 	terminal voltage, GSYSVE 

	

Y6 
	excitation voltage, GSYSVE 

	

y7 	steam pressure, GSYSVE 
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Y8 	rotor angular velocity, GNGE 

y9 	terminal voltage, GNGE 

Yio excitation voltage, GNGE 

The operating condition considered corresponds . 

to the expected peak load in 1975, with high transmission 

from North Sweden to South Sweden. The numerical values 

of the elements of A, B and C, for this condition, are 

given in Appendix I. 
0 

It was established that satisfactory operation 

was obtained with state feedback giving the system 

poles: 

-7.33 X10-3  

-2.09 X10-1  

-2.77)(10-1  

-3.17 x 10-1  

-3.83 X 10-1  ± 

-5.14x 10-1  

-1.36 ± j3.12 

-1.37 	J4.18 

2.53 x10-1  

-1.49 	j3,79)( 10-2 

-2.4613 

Considering the. ivide geographical separation of 

the three generating plants, there are obvious advantages 
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in using only local feedback at each generating plant, 

instead of feedback of the full state vector. The 

problem, then, is to find the feedback matrix K, where 

u = - Ky 	(10.7.3) 

such that the system has approximately the desired set 

of poles, but where the form of the matrix K is restricted 

to have non-zero elements in only the following positions: 

k11 k12 1(13 
k21 k22 k23 

k
34 

k
35 

k36 
k
37 

k44 k45 k46 k47 
k54 k55 k56 (57 

k68 k68 k6,10 

k78 k79 
 k 78 79 7,10 

Using their method, the authors of [B4J found 

a K matrix which gave the following system poles: 

-5.56x 10-8  

-3.33 x 10-1 ± - j2.70 xi0-1 

-3.44 x 10-1  ± j2.52 x10-1 

-3.84 >‘1O-1 	j .io x 10-1  

-4.65 10-1  
-7.95 )410-1 	j.3430 

• 
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-1.19 ± j4.05 

-1.47 
•0 

-1.66 

-2.44 

The algorithm developed in this chapter was 

applied to this problem. When the desired poles as 

given were inserted in the program, it was found that, 

even after a long run, there were some poles which 

were not approaching the desired locations. The reason 

for this was that the particular pole pattern specified 

had some poles which were almost indistinguishable 

from multiple poles. An example is the complex pair 

at 

± J3.79 x10-2  

which is very close to being a double pole at - 1.49. 

There is also a cluster of 8 poles close to the origin 

of the complex plane. 

The situation was improved by specifying the 

following set of desired closed-loop poles: 

-7.33 x 10-3  
-2.63 ;410-1  double real pole 

-3.33 X 10-1 + - j3.04 X10-1  double complex pair 

-5.14X10-1  

-1.36 ± j3.12 



269. 

-1.37 ±j4.18 

-1.49 double real pole 

-2.4613 

using various weighting factors. 

It became reasonably clear that the specified poles 

were not attainable, with the given constraints on the 

form of K. It followed that there was no point in 

specifying the desired closed-loop poles in the pole-

assignment algorithm as those which were actually required. 

False desired pole locations could be used with advantage 

to 'draw' the closed-loop poles towards desired values. 

Using this technique, and after trying various weighting 

factors, the following result was obtained: 

The closed-loop poles specified as desired in the 

algorithm were: 

-0.60 + j0.00 , with multiplicity 8 

-1.49 + j0.00 , with multiplicity 2 

-1.36 = j3.12 

-1.37 ±j4.18 

-2.46 + j0.00 

The corresponding weighting factors were:. 

100, 

10-4 

•  101,   

, 	10-4 

 3 102,  	10 

, 	10-4, 

, 	104,  

10-4 

 5  10 	, 

10-4. 

6. .10•, 7 	-2 	-1 10 	, 	10 	, 	10 	, 
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The choice of weighting factors was based initially 

on consideration of the magnitudes which would be assumed 

by the moduli of the specified poles when raised to the 

relevant powers. 

There is a possibility, when using an algorithm of 

this type, in which one element of the K matrix is 

considered at a time, that the desired pole locations 

could be achieved by the first few values of K computed. 

This would have the effect of imposing the full burden 

of control on the first generating plant, an undesirable 

condition. The use of the slow turn-on feature would make 

this eventuality unlikely, but, as an additional attempt 

to spread the control burden as evenly as possible, the 

sequence in which the elements of K were computed was 

arranged in a way which covered the three generating 

plants in every four steps, as shown in Fig. 10.7. 

This shows the elements of the K matrix as numbers, 

indicating their order in a single cycle of computation. 

1 5 9 

13 17 21 

2 14 L1- 16 

6 18 8 20 

10 22 12 24. 

3 7 11 

Fig. 10.7. 	15 19 23 
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The following closed-loop poles were obtained: 

-1.320138 ± j

• 

4.150066 

-0.685477 ± j2.760519 

-1.803196 ± j

• 

0.748796 

0.030663 + j0.00 

-0.125816 ± j0.388958 

-0.638441 = j0.541223 

-0.697708 ± j0.186223 

-2.094821 t j0.033927 

The corresponding K matrix is: 

K( 1, 1) = -0.336957+03 K( 	1, 2) = 0.123511+02 

K( 1, 3)•= 0.774286+01 K( 2, 1) =. 0.239849+00 

K( 2, 2) = 0.101597-00 K( 2; 3) = -0.276290-01 

K( 3, 4) = -0.110809+04 K( 3, 5) = 0.287821+02 

K( 3, 6) = 0.286085+01 K( 3, 7) = -'1.788294+02 

K( 4, 4) = -0.187359+01 K( 4, 5) = -0.208864+00 

K( 4, 6) = 0.112062+00 K( 4, 7) = 0.244979+01 

K( 5, 4) = 0.319288+03 K( 5, 5) = -0.525062+01 

K( 5, 6) = 0.201785+02 K( 5, 7) = 0.394995+03, 

K( 6, 8) = 0.110463+03 K( 6, 9) = 0.142131+02 

K( 6,10) = 0.190445+01 K( 7, 8) . -0.403856+00 

K( 7, 	9) = -0.185914+00 K( 	7,10) . -0.807061-01 
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The above solution was obtained in a single pun 

of the program, in which the K matrix was computed 

300 times. The fast convergence algorithm was activated 

after 150 computations of K. The total execution time 

on the CDC7600 computer was less than 400 seconds. 

This time included the monitoring operation of finding 

the roots of the fifteenth order characteristic polynomial 

three times. 

The solution obtained is seen to give a closed- 

loop pole pattern reasonably close to the desired pattern, 

but unacceptable without modification, due to the 

presence of an unstable pole. Other solutiQns were 

obtained which were completely stable, but which had 

lightly damped poles. It should be noted that the solution 

obtained in [B14 includes a pole which is very close 

to the origin of the complex plane, and so represents 

a dominant time constant many times greater than that 

said to be required. 

The present design was completed by computing 

additional mild feedback between the output and input 

of generator GSYSVE only, so as to meet the requirement 

for local feedback. The additional feedback was computed 

in the following way: 
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The input matrix for GSYSVE, say B2; consists of 

the three middle columns of B. It was deCided to calculate 

the feedback on the basis of a single-input system, and 

so a distribution vector, g, was chosen arbitrarily, so 

that the equivalent single-input vector b = B2g, where 

g was chosen to be: 

1 

1 

-1 

The negative sign in the last element was chosen 

so as to avoid having rather.small elements in b. Using 

the method of [M1] , the state feedback vector was found 

which would maintain all the closed-loop poles unchanged, 

except the unstable real pole, which would be moved to • 

the desired position -0.733>C10-2. The positive feedbadk 

vector, hT, required for this was found to be: 

-0.224632-02 

-0.577750+00 

-0.129410+00 

-0.485069-01 

-0.136880+00 

-0.778877-03 

-0.231656+00 

'-0.929728-02 
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-0.209143-02 

0.133485-01 

-0.496277-02 

-0.688096+00 

-0.724758-01 

-0.101034+00 

-0.162647+00 

The state vector is not available for feedback, 

and the use of observers is not permitted, so that an 

approximation to this feedback, using only the available 

outputs from GSYSVE, was obtained, using the generalised 

inverse. If the output matrix of GSYSVE, the middle four 

rows of C, is represented by C2, and the output feedback 

vector is kT, then k was found as: 

k = (C2C2)-1C2h. 

This gave the solution for k as: 

0.573343-01 
-0.104032+01 

-0.209143-02 

0.133485-01 

Applying this feedback, the eigenvalues of the 
T overall system matrix (A - BKC + B2gk C2). were found to be: 
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-1.172409 ±J4.914084 

-0.909607 ± j2.824345 

-2.157151 ± j0.074121 

-1.310579 ± j0.606576 

-0.877863 ± j0.755744 

-0.285257 ± j0.536374 

-0.157726 t j0.00 

-0.577581 ± j0.335272 

This solution appears to be more satisfactory than 

that obtained in [BLd , as the closed-loop pole pattern 

is reasonably close to the desired pattern, and the 

dominant time-constant is considerably smaller. 
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CHAPTER 11.  

CONCLUDING REMARKS AND RECOMMENDATIONS.  

11.1 Computer Programs.  

Computer programs were written, where appropriate, 

for the procedures described in. this thesis. The language 

used was FORTRAN 4, and several subroutinesc)  for the 

standard operations were adapted from those published 

by Melsa and Jones [M14.1. The programs were run on 

an ICL1903A computer and on a CDC7600 machine. 

11.2 General Conclusions and Recommendations for 

Further Research. 

The problem of closed-loop pole assignment by 

state vector feedback may now be regarded ,as solved. 

There is a choice of techniques available, and the 

combination of initial arbitrary feedback to remove 

multiple poles, and to render the system 'normal', 

in the sense'that it is, controllable from every input, 

followed by the use of the explicit gain formula for 

single-input systems, provides a solution in every 

case, provided the system is controllable. 

The case in which there is restricted measurement 

access may be approached through the results of 

Davison [D31 , for the assignment, or near-assignment, 

of m poles, where the system has m independent outputs, 
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permitting the use of the. single-input explicit gain 

formula in a restricted form. The remaining (n-m) 

closed-loop poles must be determined, as they move 

in an unpredictable way.. A solution has been presented 

for this problem, in which the feedback gains are 

obtained, whilst, at the same time, the coefficients 

of the residual characteristic polynomial, from which 

the remaining (n-m) pOles may be found, are given. 

Very recently, Kimura (K21 has shown that a 

controllable, observable, system with r independent 

inputs and m independent outputs, can have all n poles' 

made equal to, or arbitrarily close to, any assigned 

values by proportional feedback, if m+r>n+1. 

A similar conclusion has been reached by Davison and 

Wang [651 , who have also shown that, for almost all 

(B,C) pairs, min(n, m+r-1) poles can be assigned arbitrarily. 

The approach, used by Davison, of considering the assign- 

ment of poles arbitrarily close to desired values, so 

avoiding the difficulties associated with the hyper- 

surfaces of unattainable poles, has contributed greatly 

to the understanding of the theory in this area. 

Although the precise assignment of poles has no meaning 

in engineering applications, due to limitations in the 

accuracy of the parameters concerned, changes in their 
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values with time, and so on, the theoretical existence 

of a solution which approaches arbitrarily close to an 

unattainable value may be accompanied by.practical 

difficulties, such as the use of unduly high loop 

gains. Conclusions about the properties of 'almost all' 

systems could be regarded as having doubtful value, 

since the engineering designer will draw little comfort 

from the knowledge that most other systems would have 

a desirable property if the system with which he is 

confronted lacks this property.. He would, presumably, 

be encouraged to look for other outputs or inputs in 

the hope that the changed system would have the property 

required. The results obtained by Kimura and by Davison 

and Wang are important, but they do not represent a.  

final answer to the general problem of the conditions 

which must be satisfied by the (k1B,C) matrices to 

permit arbitrary closed-loop pole assignment. There is 

scope for further interesting research in this direction. 

The assignment of zeros as well as poles is an 

obvious development of state vector feedback, and two 

procedures are presented [117) for the design of state 

vector feedback to provide, as far as possible, 

specified scalar input-output transfer function. These 

procedures are useful in the commonly occurring case 
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where, as in scalar system design, one input-output 

transfer function is of major importance. The problem 

has been approached more generally by Wang and Desoer, 

and there are some cases in which more than one transfer 

function can be specified. However, the limited number 

of variable parameters available in state vector feedback' 

makes it unlikely that very much further Progress will 

be made in this direction. 

The complete freedom of pole assignment provided 

by state vector feedback makes the use of observers very 

attractive, especially since, provided that an observer 

is fed with the system inputs, its presence does not 

increase the order of the input-output transfer functions. 

The design method of Cumming for a state observer is 

satisfactory where full computer facilities are available, 

but it is cumbersome otherwise. A simple step-by-step 

procedure for the design of reduced-order state observers 

suitable for pencil-and-paper design, assisted by an 

electronic calculator, or a time-sharing computer 

telmlinal using a simple programming language, has been 

presented. 

A design procedure has been given for the linear 

functional observer with arbitrary dynamics, which 

:avoids tho flood to tranoform tho syutom into a spocial 
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canonical form. This procedure has been extended to 

permit the design of low-order linear functional observers 

in which the reduction of observer order is achieved 

by accepting restrictions on the choice of the observer 

Doles. The problem of the design of the linear functional 

observer may be regarded as solved. The techniques 

have been used to provide a step-by-step procedure 

for the design of degenerate observers in general, to 

provide more than one specified linear functional of 

the state vector. This procedure may, in most cases, 

be expected to result in a worthwhile reduction in the 

order of the degenerate observer, but it is not claimed 

to yield a design of the lowest possible order. There is 

scope for further research in the problem of designing 

a degenerate observer of minimum order to provide a 

set of specified linear functionals of the state vector. 

The properties of the dual observer are different 

from those of the ordinary observer and, whilst its 

field of application is less extensive than that of the 

ordinary observer, it'could be useful in regulator 

systems having more inputs than outputs. A design 

procedure for a dual observer is presented and it has 

been shown that a design of order (q-1) can be obtained, 

where q is the controllability index of the system, 
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such that the poles of the overall system are assigned 

arbitrarily. 

The need for an observer to be fed with the 

external inputs which are applied to the observed system 

is a disadvantage in practical cases. The design of 

0-observers and k-observers is an attempt to overcome 

this by designing the observer for a suitably augmented 

system. The work of Hostetter and Meditch in this field 

has been examined, and some new conditions for the 

existence of these observers have been presented. 

This is a promising field for further research. 

Approaches to the general pole assignment problem 

for a multi-input, multi-output system by output feedback 

through the initial determination of state feedback 

have been examined, and do not seem very promising. 

On the other hand, the availability of modern digital 

computers operating at high speeds makes it possible 

to employ a simple algorithm which is based on a direct • 

approach to the solution. Such an algorithm is presented. 

It is itoraLivc, but not incremental in °per:It-Jon, !Ina 

is shown to be acceptably fast, to yield solutions 

which are superior to those obtainable by other methods, 

and to accommodate design constraints without difficulty. 

Further research based on the application of this type 
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of approach to large systems and to non-linear systems 

is likely to be rewarding. 

From a more general point of view, there is a 

need for further research to improve the relationships 

between the general theoretical work and practical 

numerical problems. Many of the theoretical results, 

for example, in Kalman's controllability and observability 

criteria, and in Luenberger's canonical forms, rest upon 

the idea of the linear independence of vectors. In 

practical numerical work, thiS question 'does not always 

have a clear-cut answer, as has been demorrstrated 

recently by LaPorte and Vignes CL61 , who have considered 
the related problem of determining whether a numerical 

matrix is singular. They have given examples in which 

a singular matrix would, if treated in the usual way 

on a finite word length digital computer, be regarded 

as non-singular, and of the converse case of a non-

singular matrix which would be regarded as singular. 

A quantitative measure of the linear independence of a 

vector relative to a given set of linearly independent 

vectors is clearly very useful, and such a measure is 

provided by the ratio of the Gram determinant including 

the candidate vector to that' without it. This ratio ['G3] 

gives the square of the length of the component of the 
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candidate vector normal to the space spanned by the 

given vectors. By the repeated application of this 

Procedure, 'best' sets of linearly independent vectors 

can be built up for use, for example, in connection 

with Kalman's tests, or Luenberger's canonical forms. 

Such ideas as these could be applied to the general 

theory of control systems so that. they would no longer 

be regarded as simply controllable or uncontrollable, 

etc., but as having these properties in varying degrees, 

subject to quantitative measurement. 
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APPENDIX I.  

The numerical values of the elements of the A, B 

and C matrices of the system considered in 10.7.4 are 

given in this Appendix. The signed integer at the right 

hand side of each number indicates the power of ten by 

which it is to be multiplied. 

A-MATRIX.  

A( 1, 	2) = 0.314159+03 A( 2, 1) = -0.242249-01 

A( 2, 	2) = -0.322929+01 A( 2, 3) = 0.162980+00 

A( 2, 5) = 0.340985+00 A( 2, 6) = 0.113810-01 

A( 2, 	7) = -0.864848-02 A( 2, 8)  =,-0.684552-02 

A( 2,11) = 0.128439-01 A( 2,12) = -0.998426-02 

A( 2,13) = -0.712887-02 A( 3, 1) = -0.213677-01 

A( 3, 	2) = -0.676581-01 A( 3, 3) = -0.304433+00 

A( 3, 4) = 0.250453+00 A( 3, 6) = 0.147243-01 

A( 3, 7) = -0.884903-02 A( 3,  8) = 0.554234-03 

A( 3,11) = 0.664346-02 A( 3,12) = 0.672120-02 

A( 3,13) = 0.827741-02 A( 4,  4) = -0.769231-01 

A( 5, 5) = -0.140858+01 A( 6, 7)  = 0.314159+03 
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A( 	7, 2) = 

A( 7, 	6) = 

A( 7, 8) = 

A( 7,11) = 

AC 7,13) = 

A( 7, 1) = 0.310481701 

A( 	7, 3) = -0.138751-01 

A( 	7, 7) = .70.242749+01 

A( 	7,10) = 0.159024+00 

A( 7,12) = .70.1412787.01 

A( 8, 	1) = 0.180088-02 

AC 8, 3) = 0.695069-02 
A( 8, 	7) = -0.282597-01 
A( 8, 9) = 0.336492+00 
A( 8,12) . 0.390225-02 
A( 9, 9) = 70.100000+00 

A(11,12) = 0.314159+03 

A(12, 2) . 70...106559-01 

A(12, 6) 	0.649000-02 

A(12, 8) = 70.462964.702 

A(12,12) = -0.887218+00 

A(12,15) 

A(13, 2) 

A(13, 6) 

A(13, 8) 

A(13,12) 

A(13,14) 

A(15,15) = 7.0.183560+01 

-0.207229-01 

.70.4990947'01 

0.465573-01 

0.188614-01 

-0.993110-02 

0.602946-02 

= -0.227243-02 

= 0.360985+00 
0 

= 0.471545-03 

= 0.403555-02 

A(10,10) = -0.732244-02 
= 0.130472-01 
= -0.791938-02 
= -0.511231-02 
= -0.195372-01 
= .0.163403+00 

0.728335-02 
0.636214-02 
70.W1029-02 

-0.145205-01 

-0.288581+00 

-0.769231-01 

A( 8, 2) 

A( 8, 6) 

A( 8, 8) 

A( 8,11) 

A( 8,13) 

A(12, 1) 
A(12, 3) 

,A(12 9 .7) 

A(12,11) 
A(12,13) 

= 0.441134+00 A(13, 1) = 

= 0.410596-02 A(13, 3) = 

= 0.723718-02 A(13, 	7) = 

= -0.930530-04 A(13,11) = 

= -0.536106-01 A(13,13) = 

= 0.247081+00 A(14,14) = 
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• 

The 156 elements of the A-matrix which are not 

listed are 

R-MATRIX. 

zero. 

2)= -0.227323+00 B( 4, I) = 0.769231-01 B( 	2, 

B( 	5, 2) = 0.140858+01 B( 	7, 4) = 0.162229+00 

B( 	9, 3) = 0.100000+00 B(10, 4) = -0.783733-02 

B(10, 5) = 0.730000-02 B(12, 7) = -0.294089+00 

B(14, 6) = 0.769231-01 B(15, 7) = 0.183560+01 

The 95 elements of the B-matrix which are not 

listed are 

C-MATRIX. 

zero. 

C( 1, 2) = 0.100000+01 C( 2, 1) = -0.212729-01 

C( 2, 2) = 0.932214+00 C( 2, 3).  = 0.889955+00 

C( 2, 6) = 0.194903-01 C( 2, 7) = -0.100683-01 

C( 2, 8) = 0.734920-02 C( 2,11) = 0.178260-02 

C( 2,12) = 0.227022-01 0( 2,13) = 0.232592-01 

0( 3, 4) = 0.100000+01 C( 4, 7) .= 0.100000+01 

C( 5, 1) = -0.913649-01 C( 5, 2) = 0.240934+00 

C( 5, 3) = 0.233823+00 C( 	5, 6) = 0.162358+00 

C( 5, 7)  = 0.277790+00 C( 5, 8)  = 0.286660+00 

C( 5,11) = -0.709931-01 0( 5,12) = 0.159072+00 
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c( 	5,13) = 0.143982+00 C( 	6, 	9) = 0.100000+01 

C( 	7,10) = 0.100000+01 C( 	8,12) = 0.100000+01 

C( 	9, 	1) '= 0.108115-01• C( 	9, 	2) = 0.114114-01 

C( 	9, 	3) = 0.151457-0A C( 	9, 	6) = 0.126540-01 

C( 	9, 7) . -0.743007-02 C( 	9, 	8) 0.117922-02 

C( 	9,11) . -0.234655-01 C( 	9,12) = C.102604+01 

C( 	9,13) = 0.912437+00 C(10,14) = 0.100000+01 

The 116 elements of C which are not listed are zero. 

EIGENVALUES OF A. 

-1.240614 

-0.754666 

j4.132591 

j2.970554 

-2.383217 + j0.00 

-1.408580 + j0.00 

-1.835600 + j0.00 

0.518948 10-5  + j0.00 

-0.732187 10-2  + j0.00 

-0.332077 + j0.00 

-0.100000 + j0.00 

-0.369861 + j0.00 

-0.076923 + j0.00 

-0.422286 j0.00 

-0.076923 j0.00 
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