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ABSTRACT 

An investigation and analysis of a collection of different techniques, for estimating the states of 

nonlinear systems, was undertaken. It was found that most of the existing literature on the topic 

could be organized into several groups of nonlinear observer design techniques, of which each 

group follows a specific concept and slight variations thereof.  

From out of this investigation it was discovered that a variation of the adaptive observer could be 

successfully applied to numerous nonlinear systems, given only limited output information. This 

particular technique formed the foundation on which a design procedure was developed in order to 

asymptotically estimate the states of nonlinear systems of a certain form, using only partial state 

information available. Lyapunov stability theory was used to prove the validity of this technique, 

given that certain conditions and assumptions are satisfied. A heuristic procedure was then 

developed to get a linearized model of the error transient behaviour that could form the upper 

bounds of the transient times of the observer.  

The technique above, characterized by a design algorithm, was then applied to three well-known 

nonlinear systems; namely the Lorenz attractor, the Rössler attractor, and the Van Der Pol 

oscillator. The results, illustrated through numerical simulation, clearly indicate that the technique 

developed is successful, provided all assumptions and conditions are satisfied. 
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GLOSSARY 

Observability - a given system is said to be observable if the current states can be determined 

using only knowledge of the system outputs and the internal system parameters [1]. 

Detectability - a linear system is said to be detectable if all the modes that are unobservable, are 

stable. An implication of this is that an observable system, will also be detectable [2]. 

Hurwitz - a matrix is defined as Hurwitz (or Hurwitz stable) if it is square and all of its poles 

have negative real parts [3]. 

Diffeomorphism (diffeomorphic transformation) – a diffeomorphism is signified by an invertible 

(vector) function, that maps a continuous differentiable manifold to another under a change of 

coordinates such that the function (or matrix of functions) as well as its inverse are both 

continuous (smooth) [4]. 

Manifold – a manifold is signified by a topological structure that resembles a Euclidean space of 

the same dimension in a small neighborhood around each point situated on the manifold. A 

differentiable manifold comprises of charts that, in a neighborhood around a point on the chart, 

allows the rules of calculus to be applied (i.e. is differentiable) [5], [6]. For more on topology 

refer to [7]. 
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1. INTRODUCTION 

State observation, also known as state estimation, is a concept from control theory which entails 

estimating certain states of a system, given a mathematical model and certain output information 

of that system. This concept can be extremely useful, particularly in engineering industries since, 

given an arbitrary plant, there will always be certain state information that is either desired or 

needed, but cannot be measured due to certain practical constraints, such as inaccessibility of the 

sensor location, the cost of instrumentation, or due to the abstract nature of the state quantity to be 

measured. Linear observer theory (for deterministic [8], and stochastic [1], [9] systems) started 

coming into fruition around the 1960’s and has attracted much research ever since. Consequently, 

the linear state observer is now well understood and has been successfully applied in numerous 

practical scenarios. It is however well known, that very few real systems are linear by nature, and 

a linear observer is usually inadequate when applied directly to the system. An approach to 

overcome this shortfall of the linear observer, is to linearize the system around its operating points 

and then only apply the linear observer to estimate the states at those points. The effectiveness of 

this approach is however limited, depending considerably on the degree and nature of the 

nonlinearity of the system, and hence it is desirable to change the approach such that an observer 

can be constructed for a class of observable, nonlinear systems, the objective of which is to be a 

successful estimator across numerous engineering applications. It is because of this requirement 

and the diverse nature of nonlinear systems that this research has been undertaken, and has led to 

the research question discussed in this dissertation. 

Research Question 

Assuming an arbitrary nonlinear system of differential equations of the form 
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 �� = ���� + 
�  

 � = ℎ���.  

which nonlinear observer design techniques are appropriate in order to successfully estimate the 

states of a given system, assuming that the system is observable and that only partial state 

information is available? 

This dissertation attempts to answer the research question, and is organized as follows: 

Chapter 2: Literature Survey 

Chapter 2 summarizes all the literature that has been reviewed and analyzed, in order to gain an 

understanding on what has been researched regarding the topic of both general linear and nonlinear 

estimation theory. The chapter starts off by briefly revising linear state estimation techniques 

developed by the well-known authors Luenberger [8], [10] and Kalman [1], [9]. A more extensive 

section then follows where literature on nonlinear state estimation is reviewed and analyzed. In this 

section, the reader discovers that there are in fact numerous techniques of estimating the state 

information of nonlinear systems, and is exposed to the most common and popular of these 

methods. It is also highlighted that the theory has indeed been developed over a few decades and 

even been applied in some practical applications; which then leads the reader to the section that 

follows. Here, a common application of nonlinear estimation theory is discussed; synchronization 

and secure communication. The literature in this section illustrates how numerous authors have 

applied or developed a diverse set of nonlinear estimation techniques in order to provide secure 

communication channels, usually masked using a chaotic master system. 
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Chapter 3: Methodology 

In Chapter 3, an estimation technique is developed that is based on existing adaptive observer 

techniques reviewed in the literature survey, and more specifically, based on theory of [11] that 

shows the design of an adaptive controller to achieve chaotic synchronization. The proof makes 

use of Lyapunov stability theory and shows that the error between the state and observer is 

asymptotically stable. The application of this technique to any nonlinear system (assuming certain 

conditions are met) is made simple by a design algorithm that can be followed step by step in order 

to construct the observer. The chapter is then concluded by showing how an approximation of the 

error transient time can be made through certain ‘linearizations’ in order to achieve a stable linear 

error system. Since this theory provides approximations only, the resulting linear error transients 

can be seen as upper bounds of the actual nonlinear error transients. 

Chapter 4: Application 

The design methodology discussed in Chapter 3 is then applied to some nonlinear systems in 

Chapter 4 using numerical simulations. The systems considered are the Lorenz attractor, the 

Rössler attractor, and a 2-dimensional limit cycle. The numerical simulations show that by applying 

the technique of Chapter 3, an observer can be constructed with estimated states that asymptotically 

converge to the actual states. This section also shows how the approximated error transient times 

compare to the actual transient times. 

Chapter 5: Conclusion 

The dissertation is then concluded in Chapter 5 where the findings are summarized, the research 

question is reconsidered, and a decision is made concerning whether the research question has been 
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answered or not. Implications of the findings are considered and recommended extended research 

ideas around the topic are then stated. 
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2. LITERATURE SURVEY 

In order to gain a complete understanding of the topic, and consequently be in a position to address 

the research question, a survey of relevant literature was done. The survey covered literature 

published on linear state observation theory in the early 1960’s, through to current day observer 

theory for nonlinear systems.  

2.1. State Observation for Linear Systems 

Luenberger Observer 

The pioneering work in state observation was done by Luenberger [10], [8] in the early 1960’s and 

1970’s. He developed the method to design a linear state observer in a deterministic setting. Also 

known as the Luenberger observer, it is designed for systems of the form 

 �� = �� + 
� (2.1) 

 � = �� (2.2) 

where �	∈ ℛ� is the state vector, �	∈ ℛ� is the input vector, and �	∈ ℛ� is the output vector, and 

�	∈ ℛ�×�, 
	∈ ℛ�×�, �	∈ ℛ�×� represents the system dynamics matrix, the input matrix and the 

output matrix respectively.  The Luenberger observer assumes the form 

 ��� = ��� + 
� + 	��� − ���� (2.3) 

 �� = ��� (2.4) 

The objective is that the observed or estimated states ��, asymptotically tend toward the actual states 

x. Before the observer can be designed, the system above must be shown to be completely 

observable, and this is done by checking that the observability matrix  

���		����		��′� ��…	����"#$�′%	
has a rank of n, where n is the dimension of the system. Once observability is established, it is 

required to calculate the gain matrix L, such that the dynamics of the observer ensures that the 
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estimated states converge to the actual states. According to Theorem 1 in [8], these dynamics are 

determined by the matrix �� − ��� and the Lemma in [8] states that a matrix L can be appropriately 

chosen such that the poles of �� − ��� can be equal to those of a specified matrix. Hence, for the 

observer, the poles are chosen to be negative (stable), thus ensuring the observer dynamics 

requirement, and must also be chosen such that the time constants are smaller than those of the 

plant. This will ensure that the observer converges to the actual states faster than any change due 

to the plant dynamics, ensuring accurate estimations. Numerous methods exist for calculating the 

L matrix, based upon the concept of pole placement. One of the most common of these methods is 

known as the Bass-Gura formula [12]. Unlike the Kalman filter (which is still to be discussed), this 

technique doesn’t require there to be any Gaussian distribution models of the state and output, 

which makes this method considerably simpler and less computationally intensive. However, the 

drawback is that the model of the observer is required to have a high degree of accuracy, and any 

system modelling errors or measurement noise will immediately be reflected in the state 

estimations. 

Kalman Filter 

Around the same time, R.E. Kalman was developing a method [9], [1] for linear state estimation in 

a stochastic setting. This theory assumes that the state of a system at time & evolves from a previous 

state value at time & − 1, according to the equations   

 �( = �(�(#� + 
(�( +)( (2.5) 

 *( = �(�( +	+( (2.6) 

where �( is the state vector with �( being the state transition model, and *( is the output with �( 
being the observation model. )( represents the process noise vector for each state and is assumed 

to be drawn from a zero mean normal distribution with known covariance ,( . +( represents the 
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measurement noise for each measurement and is similarly zero mean white Gaussian with known 

covariance -(  . The estimates of the state vector are determined by probability density functions, 

instead of absolute or discrete values, and hence it is required to know their variances and 

covariances. These values are stored in the state covariance matrix P, where the terms on the 

diagonal are the variances corresponding to each state, and the other terms are the covariances 

between states. The Kalman filter algorithm is a two-stage process made up of prediction steps and 

update steps.  

The prediction steps are  

 ��(|(#� = �(��(#�|(#� + 
(�( (2.7) 

 /(|(#� = �(/(#�|(#��(0 + ,( (2.8) 

Here, a predicted value of the state ��( at time & is determined using the state transition matrix at & 
and the previous state value at & − 1, added to the control input at &. /( represents the predicted 

state covariance matrix at time t and evolves from the covariance matrix at & − 1 and the transition 

matrix at &, added to the current process noise covariance at &.  
The update steps are  

 1( = /(|(#��(0��(/(|(#��(0 + -(�#� (2.9) 

 ��(|( = ��(|(#� +	1(�*( − �(��(|(#�� (2.10) 

 /(|( = 	/(|(#� −	1(�(/(|(#� (2.11) 

These equations illustrate how the state estimate ��(|( and the state covariance /(|( are updated at 

time &. This however can only be done once the Kalman gain 1( is computed (see references [9] 

and [1] for the derivations of 1(). The above steps are recursive for each time step over the specified 

time duration. The Kalman filter has successfully been applied in real-world applications such as 
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GPS navigation and tracking, and has been proven to be robust in noisy applications.  However, 

the requirements for the state and output covariance to be Gaussian makes this technique unusable 

for nonlinear applications, since only a linear mapping of a Gaussian distribution can produce a 

Gaussian distribution. 

The linear state observation theory mentioned above has been well developed over the past 50 

years and has been useful in numerous real word applications, however, since most systems are 

nonlinear in nature, this theory has its limitations. Therefore an investigation into nonlinear state 

estimation techniques was undertaken. 

2.2. State Observation for Nonlinear Systems 

Extended Kalman Filter 

The Extended Kalman Filter [13], [14] was designed for systems of the form 

 �( = 2��(#�, �(� + )( (2.12) 

 *( = ℎ��(� +	+( (2.13) 

where 2�⋅� is the nonlinear state transition model and ℎ�⋅� is the observation model. Referring to 

the Kalman filter in Section 2.1 it was highlighted that a Gaussian covariance model applied to a 

nonlinear mapping will produce a distribution that no longer is Gaussian and hence the Kalman 

filter cannot be used in the nonlinear case. Consequently the extended Kalman filter requires that 

2�⋅� and ℎ�⋅� be locally linearized around the operating points, by computing the Jacobian matrices. 

The remainder of the procedure is the same as with the Kalman filter and makes use of these 

linearized matrices. The prediction steps are 

 ��(|(#� = 2���(#�|(#�, �(#�� (2.14) 

 /(|(#� = 5(#�/(#�|(#�5(#�0 + ,( (2.15) 
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The update steps are 

 1( = /(|(#�6(0�6(/(|(#�6(0 + -(�#� (2.16) 

 ��(|( = ��(|(#� +	1(�*( − ℎ���(|(#��� (2.17) 

 /(|( = 	/(|(#� −	1(6(/(|(#� (2.18) 

where 5(#� = 	7879:9�;<=|;<=,>;<=   and 6( =	 7?79:9�;|;<= 
The extended Kalman filter has proved to work reasonably well in practical applications where 

there are moderate nonlinearities, however, in systems that are highly nonlinear, this method starts 

to fail since it relies on local linearizations. When significant nonlinearities are present, the actual 

systems and the linearized systems start deviating too much and estimation accuracy is lost. 

Consequently, much research has been done to address the problem of estimating the state across 

all forms of nonlinear systems.  

High Gain Observers 

As the name suggests, the point behind high gain observation, is to design an observer that makes 

use of an adequately strong observer gain that can ‘eliminate’ the effects of the nonlinearity in the 

error dynamics. Initially developed by Thau [15] it soon found numerous applications in the 

nonlinear control field, [16], [17]. With reference to [18], and considering a system of dimension 

2, the theory requires the form to be 

 ��� = �@ (2.19) 

 ��@ = 	A��, �� (2.20) 

 � = 	�� (2.21) 

The observer is designed as 
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 ���� = ��@ +	ℎ��� − ���� (2.22) 

 ���@ =		AB���, �� + ℎ@�� − ���� (2.23) 

 �� = 	��� (2.24) 

where AB���, �� is simply the observer model of the nonlinearity  A��, ��. Then defining the error 

of each state as �C� = 	�� −	��� and �C@ = 	�@ −	��@,  the error dynamics becomes  

 �C�� =	−ℎ��C� +	�C@ (2.25) 

 �C�@ =	−ℎ@�C� + 	D��C, �� (2.26) 

where  D��C, �� = 	A��, �� −	AB���, ��. Here it is required to design 6 = 	 Eℎ�ℎ@F in such a way that 

�B = 	 E−ℎ� 1−ℎ@ 0F is Hurwitz (stable). However, this won’t be sufficient since the effect of the 

nonlinearity will still be significant. Considering then the transfer function from D��C, �� to �C, 
 

HB�I� = 	 1I@ + ℎ�I + ℎ@ E 1I + ℎ�F (2.27) 

the idea is to design H such that supJKℛ‖HB�MN�‖O is minimized, where in this case ‖∙‖O 

represents the �O-	norm [19]. This can be done by letting ℎ� = Q=R  and ℎ@ = QSRS  where 0 < U ≪ 1. 

The transfer function can then be written as 

 
HB�I� = 	 U�UI�@ + UW�I + W@ X UUI + W�Y (2.28) 

The observer poles (eigenvalues) will be λ1/ε and λ2/ε where λ1 and λ2 are the chosen roots of the 

characteristic polynomial Z@ + W�Z +	W@. Consequently, the small magnitude of ε will cause 

supJKℛ‖HB�MN�‖ = [�U�, and will therefore no longer have a significant effect on the error 

dynamics, resulting in an asymptotically stable observer. Due to the high gain, the main 

disadvantage of this technique is a peaking phenomenon (i.e. a large overshoot of the estimated 

states in comparison to the actual states) during the transient behaviour which can quickly cause 
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any practical control effort to become saturated. This nonlinear state estimation technique has, 

however, been around for a number of years and much research has been put into attenuating the 

peaking phenomena as well as other issues [20], [21], [22] inter alia. One other drawback of this 

technique is the requirement for the system to be transformable into the form (2.19) - (2.21), and 

since not all systems can undergo this transformation, this technique will not always be a viable 

option. (The form (2.19) - (2.21) is known as the nonlinear observable canonical form and will be 

discussed in more detail further on in this dissertation). 

A review of recent literature covering high gain observers will show that the theory is quite well 

developed and most of the research covers the application thereof [23], [24], [25]. Since the 

estimation method of high gain observers has become so common, the theory has found application 

in certain industries, of which some have started putting it into practice, as is discussed in [26], 

[27]. 

Nonlinear Observers through Output Injection 

Krener and Isidori proposed in [28], that if it were needed to observe the state of a nonlinear system 

of the form  

 \� = 2�\� (2.29) 

 � = ℎ�\� (2.30) 

then it is conceivable that there could be some sort of transformation that could yield a system of 

the form 

 �� = �� + 	A��� (2.31) 

 � = �� (2.32) 
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where the change of coordinates is done by a transformation � = 	Φ�\�. Assuming this 

transformation is possible then designing an observer for this system would simply be designing a 

Luenberger observer for a similar linear system. An observer for the transformed system would 

then be 

 ��� = ��� + A��� + 	��� − ����		 (2.33) 

with the error dynamics simply being 

 �̂ = �� − ���^ (2.34) 

where 

 ^ = � − ��  

The literature then proceeds to show and prove the method by which the transformation is 

constructed [28]. Notably, a limitation in this case, is that the transformation and its inverse must 

exist and not be singular, and must hence be a diffeomorphism.  As can be seen, the transformed 

state is a function of the original state and output 

� = 	_�\� = �ℎ�\�		�8ℎ�\�…	�8�#�ℎ�\�%0 

where �8ℎ�\� is the Lie derivative of ℎ�\� along the trajectories of 2�\�. The observability 

assumption is that all terms of the transformation are linearly independent,                                               

i.e. �8̀�aℎ��\�, b = 0,… , c − 1 are linearly independent. This method of transformation described 

above has formed the foundation of much research into nonlinear observer theory since then, 

resulting in the term ‘nonlinear observable canonical form’ which refers to the form of the system 

in the transformed coordinates. The reason for this being, after the original system has successfully 

been transformed, the resulting system will always have a structure where A, C is observable. The 

fact that the resulting transformed system (assuming a successful transformation is possible) is 

guaranteed to be in an observable form, makes this method very powerful, and hence it can be 
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noted that the term ‘nonlinear observable canonical form’ is ubiquitous in the realms of nonlinear 

state estimation. Further literature concerning this transformation and observers of this form can 

be seen in [29], and [30]. 

Sliding Mode Observers 

Although sliding mode estimation was developed around the 1990’s by Drakunov [31], the notion 

of sliding modes had already been around for a few years [32] and had found application as a 

control method for nonlinear systems. The idea behind sliding mode control is to force the state 

trajectories onto a sliding surface (also referred to as a hypersurface) through a designed control 

input. This sliding surface is a stable manifold of the system and so all trajectories on this manifold 

will reach an equilibrium point. Once this manifold is reached, the controller continuously works 

to keep the trajectory on this manifold, and is usually characterized by high frequency switching. 

There are usually two parts to designing this control scheme: selection of the sliding surface or 

manifold, and designing the feedback in order to drive the trajectory onto this manifold. The sliding 

mode observer uses this concept, and it is designed in such a way that the error trajectories between 

the actual and estimated states are also forced onto a sliding surface via an equivalent control, and 

in turn reach  a stable equilibrium point ^ = 0. The observer is designed for systems of the form 

 �� = 2��� (2.35) 

 � = ℎ��� 	∈ 	ℛ� (2.36) 

where the observer takes the form 

 ��� = 	 de6����e� f#�g����sgnhi�&� − 6����j 
(2.37) 

Here	6��� = col{ℎ����, … , ℎ����} where  

 ℎ���� = ℎ��� (2.38) 
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 ℎm��� = 	�8m#�ℎ���,								n = 1,… , c (2.39) 

and ℎm��� is the ith Lie derivative of ℎ���	along the trajectories of 2���. 
i�&� = col{+��&�, … , +��&�} where  

 +��&� = ��&� (2.40) 

 +mo��&� = �pm����sgn�+m�&� −	ℎmh���&�j�qr		 (2.41) 

and M is an �c × c� diagonal matrix, all entries �pm� being positive. Following the procedure in 

[31], the error can be written as ^ = 6��� − 6���� which produces the error dynamics 

 �̂ = a6���a& − g����sgn�i�&� − 6h���&�j� 
(2.42) 

and so  

 

	s �̂��̂@⋮̂��u = vww
wwx
ℎ����� − p�sgny+��&� − ℎ�h���&�jz	ℎ�@��� − p@sgny+@�&� − ℎ@h���&�jz⋮ℎ����� − p�sgny+��&� − ℎ�h���&�jz{||

||}			 
(2.43) 

 

=
vww
wwx
ℎ@��� − p�sgny+��&� − ℎ�h���&�jz	ℎ~��� − p@sgny+@�&� − ℎ@h���&�jz⋮	�8�ℎ��� −				p�sgny+��&� − ℎ�h���&�jz{||

||}				 
(2.44) 

Considering the first line of the error equation, note that +��&� = ��&� = ℎ����. This causes the 

term +��&� − ℎ�h���&�j = 	 ^� and so the first equation becomes �̂� =		ℎ@��� − p�sgn� �̂�. As long 

as p� ≥ �ℎ@h��&�j�, this will ensure that the first row of the error dynamics will enter the ^� = 0 

sliding mode. Considering the second equation of the error dynamics, on the ^� = 0 surface, the 

+@�&� = {p�sgn�^��}qr equivalent control term will be equal to ℎ@��� and therefore                

+@�&� − ℎ@���� = ℎ@��� − ℎ@���� = ^@ , and so similarly, as with the first equation, as long as                     
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p@ ≥ �ℎ~h��&�j�, the second equation of the error dynamics will enter the sliding mode manifold 

for ^@ = 0. Once all error trajectories have entered onto the stable manifold, they will go to zero, 

and hence the observed states will converge to the actual states. For nonlinear systems where the 

operating points (or the state values) coincide with the equilibrium points, this method proves to 

be sufficient. However, further evaluation of this method will clearly highlight, that when it is 

required to observe the state of a system around an operating point that does not necessarily lie on 

a stable manifold, then this method will fail to produce accurate estimates of the states. 

Nonlinear State Observer by Output Vector 

In more recent years, much of the development and research into estimation theory has been done 

on a technique that uses an output vector. Messaoud, Zanzouri and Ksouri [33] consider nonlinear 

systems of the form 

 �� = 2��� + 
� + �a (2.45) 

 � = ��	 (2.46) 

where 2���, 
�, � and �a represent the system dynamics, the known input, the measured output 

and the unknown inputs respectively. 
, �, � and the structure of 2��� are known. It is supposed 

that 2��� is continuously differentiable. The objective of the technique discussed in [33] is to 

design an observer that can asymptotically estimate the states of the nonlinear system (2.45) - (2.46) 

without any information on the input d.  The observer takes the form 

 �� = * + 6� (2.47) 

where �� is the state estimate and z is the output vector. z is determined by 

 *� 	= 	59�* + 19�� + �� − /�29� −	�9�29����� (2.48) 

and 59�, 19�	, �, and	6 are  

 59� =	−/�9�29�� − 1�9�	� (2.49) 
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 19� = 	1�9� +	59�6		 (2.50) 

 /� = 	0		 (2.51) 

 � = 	−/
		 (2.52) 

 6 = �� + /��o		 (2.53) 

Here, P and 1�9� are to be chosen by the designers, �o is the pseudoinverse of � (refer to [19]), and 

�9�29�� represents the Jacobian of the nonlinearity f with respect to ��. The following necessary 

conditions are to be satisfied: 

1. rank���� = rank��� = �		 
2. /�9�29�� +	1�9�	� is a positive definite matrix 

where p is the dimension of the unknown input disturbance. The proof is based on Lyapunov 

stability theory and can be seen in more detail in [33]. 

Similar to the technique described above, Zhao, Shen, Ma and Gu have developed an output vector 

state observer in [34] for nonlinear Lipschitz uncertain systems. The systems are of the form 

 �� = �� + 
� + A��, �, &� + �a (2.54) 

 � = ��	 (2.55) 

where �, �, A��, �, &�, � and a represent the state, the known input, the system nonlinearity, the 

measured output and the unknown input. A, B, C and E are all known matrices. For the technique 

to successfully construct an observer, three assumptions are needed. Firstly,                                

rank���� = rank��� = �		(where � is the dimension of the unknown input a). Secondly, the 

nonlinearity A��, �, &� must be Lipschitz continuous, i.e. 

 ‖A��, �, &� − A���, �, &�‖ 		≤ 	�	‖� − ��‖  

where � is the Lipschitz constant and ‖⋅‖	represents the �@-	norm of the vector                   

A��, �, &� − A���, �, &�. Thirdly, the unknown input d must be bounded, i.e. 
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 �a − a�� 		≤ 	D  

where D is positive and real. (Throughout the rest of the dissertation, ‖⋅‖	will always represent the 

�@-	norm [19] unless stated otherwise). The authors make use of Lyapunov stability theory, as well 

as a lemma (refer to Lemma 2.1) to prove the observer converges (or, equivalently, that the error is 

stable).  

Lemma 2.1 

Consider systems that have been transformed into the form (2.54) - (2.55). 

If there exist two matrices K, G and a positive symmetric matrix  /		∈ ℛ�×� such that  

 /�� − ��� + �� − ���0/ < 0		 (2.56) 

 �0/ = H�		 (2.57) 

then an asymptotic state observer can be constructed, provided certain conditions on the unknown 

input are met (for the proof of Lemma 2.1 see [35]).  

The observer, which asymptotically converges to the state, can be designed of the form 

 �� = * − 5� (2.58) 

where �� is the state estimate and z is the output vector. z is determined by 

 *� 	= 	�* + �� + �� +gA���, �, &� + -a� (2.59) 

N, L, D, M, R, and F are all matrices that need to be determined and are done so accordingly 

 � = /#���		 (2.60) 

 1 = /#�1�		 (2.61) 

 � = −�����o		 (2.62) 

 i = �� − ��������o		 (2.63) 

 5 = � + �i		 (2.64) 

 g = ��� + 5��		 (2.65) 
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 - = ��� + 5��		 (2.66) 

 � = g
 (2.67) 

 � = 1h�� + �5j − g�5		 (2.68) 

 � = g� − 1�		 (2.69) 

����o	is known as the left inverse of ���� and reference can be made to [19] for its calculation. 

In order to obtain P, �� and 1�, it is required to find feasible solutions to a set of linear matrix 

inequalities (LMI) that have to be satisfied in order to guarantee error stability. This can be done 

numerically using an LMI computation toolbox, which makes use of convex optimization 

techniques (see [36], [37] for more information on solving LMI’s).  

A brief evaluation of the technique developed in [33] will make it clear to the reader that it is not 

constructive i.e. the matrices P and 1�9� have to be chosen by the designers in order for the observer 

to work and cannot be constructed or calculated from given information. Methods such as these 

can prove to be frustrating to the estimator designer since they are not very reliable and the designer 

can spend considerable effort in attempting to obtain arbitrary matrices that work. The technique 

described in [34]  however is different and it can be noted that all the required matrices are 

attainable through calculation, and finding plausible solutions for P, �� and 1� can be achieved 

through solving a set of LMI’s. The drawback of this being that the designer must become familiar 

with the theory behind solving LMI’s and the corresponding tools needed. Further literature 

concerning these methods, and the applications thereof can be seen in [38] and [39].  

It can be noted, after extensively reviewing general observer literature, that the processing of Linear 

Matrix Inequalities has become ubiquitous in the field of estimation theory. This primarily stems 

from the use of Lyapunov theory, where it is required to prove stability of the error dynamics by 
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proving that the derivative of the candidate function is negative definite. These LMI’s are becoming 

more prominent in the literature, and much recent research in the field of nonlinear observers makes 

use of their solutions, see [40], [41], [42] and [43]. 

State-Dependent Riccati Equation (SDRE) Observer 

SDRE methods for estimation started appearing in the research community around the mid 1990’s 

[44], [45], and has been studied ever since [30], [46] . The research published by Mracek, Cloutier 

and D’Souza [44] shows that the design of the SDRE filter (as it was referred to) reveals a similar 

structure to that of the Kalman and extended Kalman filters, however the main difference being 

that where the extended Kalman filter requires there to be a linearization, the SDRE filter makes 

use of a state-dependent coefficient (SDC) matrix that parameterizes the system into a linear 

structure. Systems of the general form 

 �� = 2��� (2.70) 

 � = ℎ���	 (2.71) 

are assumed to be representable in the linear structure as 

 �� = ����� (2.72) 

 � = �����	 (2.73) 

where  ���� ∈ ℛ�×� and ���� ∈ ℛ�×� are the state-dependent coefficient matrices. The SDRE 

filter is then designed as  

 ��� = ������� + 1�&��� − �������� (2.74) 

with 1�&� as the gain matrix, determined by 

 1�&� = /�&��0�����#� (2.75) 

Here, /�&� is the solution to the state-dependent Riccati equation.  

 �����/�&� + /�&��0���� − /�&��0�����#����������/�&� + i���� = 0	 (2.76) 
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where ���� ∈ ℛ�×� and i��� ∈ ℛ�×� are seen as tuning parameters and must satisfy the 

conditions i��� 	≥ 0, ���� 	> 0, ∀	� ∈ ℛ�. It is clear that the solution to the SDRE above is 

found using the SDC matrices, instead of the usual system and output matrices (A, C) with constant 

parameters. Consequently, the solution will continuously be changing due to the continuous 

changing of the parameters i.e. the observed state. This implies that the calculation of the solution 

to the SDRE can clearly become quite computationally intensive, since it must be determined at 

each time step of the estimation process, an unfortunate drawback of this technique.  

Finite-time Observers 

The discussion to this point has covered mainly observers that converge to the state asymptotically 

i.e. the error tends toward zero as time tends to infinity. However, certain applications require the 

estimate to become acceptably accurate within a certain period of time, and hence the finite-time 

observer has been developed [47], [48], [49], [50]. More recent literature uses existing finite-time 

observer theory but investigates semi-global finite-time observers on systems of a certain class 

[51], as well as those designed for more general systems, with less restrictions [52]. The design 

procedure in [49] considers systems that can be represented by the nonlinear observable canonical 

form 

 �� = �� + 	2��� (2.77) 

 � = �� (2.78) 

where � = �1 0 0%, and an observer for the system is designed as 

 vww
wxa���a&⋮a���a& {|

||} = 	� s�����⋮���u + 	2��� +	Φ��� − ����	 
(2.79) 

where  
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	Φ��� − ���� 	= 	 s b���� − ����Qb@��� − ����@Q#�⋮b���� − �����Q#��#��u (2.80) 

and ��� − ����Q = 	 |�� − ���|Qsgn(�� − ���). The error dynamics will consequently become  

 

	
���
�� �̂� = ^@ − b�� �̂�Q�̂@ = ^~ − b@�^��@Q#�⋮̂ ��#� = ^� − b�#��^��(�#�)Q#(�#@)�̂� = −b��^���Q#(�#�)

	 
(2.81) 

The observer design follows Theorem 2.1 that proves that the error dynamics tend to the origin in 

finite time.  

Theorem 2.1 

Consider the matrix �B	that should be made stable by specifying the constant gains �b�, … , b�% 
accordingly. 

  

	�B 	= 	
vw
ww
x−b� 				1 0 0 0−b@ 				0 1 0 0⋮ 										⋮ ⋮ 		⋱ ⋮−b�#� 0 0 0 1−b� 				0 0 0 0{|

||
}
 

(2.82) 

Then there exists U	 ∈ X1 −	 ��#� 	 , 1z so that for all W	 ∈ (1 − 	U	, 1), the error system (2.81) 

becomes globally stable in finite time (see [49] for the proof of Theorem 2.1).  

In summary Theorem 2.1 above implies that with appropriate choices of W and (bm)��m��, the error 

can converge to zero in finite time. As mentioned earlier, this method of estimating the state to zero 

error within a finite amount of time certainly has its advantages. For example, the designer will 

easily be able to tell if an estimate is accurate or not by simply looking at the time passed after a 

disturbance or change in the state value. This method (discussed in [49]) is however not 
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constructive, and so a feasible solution depends on a manual iterative process to arrive at a working 

set of parameters.  

It is recommended that the reader refer to [53], [54] for more recent literature on finite-time 

observers. It can be noted that the theory remains similar as discussed above, but is applied to 

specific types or classes of systems. 

Adaptive Observer Design 

The concept of an adaptive observer is to estimate certain states of a system as well as to 

simultaneously estimate any unknown parameters of that same system. Estimation techniques that 

make use of an adaptation law started with linear systems theory with Luders and Narendra [55], 

and Kreisselmeier [56]. The observer designed in [56] was seen as an equivalent observer to the 

Luenberger observer, but just with a different structure (which was called a parameterized 

observer), where it continuously updated the observer parameters through various adaptation 

schemes. The property of this observer to update parameters was clearly seen as useful since it was 

realized that the quality or accuracy of any designed observer for a given system could only be as 

good as the model of the system itself. Since, in real world applications, it is challenging to 

perfectly model a given system, observers that would otherwise successfully estimate the required 

states, were failing due to mismatched model parameters. Research into adaptive observers has 

then been a popular research topic in estimation theory. Early research on this topic for nonlinear 

systems includes that of Bastin and Gevers [57] where they propose a transformation of the system 

 *� = 	2�*, �, �� (2.83) 

 � = *� (2.84) 
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where z is the state vector, u is the known input, y is the measurable output, and p is a vector of 

unknown, possibly time-varying parameters. The continuous, smooth transformation 

 X��Y = 	��*, �, �@, … , ��� (2.85) 

is to change the original system into what is referred to as the canonical adaptive observer form  

 �� = -� + 	ΩhN�&�j��&� + ��&� (2.86) 

 - =	 E0 b0 �BF (2.87) 

 � = �� (2.88) 

Here, �		∈ ℛ�, 	��&�	∈ ℛ� is a vector of unknown time-varying parameters, ΩhN�&�j is an c × p 

matrix with entries of αm¢hN�&�j where αm¢ is a known constant, N�&�	∈ ℛ�	is a vector of known 

functions of the inputs and outputs, and ��&� is a vector of known functions of t. R is an c × c 

matrix of constants where b is known and b = �b�, … , b�% and �B��@, … , ��� is an                            

�c − 1� × �c − 1� matrix of arbitrary design constants that are to be chosen in such a way that �B 
is stable. The form of the system after transformation appears strange and designing the actual 

transformation ��*, �, �� can be quite difficult, however, it does have advantages. Bastin and 

Gevers [57] point out that firstly, the apparent linear structure of the transformed system makes it 

easier to design an adaptive observer for it, and secondly, there are numerous time-varying linear, 

time-invariant bilinear, and nonlinear physical systems that can be transformed into this form. The 

adaptive observer is then designed as 

 ��� = -�� + 	ΩhN�&�j�£�&� + ��&� +	 E���Ci�£F (2.89) 

 �� = ���		, �C = � − �� (2.90) 

where �� is an arbitrary constant, and ��@, … , ��� are arbitrarily chosen such that �B is stable. The 

parameter adaptation law is given by 
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 �£� = ΓA�&��C	 (2.91) 

where Γ = diag�γ�, … , γ��, γm > 0 is chosen as a positive definite matrix.  i�&�	and	A�&�	are found 

by the solution of an auxiliary filter 

 	i� = 5i +		Ω�hN�&�j, i�0� = 0 (2.92) 

 	A�&� = i0b +	Ω�0hN�&�j	 (2.93) 

where Ω� and Ω� are the first rows and remaining rows of ΩhN�&�j respectively. The literature in 

[57] then continues to highlight sufficient conditions of the error system stability as well as useful 

reachability conditions for a successful transformation. Continued research into this topic has 

‘streamlined’ and simplified the design process as is illustrated in [58], for example. In this 

literature, the system again undergoes a transformation into the form  

 �� = �B� + 	2��� + ����� + 	¦�&�� (2.94) 

 � = �B� (2.95) 

 

�B =	 §0 1 ⋯ 0⋮ ⋮ ⋱ ⋮00 00 ⋯ 1⋯ 0© , �B = �1	0… 	0% 
(2.96) 

where 2�⋅� and ��⋅� are two nonlinear functions in triangular form 

 

2��� = s				 2�����2@���, �@�⋮2����, �@, … , ���u (2.97) 

 ���� = s				 �������@���, �@�⋮�����, �@, … , ���u (2.98) 

and ¦�&�		∈ ℛ�×� is a known matrix and �		∈ ℛ� is a vector of unknown parameters. The 

conditions of the transformation are the same as those mentioned earlier for the Nonlinear Observer 

through Output Injection. The adaptive observer is then designed as  
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  ��� = �B�� + 2���� + ������ + 	¦�&��£�&� + 	ªΛ#�1�� − �B��� (2.99) 

 	�£� = 	−2�H��B�� − �� (2.100) 

where  

 

	Λ = s1 0 ⋯ 00 ª#� ⋯ 0⋮0 ⋮0 ⋯ ⋮⋯ ª#��#��u (2.101) 

and ª is any positive real number. K is given by 

 	1 = 12 #��B0 (2.102) 

where S is a positive definite matrix and is the solution to the equation  

 	�B0 + �B +  = 	�B0�B (2.103) 

In this instance, assumptions on the system are that 2�⋅� and ��⋅� are globally Lipschitz 

nonlinearities and ¦�&� is bounded, and that u and � are also bounded. Other than the constraints 

on 2�⋅� and ��⋅�, and in certain circumstances the limitations of boundedness on u and �, adaptive 

observers have proved to be very useful across a wide variety of systems. The simple concept of 

the unknown parameter vector of the model settling to the actual parameter value of the system as 

the error approaches zero, has allowed for greater estimator accuracy given mismatched model 

parameters. This concept of adaptation has also proved to be quite versatile in certain applications 

and it is this versatility that has provided the motivation for further investigation into this particular 

technique, which will be discussed in greater detail further on in this dissertation. 

Research in this particular area of adaptive nonlinear observers continues and entails extensions of 

the theory and the application of the existing theory to different types of systems. The reader can 

refer to [59], [60], [61], [62], [63], [64], [65], [66], [67], [68] for more information and most recent 

advances on this topic.  



 26 

2.3. A Common Application using Observer-based Meth ods  

The theory researched and discussed in Section 2.2, has not only provided control systems 

engineers with useful tools to estimate the states of process variables in the absence of certain 

measured data, but has also provided a foundation for techniques in synchronization. Observer-

based methods have proven useful in synchronizing a slave system with a given dynamical master 

system, by driving it with a scalar signal, or signal from only a single channel. An application of 

this being secure and encrypted communication, where a chaotic system is used to mask the 

message, and the slave system or receiver is designed to recover it. Early work in this area was 

done by Pecora and Carrol [69], Nijmeier and Mareels [29] as well as Cuomo, Oppenhiem and 

Strogatz [70]. The summaries that follow, indicate how the techniques in Section 2.2 have been 

successfully applied to this application. It also summaries some novel techniques, not mentioned 

in Section 2.2, that have been developed to address the problem of chaotic synchronization, but 

that are also based on general observer concepts. 

Chaotic Synchronization using Output Injection and High Gain Observer Methods 

The literature in [29] explains how the synchronization problem is addressed for linear systems, 

followed by systems with linearizable error dynamics, and finally for nonlinear systems. It is then 

illustrated how existing observer theory can be applied in certain conditions that will guarantee 

synchronization. For example, in the case for systems with linearizable error dynamics and with 

well-defined solutions, a coordinate transformation from systems of the form (2.29) – (2.30) to 

those of the form (2.31) – (2.32) is applied, as shown in the section of nonlinear observers through 

output injection. A simple high-gain observer is then designed as the slave system  

 ��� = ��� + 	A���� + 1®��� − ��   OR   ��� = 5���� + 1®��� − ��	 (2.104) 

 �� = ��� (2.105) 
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where  

 1® =	−®#��0 	 (2.106) 

and ® is a positive definite matrix and the solution to the algebraic Riccati equation 

 0 = 	�® + �0® + ®� − �0�	 (2.107) 

The error is then proven to exponentially approach zero for & → ∞.  

If interested in the proofs, the reader is encouraged to analyze the literature in more detail. It will 

be noticed that most of the proofs in the above techniques as well as the literature to follow, rely 

on Lyapunov stability theory to prove that the error dynamics are stable. Also take note that a 

restriction on the nonlinearity to be Lipschitz continuous, will appear frequently in the literature 

for nonlinear observers and synchronization, since it is usually a vital assumption that is used when 

proving the error stability with Lyapunov theory. 

Chaotic Synchronization using Finite-time Observation Methods after a Coordinate 

Transformation  

The method of transformation, as described above, is also found to be ubiquitous amongst the 

theory developed for synchronization, as is demonstrated by Perruquetti, Floquet and Moulay in 

[49], where the slave system is synchronized to a transformed master system, through design of a 

finite-time observer. The synchronization technique via reduced observers explained by Zheng and 

Boutat in [71] also requires the master system to be in a type of nonlinear observer canonical form 

that is specifically conducive for the type of observer that is designed thereafter. This ‘reduced-

order canonical form’ is slightly different to the form mentioned above, however the concept 

remains the same, and the procedure followed as well as the necessary and sufficient conditions to 

be satisfied for its existence is also similar.  
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A Novel Synchronization Technique Using an Injected Scalar Function  

As useful and popular as it is, the method of first transformation and then synchronization, is not 

all that has been researched on this topic. In [72] a technique is shown that synchronizes one chaotic 

system to another. The synchronization problem is restated as a nonlinear observer design problem 

and requires the construction of a nonlinear function built into the slave system in order to achieve 

the synchronization. The two chaotic systems are given as 

 �� = 2���, �		∈ ℛ� (2.108) 

 �� = 2���, �		∈ ℛ� (2.109) 

Synchronization is said to have been achieved when  

 ^�&� = h��&� − ��&�j → 0			as		& → ∞ (2.110) 

The observer is then designed as  

 �� = 2��� + �h* − I���j (2.111) 

where the output from the first system is represented as * = I���		∈ ℛ� and ��⋅� is any suitably 

chosen nonlinear function that ensures stability of the error dynamics. With application to secure 

communication, it is required that I��� be a scalar output i.e. * = I��� 	∈ ℛ. Then in order to 

design an appropriate nonlinear function ��⋅� it is first assumed that the master system can be 

written as 

 �� = ��	 + ²2��� + � (2.112) 

where  �		∈ ℛ�×�, ²		∈ ℛ�×�, �		∈ ℛ�×� and 2 ∶ ℛ� 	→ 		ℛ. The scalar output signal can be 

specified as 

 I��� = 2��� + b�	 (2.113) 

with b = �b�, … , b�� and let 

 �hI��� − I���j = ²hI��� − I���j	 (2.114) 
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Substituting in these two functions results in the linear error dynamics  

 	 �̂ = �^ − ²b^		 (2.115) 

where the term −b^ plays the role of a control feedback law. The values of b = �b�, … , b�% must 

then be chosen in such a way that the error dynamics have stable poles. Examples are shown in 

[72] using well-known chaotic systems that illustrate the effectiveness of the method. However, 

the rather significant limitation of the dimension of the nonlinearity 2�⋅� (as is quoted in the 

assumption of the form), makes this method impractical for many nonlinear systems.  

Chaotic Synchronization Based on the Luenberger Observer Form and the Solution to the 

Riccati Inequality 

Another technique that also doesn’t require any transformations is designed in [73]. Here, the 

authors consider systems that can be represented in the form 

 �� = �� + 	2��, �� + 
�Φ��, ��� + a�	 (2.116) 

 � = �� (2.117) 

where �		∈ ℛ�, �		∈ ℛ�, �		∈ ℛr, a		∈ ℛ� and  2 ∶ 	ℛ� →	ℛ�. Assuming that the pair (A, C) is 

detectable, an observer can be designed as 

 ��� = ��� + 	2���, �� + 
�Φ���, ��� + a� + ��� − ����	 (2.118) 

 �� = ��� (2.119) 

where L is the gain matrix that is to be determined to ensure synchronization. For the technique to 

work, two assumptions are made. Firstly, both 2���, �� and Φ���, �� must satisfy the Lipschitz 

continuity condition 

 ‖2��, �� − 2���, ��‖ 	≤ b8‖� − ��‖		  

 ‖Φ��, �� − Φ���, ��‖ 	≤ b´‖� − ��‖		  



 30 

Secondly, the gain matrix L must exist, as well as a symmetric, positive definite matrix P such that 

the Riccati inequality is satisfied 

 �� − ���0/ + /�� − ��� + hb8 + b´‖�‖‖
‖j@// + �	 < 0		 (2.120) 

Feasible solutions to this inequality can be found using LMI numerical computation tools. To 

illustrate how a given system can be written in the form (2.118) an example using the Chua circuit 

is considered. With reference to [74], the Chua system is usually written as 

 ��� = 	ª��@ − �� − 2����%		  

 ��@ =	�� − �@ +	�~		  

 ��~ =	−µ�@ +	�~		  

 where 2���� = ²�� + 12 �¶ − ²��|�� + 1| − |�� − 1|)	  

with a, b, ª, µ being constants with values of -1.28, -0.68, 10, 15.53 respectively. Re-writing it in 

the form (2.118) 

 
�� = 	 ·−10 10 01 −1 10 −14.28 0º � + ·

2(��)00 º +	·001º (−1.25�@)  

 � = �� =	 �0	0	1%�  

where Φ(��, �) = 	�@, 
 =	 �0 0 1%0, � = 	−1.25 and a = 0. A synchronized slave system can 

then successfully be constructed according to the literature in [73] since both the assumptions are 

satisfied i.e. 2(��, �) and Φ(��, �) are Lipschitz continuous and (A, C) are detectable (observable). 

Chaotic Synchronization Based on the Luenberger Observer  

In [75] the authors also use observer-based methods to synchronize a slave system to a chaotic 

master system, with exponential convergence. In [75], the form of the slave system resembles the 

form of the linear Luenberger observer, except with more conditions that are to be satisfied before 

the construction of the gain matrix L can take place. The gain matrix also contains a parameter that 
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can be viewed as a tuning parameter that has the effect of changing the transient behavior of the 

observer. The systems considered are similar to those that are linear and are of the form 

 *� = �* + 	
��*� (2.121) 

 � = �0* (2.122) 

where �	∈ ℛ�×�, and 
	∈ ℛ�. Once again the Lipschitz continuity restriction is placed on the 

nonlinearity ��*�. As long as (A, C) is detectable, the observer can be designed as  

 *̂� = �*̂ + 	
��*̂� + ��� − ��� (2.123) 

where the gain matrix L must be determined to ensure that �� − ��� is Hurwitz stable. The authors 

then continue to state a further proposition saying that the gain matrix L can be designed as  

 ���� = 	[#��½���	 (2.124) 

where [ =	 ��0 �0� ⋯ �0��#��0 is the observability matrix, and                                       

�½��� = 	 �W�� W@�@ ⋯ W����0. The constant parameters Wm, n = 1, 2, … , c are chosen such 

that the characteristic polynomial, given by ���I� = I� +	W�I�#� +⋯+ W�, is stable. The 

parameter � can be appropriately chosen and changed by the designer, and as long as  ��m� > 1, it 

is proved that the error  ^	 → 0	 exponentially. The proof involves a coordinate change through a 

transformation that is done by the invertible observability matrix [, i.e. �	 = 	[*, �½ 	= 	[�[#�, 

½ 	= 	[
, and 	�½0 	= �0[#�. The convergence rate is shown to be directly linked to the pair       

(A, C) since when this pair is observable, the convergence rate can be changed by changing the 

value of the parameter �, however, when the pair is only detectable (i.e. rank(O) < n) then the 

convergence rate is limited to that of the slowest mode or pole. 

A Novel Synchronization Technique Based on the Sylvester Equation  

The technique described in [46] proposes an observer based on the solution to the state-dependent 

Sylvester equation. The technique is also viewed as a nonlinear extension of the Luenberger 
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observer and also highlights the advantages of analytically determining the solution of the state-

dependent Sylvester equation as opposed to constantly determining the solution to the state-

dependent Riccati equation online. Systems of the form (2.70) - (2.71) are expressed in a state-

dependent linear representation as  

 �� = 5���� (2.125) 

 � = 6����	 (2.126) 

where 5��� ∈ 	ℛ�×�, 6��� ∈ 	ℛ�×�. The observer-based synchronized system can be constructed 

as 

 ��� = 5������ + ¾#�����
������ − 6�������		 (2.127) 

where ¾���, 
���  are parameters of the Sylvester equation 

 ¾���5��� = ����¾��� + 
���6���				 (2.128) 

In the Sylvester equation ���� ∈ 	ℛ�×� and 
��� ∈ 	ℛ�×� are free parameter matrices that are 

selected by the designer, and ¾��� is the calculated solution. The observer is proved to be 

asymptotically stable under three assumptions: the origin of the system given by (2.70) - (2.71) is 

Lyapunov stable, and for all 	� ∈ Ω the pair h5���, 6���j is observable for 6��� ∈ 	ℛ�×�, and for 

all � ∈ Ω, F(x) and H(x) are locally Lipschitz continuous. From the proof it is shown that the 

parameters of ���� must be chosen to make it a stable matrix in order to make ��0� a constant 

stable matrix, which in turn guarantees asymptotic stability. The authors illustrate the method by 

applying it to the chaotic Lorenz system, and it’s useful to show this example for clarity on setting 

up the Sylvester equation. It is shown that the parameter matrices of the Sylvester equation, ���� 
and 
���, are chosen as  

���� = ·−2 0 00 −3 00 0 −4º 
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and 
��� = �1 1 1%0, and note that ���� is chosen as stable. The Sylvester equation is then 

solved for ¾��� (refer to Appendix A for details of the solution to the Sylvester equation) and the 

solution is then used to calculate the gain matrix ���� = ¾#����
���. Here one is exposed to 

another technique that successfully estimates the states of the system. Although it has been shown 

to be an improvement of the method of observation by the state-dependent Riccati equation, it is 

still important to highlight the issues of this technique that could possibly be stumbling blocks in 

the design process. The first of these issues is the fact that the state-dependent matrices 

h5���, 6���j have to contain only the states that will be available in the output, for use in the 

observer. Secondly, we once again encounter the situation of having to arbitrarily choose matrices 

���� and 
��� such that a valid solution to the Sylvester equation can be found, i.e. there is no 

constructive method highlighted in [46] that can be used to obtain these matrices deterministically. 

To add to these, there are also further assumptions that have to be considered to guarantee the 

validity of this method, such as the requirement for the equilibrium point to be stable, as well as 

the Lipschitz continuity and observability assumptions. All these requirements that have to be 

satisfied to enable the technique to work, unfortunately also mean that the technique is less versatile 

and will not be successful for a wide variety of applications. 

Chaotic Synchronization Based on Adaptive Observer Methods  

The adaptive observer design method has been used frequently in the field of synchronization as is 

illustrated in [11]. The method is based on the updating of an adaptive parameter, as described in 

Section 2.2, which is used as a changing gain that is dependent on the magnitude of the error term. 

The technique in [11] addresses nonlinear systems that are in the common form 

 �� = �� + 	
2��� (2.129) 

 � = �� (2.130) 
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This observer-based method then makes use of the usual correcting term as well as a control term 

to build the synchronizing slave system  

 ��� = ��� + 	
2���� + 
� + 12�£
�� − ���� (2.131) 

where u is the control term and �@�À
�� − ��Á� is the corrector term. The adaptive parameter is given 

by �£ and is updated according to the ODE 

 �£� = Â‖� − ���‖@ (2.132) 

The technique then states that it is not necessary for the nonlinear term 2��� to be Lipschitz 

continuous as long as the control term u is chosen as  

 � = 2��� − 2���� (2.133) 

This is shown in the proof in [11] where it can be noted that the nonlinearities cancel out when the 

error term is determined as ^ = � − ��. This places less restriction on the nature of the master 

system nonlinearity, but in turn places a larger restriction by the amount of state information that 

must be supplied by the master system output. For example, if the nonlinearity contains terms with 

all state information in it, then the control term u of the slave system must contain all that 

information, which results in C having to be a full matrix. This method is, however, simple in its 

design and is shown to provide fundamental concepts for extended techniques that prove to have 

diverse application in recent research into observer theory.   

After much analysis and application of the observer and synchronization methods discussed 

throughout Chapter 2, it was found that the theory discussed in [11] seemed to be the most general 

and could be successfully applied to a variety of engineering systems. This generality proved to be 

the foundation on which a design methodology was developed, and the approach taken was based 

on the underlying concepts of adaptive observers and the theory analyzed in [11]. The objective, 
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was to develop a method of state estimation, given only partial state information in the output, and 

to incorporate an adaptive law in the observer similar to that found in [11]. The details of this 

method will be discussed in Chapter 3 and the applications thereof in Chapter 4.  
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3. METHODOLOGY 

The survey of literature in Chapter 2 has made it clear that design methods for nonlinear observers 

have been around for several decades. It has also highlighted the fact that the theory of the 

techniques themselves are diverse and can be applied to a wide variety of situations where it is 

needed to observe the states of a nonlinear system.  This variety of techniques is due to the nature 

of nonlinear systems as well as the nature of practical engineering systems. Since there can be a 

diverse range of systems, as well as a diverse range of scenarios in which an observer is needed to 

estimate state information, each technique has been developed due to the inherent constraints on 

specific systems and/or scenarios. Hence, as has been discussed, each technique works in certain 

cases, but not in others. It is obvious to state that not only will it be ideal, but also practical to have 

a single technique available that can be applied to a diverse set of systems, instead of being forced 

to change the observer method depending on whether different conditions are met. Consequently, 

the methods in the literature were analyzed, and the techniques applied to a variety of nonlinear 

systems in order to gauge the degree of generality amongst them.  

It was found that the most general theory of the studied literature was the adaptive observer theory, 

more specifically the theory from [11]. Referring to the literature of [11] we recall that the 

technique describes a way to construct a slave system that synchronizes to a master system by 

making use of the adaptive parameter as well as a control term. This control term is defined as   

� = 2��� − 2����, which implies that the entire nonlinearity of the master system must be present 

in the slave system. If the nonlinearity contains terms in which all state information is present, then 

in order to construct the slave system, all state information must be available. This requirement 

clearly defeats the purpose of constructing an observer in the first place, since the nature of 
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estimation theory is to construct all state information from only partial state measurements. Hence, 

a design methodology was developed and proved that eliminates the need for this control term and 

yet still manages to successfully estimate all unknown states.  

3.1. Design of a Nonlinear Observer 
Consider nonlinear systems  

 �� = ���� + 
� (3.1) 

 � = ℎ��� (3.2) 

that can either be re-written in the form 

 �� = �� + 2��� + 
�    (3.3) 

 � = �� (3.4) 

or that can undergo a coordinate change via a diffeomorphic transformation into the form 

 *� = �* + A��� + 
Ã�    (3.5) 

 � = �* (3.6) 

where the nonlinearity is given by  2��� = �2���� ⋯ 2����%0or A���, and �, *		∈ ℛ�, 

�		∈ ℛ�×�, 
, 
Ã 		∈ ℛ�×� and �		∈ ℛ�×�. The following theorem can be stated 

Theorem 3.1 

Given then that the system is in the form (3.3) - (3.4) the observer for this system can be designed 

as 

 ��� = ��� + 2���� + �@�£��� − ���� + 
�    (3.7) 

where the matrix D is to be determined to ensure that the error 

    ̂ = � − �� 	→ 0	¶I	& → ∞ (3.8) 

and where the adaptive parameter �£ is updated according to 
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 �£� = Â‖� − ���‖@ (3.9) 
Proof 

In order for the error to be proved to be stable it is required to highlight some assumptions and 

conditions first (refer to [35]). 

Assumption 1: 

rank���� = rank��� 
Assumption 2: 

rankX� − Z� �� 0Y = c + 	rank��� 
Condition 1: 

Again referring to [35], the following condition can be stated in light of Assumptions 1 and 2 

above. There exists an c × � matrix �, and an c × c, symmetric, positive definite matrix 	/ such 

that 

 /�� − ��� + �� − ���0/ = 	−, (3.10) 

 �0/ = 	� (3.11) 

Condition 1 holds, if and only if Assumptions 1 & 2 hold. 

Assumption 3: 

The nonlinearity is Lipschitz continuous with Lipschitz constant � 

 ‖2��� − 2����	‖ 	≤ �‖� − ��‖ (3.12) 

where ‖⋅‖	represents the �@-	norm. Then let the error be given by 

  ^ = � −	�� (3.13) 

and hence the error dynamics will be 

  �̂ = �� − 	���  (3.14) 

 �̂ = �	�� + 2��� + 
�	� − d	��� + 2���� + 12�£��� − ���� + 
�	f (3.15) 
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 �̂ = �^ + �	2��� − 2����	� − 12�£��^ (3.16) 

Then, re-writing (3.16) we get 

 �̂ = �� − ���^ + ��^ + �	2��� − 2����	� − 12�£��^ (3.17) 

Consider the Lyapunov candidate function 

 i = ^0/^ + 12 Â#��Ä@ (3.18) 

where 

 �Ä = 	� − �£ (3.19) 

Then, differentiating 

 i� = 	 �̂0/^ +	^0/ �̂ +	 Â#��Ä�Ä�  (3.20) 

Then, substituting (3.17) into (3.20) 

 i� = 	Å^0�� − ���0 + ^0����0 − 12�£^0����0 +	20��� − 20����Æ 	/^  

 +	^0/��� − ���^	 + ��^	 −	12�£��^ 
 

 +	2��� − 2����� + Â#��Ä�Ä�  (3.21) 

 =	^0h�� − ���0/ + /�� − ���j^ +	^0�����0/ + /���^  

 −d12�£^0�����0/ + /���^f + h20��� −	20����j/^ 
 

 +	^0/h2��� − 2����j +	 Â#��Ä�Ä� (3.22) 

Then, considering the term 	^0�����0/ + /���^ 

 ^0�����0/ + /���^ = ^0����0/^ + ^0/��^ (3.23) 

However, ̂ 0����0/^		∈ ℛ�×�	 i.e. scalar, therefore 

 �^0����0/^�0 = ^0����0/^ (3.24) 
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 ^0/0��^ = ^0����0/^ (3.25) 

And since / = /0 from Condition 1,  

 ^0/��^ = ^0����0/^ (3.26) 

 

Therefore 

 /�� = ����0/ (3.27) 

Then, also considering the term ^0�����0/ + /���^, and applying the same procedure (with 

reference to (3.23) to (3.27)), a similar result is obtained 

����0/ = /0�� = /�� 

Using this result, as well as equation (3.10) from Condition 1, (3.22) then becomes 

 i� = −	^0,^ + 	2^0/��^ − �£^0/��^ +	 Â#��Ä�Ä� 			  

 +	h20��� −	20����j/^	 +	^0/h2��� − 2����j (3.28) 

The, for simplification, let 

 h20��� −	20����j/^	 + 	^0/h2��� − 2����j = 	W��, ��� (3.29) 

Then, substituting in both (3.11) from Condition 1 and (3.29) into (3.28) we get 

 i� = −	^0,^ + 	2^0/��0/^ − �£^0/��0/^ +	Â#��Ä�Ä� + 	W��, ���		 (3.30) 

 ≤ −	^0,^ + 	2‖�0/^‖‖�0/^‖ − �£‖�0/^‖@ +	Â#��Ä�Ä� + 	W��, ���	 (3.31) 

Applying the following result to the term 2‖�0/^‖‖�0/^‖ in (3.31) 

 if 	�¶ − ²�@ ≥ 0  

 then	2¶² ≤ ¶@ + ²@ (3.32) 

we get 

 2‖�0/^‖‖�0/^‖ ≤ ‖�0/^‖@ + ‖�0/^‖@		 (3.33) 



 41 

Also considering the following result from [19] and applying that to the term ‖�0/^‖@ in (3.33) 

 ‖¾‖ = ÇZÈÉÊ�¾0¾�  

 where	ZÈÉÊ�¾0¾�	is the maximum eigenvalue of	¾0¾ (3.34) 

we get 

 ‖�0/^‖@ =	ZÈÉÊ�/��0/�. ‖^‖@		 (3.35) 

Substituting (3.33) and (3.35) into (3.31), we then get 

 i� ≤ −	^0,^ + ‖�0/^‖@ + ZÈÉÊ�/��0/�. ‖^‖@		  

 −�£‖�0/^‖@ +	Â#��Ä�Ä� + 	W��, ��� (3.36) 

 ≤ 	^0�−, +	ZÈÉÊ�/��0/���^ + ‖�0/^‖@�1 − �£�  

 +	Â#��Ä�Ä� + 	W��, ��� (3.37) 

Considering the adaptive parameter equation (3.19), and then differentiating, we get 

 �Ä� = 	�� − �£�  (3.38) 

taking note that 

 � = constant  

 therefore	�� = 0  

Considering the term out of equation (3.37), and substituting (3.38) into it 

 Â#��Ä�Ä� = 	 Â#��� − �£���� −	�£� �  

 =	 Â#��−��£� + �£�£� �  

 = 	 Â#��£� �−� + �£� (3.39) 

Consequently, (3.37) becomes 

 i� ≤ 	^0�−, +	ZÈÉÊ�/��0/���^ + ‖�0/^‖@�1 − �£�	  

 +	Â#��£� �−� + �£� + 	W��, ��� (3.40) 

Substituting in for the adaptive parameter (3.9) 
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 i� ≤ 	^0�−, +	ZÈÉÊ�/��0/���^ + ‖�0/^‖@�1 − �£�	  

 +	Â#�Â‖� − ���‖@�−� + �£� + 	W��, ��� (3.41) 

where 

 Â‖� − ���‖@ = Â‖��� − ���‖@ = 	Â‖�0/^‖@ (3.42) 

 

This leads to 

 i� ≤ 	^0�−, +	ZÈÉÊ�/��0/���^ + ‖�0/^‖@�1 − �£�		  

 +	Â#�Â‖�0/^‖@�−� + �£� + 	W��, ��� (3.43) 

 i� ≤ 	^0�−, +	ZÈÉÊ�/��0/���^  

 +‖�0/^‖@�1 − ��	+ 	W��, ��� (3.44) 

Then, re-looking at the nonlinear terms (3.29)   

 W��, ��� = h20��� −	20����j/^	 + 	^0/h2��� − 2����j  

 = 	2^0/h2��� − 2����j (3.45) 

since W��, ��� is a scalar. 

We also know that 

 2^0/h2��� − 2����j 	≤ 2�^0/h2��� − 2����j	�  

 ≤ 2‖/^‖�h2��� − 2����j	� (3.46) 

and since we are also under the assumption that 2��� is Lipschitz continuous 

 2‖/^‖�h2��� − 2����j	� 	≤ 2�‖/^‖‖� − ��‖ (3.47) 

 ≤ 2�‖/^‖‖^‖  

 ≤ 2�/^0^ (3.48) 

Then substituting this into (3.44) we get 
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 i� ≤ 	^0�−, +	ZÈÉÊ�/��0/���^ + ‖�0/^‖@�1 − �� 	+ 	2�/^0^	 (3.49) 

 ≤ 	^0�−, +	ZÈÉÊ�/��0/���^ + �1 − ��‖�0/‖@^0^	 + 	2�/^0^	  

 ≤ 	^0h−, +	ZÈÉÊ�/��0/�� +	h�1 − ��‖�0/‖@j� + 	2�/j^	 (3.50) 

,	and	� are to be chosen such that the following inequality is satisfied  

 	h−, +	ZÈÉÊ�/��0/�� +	h�1 − ��‖�0/‖@j� + 	2�/j < 0 (3.51) 

Then it is proven that 

 i� < 0 (3.52) 

This concludes the proof. 

Remark: It can be noted that the above proof is very conservative, and that asymptotic error 

stability can be obtained without such strict conditions on ,	and	�. Therefore the method above 

can be seen as sufficient for error stability but not necessary.  

3.2. Local Nonlinear Observability 

Before the above observer can be designed, or any other observer for that matter, the system first 

has to be observable. In other words, given the internal dynamics of the system, there must be 

sufficient information supplied by the output of that system, in order to successfully reconstruct all 

states. It has already been highlighted in the literature survey, the observability conditions for a 

given linear system for the construction of a Luenberger observer. In this section, the conditions 

for nonlinear observability will be illustrated by Theorem 3.2, and it can be noted that linear 

observability is merely a special case with respect to these conditions. Reference can be made to 

[76] where systems of the general form below are considered 

 �� = ���� (3.53) 

 � = ℎ��� (3.54) 
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with �		∈ ℛ�and �		∈ ℛ�. The observability mapping or observation space ,��� for an 

autonomous system can be given by 

 vww
wx ��′�′′⋮���#��{||

|} =
vww
wwx
�ËBℎ����Ë�ℎ����Ë@ℎ���⋮�Ë�#�ℎ���{||

||} = ,��� 
(3.55) ,��� is a set of nonlinear equations that illustrates how to determine the states x from ��, �′, �′′, … �. 

It can be noted that for a given nonlinear system, the number of time derivatives are not fixed. In 

the case of linear systems, the observability matrix O can be determined similarly to ,���, however 

it is obvious to realize that the matrix entries will all be constants as they are all first derivatives of 

linear equations.  

Theorem 3.2 

With reference to [76], the definition of the observability rank condition then states that given the 

system (3.53) - (3.54) and the observation space (3.55), if  
7Ì�9�79 :9Ícontains n linearly independent 

row vectors, then the system is observable at the point �B. Obviously if e,/e� remains linearly 

independent for all x, then the system is observable in its entire domain. Again, refer to [76] for the 

proof of this theorem. 

3.3. Design Algorithm 

In this section, the observer design process for the adaptive observer discussed in Section 3.1 is 

summarized in a step-by-step algorithm. Take note that the form of the system should either be 

written in a linearity-nonlinearity form, or it should be transformed into the nonlinear observable 
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canonical form. Most of the steps were done by simulation software, however the calculation of 

the Jacobian was done by hand, and hardcoded into the software.  

Algorithm 3.3 

Step 1 

Referring to Section 3.2, check that the system is observable. If it is observable proceed to Step 2, 

but if not, then the observer cannot be constructed using the existing structures of ���� and ℎ���. 
In the unobservable case, if possible, change the structure of ℎ��� in an attempt to achieve 

observability (i.e. utilize a different state for the measured output or add more states to the measured 

output). 

 
Step 2 

Perform a check to determine whether the nonlinearity 2��� is Lipschitz continuous. If it is found 

that the nonlinearity is indeed Lipschitz continuous, then asymptotic convergence of the observer 

can be guaranteed. If it is found that the nonlinearity is NOT Lipschitz continuous, it might still be 

possible to construct a successful observer, however convergence of the observer cannot be 

guaranteed. (Refer to Appendix B for more details on Lipschitz continuity and Lipschitz constants). 

Step 3 

Using matrices A and C, determine an L matrix using linear pole placement methods and arbitrarily 

chosen stable poles for �� − ���.	Take note that the choice of poles will have an effect on the 

transient behaviour of the observer. 

If it is found that matrices A and C are structured in such a way that matrix L cannot be determined 

as specified in Step 3, then proceed to Step 3(a). Otherwise, proceed to Step 4. 

 



 46 

Step 3(a) 

Find the equilibrium points of the system �� = �� + 2��� by setting �� = 0 

 

Step 3(b) 

Perform a linearization on 2��� by determining its Jacobian 5��� at the system equilibrium 

points: 

5��� = vww
wxe2� e��Ï ⋯ e2� e��Ï⋮ ⋱ ⋮e2� e��Ï ⋯ e2� e��Ï {||

|} 
Step 3(c) 

Determine an L matrix using linear pole placement methods by using h� +  5(�)j at an 

arbitrary equilibrium point, the output matrix C, and arbitrarily chosen poles for 

yh� +  5(�)j − ��z that are stable. Once again take note that the choice of poles will have 

an effect on the transient behaviour of the observer. 

If the L matrix cannot be determined, re-attempt by changing the poles of 

yh� +  5(�)j − ��z and/or choosing a different equilibrium point, and repeat Step 3(c). 

Once the L matrix has been determined, proceed to Step 4. 

Step 4 

Using the L matrix that has been determined, calculate the ‘error’ matrix as 

     �q  =  � − �� (3.56) 

Step 5 

Choose a matrix Q such that it is symmetric and positive definite.  



 47 

Step 6 

Solve the Lyapunov equation to determine a symmetric, positive definite matrix P, using �q and Q 

 �q/ + /�q0 + , = 0    (3.57) 

Step 7 

Using matrices P  and C, and equation (3.11), determine matrix D as 

 � = (�/#�)0    (3.58) 

Step 8 

Referring to Section 3.1, and using the Lipschitz constant ZÈÉÊ obtained in Step 2, ensure that a 

value for � can be chosen as to satisfy equation (3.51), which will guarantee asymptotic 

convergence of the observer. 

 
This concludes the algorithm. 
 
 

3.3.1 Illustrative Example 1 
 
Consider the system  

 
	��� = �@ + �@��@��@ = −�� − ��~ 			Õ 			����  

 � = ��			}			ℎ���  

which can also be written in the form 

 �� = �� + 2��� + 
�     

 � = ��  
as 

 E�����@F = X 0 1−1 0Y X���@Y + E�@��@−��~ F     

 � = �1 0%�  
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Step 1 

Determine observability (referring to Section 3.2).  

 

,(�) =
vww
wwx

�ËB ℎ(�)�Ë� ℎ(�)�Ë@ ℎ(�)⋮�Ë�#�ℎ(�){||
||} 

 

 �ËB ℎ(�) = ℎ(�) = ��  

 
�Ë� ℎ(�) = eℎe� � = �1 0% E�@ + �@��@−�� − ��~ F = �@ + �@��@ 

 

 ,(�) = E ���@ + �@��@F 
 

 
e,e� = E 1 02���@ 1 + ��@F 

 
 

Noting that n = 2, and since 
7Ì79 contains 2 linear independent row vectors, this system is 

observable. 

Step 2 

Check Lipschitz continuity (referring to Appendix B  

Consider the nonlinearity 2(�), of �(�) 
 

	2��� = E�@��@−��~ F	  

 where −1.5 ≤ �� ≤ 1.5 and −1.5 ≤ �@ ≤ 1.5  

 	Öe2�e��Ö = |2���@| = 4.5 = �8=9= 
 

 	Öe2�e�@Ö = |��@| = 2.25 = �8=9S 
 

 	Öe2@e��Ö = |−3��@| = 6.75 = �8S9= 
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 	Öe2@e�@Ö = |0| = 0 = �8S9S 
 

We can already conclude that the nonlinearity 2(�) is Lipschitz continuous since all the 

derivatives exist. Then, since �8=9= > �8=9S and �8S9= > �8S9S, we can determine the Lipschitz 

constant as 

 	� = Ùh�8=j@ + h�8Sj@ = 	Ç�4.5�@ + �6.75�@ = 8.1 
 

Step 3 

Determine the L matrix. 

Consider matrices 	� = X 0 1−1 0Y , � = �1 0% and the arbitrarily chosen poles of � − �0� of 

�−4 −1%. These poles are chosen to achieve certain desired transient behaviour of the error 

term. An L matrix can then be determined through pole placement as � = �5 3%. 
Step 4 

Calculate the ‘error’ matrix. 

Using the L matrix that has been determined, the ‘error’ matrix is determined as  

    	�q 	= 	� − �0�  

    	�q 	= 	 X 0 1−1 0Y 	− X53Y �1 0% = 	 X−5 1−4 0Y	  

Step 5 

Choose a matrix Q such that it is symmetric and positive definite.  

    	Q	 = 	 X4 44 4Y  

Step 6 

Solve the Lyapunov equation to determine a symmetric, positive definite matrix P. 
 �q/ + /�q0 + , = 0     
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 / = X0.5 0.50.5 4.5Y     

 
Noting that  

 / = /0     

 / > 0     

Step 7 

Determine matrix D using equation (3.11). 

 � = (�/#�)0     

 � = d�1 0% X0.5 0.50.5 4.5Y#�f0 = X 2.25−0.25Y        

Step 8 

Ensure that a value for � exists as to satisfy the inequality 

 	h−, +	ZÈÉÊ�/��0/�� +	h�1 − ��‖�0/‖@j� + 	2�/j < 0  

Choosing � = 350 will result in  

 	h−, +	ZÈÉÊ�/��0/�� +	h�1 − ��‖�0/‖@j� + 	2�/j = X−72.9 8.18.1 −8.1Y  

Note that this resulting matrix is symmetric (due to Q being symmetric) and hence negative 

eigenvalues of this matrix will mean that is it indeed negative definite. The eigenvalues of 

X−72.9 8.18.1 −8.1Y are �−73.8 −7.1% < 0, clearly showing that the inequality is satisfied and that 

observer convergence can be guaranteed. 
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3.3.2 Illustrative Example 2 
 
With reference to [77], consider the Lorenz system  

 
	��� = −µ�� + µ�@��@ = ª�� − �@ − ���~��~ = −Û�~ + ���@ 			Ü 			���� 

 

 � = ��			}			ℎ���  

Note that for this example the constant parameters were chosen as µ = 10, ª = 28, Û = Ý~. 
Step 1 

Determine observability (referring to Section 3.2).  

 

,��� =
vww
wwx
�ËBℎ����Ë�ℎ����Ë@ℎ���⋮�Ë�#�ℎ���{||

||} 
 

 �ËBℎ��� = ℎ��� = ��  

 
�Ë�ℎ��� = e��ËBℎ�e� � = �1 0 0% ·−µ�� + µ�@ª�� − �@ − ���~−Û�~ + ���@ º = −µ�� + µ�@ 

 

 

�Ë@ℎ��� = e��Ë�ℎ�e� � = �−µ µ 0% ·−µ�� + µ�@ª�� − �@ − ���~−Û�~ + ���@ º
= −µ2���� + µ2@���  

 
,��� = · ��−µ�� + µ�@−µ�−µ�� + µ�@� + µ�ª�� − �@ − ���~�º  

 

e,e� = · 1 0 0−µ µ 0µ�µ + ª − �~� µ�−µ − 1� −µ��º  
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Noting that n = 3, and since 
7Ì79 contains 3 linear independent row vectors, this system is 

observable. 

Step 2 

Check Lipschitz continuity (referring to Appendix B  

Consider the nonlinearity 2(�), of �(�) 
 

	2��� = · 0−���~���@ º  

 −17 ≤ �� ≤ 20−23 ≤ �@ ≤ 246 ≤ �~ ≤ 45  
 

 	Öe2�e��Ö = |0| = 0 = �8=9= 
 

 	Öe2�e�@Ö = |0| = 0 = �8=9S 
 

 Öe2�e�~Ö = |0| = 0 = �8=9Þ 
 

 	Öe2@e��Ö = |−�~| = 45 = �8S9= 
 

 	Öe2@e�@Ö = |0| = 0 = �8S9S 
 

 Öe2@e�~Ö = |−��| = 20 = �8S9Þ 
 

 Öe2~e��Ö = |�@| = 24 = �8Þ9= 
 

 Öe2~e�@Ö = |��| = 20 = �8Þ9S 
 

 Öe2~e�~Ö = |0| = 0 = �8Þ9Þ 
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We can already conclude that the nonlinearity 2(�) is Lipschitz continuous since all the 

derivatives exist. Then, taking maxh�8=j , maxh�8Sj ,	maxh�8Þj, we can determine the Lipschitz 

constant as 

 	� = Ùh�8=j@ + h�8Sj@ + h�8Þj@ =	Ç�0�@ + �45�@+�24�@ = 51 
 

Step 3 

Determine the L matrix. 

Considering the structure of the matrices 	� = ·−µ µ 0ª −1 00 0 −Ûº and	� = �1 0 0%, we can 

conclude that an L matrix cannot be determined through pole placement at this point. 

Consequently, proceed to Step 3(a).  

Step 3(a) 

Find the equilibrium points of the system. 

Set �� = 0 

 0 = −µ�� + µ�@0 = ª�� − �@ − ���~0 = −Û�~ + ���@ 			  

Then solving for ��, �@, �~ we get equilibrium points of �0, 0, 0�, h√72, √72, 27j and 

h−√72,−√72, 27j. 
Step 3(b) 

Perform a linearization on the nonlinearity 2���. 
F��� =

vww
wwx
e2� a��Ï e2� a�@Ï e2� a�~Ïe2@ a��Ï e2@ a�@Ï e2@ a�~Ïe2~ a��Ï e2~ a�@Ï e2~ a�~Ï {||

||} 
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F(�) = · 0 0 0−�~ 0 −���@ �� 0 º 
Step 3(c) 

Determine an L matrix through pole placement by using the matrix yh� +  F(�)j − ��z 

and arbitrary poles that are stable.  

Since the equilibrium point (0, 0, 0) will result in a matrix structure of h� +  F(�)j where 

an L matrix cannot be determined through pole placement, the equilibrium point 

h−√72, −√72, 27j is chosen. The poles are then chosen as (−40, −10, −8), and 

consequently  

 � = �44.3 53.6 −35.1%0  

is determined.  

Step 4 

Calculate the ‘error’ matrix. 

Using the L matrix that has been determined, the ‘error’ matrix is determined as  

     �q  =  � − ��  

 
    �q  =  ·−µ µ 0ª −1 00 0 −Ûº − · 44.353.6−35.1º �1 0 0%   

 
   = ·−54.3 10 0−25.6 −1 035.1 0 −8/3º   

Step 5 

Choose a matrix Q such that it is symmetric and positive definite.  

     Q =  X4 44 4Y  
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Step 6 

Solve the Lyapunov equation to determine a symmetric, positive definite matrix P. 
 �q/ + /�q0 + , = 0     

 / = ·0.048 0.060 0.0590.060 0.456 0.1670.059 0.167 1.524º     

Noting that  

 / = /0     

 / > 0     

Step 7 

Determine matrix D using equation (3.11). 

 � = (�/#�)0     

 � = á�1 0 0% ·0.048 0.060 0.0590.060 0.456 0.1670.059 0.167 1.524º#�â0 = ·25.63−3.15−0.64º        

Step 8 

Ensure that a value for � exists as to satisfy the inequality 

 	h−, +	ZÈÉÊ�/��0/�� +	h�1 − ��‖�0/‖@j� + 	2�/j < 0  

Choosing � = 2450 will result in  

 	h−, +	ZÈÉÊ�/��0/�� +	h�1 − ��‖�0/‖@j� + 	2�/j
= ·−223 6 66 −181 176 17 −72º  

where the eigenvalues are �−223 −183 −69% < 0, clearly showing that the inequality is 

satisfied and that observer convergence can be guaranteed. Note that the value of � has to be quite 

large in order to guarantee stability in this case, however smaller values can be used where it will 
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be noticed that the observer still converges. This result can be expected since conservative 

measures have been used throughout the proof in order to prove stability of the error terms. 

Note that the simulation results for this particular example can be seen in Chapter 4. 

3.4. Approximation of Transient Behaviour 

An Introduction to the Error Transient Behaviour 

In many practical instances, transient behaviour can have a significant effect on how the system as 

a whole performs. For example, if the transient behaviour of a reconstructed state has an amplitude 

too large, then this could cause controllers that are using these values, to become saturated too 

quickly and cause undesired control actions. Also, in high speed control systems, if the observer 

error does not reach zero fast enough and the actual states are constantly changing, then it becomes 

meaningless to estimate such states. Consequently the transient behaviour of the above method was 

analyzed and a simple process proposed in order to gauge an approximation of the upper bound (or 

largest value in seconds) of the transient time.  

An Introduction to the Error Transient Approximatio n Algorithm 

The idea behind Algorithm 3.4 below, was to find a linear ‘version’ of the error equation such 

that the poles of this new linearized system would provide the designer with an indication of the 

transient time of the observer. It must be emphasized that this Algorithm is purely heuristic, and 

no mathematical basis has been formulated to substantiate the steps of the algorithm. It is to be 

applied to gain a rough idea of a possible “worst-case” for the transient time, however, it is not 

definitive, and there is no guarantee that this procedure will indeed provide the worst possible 

case (as is demonstrated further on).  
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If, after working through the algorithm, it is found that the transient time is unacceptably large for 

this error approximation, one can repeat step 3 of the design algorithm (Algorithm 3.3), and by 

choosing faster poles, the result will be a new matrix D, directly influencing the transient 

behaviour. 

Algorithm 3.4 

Consider the error dynamics of the adaptive observer given by equation (3.16) 

 �̂ = �^ + h	2��� − 2����j − 12�£��^  

noting that this equation is nonlinear.  

Step 1 

Replace the matrix entries of 2��� with terms that include only the estimated states 	���, … , ���, 

and the error terms 	 �̂, … , ^�, by substituting in the equations  

 �� = ��� + �̂⋮�� = ��� + ^� 
 

thus resulting in 

 h	2��� − 2����j ≈ h2���, ^�j	 (3.59) 

Step 2 

Proceed to construct a new matrix 2�̅��, ^�	∈ ℛ�×� such that 

 y2�̅��, ^�z �^� ≈ h2���, ^�j (3.60) 

where ̂ = �^� ⋯ ^�%0. Assume that any error terms of order 2 and higher (i.e. ̂ �^@, �̂~	etc.) 

are close to zero and can be ignored. 

Step 3 

Re-write (3.16) using 2�̅��, ^�  
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 �̂ = d� + 2(̅��, ^) − 12 �£��f (^) 
(3.61) 

Step 4 

With the continued objective of ensuring that y� + 2(̅��, ^) − 12 �£��z is a stable matrix, an iterative 

process should be taken for the unknown variables that will guarantee stability and produce upper 

and lower bounds of the transient times of y� + 2(̅��, ^) − 12 �£��z. This iterative process is started 

in Step 4 and continues through Step 5. 

The process is started by first substituting the initial conditions of �� and �£ into (3.61), since these 

values are known a priori, however leaving the known (measured) components of  �� as a free 

variable (i.e. if �� is part of the measured set of states, then don’t substitute the initial condition for 

���). Then estimates for ^ can be substituted (also using the initial condition values).  

Step 5 

Then, considering the bounded domain of the free variable, substitute the lower bound value into 

the matrix y� + 2(̅��, ^) − 12 �£��z, noting whether the resulting matrix is stable or not. Increment 

the value of the free variable and again substitute into the matrix, noting again whether it is stable 

or not. Proceed until the upper bound of the free variable is reached. The designer can expect 

numerous feasible values for the free variables that will lead to a stable matrix, or none at all that 

result in a stable matrix (it must be stressed to the reader that this is a heuristic approach and there 

is no mathematical proof or guarantee that such a matrix will exist, and hence that an approximation 

using these steps will be possible). 
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Step 6 

It is assumed that Step 5 has resulted in numerous viable values of the free variable for which the 

matrix y� + 2(̅��, ^) − 12 �£��z is stable. Use those values of the variable that correspond to the 

largest transient times (upper bound) which will provide an approximation of the “worst-case” for 

the error transient response.  

This concludes the algorithm. 

 

3.4.1 Illustrative Example 1 

Consider the system  

 
	��� = �@ + �@��@��@ = −�� − ��~ 			  

 � = ��					  

Designing an observer of the form (3.7), the resulting error system is  

 �̂ = �^ + h	2��� − 2����j − 12�£��^  

 �̂ = X 0 1−1 0Y ^ +	·E�@��@−��~ F 	− E��@���@−���~ Fº 		− 0.5�£ X 2.25−0.25Y �1 0%^ 
 

Step 1 

Replace the matrix entries of 2��� with terms  

 �� = ��� + �̂⋮�� = ��� + ^� 
 

which results in 

 h	2��� − 2����j = h2���, ^�j = 	 ·E���@ + ^@����� + ^��@−���� + �̂�~ F 	− E��@���@−���~ Fº  
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Step 2 

Simplify h2(��, ^)j and proceed to construct a new matrix 2(̅��, ^)	∈ ℛ�×� such that 

 y2�̅��, ^�z �^� ≡ h2���, ^�j  
 y2�̅��, ^�z �^� = E2�����@ + ��@^� + 2���^@ ���@−3���@ − 3���^� 0 F X^�^@Y  

Step 3 

Re-write the error dynamics equation using 2�̅��, ^�.  
 �̂ = d� + 2�̅��, ^� − 12�£��f ^ 

 
 �̂ = ·X 0 1−1 0Y + E2�����@ + ��@ �̂ + 2���^@ ���@−3���@ − 3���^� 0 F − 0.5�£ X 2.25−0.25Y �1 0%º ^ 

 

Step 4 

Substitute the initial conditions of �� and �£, and estimates for ^.  

 ��B = X−1−1Y , ^B = X22Y , 	�£B = 0	  

and since the output � = ��, replace ��� with the free variable �̅�. The error dynamics then 

becomes 

 �̂ = ·X 0 1−1 0Y + æ2�̅��−1� + �−1��2� + 2�̅��2� �̅�@−3�̅�@ − 3�̅��2� 0 ç
− 0.5�0� X 2.25−0.25Y �1 0%º ^ 

 

Step 5 

Substitute values for ��� and iterate across the entire range of ���. Note and extract all values of ��� 
that produce a stable linear system. In this case the range of ��� is 

 −1.5 ≤ ��� ≤ 1.5  

and the values for ��� and corresponding stable eigenvalues 
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è�$ éê(ë$) éê(ë ) 

0.1 -0.9 -0.9 

0.2 -0.8 -0.8 

0.3 -0.7 -0.7 

0.4 -0.6 -0.6 

0.5 -0.5 -0.5 

0.6 -0.4 -0.4 

0.7 -0.3 -0.3 

0.8 -0.2 -0.2 

0.9 -0.1 -0.1 

Table 3. 1: Stable Modes of the Approximate Error Dynamics 

Note that in this case the increment between iterations is 0.1. This value is chosen at the discretion 

of the designer. 

Step 6 

The values of �̅� that will provide the upper and lower bounds of the approximated error transient 

times are chosen as �̅� = 0.1 and �̅� = 0.9. The approximated error dynamics systems (upper and 

lower bounds) then respectively become  

 �̂ = ·X 0 1−1 0Y + æ2(0.9)(−1) + (−1)(2) + 2(0.9)(2) (0.9)@−3(0.9)@ − 3(0.9)(2) 0 çº ^ 
 

 �̂ = X−0.2 1.81−8.8 0 Y ^  

and 

 �̂ = ·X 0 1−1 0Y + æ2(0.1)(−1) + (−1)(2) + 2(0.1)(2) (0.1)@−3(0.1)@ − 3(0.1)(2) 0 çº ^ 
 

 �̂ = X−1.8 1.0−1.6 0 Y ^  

with eigenvalues given in 3. 1, corresponding to those values of è�$ = ì. $ and è�$ = ì. í. 
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METHODOLOGY CONCLUDED  

This chapter has revealed and proved that, based on an existing technique for chaotic 

synchronization, a method can be formulated that successfully constructs a nonlinear observer, 

given that the system can be written in the form (3.3) - (3.4).  

Although Chapter 2 has clearly revealed that there are many applicable techniques that can 

successfully estimate the unknown states of a nonlinear system, the technique developed in Chapter 

3 was considered to be most appropriate in nonlinear systems applications. As previously stated, 

the technique was developed based on the existing chaotic synchronization work of [11], which 

proved to be applicable to numerous and different nonlinear (chaotic) systems. This method was 

then further developed in Chapter 3 in order to design an observer where only partial  state 

information is available. It was also then shown to address estimation problems of nonlinear 

systems that can be written in the general form (3.3) - (3.4), which covers a large class of nonlinear 

systems that can be separated into their respective linear and nonlinear parts. These aspects make 

this observer technique highly applicable to a wide range of nonlinear systems, provided that the 

conditions and assumptions, as listed in Section 3.1, are considered.  

A heuristic algorithm was then developed that approximates the transient times of the error 

response, based on a linearization of the error dynamics, which can then give the designer an idea 

upfront of how quickly the observer can potentially respond. 
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4. APPLICATION 

The method discussed in Chapter 3 was successfully applied to numerous nonlinear systems, and 

the results of these numerical simulations are given below. The simulations were executed using 

MATLAB/Simulink software and the code can be viewed in Appendix C.  

4.1. Lorenz Attractor 

A state observer, as described in Chapter 3, was designed to estimate the unknown states of the 

Lorenz attractor, with limited state information given in the output. The system dynamics of the 

Lorenz attractor (with reference to [77]) are given by 

  ��� = −µ�� + µ�@ (4.1) 

 ��@ = ª�� − �@ − ���~ (4.2) 

 ��~ = −Û�~ + ���@ (4.3) 

 � = �� (4.4) 

where the system behaves chaotically for parameter values of µ = 10, ª = 28, and Û = Ý~.  

Designing the Observer  

The observer for the Lorenz system was designed according to the algorithm discussed in Section 

3.3, and the numerical simulation results are illustrated and discussed below. For the step-by-step 

details of this particular application, the reader is referred to Illustrative Example 2 (Section 3.3.2). 

By applying the design algorithm of Chapter 3, the state observer was designed as 

 ��� = ��� + 2(��) + 12 �£�(� − ���)     

where  

 � = §10 10 028 −1 00 0 #Ý~
©, 2(��) = �0 −�����~ �����@%0, � = �1 0 0%    
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and recall that the gain matrix D was determined as � = �25.63 −3.15 −0.64%0 , with the 

adaptive parameter �£ given by equation (3.9).  

Results 

These particular simulations were done with initial conditions of  �B = �1 1 1%0 and               

��B = �5 5 5%0. The figures below clearly confirm the expected outcome. After certain transient 

behaviour, the estimated states converge to the actual state values and the error becomes stable (or 

tends to zero). In this case stability is reached around the 2 second mark for both estimated states. 

It can also be noted that for this example there is no noticeable, radical transient behaviour before 

convergence occurs 

 

Figure 4.1: Estimated state xxxx�2 vs actual state x2 
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Figure 4.2: Estimated state xxxx�3 vs actual state x3 

Quantifying the Error 

In order to gain a more detailed understanding of how accurate the estimations were, it was required 

to do more than just inspect the error response visually. As a result the mean squared error (MSE) 

was determined as per 

 MSE9= = �ñ ∑ h��ó − ���ój@ñmô�      

Quantifying the Error with Varying Disturbance 

Table 4. 1 below shows how the MSE for each state changes when the initial conditions (or 

magnitude of perturbations) change. The adaptive gain l from the equation �£� = Â‖� − ���‖@ was 

kept constant with a value of 1 for all the simulations below. 

ê$ì = (è$ − èÁ$) õö÷è$   ê ì = (è − èÁ ) õö÷è   êøì = (èø − èÁø) õö÷èø  

-4 = (1 – 5) 0.07  -4 = (1 – 5) 1.02  -4 = (1 – 5) 1.62 

-14 = (1 – 15) 0.12  -14 = (1 – 15) 1.79  -14 = (1 – 15) 3.81 

-49 = (1 – 50) 0.27  -49 = (1 – 50) 7.78  -49 = (1 – 50) 22.3 

Table 4. 1: Mean Squared Error with Varying Initial  Conditions (Lorenz) 
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Quantifying the Error with Varying Adaptive Gain 

Table 4. 2 below shows how the MSE for each state changes when the parameter of the adaptive 

equation changes i.e. the adaptive gain l in the equation �£� = Â‖� − ���‖@. All other parameters 

remained constant, and the same initial conditions of ^B = (�B − ��B) = 	 �−4 −4 −4%0 were used 

throughout. 

ù õö÷è$  õö÷è  õö÷èø  

5 0.02 0.58 0.76 

10 0.01 0.43 0.54 

30 0.006 0.28 0.33 

Table 4. 2: Mean Squared Error with Varying Adaptive Gain (Lorenz) 

Quantifying the Error with Varying Q Matrices 

Table 4. 3 below shows how the MSE for each state changes when the constant parameters of the 

Q matrix are changed. Recall from the design procedure that this parameter must be freely chosen 

by the designer for a stability guarantee, however, the choice of this matrix indeed has an effect on 

the performance of the observer. 

ú				 õö÷è$  õö÷è  õö÷èø  

0.1�	 0.0047 0.2488 0.3002 

û				 0.0253 0.6336 0.8462 

 û				 0.0422 0.8225 1.188 

üû				 0.069 1.0256 1.6271 

Table 4. 3: Mean Squared Error with Varying Q matrix (Lorenz) 
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Calculating the MSE has provided interesting results concerning the performance of the designed 

observer and some important conclusions can be highlighted: 

• The overall error does not remain the same irrespective of the magnitude of the initial 

conditions or perturbations, and hence the overall performance of the observer will depend 

on initial estimates of the unknown states 

• The adaptive parameter gain l has a significant effect on the overall error, and consequently 

provides the designer with a useful parameter that can be tweaked in order to optimize the 

observer performance 

• From the data it is clear that the choice of Q matrix not only determines whether stability 

can be guaranteed, but also influences the performance of the observer, however its effect 

is not as significant as the other parameters. In this case, the performance decreases as the 

parameters in the Q matrix are increased in magnitude. This will be something that the 

designer must consider when constructing this observer, with the goal of keeping the Q 

matrix as small as is possible. 

Approximating the Error Transients 

In order to model the transient behaviour of the error, a linear approximation was done based upon 

the algorithm described in Section 3.4. The details of each step have been omitted in this case, 

however, the final dynamical equation of the linear approximation was determined as 

 �̂ = d� + 2(̅��, ^) − 12 �£��f ^ 
 

 �̂ = vww
wxs10 10 028 −1 00 0 −83 u + · 0 0 0��~ 0 ����@ �� 0 º − 12 �£ ·25.6−3.1−0.6º �1 0 0%{||

|} ^ 
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where the initial condition values for ��@ and ��~ were used (recalling that ��B = �5 5 5%0), the 

adaptive parameter was chosen as �£ = 0, and the value for �� was  iterated across its range in order 

to get the upper and lower bounds of the error transients. Figure 4.3 and Figure 4.4, respectively 

show the responses of the approximated and actual error signals for the estimated states, ��@ and ��~. 

 

Figure 4.3: Actual and approximated error, e2 
 

 

Figure 4.4: Actual and approximated error, e3 
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With reference to Figure 4.3, the error bounds of e2_upper represent the approximated “worst 

case” transient response of the error for �@. Similarly with reference to Figure 4.4, the error bounds 

of e3_upper represent the approximated “worst case” transient responses of the error for �~.  

The settling transient time of the error approximation was then compared to the settling transient 

time of the actual error in order to determine the degree of accuracy of the approximation. This 

was done by determining the time taken for the error terms to reach ℮-1 of the peak error, where   

℮-1 = 0.367. These results can be seen in Table 4. 4 where the actual error decay and the approximate 

error decay have been compared. The time duration was measured, in seconds, from the peak 

amplitude of the disturbance up to the point where it decays to below 36.7% of the peak value.  

The results in Table 4. 4 indicate that the error approximation, in this particular case, was indeed 

an upper bound of the actual error for both estimated states, since the settling time is longer for the 

approximation. 

Time Taken to reach ℮-1 of the Peak Error 
Error Approximation for ê  

(sec) 
0.62 

(0.96-0.34) 
Actual Error ê  (sec) 0.45  

(0.79-0.34) 

Error Approximation for êø 
(sec) 

0.65 
(0.8-0.15) 

Actual Error êø (sec) 0.08 
(0.33-0.25) 

Table 4. 4: Time to achieve e-1 of Actual Error and Error Approximation, e 2 and e3 
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4.2. Rössler Attractor 

A state observer was also designed to estimate the unknown states of the Rössler attractor, once 

again with limited state information provided in the output. The system dynamics of the Rössler 

attractor (with reference to [78]) are given by 

  ��� = −�@ − �~ (4.5) 

 ��@ = �� + ¶�@ (4.6) 

 ��~ = ² + �~(�� − �) (4.7) 

 � = �@ (4.8) 

where the system behaves chaotically for parameter values of ¶ = 0.2, ² = 0.2, and � = 5. 

Designing the Observer  

The observer for the Rössler system was designed according to the algorithm discussed in 

Section 3.3, and the numerical simulation results are illustrated and discussed below.  

Following Step 1 of the algorithm, the observability of the system was first checked 

 

,(�) =
vww
wwx

�ËB ℎ(�)�Ë� ℎ(�)�Ë@ ℎ(�)⋮�Ë�#�ℎ(�){||
||} 

 

 �ËB ℎ(�) = ℎ(�) = �@  

 �Ë� ℎ(�) = e(�ËB ℎ)e� � = �0 1 0%��% = �� + ¶�@ 
 

 �Ë@ ℎ(�) = e(�Ë� ℎ)e� � = �1 ¶ 0%� = (−�@ − �~) + ¶(�� + ¶�@) 
 

 
,(�) = · �@�� + ¶�@(−�@ − �~) + ¶(�� + ¶�@)º 
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e,e� = ·0 1 01 ¶ 0¶ −1 + ¶@ −1º 
 

Noting that n = 3, and since 
7Ì79 contains 3 linear independent row vectors, this system is 

observable. 

The Lipschitz continuity was then checked as per Step 2. Considering the nonlinearity of the 

Rössler attractor 2(�) = �0 0 0.2 + ���~%0 and the domain of x, the theory in Appendix B  

 
	2��� = · 000.2 + ���~º  

 −7.7 ≤ �� ≤ 9.8−9.2 ≤ �@ ≤ 6.70 ≤ �~ ≤ 15.5  
 

 	Öe2�e��Ö = |0| = 0 = �8=9= 
 

 	Öe2�e�@Ö = |0| = 0 = �8=9S 
 

 Öe2�e�~Ö = |0| = 0 = �8=9Þ 
 

 	Öe2@e��Ö = |0| = 0 = �8S9= 
 

 	Öe2@e�@Ö = |0| = 0 = �8S9S 
 

 Öe2@e�~Ö = |0| = 0 = �8S9Þ 
 

 Öe2~e��Ö = |�~| = 15.5 = �8Þ9= 
 

 Öe2~e�@Ö = |0| = 0 = �8Þ9S 
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 Öe2~e�~Ö = |��| = 9.8 = �8Þ9Þ 
 

It can clearly be conclude that the nonlinearity 2(�) is Lipschitz continuous since all the 

derivatives exist. Then, taking maxh�8=j , maxh�8Sj ,	maxh�8Þj, the Lipschitz constant is 

determined as 

 	� = Ùh�8=j@ + h�8Sj@ + h�8Þj@ =	Ç�0�@ + �15.5�@+�9.8�@ = 18.3 
 

Although not shown in the dissertation, Steps 3 to 8 of the algorithm were followed in the 

sequence as discussed in Section 3.3, and the observer was consequently designed accordingly 

 ��� = ��� + 2���� + �@�£��� − ����     

where � = ·0 −1 −11 0.2 00 0 −5º, 2���� = �0 0 0.2 + �����~%0, � = �0 1 0%, and D calculated as 

 � = �−0.0002 0.008 −0.0003%0 .The adaptive parameter �£ is given by (3.9).  

Results 

This particular simulation was done using initial conditions of �B = �1 1 1%0 and                    

��B = �5 5 5%0. The figures below show how the error becomes stable and the estimated states 

converge to the actual state values, just as expected. From inspection is can be noted that there also 

is no erratic transient behaviour before stability is reached. The time taken until both estimated 

states reach the actual state values is about 3 seconds in both cases. 
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Figure 4.5: Estimated state xxxx�1 vs actual state x1 
 

 

Figure 4.6: Estimated state xxxx�3 vs actual state x3 
 

Quantifying the Error 

With the same objectives as stated in Section 4.1, the mean squared error (MSE) was determined 

in order to gain a more detailed understanding of how accurate the estimations were.  
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Quantifying the Error with Varying Disturbance 

Table 4. 5 below shows how the MSE for each state changes when the initial conditions (or 

magnitude of perturbations) change. The adaptive gain l from the equation �£� = Â‖� − ���‖@ was 

kept constant with a value of 1 for all the simulations below. 

ê$ì = (è$ − èÁ$) õö÷è$   ê ì = (è − èÁ ) õö÷è   êøì = (èø − èÁø) õö÷èø  

-4 = (1 - 5) 0.18  -4 = (1 - 5) 0.14  -4 = (1 - 5) 0.071 

-9 = (1 - 10) 0.4909  -9 = (1 - 10) 0.2966  -9 = (1 - 10) 0.4648 

-29 = (1 - 30) 2.4742  -29 = (1 - 30) 0.9461  -29 = (1 - 30) 8.4174 

Table 4. 5: Mean Squared Error with Varying Initial  Conditions (Rössler) 

 

Quantifying the Error with Varying Adaptive Gain 

Table 4. 6 shows how the MSE for each state changes when the parameter of the adaptive equation 

changes i.e. the adaptive gain l in the equation �£� = Â‖� − ���‖@. All other parameters remained 

constant, and the same initial conditions of ^B = (�B − ��B) = 	 �−4 −4 −4%0 were used throughout. 

ù õö÷è$  õö÷è  õö÷èø  

5 0.0736 0.0591 0.0432 

10 0.0497 0.0411 0.0332 

30 0.0271 0.0236 0.0211 

Table 4. 6: Mean Squared Error with Varying Adaptive Gain (Rössler) 
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Quantifying the Error by Varying the Q Matrix 

Table 4. 7 below shows how the MSE for each state changes when the constant parameters of the 

Q matrix are changed. Note that the magnitude of Q is generally bigger than that used in the Lorenz 

simulations which was necessary to guarantee stability of the observer. 

ú    õö÷è$  õö÷è  õö÷èø  

100� 0.3093 0.429 0.1079 

125� 0.4356 0.5616 0.1081 

150� 0.5729 0.7023 0.109 

175� 0.7191 0.8496 0.1116 

Table 4. 7: Mean Squared Error with Varying Q matrix (Rössler) 

As expected, calculating the MSE has again provided interesting results concerning the 

performance of the designed observer. The conclusions drawn are similar to those discussed in 

Section 4.1. 

Approximating the Error Transients 

As was done in Section 4.1, a linear approximation of the error transient behaviour was modelled, 

by applying the algorithm in Section 3.4. The details of each step have been omitted in this case, 

however, the final dynamical equation of the linear approximation was determined as 

 �̂ = d� + 2(̅��, ^) − 12 �£��f ^ 
 

 �̂ = §·0 −1 −11 0.2 00 0 5 º + · 0 0 00 0 0��~ + ^~ 0 ���º − 12 �£ ·−1.125.8−4.6º �0 1 0%© ^ 

 

Note in this case that the measured variable �@ occurs nowhere in the nonlinearity. This implies 

that, according to the error approximation algorithm, there can be no step involving the iterations 
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for the measured variable. Due to this finding, the step was skipped and the resulting matrix was 

analyzed after simply substituting in the initial conditions for ��~, ^~ and ���. However, this 

procedure led to an unstable mode. It was then decided to substitute only the initial condition for 

��~, where ��B = �5 5 5%0,  and iterate through the (expected) range of ���, which resulted in 

numerous stable matrices for certain values of ���. Consequently, approximations for the upper and 

lower bounds could then be extracted. The value used for the adaptive parameter was  �£ = 0. Figure 

4.7 and Figure 4.8 below show the responses of the approximated and actual error signals for the 

estimated states of ��� and ��~ respectively. 

 

Figure 4.7: Actual and approximated error, e1 

 

Figure 4.8: Actual and approximated error, e3 
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With reference to Figure 4.7, the error bounds of e1_upper represent the slower transient response 

of the error for ��. Similarly with reference to Figure 4.8, the error bounds of e3_upper represent 

the slower transient response of the error for �~.  

The settling time of the error approximation was then compared to the settling time of the actual 

error in order to determine the degree of accuracy of the approximation. This was done by 

determining the time taken for the error terms to reach ℮-1 of the initial error, where ℮-1 = 0.367. 

These results can be seen in Table 4. 8 where the actual error decay and the approximate error 

decay have been compared. The time duration was measured, in seconds, from the peak amplitude 

of the disturbance up to the point where it decays to below 36.7% of the peak value. 

Although Table 4. 8 clearly shows that the ℮-1 settling time for the error approximation of ^�is not 

an upper bound, by considering Figure 4.7 it can be noted that the approximation is indeed an upper 

bound, since it eventually approaches zero after the actual error does. This indicates that the actual 

error approaches zero at a steeper gradient as it does during the latter part of the transient time 

period (between 1 and 3 seconds), as opposed to the approximation, that approaches at a slower 

rate during that same time period. The transient time approximation for ̂~ is clearly an upper 

bound.  

Time Taken to reach ℮-1 of the Initial Error 
Error Approximation for ê$ 

(sec) 
1.24 Actual Error ê$ (sec) 1.58 

Error Approximation for êø 
(sec) 

14.3 Actual Error êø (sec) 0.293 

Table 4. 8: Time to achieve e-1 of Actual Error and Error Approximation, e 1 and e3 
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4.3. Van Der Pol Oscillator 

This section shows the results of the design method of Chapter 3 being applied to the Van Der Pol 

oscillator. An observer was once again designed using only partial state information. The system 

dynamics of this limit cycle (with reference to [79]) are given by 

  ��� = �@ (4.9) 

 ��@ = ý(1 − ��@)�@ − �� (4.10) 

 � = �� (4.11) 

where the parameter ý has been chosen as ý = 3 for this particular application. 

Designing the Observer  

The observer for the Van Der Pol oscillator was again designed according to the algorithm 

discussed in Section 3.3, and the numerical simulation results are illustrated and discussed below.  

Following Step 1 of the algorithm, the observability of the system was first checked 

 

,(�) =
vww
wwx

�ËB ℎ(�)�Ë� ℎ(�)�Ë@ ℎ(�)⋮�Ë�#�ℎ(�){||
||} 

 

 �ËB ℎ(�) = ℎ(�) = ��  

 �Ë� ℎ(�) = eℎe� � = �1 0% E �@ý(1 − ��@)�@ − ��F = 	 �@ 
 

 ,��� = X���@Y  

 
e,e� = X1 00 1Y  

Noting that n = 2, and since 
7Ì79 contains 2 linear independent row vectors, this system is 

observable. 
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The Lipschitz continuity was then checked as per Step 2. Considering the nonlinearity of the Van 

Der Pol oscillator 2(�) = �0 −ý��@�@%0 and the domain of x, the theory in Appendix B  

 	2��� = E 0−ý��@�@F  

 −0.8 ≤ �� ≤ 0.8−1.55 ≤ �@ ≤ 1.55 
 

 	Öe2�e��Ö = |0| = 0 = �8=9= 
 

 	Öe2�e�@Ö = |0| = 0 = �8=9S 
 

 	Öe2@e��Ö = |−2ý�@��| = 7.44 = �8S9= 
 

 	Öe2@e�@Ö = |−ý��@| = 1.92 = �8S9S 
 

It can clearly be conclude that the nonlinearity 2(�) is Lipschitz continuous since all the 

derivatives exist. Then, taking maxh�8=j , maxh�8Sj, the Lipschitz constant is determined as 

 	� = Ùh�8=j@ + h�8Sj@ =	Ç�7.44�@ + �1.92�@ = 7.68 
 

Although not shown in the dissertation, Steps 3 to 8 of the algorithm were followed in the 

sequence as discussed in Section 3.3, and the observer was consequently designed accordingly 

 ��� = ��� + 2���� + �@�£��� − ����     

where � = E 0 1−1 ýF, 2���� = �0 −ý��@�@%0, � = �1 0% and the gain matrix D was calculated 

to be  � = �2.46 −0.27%0 . The adaptive parameter �£ is given by (3.9).  

Results 

The simulation was done for initial conditions  �B = �0.05 0.05%0 and ��B = �−1 −1%0. The 

figure below shows how the error becomes stable and the estimated state converges to the actual 
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state value, as was expected out of the result of the design algorithm methodology. Error stability 

is achieved after about 5 seconds, and from inspection it can be noted that there is no erratic 

transient dynamics after the disturbance occurs (or after the initial conditions offset).  

 

Figure 4.9: Estimated state xxxx�2 vs actual state x2 
 

Quantifying the Error 

With the same objectives as stated in Section 4.1, the mean squared error (MSE) was determined 

in order to gain a more detailed understanding of how accurate the state estimations were.             

Quantifying the Error by Varying Disturbance 

Table 4. 9 below shows how the MSE for each state changed when the initial conditions (or 

magnitude of perturbations) changed. The adaptive gain l from the equation �£� = Â‖� − ���‖@ was 

kept constant with a value of 1 for all the simulations below. 

ê$ì = (è$ − èÁ$) õö÷è$   ê ì = (è − èÁ ) õö÷è  

1.05 = (0.05 + 1) 0.023  1.05 = (0.05 + 1) 0.015 

-4.95 = (0.05 - 5) 0.0985  -4.95 = (0.05 - 5) 0.3300 
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-9.95 = (0.05 - 10) 0.1801  -9.95 = (0.05 - 10) 0.0326 

Table 4. 9: Mean Squared Error with Varying Initial  Conditions (Van Der Pol) 

 

Quantifying the Error by Varying Adaptive Gain 

Table 4. 10 shows how the MSE for each state changed when the parameter of the adaptive equation 

changed i.e. the adaptive gain l in the equation �£� = Â‖� − ���‖@. All other parameters remained 

constant, and the same initial conditions of ^B = (�B − ��B) = 	 �1.05 1.05%0 were used throughout. 

ù õö÷è$  õö÷è  

5 0.0091 0.0010 

10 0.0063 0.0006 

15 0.0052 0.0013 

Table 4. 10: Mean Squared Error with Varying Adaptive Gain (Van Der Pol) 

 

Quantifying the Error by Varying the Q Matrix 

Table 4. 11 below shows how the MSE for each state changes when the constant parameters of the 

Q matrix are changed. All other parameter remained constant. 

ú				 õö÷è$  õö÷è  

4�	 0.0057 0.0017 

5�	 0.0063 0.0014 

6�	 0.0069 0.0013 

7�	 0.0074 0.0013 

Table 4. 11: Mean Squared Error with Varying Q matrix (Van Der Pol) 
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As expected, calculating the MSE has again provided interesting results concerning the 

performance of the designed observer.  

Considering Table 4. 9, an unexpected change in the magnitude of  MSE9S occurred when the initial 

conditions increased from a magnitude of 4.95 to 9.95. Unlike the other systems investigated, the 

MSE did not increase with an increase in initial error but unexpectedly decreased from 0.33 to 0.03, 

by a rather significant factor of 10. It did however increase from the first initial condition of 1.05 

to the second of 4.95. A similar occurrence took place when the adaptive parameter was varied 

(refer to Table 4. 10). Once again it was the magnitude of MSE9S that unexpectedly changed. In 

this instance it increased from 0.0006 to 0.0013 when the adaptive parameter was increased from 

10 to 15, the opposite effect to what occurred when the parameter was initially changed from 5 to 

10. Additionally (with reference to Table 4. 11) the MSE seems to decrease for the estimated state, 

as the magnitude of the Q matrix increases. This is opposite to what has been observed with the 

Lorenz and Rössler attractors. This questionable behaviour was not investigated and will not be 

covered in this dissertation, however, this provides an interesting point that can be addressed in 

further research, especially with respect to the Van Der Pol oscillator.   

Approximating the Error Transients 

In order to get a linear approximation of the error transient behaviour, the algorithm in Section 3.4 

was applied. Although the details of each step have been omitted, the final dynamical equation of 

the linear approximation was determined as 

 �̂ = d� + 2(̅��, ^) − 12 �£��f ^ 
 

 �̂ = æE 0 1−1 ýF + E 0 0−2ý����@ −ý��@F − 12 �£ X 2.46−0.27Y �1 0%ç ^ 
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where the initial condition value for ��@ was used (recalling that ��B = �−1 −1%0), the adaptive 

parameter was chosen as �£ = 2, and the value for �� was  iterated across its range in order to get 

the upper and lower bounds of the error transients. Figure 4.10 below shows the response of the 

approximated and actual error signals for the estimated state ��@. 

 

Figure 4.10: Actual and approximated error, e2 

With reference to Figure 4.10 above, the error bounds of e2_upper represent the slower transient 

responses of the error for ��. 

The settling time of the error approximation was then compared to the settling time of the actual 

error in order to determine the degree of accuracy of the approximation. This was done by 

determining the time taken for the error terms to reach ℮-1 of the initial error, where ℮-1 = 0.367. 

These results can be seen in Table 4. 12 where the actual error decay and the approximate error 

decay have been compared. The time duration was measured, in seconds, from the peak amplitude 

of the disturbance up to the point where it decays to below 36.7% of the peak value. 

Considering Figure 4.10 and Table 4. 12, it is clear that in this particular case, the approximated 

transient time forms an upper bound of the actual error transient time. 
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Time Taken to reach ℮-1 of the Initial Error 
Error Approximation for ê  (sec) Actual Error ê  (sec) 

1.605 0.042 

Table 4. 12: Time to achieve e-1 of Actual Error and Error Approximation 
 

 

APPLICATION CONCLUDED  

This chapter has illustrated, through numerical simulation, that an observer designed according to 

the methodology in Chapter 3, can successfully estimate the unknown states of the system, given 

only partially measured state information. All 3 systems, namely the Lorenz attractor, the Rössler 

attractor, and the Van Der Pol oscillator, display highly nonlinear, and in some cases, chaotic 

behaviour, and were selected in order to show the efficacy of the technique. Further studies were 

completed to analyze the accuracy of the estimated states, for varying design parameters and 

perturbations.  
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5. CONCLUSION 

An extensive investigation into the different techniques of nonlinear state estimation has been 

discussed in this dissertation. From the literature survey we can conclude that many years of 

research have been done and much effort aimed at designing and developing techniques for 

estimating the states of nonlinear systems. Each of the papers mentioned in the literature review, 

describes how an observer is successfully constructed for a given system, proving that there are 

indeed numerous nonlinear estimation techniques. In fact, since the theory has been researched for 

the last 40 years or so, some of these techniques have been developed to such an extent that they 

have found successful application in industry. From the literature survey, we find that most of the 

techniques can be classified into different types of nonlinear observers, namely, the extended 

Kalman filter, high gain observers, observers through output injection (or observers through 

transformations into nonlinear observer canonical forms), sliding mode observers, observers using 

an output vector, the state-dependent Riccati equation observer, finite time observers, and adaptive 

observers.  

After analysis of many of the papers, numerous techniques were applied to a diverse set of systems, 

and it was found that the adaptive observers provided a solid framework that seemed to be 

applicable to most of these example systems. An approach was then taken, using the theory from 

[11] as the foundation, to design a nonlinear observer based on adaptive observer techniques that 

can be applied to systems that can be written in the form  

 �� = �� + 2(�) + 
�     

 � = ��  
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or that can be applied to systems of the form 

 �� = �(�) + 
�  

 � = ℎ(�)  

assuming they can be transformed into the nonlinear observer canonical form  

 *� = �* + A(�) + 
Ã�  

 � = �*  

The methodology considers the designed observer as 

 ��� = ��� + 2(��) + 12 �£�(� − ���) + 
�     

where the adaptive parameter �£ is calculated by the equation 

 �£� = Â‖� − ���‖@  

This observer was proved to estimate the state of the system with asymptotic convergence, 

provided that certain assumptions on the master system were satisfied.  

The degree of accuracy of the estimate was then determined by calculating the mean squared error 

of the actual and estimated states. At first, the initial conditions were varied (with all other 

parameters constant), and expectedly the mean squared error increased with an increased 

magnitude of the difference in initial conditions. This result is axiomatic, since a larger perturbation 

will obviously produce a larger difference between estimated and actual states during the transients. 

Thereafter, while maintaining constant initial conditions, the mean squared error was analyzed for 

varying values of the adaptive parameter gain Â. It was found, in most cases that the mean squared 

error decreased with an increase in the gain Â. The Van Der Pol oscillator, however, proved to be 

different and showed that the mean squared error in fact started to increase again after a certain 

value of Â was exceeded. Consequently, the conclusions drawn from these results are two-fold. 

Firstly, the accuracy of the estimated states (during the transients) will decrease with an increase 



 87 

in magnitude of a perturbation. Secondly, it can be deduced that the accuracy of the estimated states 

will increase with a limited increase of the adaptive parameter gain Â.  
Finally, the error transients were analyzed. A basic procedure was developed with the objective of 

finding an upper bound of the error transient time, by using a linear approximation of the error 

dynamics. The results of this approximation procedure (quantified by the time taken to reach 36.7% 

of the peak error), proved to be diverse across the three different applications. When applied to the 

Lorenz attractor, the transient time of the approximated error was not far from the transient time of 

the actual error. When applied to the Rössler attractor, and considering ̂�, the upper bound 

transient time was in fact less than the actual transient time. Then for ^@, although the upper bound 

transient time was greater than the actual transient time, it was very conservative. In the case of the 

Van Der Pol oscillator, it was also found that the approximated upper bound transient was very 

conservative when compared to the actual transient. Take note again that the objective of 

approximating these transient times was to simply obtain a ‘worst case scenario’ for the actual error 

transient time, such that this approximated information can be made available a priori, giving the 

designer a benchmark on what might be the worst transients that can be expected from designing 

the observer.  

Implications and Further Research 

By analyzing the proof and the assumptions that are to be satisfied in order to guarantee asymptotic 

stability of the error, it is clear that this technique does have limitations. One important example is 

that the nonlinearity of the master system has to be Lipschitz continuous. This is an area where 

further research can be directed in order to remove this constraint on the master system, thus 

making the application of this technique even more general.  
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Another recommendation is borne out of the fact that the transient times of the error vector are 

merely asymptotic. It would be practically desirable for the designer to know upfront, with 

certainty, that the transient time will always be less than a certain value. Hence, another 

recommendation is to either extend the theory in Chapter 3, such that convergence takes place in 

finite time, or otherwise to apply finite time estimation theory to a similar variety of diverse 

systems.  

Further research can also be conducted in order to improve the procedure for the linear 

approximations of the error. The first objective would be to ensure that all upper bounds of the 

transient times are indeed greater than the actual transient times themselves. Secondly, less 

conservative (‘tighter’) upper bounds on the approximated error transient times would ensure a 

more accurate approximation, providing the designer with higher quality information on the 

expected error transient behaviour.  

A final recommendation addresses the proof of Chapter 3. Much of the theory used in the proof 

provides a very conservative means of showing that the derivative of the Lyapunov candidate 

function is in fact negative definite. This implies that there could be numerous systems containing 

a given set of parameters for which an observer can be successfully designed, but without any 

guarantee of error stability using the theory in the proof as it is in this dissertation. It is therefore 

recommended that further analysis and development of the proof of the convergence be undertaken 

in such a manner as to decrease the conservativeness thereof, allowing the method to be applied to 

a wider variety of systems, with the guarantee of stability.  
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APPENDICES 

Appendix A – Analytical Solution to the Sylvester E quation 

With reference to [80] and appendix A in [46], the solution to the generalized Sylvester equation  

 �¾5 = �¾ + 
6				 (6. 1) 

is shown below, where in this case it is assumed E = I. For the matrix �	∈ ℛ�×�			 
 det�I� − �� = ��I� = ��I� +⋯+ ��s + �B				 (6. 2) 

 adj�I� − �� 	= -�#�I�#� +⋯+ -�s + -B		 (6. 3) 

where �m , n = 0,…		 , c are scalar constant coefficients and -m , n = 0,…		 , c − 1 are constant 

coefficient matrices. According to the Leverrier-Faddeev algorithm, Rk and qk are determined as 

 -` = �	� b = c − 1	�-`o� + �`o�� b = c − 1,… ,1,0				 (6. 4) 

 �` = �			1 b = c−1b &���-`� b = c − 1, … ,1,0				 
(6. 5) 

The theorem for the solution then states that when �	∈ ℛ�×�, 
	∈ ℛ�×�, and 5	∈ ℛ�×� are given, 

then the solution to the matrix Sylvester equation (6. 1) is 

 
¾ =� -`
�5`�#�

`ôB  
(6. 6) 

 6 =� �`�5`�
`ôB = ���5� 

(6. 7) 

where the matrix Z is a free parameter matrix. Iff µ��� ∩ µ�5� = 	∅, then q-1(F) exists. When H is 

given and µ��� ∩ µ�5� = 	∅, then Z is fixed as � = 6�#��5� and consequently X can be 

calculated (as a unique solution). 
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Appendix B – Lipschitz Continuity and Lipschitz Con stants 

With reference to [81] it is said that f is Lipschitz continuous if there is a constant � such that  

 ‖2(�) − 2(��)	‖ ≤ �‖� − ��‖  

where ‖⋅‖	represents the �@-	norm. To check if the function f is Lipschitz continuous on a given 

subset � → 	ℛ�, it suffices to check that all the component functions 2m ∈ ℛ are Lipschitz 

continuous. This is the case since 

 ‖2m��� − 2m����	‖ 	≤ �m‖� − ��‖	for	n = 1,… , c  

implies 

 ‖2��� − 2����‖@ =�|2m(�) − 2m(��)	|@�
mô� ≤ � �m@‖� − ��‖@�

mô�  
 

which results in 

 ‖2(�) − 2(��)	‖ 	≤ �‖� − ��‖	with	� = d� �m@m f�@  

A useful theorem that is a sufficient condition for Lipschitz continuity is also stated below. 

Theorem B.1  

Suppose that 2���, �@� is defined on a set � →	ℛ@. If a constant � > 0 exists with  

 Ö e2e�� ���, �@�Ö 	≤ �	for	all	���, �@�	in	� 
 

then f is Lipschitz continuous on D with respect to �� and with a Lipschitz constant of �.  
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Appendix C – Numerical Simulation Code 

C.1. Lorenz Attractor 

Gain Matrix Calculation 

 
clear 
clc 
  
%% SYSTEM MATRICES 
  
A = [ -10.0000   10.0000     0;    
       28.0000   -1.0000     0 ;    
        0           0       -2.6667 ]; 
  
C = [1 0 0]; 
  
F2 = [         0         0         0; 
        -27.0000         0   -8.4853; 
          8.4853    8.4853         0]; 
  
F3 = [         0         0         0; 
        -27.0000         0    8.4853; 
         -8.4853    -8.4853         0]; 
  
x0  = [1;1;1]; 
xhat0 = [5;5;5]; 
theta_hat = 0 % 7.1 ;  
  
%% ------------------------------------------------ -----------------------  
  
gamma = 51;                             % Lipschitz  constant  
poles = [-40 -10 -8] ;     
Q = 4*eye(3); 
  
%% GAIN MATRIX 
  
A_lin = A + F3;                         % Linearized system matrix created so that 'place' can be 
used on an observable system (A,C)  
  
L = place(A_lin',C',poles);              
                 
Ae = A - L'*C;                          % Error matrix ( A-LC )  
  
P = lyap(Ae,Q);                         % P matrix (solution to Lyapunov equation)  
P_eig = eig(P)                          % Confirming that P is positive definite  
  
D = (C*inv(P))';                        % Observer Gain Matrix 
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Error Transient Approximation  

%% 
  
x3hat_sample = 16; 
x2hat_sample = -7.7; 
  
for  i = 1:20 - (-15) 
  
 
        x1test = -15 + i-1;   
         
        A_error = (A + [0  0  0; -(x3hat_sample)  0   -(x1test) ; (x2hat_sample)  (x1test)  0 ] - 
0.5*theta_hat*D*C);  % at t = about 0s  
  
        eig_A_error = eig(A_error)'; 
        negativedefinite = all(eig(A_error) < 0); 
    
   if  negativedefinite == 1 
       
        all_eig(i,:) =  [x1test eig_A_error];    
        neg_magnitude(i,:) = [x1test norm(eig_A_err or)]; 
    
   else  
       % do nothing  
   end  
    
end  
  
x1_sample1 = 11; 
x1_sample2 = 19; 
  
x1test_eig1_eig2_eig3 = real(all_eig) 
neg_magnitude 

Mean Squared Error Calculation 

%% - MEAN SQUARED ERROR - Lorenz Attractor  
  
Err_vec = lorenz_states - lorenz_est_states; 
  
% - STATE1  
Err_vec1 = Err_vec(:,1);  
Sum_Err_Sqrd1 = 0; 
  
MSE1 =  mse(Err_vec1) 
  
% - STATE2  
Err_vec2 = Err_vec(:,2);  
Sum_Err_Sqrd2 = 0; 
  
MSE2 =  mse(Err_vec2) 
  
% - STATE3  
Err_vec3 = Err_vec(:,3);  
Sum_Err_Sqrd3 = 0; 
  
MSE3 =  mse(Err_vec3)  
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Observer Model 

 
Figure C. 1. 1: Lorenz Attractor Observer - Simulation Overview 

 
 

 
Figure C. 1. 2: Lorenz Attractor Observer - Lorenz Model 
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Figure C. 1. 3: Lorenz Attractor Observer - Observer Model 

 
 

 
Figure C. 1. 4: Lorenz Attractor Observer - Error Approx 
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C.2. Rössler Attractor 

Gain Matrix Calculation 

 
clear 
clc 
  
%% SYSTEM MATRICES 
  
a=0.2; 
b=0.2; 
c=5; 
  
A =   [  0   -1   -1; 
         1    a    0; 
         0    0   -c ] ; 
  
C = [0 1 0]; 
  
F2 = [   0   0   0; 
         0   0   0; 
         25  0   5]; 
  
F3 = [   0     0   0; 
         0     0   0; 
         0.04  0   0.008]; 
  
x0  = [1;1;1]; 
xhat0 = [5;5;5]; 
theta_hat = 0; 
  
%% ------------------------------------------------ -----------------------  
  
gamma = 18.3;                               % Lipschitz  constant  
poles = [-0.1 -0.2 -0.4] ; 
Q = 175*eye(3); 
  
%% GAIN MATRIX 
  
A_lin = A + F2;                             % Linearized system matrix  
  
L = place(A_lin',C',poles);                 % Gain matrix  
  
Ae = A_lin - L'*C;                              % Error matrix ( A-LC )  
  
P = lyap(Ae,Q);                             % P matrix (solution to Lyapunov equation)  
P_eig = eig(P) 
  
D = (C*inv(P))'; 
 

Error Transient Approximation  

for  i = 1:10 - (-10) 
     
        x1test = -10 + i-1; 
    
        A_error = (A + [0 0 0 ;0 0 0 ;5 0 x1test] -  0.5*theta_hat*D*C); % at t = 0s  
        eig_A_error = eig(A_error)'; 
        negativedefinite = all(eig(A_error) < 0); 
    
   if  negativedefinite == 1 
       
        all_eig(i,:) =  [x1test eig_A_error];    
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        neg_magnitude(i,:) = [x1test norm(eig_A_err or)]; 
   else  
        
       % do nothing  
        
   end  
    
end  
  
  
x1test_eig1_eig2_eig3 = real(all_eig) 
  
neg_magnitude 

Mean Squared Error Calculation 

%% - MEAN SQUARED ERROR - Rossler Attractor  
  
Err_vec = rossler_states - rossler_est_states; 
  
% - STATE1  
Err_vec1 = Err_vec(:,1);  
Sum_Err_Sqrd1 = 0; 
  
MSE1 =  mse(Err_vec1) 
  
% - STATE2  
Err_vec2 = Err_vec(:,2);  
Sum_Err_Sqrd2 = 0; 
  
MSE2 =  mse(Err_vec2) 
  
% - STATE3  
Err_vec3 = Err_vec(:,3);  
Sum_Err_Sqrd3 = 0; 
  
MSE3 =  mse(Err_vec3) 

Observer Model 

 
Figure C. 2. 1: Rössler Attractor Observer - Simulation Overview 



 102 

 
Figure C. 2. 2: Rössler Attractor Observer - Rössler Model 

 

 
Figure C. 2. 3: Rössler Attractor Observer - Observer Model 
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Figure C. 2. 4: Rössler Attractor Observer - Error Approx 

 
 

C.3. Van Der Pol Oscillator 

Gain Matrix Calculation 

 
clear 
clc 
  
mu = 3; 
  
A = [ 0  1 ; -1  mu ]; 
  
C = [ 1 0 ]; 
  
x0  = [0.05;0.05]; 
xhat0 = [-1;-1]; 
  
  
%% ------------------------------------------------ -----------------------  
  
gamma = 7.68;                                   % Lipschitz  constant  
poles = [-4 -1 ] ; 
Q = 4*eye(2) 
  
%% GAIN MATRIX 
 
  
A_lin = A + [0 0;0 0];                          % Linearized system matrix  
  
L = place(A_lin',C',poles);                     % Gain matrix  
  
Ae = A - L'*C;                                  % Error matrix ( A-LC )  
  
P = lyap(Ae,Q);                                 % P matrix (solution to Lyapunov equation)  
P_eig = eig(P) 
 
D = (C*inv(P))' 
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Error Transient Approximation  

theta_hat = 2  ; 
  
x1max = 0.8; 
x1min = -0.8; 
  
xhat1_sample = xhat0(1,1); 
xhat2_sample = xhat0(2,1); 
e1_sample = x0(1,1) - xhat1_sample; 
e2_sample = x0(2,1) - xhat2_sample; 
x2_sample = 1; 
  
res_fact = 0.01; % resolution factor  
  
for  i = 1:(x1max-x1min)/res_fact + 1 
     
        x1test = x1min + i*res_fact - res_fact; 
    
        A_error = (A + [ 0  0 ; -2*mu*x1test*xhat2_ sample  -mu*x1test^2 ] - 0.5*theta_hat*D*C); 
         
        eig_A_error = eig(A_error)'; 
         
        negativedefinite = all(eig(A_error) < 0); 
    
   if  negativedefinite == 1 
       
        all_eig(i,:) =  [x1test eig_A_error];    
         
        neg_magnitude(i,:) = [x1test norm(eig_A_err or)]; 
         
   else  
       % do nothing  
   end  
    
end  
  
  
x1test_eig1_eig2_eig3 = real(all_eig) 
  
neg_magnitude 

Mean Squared Error Calculation 

%% - MEAN SQUARED ERROR - Van Der Pol Oscillator  
  
Err_vec = VDP_states - VDP_est_states; 
  
% - STATE1  
Err_vec1 = Err_vec(:,1);  
Sum_Err_Sqrd1 = 0; 
  
MSE1 =  mse(Err_vec1) 
  
% - STATE2  
Err_vec2 = Err_vec(:,2);  
Sum_Err_Sqrd2 = 0; 
  
MSE2 =  mse(Err_vec2) 
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Observer Model 

 
Figure C. 3. 1: Van Der Pol Oscillator Observer - Simulation Overview 

 
Figure C. 3. 2: Van Der Pol Oscillator Observer - Limit Cycle Model 
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Figure C. 3. 3: Van Der Pol Oscillator Observer - Observer Model 

 
Figure C. 3. 4: Van Der Pol Oscillator Observer - Error Approx 
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