1,351 research outputs found

    Efficient Implementation on Low-Cost SoC-FPGAs of TLSv1.2 Protocol with ECC_AES Support for Secure IoT Coordinators

    Get PDF
    Security management for IoT applications is a critical research field, especially when taking into account the performance variation over the very different IoT devices. In this paper, we present high-performance client/server coordinators on low-cost SoC-FPGA devices for secure IoT data collection. Security is ensured by using the Transport Layer Security (TLS) protocol based on the TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 cipher suite. The hardware architecture of the proposed coordinators is based on SW/HW co-design, implementing within the hardware accelerator core Elliptic Curve Scalar Multiplication (ECSM), which is the core operation of Elliptic Curve Cryptosystems (ECC). Meanwhile, the control of the overall TLS scheme is performed in software by an ARM Cortex-A9 microprocessor. In fact, the implementation of the ECC accelerator core around an ARM microprocessor allows not only the improvement of ECSM execution but also the performance enhancement of the overall cryptosystem. The integration of the ARM processor enables to exploit the possibility of embedded Linux features for high system flexibility. As a result, the proposed ECC accelerator requires limited area, with only 3395 LUTs on the Zynq device used to perform high-speed, 233-bit ECSMs in 413 µs, with a 50 MHz clock. Moreover, the generation of a 384-bit TLS handshake secret key between client and server coordinators requires 67.5 ms on a low cost Zynq 7Z007S device

    Hardware/software codesign methodology for fuzzy controller implementation

    Get PDF
    This paper describes a HW/SW codesign methodology for the implementation of fuzzy controllers on a platform composed by a general-purpose microcontroller and specific processing elements implemented on FPGAs or ASICs. The different phases of the methodology, as well as the CAD tools used in each design stage, are presented, with emphasis on the fuzzy system development environment Xfuzzy. Also included is a practical application of the described methodology for the development of a fuzzy controller for a dosage system

    Domain specific high performance reconfigurable architecture for a communication platform

    Get PDF

    Pre-silicon FEC decoding verification on SoC FPGAs

    Get PDF
    Forward error correction (FEC) decoding hardware modules are challenging to verify at pre-silicon stage, when they are usually described at register-transfer (RT)/logic level with a hardware description language (HDL). They tend to hide faults due to their inherent tendency to correct errors and the required simulations with a massive insertion of inputs are too slow. In this work, two verification techniques based on FPGA-prototyping are applied in order to complement the mentioned simulations: golden model vs implementation matching with thousands of random codewords and codeword/bit error rate (CER/BER) curve computation. For this purpose, a system on chip (SoC) field-programmable gate array (FPGA) is used, implementing in the programmable hardware part several replicas of the decoder (exploiting the parallel capabilities of hardware) and managing the verification by parallel programming the software part of the SoC (exploiting the presence of multiple processing cores). The presented approach allows a seamless integration with high-level models, does not need expensive testing/emulation platforms and obtains the results in a reasonable amount of time.This work has been supported by Project TEC2017-86722-C4-3-R, funded by Spanish MICINN/AEI

    Adaptive OFDM System Design For Cognitive Radio

    Get PDF
    Recently, Cognitive Radio has been proposed as a promising technology to improve spectrum utilization. A highly flexible OFDM system is considered to be a good candidate for the Cognitive Radio baseband processing where individual carriers can be switched off for frequencies occupied by a licensed user. In order to support such an adaptive OFDM system, we propose a Multiprocessor System-on-Chip (MPSoC) architecture which can be dynamically reconfigured. However, the complexity and flexibility of the baseband processing makes the MPSoC design a difficult task. This paper presents a design technology for mapping flexible OFDM baseband for Cognitive Radio on a multiprocessor System-on-Chip (MPSoC)
    corecore