
HARDWARE / SOFTWARE CODESIGN METHODOLOGY FOR
FUZZY CONTROLLER IMPLEMENTATION

A. Cabrera1, S. Sánchez-Solano2, R. Senhadji2, A. Barriga2, C. J. Jiménez2

1 Dpto. Automática y Computación. Facultad de Ingeniería Eléctrica. Instituto Superior Politécnico “José
 Antonio Echeverría”, Calle 127 s/n, Marianao, Ciudad de la Habana, Cuba.

2 Instituto de Microelectrónica de Sevilla, IMSE-CNM, Avda. Reina Mercedes s/n, 41012-Sevilla, Spain.

Abstract - This paper describes a HW/SW codesign method-
ology for the implementation of fuzzy controllers on a platform
composed by a general-purpose microcontroller and specific
processing elements implemented on FPGAs or ASICs. The
different phases of the methodology, as well as the CAD tools
used in each design stage, are presented, with emphasis on the
fuzzy system development environment Xfuzzy. Also included is
a practical application of the described methodology for the
development of a fuzzy controller for a dosage system.

1. INTRODUCTION

Two opposite alternatives can be considered when explor-
ing the design space of a complex electronic system. One of
them is the use of standard components whose functionality
can be defined by means of programming. The other one is
the implementation of this functionality via a microelectronic
circuit specifically tailored for that application. It is well
known that the first alternative (the software alternative)
provides solutions that present a great flexibility in spite of
high area requirements and long execution times, while the
second one (the hardware alternative) optimizes the size
aspects and the operation speed but limits the flexibility of the
solution. Halfway between both, hardware/software codesign
techniques try to obtain an appropriate trade-off between the
advantages and drawbacks of these two approaches.

Codesign techniques are also applicable to the develop-
ment of fuzzy controllers. This paper presents a HW/SW
codesign methodology for fuzzy controller implementation.
The application of this methodology to a practical problem,
the development of a fuzzy controller for a dosage system, is
also described.

Section 2 shows some codesign alternatives for fuzzy con-
troller implementation. Section 3 details each of the phases
of the proposed methodology. A practical case for the appli-
cation of the methodology is described in Section 4. Finally,
Section 5 reviews the fundamental aspects of the present
communication.

2. CODESIGN ALTERNATIVES

In a system codesign process, all the tasks that the system
must carry out should be analyzed, evaluating the impact that
the (possible) implementation options may have on the
factors that define the overall system functionality and cost.

The main parameters to consider in this evaluation are the
task execution speed and the area required by its hardware
implementation. Based on those results, a partitioning proc-
ess is carried out, which consists in deciding which tasks
should be executed by software and which should be imple-
mented by hardware.

There are different approaches for applying codesign tech-
niques in the development of control systems based on fuzzy
logic. They are distinguished by the way in which the
HW/SW partitioning is realized. One of them analyzes the
influence of the instructions set of a processor on the imple-
mentation of a fuzzy inference system, redesigning it in such
way that it supports those operations which best contribute to
the increment of the inference speed [1]-[3]. In this case, the
partitioning process is carried out at the instructions level of
the processor.

Another alternative consists of implementing the inference
system, totally or partially, by means of dedicated hardware
with a specific architecture. This partition is based on the fact
that, among all the tasks that a fuzzy logic-based control
system must carry out, those related to the fuzzy inference
calculation are the ones which consume the most time [2].
Therefore, their implementation by means of specific hard-
ware will contribute significantly to increment the controller
speed [4]-[6].

This codesign variant was the one chosen in this work.
Whereas the remaining control tasks are programmed in
software and executed by a standard microcontroller, the
inference system is implemented on hardware following a
specific architecture for fuzzy systems. This architecture is
based on active rule processing, the use of membership
functions with a maximum overlapping degree of two, and
the employment of simplified defuzzification methods [6]-
[8]. This architecture also presents different implementation
options for fuzzification and defuzzification stages which
must be considered in the codesign process.

3. CODESIGN METHODOLOGY

The different phases of the codesign methodology for fuzzy
controller implementation are shown in Figure 1. Several
CAD tools included in the fuzzy system development envi-
ronment Xfuzzy [9] are required. This environment includes a
group of tools which ease the different stages of description,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/185608380?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

verification and synthesis (software and hardware) of fuzzy
systems. Next sections explain the main topics of each
codesign phase, the CAD tools used, and the implementation
details.

Figure 1. Codesign Methodology.

3.1. Description Phase

The description of the fuzzy inference system defining the

controller operation (control strategy) is carried out during
this phase using the fuzzy system specification language XFL
[6], [10]. This language, used for all the tools included in
Xfuzzy, allows us to define universes of discourse and mem-
bership functions for the controller input/output and to
specify the system rulebase. It also permits the selection of
the different fuzzy operators used as antecedent connectives,
the implication function, the rule aggregation mechanism,
and the defuzzification method. The XFL specification can be
obtained by means of a conventional text editor or using the
different editing options of the Xfuzzy graphical interface.

3.2. Simulation Phase

An off-line simulation of the behavior of the fuzzy infer-
ence system on the plant to be controlled is carried out in this
phase. The main objective of this simulation is to obtain a
preliminary adjustment of the control parameters. For this
task, a model of the plant, described by means of C language,
and a CAD simulation tool are required. The xfsim tool [6]
provided by the Xfuzzy environment is used for this purpose.

Although this simulation phase allows a first adjustment of
the inference system parameters, it should be noted that its
results are only approximate ones due to the limitations of the
model. Therefore, for a more precise adjustment of these
parameters, interaction of the inference system with the real
plant is required. This is the objective of the following phase.

3.3. On-Line Verification Phase

The main characteristic of this phase is the inclusion of the
real plant within the control loop, in order to obtain the
optimal adjustment of the fuzzy controller knowledge base.
Obviously, as the inference system will finally be imple-
mented on hardware, its parameters should satisfy the restric-
tions imposed by the architecture. For the same reason, the
controller behavior should not only be evaluated with differ-
ent knowledge bases but also with different resolutions
(number of bits for parameter representation).

On the other hand, the interaction with the real plant re-

quires more elements than those used in the simulation phase.
The interface devices with sensors and actuators (signal
amplifiers, A/D and D/A converters, etc.) as well as the pre-
and post-processing routines (to obtain the controller input
and output) are among them.

To develop this phase, a CAD tool is required which im-

plements, through software, the fuzzy inference system as
well as the pre- and post-processing routines, and allows the
interaction with the real plant through a data acquisition card.
The Xfuzzy development environment includes the xflab tool
[11] for these purposes. Xflab allows the full development of
a fuzzy controller implemented in software. With xflab, the
model which represents the plant in the simulation phase is
replaced by a function which monitors the real plant (through
the data acquisition card), carries out the inference, and acts
on the plant. Simultaneously, xflab registers the system
variables which have been selected for their later processing
with the objective of determining the best adjustment of the
controller parameters. Xflab eases the data acquisition card
configuration (input/output addresses setting, analog and
digital channels selection, etc.), the information processing
routines programming (linealization, filtering, etc.), and the
setting of the control parameters (sampling rate, signals
which must be recorded in order to measure the behavior of
the controller, etc.).

Once the system configuration has been defined, xflab calls

for another Xfuzzy tool, xfc, which obtains the C code of the
inference system. Xflab then merges this code with the pre-
and post-processing routines and with the monitoring rou-
tines. Finally, it compiles and links all these codes in order to
obtain an executable file which corresponds to the software
implementation of the fuzzy controller. Following this
procedure it is very easy to modify the controller parameters
(modifying the XFL specification) and to register the system
performance. This way, different conditions can be tested in

DESCRIPTION

SIMULATION

ON-LINE VERIFICATION

HW/SW PARTITIONING

HARDWARE
IMPLEMENTATION

SOFTWARE
DEVELOPMENT

VALIDATION

order to obtain the best approach for the system implementa-
tion.

Note that the on-line verification phase allows us to check

and to adjust the global operation of the fuzzy controller.
This is an important difference with respect to the simulation
phase, which only allows a preliminary adjustment of the
inference system. However, due to the difference of precision
between software and hardware implementations, a later
adjustment of the fuzzy controller parameters may be neces-
sary. It would be done during the validation phase, the last
one of the present methodology.

A fully functional software-implementation of the fuzzy

controller has been obtained at the end of the verification
phase. It constitutes the starting point of the following phase,
the identification and partitioning of the system tasks.

3.4. Partitioning Phase

Although the specific tasks that a fuzzy controller should

carry out will depend on the control application, they are
usually related to the following general actions:

a) System initialization

b) Target determination

c) System sensor reading

d) Input pre-processing

e) Fuzzy inference

f) Output post-processing

g) Control signal generation

Concurrently with these tasks, the system timing should be
included. This task will be in charge of setting down the
sampling rate for the sensor signals. In addition, a mecha-
nism for monitoring the controller variables should also be
included. Registering the selected information in files would
usually suffice.

Once the tasks which need to be executed have been iden-

tified, the HW/SW partitioning process can be realized. As
explained in Section 2, the inference system will be imple-
mented on hardware. The remaining tasks must be evaluated
in order to obtain the best “speed vs. flexibility” trade-off. In
general, the implementation of these tasks in software pro-
duces acceptable results. Finally, the implementation of other
components (e.g. timing and monitoring mechanisms) must
also be considered.

A fundamental aspect in this design step is the choice of

the platforms where the tasks will be implemented, that is,
the type of processor in which the software tasks will be
executed and the hardware device which will support the
inference system implementation. The availability and

versatility of development boards which include a general-
purpose microcontroller and an FPGA allow sharing between
both components the functionality required by the fuzzy
controllers. Thus, the calculation of the fuzzy inference will
be assigned to a specific purpose controller built on the
FPGA, while the pre- and post-processing algorithms, as well
as the rest of the tasks, will be programmed in the microcon-
troller. The timing process will be implemented using one of
the timers available in the microcontroller. To complete the
controller it will be necessary to add the circuits (signal
amplifiers, A/D and D/A converters, etc.) in order to adapt
the signal levels used by the sensors and actuators to those
required by the development board.

3.5. Hardware Implementation Phase

A CAD tool allowing the translation of the inference sys-

tem specification to a format which can be synthesized (a
hardware description language) and supports the architecture
described in [6]-[8] is required for the development of this
phase. The main advantage of the Xfuzzy development
environment when compared with other similar environments
is the inclusion of tools that support the hardware synthesis of
the inference system. One of these tools is xfvhdl [12], which
allows us to obtain a VHDL description of the inference
system from its XFL specification. This VHDL description is
compatible with different hardware synthesis tools for
FPGAs or ASICs. The use of FPGAs is especially adequate
in order to obtain a first prototype of the system.

Note that the FPGA must not only contain the inference

system, but also the input/output interface elements with the
microcontroller and other elements which might be necessary
due to the characteristics of the development board or the
controlled system.

3.6. Software Development Phase

During this phase, different routines are developed which

support the tasks that will be implemented by the software.
Therefore, program development and debugger tools (assem-
blers or compilers, simulators, etc.) are used.

 Although it is not necessary, it may be advisable to de-

velop a set of programs designed to diagnose and check the
operation of the different parts of the controller.

3.7. Validation Phase

The integration of hardware and software implementations

on the development board and the definitive adjustment of
the controller parameters are carried out during this phase.
Once the operation of the different parts has been debugged,
an integral validation of the system should be carried out.
The implemented fuzzy controller is put into operation and
the group of selected variables (used for evaluating the
system behavior) is transmitted to a personal computer. Then,

with the help of information processing routines, important
data (settling time, overshoot, rise time, mean quadratic error,
etc.) can be obtained in order to characterize the implemented
fuzzy controller. Since microcontroller tasks and inference
system parameters can be easily modified, different versions
of the controller can be validated in order to obtain the one
with the best performance.

4. APPLICATION OF THE METHODOLOGY

In order to illustrate the described codesign methodology,

the development of a fuzzy controller for a real system is
presented in this section.

4.1. System Description

The system to be controlled consists of a scaled model of a

dosage system designed to experiment with different control
strategies based on fuzzy logic (Figure 2).

Figure 2. Dosage system provided by SUR A&C.

An electrically controlled water pump and two cylindrical

tanks (120 cm high and 20 cm wide), each one with an
electronic valve for liquid injection and a manually controlled
output valve for liquid discharge, compose the system. The
liquid level is obtained through a pressure sensor located at
the bottom of the tank. The water pump and the injection
valves are voltage-controlled devices (0 – 10 volt) whereas

the pressure sensors have a current signal output (4 – 20 mA).
However, the latter devices are industrial ones which work in
a greater range, so their real output in this application is only
between 4 and 5,6 mA.

Three different types of level-controlled-systems can be

tested with this plant. Two of them are composed by only one
tank and the difference between both is the control element:
the electronic valve or the water pump. In both cases, the
other device (the pump or electronic valve) remains in a fixed
position. These one-tank systems are functionally equivalent
to fuzzy control actions based on equivalent rules. Therefore,
the same fuzzy controller can be applied to both one-tank
systems.

The third type uses two tanks and the controller must act

on the motor pump and both electronic valves at the same
time. The goal in the three systems is to maintain the level in
each tank as near as possible to the target control positions,
with the lowest possible overshoot, and with the smallest
transient time.

The applied control strategy corresponds to the fuzzy

equivalent of an incremental PI controller. Therefore, the
fuzzy controller for one-tank systems has two inputs (error
and error variation) and its output is the change of the valve
aperture or the change of the pump motor speed.

Two independent fuzzy controllers can be implemented for

the whole plant, each one acting upon one electronic valve,
whereas the pump will be controlled by the bounded sum of
the output of both controllers. Nevertheless, due to the
symmetry between the tanks, both fuzzy controllers will be
identical. Thus, only one will be necessary if the inference
processes are executed sequentially.

4.2. Implementation Details

Using the present methodology, the XFL description phase
was developed for an inference system corresponding to an
incremental fuzzy-PI controller for a one-tank system. The
input (error and error variation) and output (variation of the
voltage applied to the electro-valve) membership functions
were estimated based on the behavior of the system, but also
considering the limitations imposed by the future hardware
implementation. For this reason, three membership functions
with overlapping degree of two were used for the inputs, five
singletons for the output, and defuzzification by the Fuzzy
Mean method. Figure 3 shows these membership functions as
well as the system rule base.

Afterwards, the system behavior was simulated by means

of xfsim using a simplified model of the plant. This simula-
tion was useful for a first adjustment of the inference system
knowledge base.

A better adjustment was obtained during the on-line verifi-

cation phase when the controller was inserted into the control

loop. Using xflab, 27 different implementations (in which
the input/output memberships functions were modified) were
carried out. In each implementation, the system works during
2000 iterations using four different target positions. A group
of selected variables (error, error variation, liquid level,
output variation, etc) was registered for each test and was
later processed obtaining the data (rise time, overshoot, mean
quadratic error, etc.) which allows us to select the XFL
specification with the best performance [13].

Based on the previous results, the fuzzy controller for the

two-tank system was also developed with xflab, obtaining

quite similar behavior. Thus, the XFL specification which
must later be implemented on hardware was obtained. In
addition, all the tasks which the fuzzy controller must carry
out were identified. This was the starting point for the
HW/SW partitioning stage.

The platform used to implement the controller was the

development board XS-Board (XS40-005XL, from XESS
Corporation [14]), which has an Intel 8031 microcontroller, a
Xilinx XC-4005 FPGA, 32 Kbytes of static RAM, a pro-
grammable clock circuit, and other devices. XESS provides
software facilities which allow for the setting of the clock
circuit, configuring the FPGA, and downloading the micro-
controller program.

In order to minimize the resources of the available FPGA,

the symmetry between both one-tank controllers was consid-
ered. Therefore, only one controller was implemented on the
FPGA and two consecutive inference cycles were executed.

In the hardware implementation phase, the FPGA synthesis

was carried out with the “Xilinx Foundation 3.1i” environ-
ment [15]. The VHDL description of the inference system
was obtained based on its XFL specification and using the
xfvhdl tool. Controller input/output resolutions were limited
to 6 bits. The controller uses memory–based antecedents and
the Fuzzy Mean defuzzification method. On the other hand,
since the inference system acts as an 8031 coprocessor, it was
also necessary to incorporate interface circuits with this
device in the FPGA, as well as the circuitry necessary to
access the memory. The result of the implementation led to a
98% of CLBs used in the FPGA (193 of 196) and a maxi-
mum frequency of 20 MHz. At 10 MHz (for both the FPGA
and the microcontroller) the hardware inference cycle delays
700 nanoseconds, which is lower than the 8031 single in-
struction execution time. The developed experimental assem-
bly consisted of an XS-Board inserted into another board
which also includes the A/D (AD7824) and D/A (AD7226)
conversion devices and the signal conditioning circuits.

Software implementation on the 8031 was carried out with

the aid of available development tools for the MCS-51
family. The microcontroller program includes the general
algorithm for the control cycle (input acquisition, pre-
processing, communication with the inference engine, post-
processing, and output generation), together with several
auxiliary routines which control the interrupt mechanisms
and the communication with a PC.

A first implementation of the fuzzy controller was carried out
based on the same XFL specification which led to the best
behavior in the verification phase. The obtained results,
although acceptable, were far from the expected ones due to
the precision difference between software and hardware
inference. Therefore, it was necessary to realize additional
adjustments of the memberships functions shown in Figure 3.
Hardware implementation was carried out again and the
controller parameters were processed. The behavior was

-50 -15 0 +35 +50 cm

error
N Z P

-2 -0,25 0 +0,6 +2 cm

∆error
N Z P

∆out
NL N Z P PL

-2 -0.35 0 +0.35 +2 V

Z P PL

N Z P

NL N Z

error
N Z P

N

Z

P

Figure 3. Input / Output membership functions and
 rule base

∆error

better than in the previous one but not as good as the one
from the verification phase. The sampling time was then
reduced from 500 to 100 ms (by means of a simple modifica-
tion in the microcontroller program) obtaining very similar
results to those obtained with xflab control. Figure 4, repre-
senting the evolution of the level of liquid in a tank for
different target positions, shows some of the experimental
results.

Figure 4. Liquid level vs. samples in tank-2 (each sample

corresponds to 500 ms).

5. SUMMARY

A codesign methodology for fuzzy controllers, based on
the ‘a priori’ partition of the tasks implemented by hardware
and software components, has been presented. The Xfuzzy
environment integrates all the necessary tools to carry out the
design flow of a fuzzy logic-based system (from the high-
level description to its implementation according to this
methodology). Finally, the application of the methodology to
a real problem was discussed. A very attractive option, for its
combination of speed and flexibility, consists of implement-
ing the fuzzy controller by using commercial development
boards which include microcontrollers and FPGAs.

REFERENCES

[1] Von Altrock, C., “Adapting existing Hardware for Fuzzy

Computation”, Institute of Physics Publishing, 1998.
[2] Salapura, V., “A Fuzzy RISC Processor”, IEEE Transactions on

Fuzzy Systems, Vol. 8, N. 6, 2000.
[3] Ungering, A.P., Bauer, H., Goer, K., “Architecture of a Fuzzy

Processor Based on an 8-bit Microprocessor”, Proc. IEEE
ICFS´94, Orlando, pp. 297-301, 1994.

[4] Costa, A., Da Gloria, A., Faraboschi, P., Pagni, A., Rizzotto, G.,
“Hardware Solutions for Fuzzy Control”, Proceedings of the
IEEE, Vol. 83, N. 3, pp. 422-434, 1995.

[5] Hollstein, T., Kirschbaum, S., Halgamuge, S., Glesner, M.,
“Application Specific Fuzzy Processor”, Proc. Int. Symposium
on Nonlinear Theory and its Applications, pp.133-136, Hono-
lulu, 1997.

[6] Baturone, I., Barriga, A., Sánchez-Solano, S., Jiménez, C.J.,
López, D., “Microelectronic Design of Fuzzy Logic-Based Sys-
tems”, CRC Press, 2000.

[7] Sánchez-Solano, S., Barriga, A., Jiménez, C.J., Huertas, J.L.,
“Design and Applications of Digital Fuzzy Controllers”, Proc.
Sixth IEEE International Conference on Fuzzy Systems, Vol. 2,
pp. 869-874, Barcelona, 1997.

[8] Jiménez, C.J., Sánchez-Solano S., Barriga, A., “Hardware
Implementations of a General Purpose Fuzzy Controller”, Proc.
Sixth International Fuzzy Systems Association World Congress,
Vol. 2, pp.185-188, Sao Paulo, 1995.

[9] López, D.R., Jiménez, C.J., Baturone, I., Barriga, A. Sánchez-
Solano, S., “Xfuzzy: A Design Environment for Fuzzy Sys-
tems”, Proc Seventh IEEE International Conference on Fuzzy
Systems, pp. 1060-1065, Anchorage, 1998.

[10] López, D.R., Moreno, F.J., Barriga, A. Sánchez-Solano, S.,
“XFL: A Language for the Definition of Fuzzy Systems”, Proc.
Sixth IEEE International Conference on Fuzzy Systems, Vol. 3,
pp. 1581-1591, Barcelona, 1997.

[11] Senhadji, R., Sánchez-Solano, S., López, D.R. Barriga, A.,
“Xflab: An On-line Verification Tool for Fuzzy Controllers”,
Proc. International Conference on Information Processing and
Management of Uncertainty in Knowledge Based Systems, Vol.
1, pp. 44-49, Madrid, 2000.

[12] Lago, E., Jiménez C.J., López D.R., Sánchez-Solano S.,
Barriga A., “XFVHDL: A Tool for the Synthesis of Fuzzy
Logic Controllers”, Proc. Design, Automation and Test in
Europe, pp. 102-107, Paris, 1998.

[13] Cabrera, A., Senhadji, R., Sánchez-Solano, S., Barriga, A.,
Jiménez, C.J., Llanes, O., “Development of Level Controllers
Based on Fuzzy Logic”, Proc. First International ICSC-
NAISO Congress on Neuro Fuzzy Technologies, Ciudad de la
Habana, 2002.

[14] XS40, XSP Board V1.4 User Manual, XESS Corporation, USA,
1999.

[15] The Programmable Logic Data Book, Xilinx Inc., USA, 1999.

��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�� ������ ������ ������ ������ ��� ��� ��� ���

������ ������ ������ ������ ������ ��� ��� ��� ���

������ ������ ������ ��� ���

������ ������ ������ ���

0 500 1000 1500 2000

���

�����

�����

�����

�����
�����

�����

�����

�����

�����

��
��
�
�
��
��

�����

���

���

���

���
���

���

���

���

���

�
�

�
�
�
�

���

������

������

������

������

������

������

����

����

����

����

����

0.0

20.0

40.0

60.0

80.0

100.0
����

��

����
����
����
����
����

�
�
�

���
���
���
���

������������
��
��
��
��
�
����
�����
���������

�
�
�
���������
��
�������
��
��
��
��
�
�
�
�
��
��
��
������
�
�
�
���
�����
�����

�
���
��
��
��
�����������������������������

����
����
����
����
����

�
�
��
��

���
���
���

�
�
��
��
��
���������������������
�����

��������������������
���������
���
���
���������������������

��
��
��
������
����
����������
������
������
������
������
������
������
������
������

��
��
��
��
��
��
�����
��
������������
�
��
��
��
��
����������
�
�
�
��
��
��
��
�
�
��
��
��
��
������
��
�
�
��
��
�
�
�
�
��
��
��
��
�
�
�
�
��
��
�
�
��
��
����
����
��
��
����
��
�
�
��
��
��
��
���������

���
���
���

������
��
��
���������������������

�
�
�
�
��
��
��
��
�
���
��
��
��
����
��
������������������������������

���
������
�����
���������

���
�������
��
�����
��
������
��
��
�
������

