6 research outputs found

    CLEAR: Covariant LEAst-square Re-fitting with applications to image restoration

    Full text link
    In this paper, we propose a new framework to remove parts of the systematic errors affecting popular restoration algorithms, with a special focus for image processing tasks. Generalizing ideas that emerged for 1\ell_1 regularization, we develop an approach re-fitting the results of standard methods towards the input data. Total variation regularizations and non-local means are special cases of interest. We identify important covariant information that should be preserved by the re-fitting method, and emphasize the importance of preserving the Jacobian (w.r.t. the observed signal) of the original estimator. Then, we provide an approach that has a "twicing" flavor and allows re-fitting the restored signal by adding back a local affine transformation of the residual term. We illustrate the benefits of our method on numerical simulations for image restoration tasks

    Ultra-high Dimensional Multiple Output Learning With Simultaneous Orthogonal Matching Pursuit: A Sure Screening Approach

    Full text link
    We propose a novel application of the Simultaneous Orthogonal Matching Pursuit (S-OMP) procedure for sparsistant variable selection in ultra-high dimensional multi-task regression problems. Screening of variables, as introduced in \cite{fan08sis}, is an efficient and highly scalable way to remove many irrelevant variables from the set of all variables, while retaining all the relevant variables. S-OMP can be applied to problems with hundreds of thousands of variables and once the number of variables is reduced to a manageable size, a more computationally demanding procedure can be used to identify the relevant variables for each of the regression outputs. To our knowledge, this is the first attempt to utilize relatedness of multiple outputs to perform fast screening of relevant variables. As our main theoretical contribution, we prove that, asymptotically, S-OMP is guaranteed to reduce an ultra-high number of variables to below the sample size without losing true relevant variables. We also provide formal evidence that a modified Bayesian information criterion (BIC) can be used to efficiently determine the number of iterations in S-OMP. We further provide empirical evidence on the benefit of variable selection using multiple regression outputs jointly, as opposed to performing variable selection for each output separately. The finite sample performance of S-OMP is demonstrated on extensive simulation studies, and on a genetic association mapping problem. KeywordsKeywords Adaptive Lasso; Greedy forward regression; Orthogonal matching pursuit; Multi-output regression; Multi-task learning; Simultaneous orthogonal matching pursuit; Sure screening; Variable selectio

    Otimização multi-objetivo em aprendizado de máquina

    Get PDF
    Orientador: Fernando José Von ZubenTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Regressão logística multinomial regularizada, classificação multi-rótulo e aprendizado multi-tarefa são exemplos de problemas de aprendizado de máquina em que objetivos conflitantes, como funções de perda e penalidades que promovem regularização, devem ser simultaneamente minimizadas. Portanto, a perspectiva simplista de procurar o modelo de aprendizado com o melhor desempenho deve ser substituída pela proposição e subsequente exploração de múltiplos modelos de aprendizado eficientes, cada um caracterizado por um compromisso (trade-off) distinto entre os objetivos conflitantes. Comitês de máquinas e preferências a posteriori do tomador de decisão podem ser implementadas visando explorar adequadamente este conjunto diverso de modelos de aprendizado eficientes, em busca de melhoria de desempenho. A estrutura conceitual multi-objetivo para aprendizado de máquina é suportada por três etapas: (1) Modelagem multi-objetivo de cada problema de aprendizado, destacando explicitamente os objetivos conflitantes envolvidos; (2) Dada a formulação multi-objetivo do problema de aprendizado, por exemplo, considerando funções de perda e termos de penalização como objetivos conflitantes, soluções eficientes e bem distribuídas ao longo da fronteira de Pareto são obtidas por um solver determinístico e exato denominado NISE (do inglês Non-Inferior Set Estimation); (3) Esses modelos de aprendizado eficientes são então submetidos a um processo de seleção de modelos que opera com preferências a posteriori, ou a filtragem e agregação para a síntese de ensembles. Como o NISE é restrito a problemas de dois objetivos, uma extensão do NISE capaz de lidar com mais de dois objetivos, denominada MONISE (do inglês Many-Objective NISE), também é proposta aqui, sendo uma contribuição adicional que expande a aplicabilidade da estrutura conceitual proposta. Para atestar adequadamente o mérito da nossa abordagem multi-objetivo, foram realizadas investigações mais específicas, restritas à aprendizagem de modelos lineares regularizados: (1) Qual é o mérito relativo da seleção a posteriori de um único modelo de aprendizado, entre os produzidos pela nossa proposta, quando comparado com outras abordagens de modelo único na literatura? (2) O nível de diversidade dos modelos de aprendizado produzidos pela nossa proposta é superior àquele alcançado por abordagens alternativas dedicadas à geração de múltiplos modelos de aprendizado? (3) E quanto à qualidade de predição da filtragem e agregação dos modelos de aprendizado produzidos pela nossa proposta quando aplicados a: (i) classificação multi-classe, (ii) classificação desbalanceada, (iii) classificação multi-rótulo, (iv) aprendizado multi-tarefa, (v) aprendizado com multiplos conjuntos de atributos? A natureza determinística de NISE e MONISE, sua capacidade de lidar adequadamente com a forma da fronteira de Pareto em cada problema de aprendizado, e a garantia de sempre obter modelos de aprendizado eficientes são aqui pleiteados como responsáveis pelos resultados promissores alcançados em todas essas três frentes de investigação específicasAbstract: Regularized multinomial logistic regression, multi-label classification, and multi-task learning are examples of machine learning problems in which conflicting objectives, such as losses and regularization penalties, should be simultaneously minimized. Therefore, the narrow perspective of looking for the learning model with the best performance should be replaced by the proposition and further exploration of multiple efficient learning models, each one characterized by a distinct trade-off among the conflicting objectives. Committee machines and a posteriori preferences of the decision-maker may be implemented to properly explore this diverse set of efficient learning models toward performance improvement. The whole multi-objective framework for machine learning is supported by three stages: (1) The multi-objective modelling of each learning problem, explicitly highlighting the conflicting objectives involved; (2) Given the multi-objective formulation of the learning problem, for instance, considering loss functions and penalty terms as conflicting objective functions, efficient solutions well-distributed along the Pareto front are obtained by a deterministic and exact solver named NISE (Non-Inferior Set Estimation); (3) Those efficient learning models are then subject to a posteriori model selection, or to ensemble filtering and aggregation. Given that NISE is restricted to two objective functions, an extension for many objectives, named MONISE (Many Objective NISE), is also proposed here, being an additional contribution and expanding the applicability of the proposed framework. To properly access the merit of our multi-objective approach, more specific investigations were conducted, restricted to regularized linear learning models: (1) What is the relative merit of the a posteriori selection of a single learning model, among the ones produced by our proposal, when compared with other single-model approaches in the literature? (2) Is the diversity level of the learning models produced by our proposal higher than the diversity level achieved by alternative approaches devoted to generating multiple learning models? (3) What about the prediction quality of ensemble filtering and aggregation of the learning models produced by our proposal on: (i) multi-class classification, (ii) unbalanced classification, (iii) multi-label classification, (iv) multi-task learning, (v) multi-view learning? The deterministic nature of NISE and MONISE, their ability to properly deal with the shape of the Pareto front in each learning problem, and the guarantee of always obtaining efficient learning models are advocated here as being responsible for the promising results achieved in all those three specific investigationsDoutoradoEngenharia de ComputaçãoDoutor em Engenharia Elétrica2014/13533-0FAPES

    Statistical learning methods for multi-omics data integration in dimension reduction, supervised and unsupervised machine learning

    Get PDF
    Over the decades, many statistical learning techniques such as supervised learning, unsupervised learning, dimension reduction technique have played ground breaking roles for important tasks in biomedical research. More recently, multi-omics data integration analysis has become increasingly popular to answer to many intractable biomedical questions, to improve statistical power by exploiting large size samples and different types omics data, and to replicate individual experiments for validation. This dissertation covers the several analytic methods and frameworks to tackle with practical problems in multi-omics data integration analysis. Supervised prediction rules have been widely applied to high-throughput omics data to predict disease diagnosis, prognosis or survival risk. The top scoring pair (TSP) algorithm is a supervised discriminant rule that applies a robust simple rank-based algorithm to identify rank-altered gene pairs in case/control classes. TSP usually generates greatly reduced accuracy in inter-study prediction (i.e., the prediction model is established in the training study and applied to an independent test study). In the first part, we introduce a MetaTSP algorithm that combines multiple transcriptomic studies and generates a robust prediction model applicable to independent test studies. One important objective of omics data analysis is clustering unlabeled patients in order to identify meaningful disease subtypes. In the second part, we propose a group structured integrative clustering method to incorporate a sparse overlapping group lasso technique and a tight clustering via regularization to integrate inter-omics regulation flow, and to encourage outlier samples scattering away from tight clusters. We show by two real examples and simulated data that our proposed methods improve the existing integrative clustering in clustering accuracy, biological interpretation, and are able to generate coherent tight clusters. Principal component analysis (PCA) is commonly used for projection to low-dimensional space for visualization. In the third part, we introduce two meta-analysis frameworks of PCA (Meta-PCA) for analyzing multiple high-dimensional studies in common principal component space. Theoretically, Meta-PCA specializes to identify meta principal component (Meta-PC) space; (1) by decomposing the sum of variances and (2) by minimizing the sum of squared cosines. Applications to various simulated data shows that Meta-PCAs outstandingly identify true principal component space, and retain robustness to noise features and outlier samples. We also propose sparse Meta-PCAs that penalize principal components in order to selectively accommodate significant principal component projections. With several simulated and real data applications, we found Meta-PCA efficient to detect significant transcriptomic features, and to recognize visual patterns for multi-omics data sets. In the future, the success of data integration analysis will play an important role in revealing the molecular and cellular process inside multiple data, and will facilitate disease subtype discovery and characterization that improve hypothesis generation towards precision medicine, and potentially advance public health research
    corecore