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Abstract - This paper describes a HW/SW codesign method-
ology for the implementation of fuzzy controllers on a platform 
composed by a general-purpose microcontroller and specific 
processing elements implemented on FPGAs or ASICs. The 
different phases of the methodology, as well as the CAD tools 
used in each design stage, are presented, with emphasis on the 
fuzzy system development environment Xfuzzy. Also included is 
a practical application of the described methodology for the 
development of a fuzzy controller for a dosage system.  

1. INTRODUCTION

Two opposite alternatives can be considered when explor-
ing the design space of a complex electronic system. One of 
them is the use of standard components whose functionality 
can be defined by means of programming. The other one is 
the implementation of this functionality via a microelectronic 
circuit specifically tailored for that application. It is well 
known that the first alternative (the software alternative) 
provides solutions that present a great flexibility in spite of 
high area requirements and long execution times, while the 
second one (the hardware alternative) optimizes the size 
aspects and the operation speed but limits the flexibility of the 
solution. Halfway between both, hardware/software codesign 
techniques try to obtain an appropriate trade-off between the 
advantages and drawbacks of these two approaches.   

Codesign techniques are also applicable to the develop-
ment of fuzzy controllers. This paper presents a HW/SW 
codesign methodology for fuzzy controller implementation. 
The application of this methodology to a practical problem, 
the development of a fuzzy controller for a dosage system, is 
also described.  

Section 2 shows some codesign alternatives for fuzzy con-
troller implementation.  Section 3 details each of the phases 
of the proposed methodology. A practical case for the appli-
cation of the methodology is described in Section 4. Finally, 
Section 5 reviews the fundamental aspects of the present 
communication.  

2. CODESIGN ALTERNATIVES

In a system codesign process, all the tasks that the system 
must carry out should be analyzed, evaluating the impact that 
the (possible) implementation options may have on the 
factors that define the overall system functionality and cost. 

The main parameters to consider in this evaluation are the 
task execution speed and the area required by its hardware 
implementation. Based on those results, a partitioning proc-
ess is carried out, which consists in deciding which tasks 
should be executed by software and which should be imple-
mented by hardware.  

There are different approaches for applying codesign tech-
niques in the development of control systems based on fuzzy 
logic. They are distinguished by the way in which the 
HW/SW partitioning is realized. One of them analyzes the 
influence of the instructions set of a processor on the imple-
mentation of a fuzzy inference system, redesigning it in such 
way that it supports those operations which best contribute to 
the increment of the inference speed [1]-[3]. In this case, the 
partitioning process is carried out at the instructions level of 
the processor.  

Another alternative consists of implementing the inference 
system, totally or partially, by means of dedicated hardware 
with a specific architecture. This partition is based on the fact 
that, among all the tasks that a fuzzy logic-based control 
system must carry out, those related to the fuzzy inference 
calculation are the ones which consume the most time [2]. 
Therefore, their implementation by means of specific hard-
ware will contribute significantly to increment the controller 
speed [4]-[6].  

This codesign variant was the one chosen in this work. 
Whereas the remaining control tasks are programmed in 
software and executed by a standard microcontroller, the 
inference system is implemented on hardware following a 
specific architecture for fuzzy systems. This architecture is 
based on active rule processing, the use of membership 
functions with a maximum overlapping degree of two, and 
the employment of simplified defuzzification methods [6]-
[8]. This architecture also presents different implementation 
options for fuzzification and defuzzification stages which 
must be considered in the codesign process.   

3. CODESIGN METHODOLOGY

The different phases of the codesign methodology for fuzzy 
controller implementation are shown in Figure 1. Several 
CAD tools included in the fuzzy system development envi-
ronment Xfuzzy [9] are required. This environment includes a 
group of tools which ease the different stages of description, 
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verification and synthesis (software and hardware) of fuzzy 
systems. Next sections explain the main topics of each 
codesign phase, the CAD tools used, and the implementation 
details.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 1. Codesign Methodology. 
 
   

3.1. Description Phase 
   
The description of the fuzzy inference system defining the 

controller operation (control strategy) is carried out during 
this phase using the fuzzy system specification language XFL 
[6], [10]. This language, used for all the tools included in 
Xfuzzy, allows us to define universes of discourse and mem-
bership functions for the controller input/output and to 
specify the system rulebase. It also permits the selection of 
the different fuzzy operators used as antecedent connectives, 
the implication function, the rule aggregation mechanism, 
and the defuzzification method. The XFL specification can be 
obtained by means of a conventional text editor or using the 
different editing options of the Xfuzzy graphical interface. 
 
3.2. Simulation Phase   
   

An off-line simulation of the behavior of the fuzzy infer-
ence system on the plant to be controlled is carried out in this 
phase. The main objective of this simulation is to obtain a 
preliminary adjustment of the control parameters. For this 
task, a model of the plant, described by means of C language, 
and a CAD simulation tool are required. The xfsim tool [6] 
provided by the Xfuzzy environment is used for this purpose.  

Although this simulation phase allows a first adjustment of 
the inference system parameters, it should be noted that its 
results are only approximate ones due to the limitations of the 
model. Therefore, for a more precise adjustment of these 
parameters, interaction of the inference system with the real 
plant is required. This is the objective of the following phase.  

   
3.3. On-Line Verification Phase 
   

The main characteristic of this phase is the inclusion of the 
real plant within the control loop, in order to obtain the 
optimal adjustment of the fuzzy controller knowledge base. 
Obviously, as the inference system will finally be imple-
mented on hardware, its parameters should satisfy the restric-
tions imposed by the architecture. For the same reason, the 
controller behavior should not only be evaluated with differ-
ent knowledge bases but also with different resolutions 
(number of bits for parameter representation). 

 
On the other hand, the interaction with the real plant re-

quires more elements than those used in the simulation phase. 
The interface devices with sensors and actuators (signal 
amplifiers, A/D and D/A converters, etc.) as well as the pre- 
and post-processing routines (to obtain the controller input 
and output) are among them.   

 
To develop this phase, a CAD tool is required which im-

plements, through software, the fuzzy inference system as 
well as the pre- and post-processing routines, and allows the 
interaction with the real plant through a data acquisition card. 
The Xfuzzy development environment includes the xflab tool 
[11] for these purposes. Xflab allows the full development of 
a fuzzy controller implemented in software. With xflab, the 
model which represents the plant in the simulation phase is 
replaced by a function which monitors the real plant (through 
the data acquisition card), carries out the inference, and acts 
on the plant. Simultaneously, xflab registers the system 
variables which have been selected for their later processing 
with the objective of determining the best adjustment of the 
controller parameters. Xflab eases the data acquisition card 
configuration (input/output addresses setting, analog and 
digital channels selection, etc.), the information processing 
routines programming (linealization, filtering, etc.), and the 
setting of the control parameters (sampling rate, signals 
which must be recorded in order to measure the behavior of 
the controller, etc.). 

 
Once the system configuration has been defined, xflab calls 

for another Xfuzzy tool, xfc, which obtains the C code of the 
inference system. Xflab then merges this code with the pre- 
and post-processing routines and with the monitoring rou-
tines. Finally, it compiles and links all these codes in order to 
obtain an executable file which corresponds to the software 
implementation of the fuzzy controller. Following this 
procedure it is very easy to modify the controller parameters 
(modifying the XFL specification) and to register the system 
performance. This way, different conditions can be tested in 
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order to obtain the best approach for the system implementa-
tion. 

 
Note that the on-line verification phase allows us to check 

and to adjust the global operation of the fuzzy controller. 
This is an important difference with respect to the simulation 
phase, which only allows a preliminary adjustment of the 
inference system. However, due to the difference of precision 
between software and hardware implementations, a later 
adjustment of the fuzzy controller parameters may be neces-
sary. It would be done during the validation phase, the last 
one of the present methodology. 

 
A fully functional software-implementation of the fuzzy 

controller has been obtained at the end of the verification 
phase. It constitutes the starting point of the following phase, 
the identification and partitioning of the system tasks.   

   
3.4. Partitioning Phase 

   
Although the specific tasks that a fuzzy controller should 

carry out will depend on the control application, they are 
usually related to the following general actions: 

 
a) System initialization 

b) Target determination 

c) System sensor reading 

d) Input pre-processing 

e) Fuzzy inference 

f) Output post-processing 

g) Control signal generation 
 

Concurrently with these tasks, the system timing should be 
included. This task will be in charge of setting down the 
sampling rate for the sensor signals.  In addition, a mecha-
nism for monitoring the controller variables should also be 
included. Registering the selected information in files would 
usually suffice. 

 
Once the tasks which need to be executed have been iden-

tified, the HW/SW partitioning process can be realized. As 
explained in Section 2, the inference system will be imple-
mented on hardware. The remaining tasks must be evaluated 
in order to obtain the best “speed vs. flexibility” trade-off. In 
general, the implementation of these tasks in software pro-
duces acceptable results. Finally, the implementation of other 
components (e.g. timing and monitoring mechanisms) must 
also be considered. 

 
A fundamental aspect in this design step is the choice of 

the platforms where the tasks will be implemented, that is, 
the type of processor in which the software tasks will be 
executed and the hardware device which will support the 
inference system implementation. The availability and 

versatility of development boards which include a general-
purpose microcontroller and an FPGA allow sharing between 
both components the functionality required by the fuzzy 
controllers. Thus, the calculation of the fuzzy inference will 
be assigned to a specific purpose controller built on the 
FPGA, while the pre- and post-processing algorithms, as well 
as the rest of the tasks, will be programmed in the microcon-
troller. The timing process will be implemented using one of 
the timers available in the microcontroller. To complete the 
controller it will be necessary to add the circuits (signal 
amplifiers, A/D and D/A converters, etc.) in order to adapt 
the signal levels used by the sensors and actuators to those 
required by the development board.  

   
3.5. Hardware Implementation Phase 

   
A CAD tool allowing the translation of the inference sys-

tem specification to a format which can be synthesized (a 
hardware description language) and supports the architecture 
described in [6]-[8] is required for the development of this 
phase. The main advantage of the Xfuzzy development 
environment when compared with other similar environments 
is the inclusion of tools that support the hardware synthesis of 
the inference system. One of these tools is xfvhdl [12], which 
allows us to obtain a VHDL description of the inference 
system from its XFL specification.  This VHDL description is 
compatible with different hardware synthesis tools for 
FPGAs or ASICs. The use of FPGAs is especially adequate 
in order to obtain a first prototype of the system. 

 
Note that the FPGA must not only contain the inference 

system, but also the input/output interface elements with the 
microcontroller and other elements which might be necessary 
due to the characteristics of the development board or the 
controlled system. 

 
3.6. Software Development Phase 

   
During this phase, different routines are developed which 

support the tasks that will be implemented by the software. 
Therefore, program development and debugger tools (assem-
blers or compilers, simulators, etc.) are used. 

 
 Although it is not necessary, it may be advisable to de-

velop a set of programs designed to diagnose and check the 
operation of the different parts of the controller. 

   
3.7. Validation Phase 

   
The integration of hardware and software implementations 

on the development board and the definitive adjustment of 
the controller parameters are carried out during this phase. 
Once the operation of the different parts has been debugged, 
an integral validation of the system should be carried out. 
The implemented fuzzy controller is put into operation and 
the group of selected variables (used for evaluating the 
system behavior) is transmitted to a personal computer. Then, 



with the help of information processing routines, important 
data (settling time, overshoot, rise time, mean quadratic error, 
etc.) can be obtained in order to characterize the implemented 
fuzzy controller. Since microcontroller tasks and inference 
system parameters can be easily modified, different versions 
of the controller can be validated in order to obtain the one 
with the best performance.  

 
4. APPLICATION OF THE METHODOLOGY 

   
In order to illustrate the described codesign methodology, 

the development of a fuzzy controller for a real system is 
presented in this section. 

   
4.1. System Description 

   
The system to be controlled consists of a scaled model of a 

dosage system designed to experiment with different control 
strategies based on fuzzy logic (Figure 2). 

 

 
 

Figure 2. Dosage system provided by SUR A&C. 

 
An electrically controlled water pump and two cylindrical 

tanks (120 cm high and 20 cm wide), each one with an 
electronic valve for liquid injection and a manually controlled 
output valve for liquid discharge, compose the system. The 
liquid level is obtained through a pressure sensor located at 
the bottom of the tank. The water pump and the injection 
valves are voltage-controlled devices (0 – 10 volt) whereas 

the pressure sensors have a current signal output (4 – 20 mA). 
However, the latter devices are industrial ones which work in 
a greater range, so their real output in this application is only 
between 4 and 5,6 mA. 

 
Three different types of level-controlled-systems can be 

tested with this plant. Two of them are composed by only one 
tank and the difference between both is the control element: 
the electronic valve or the water pump. In both cases, the 
other device (the pump or electronic valve) remains in a fixed 
position. These one-tank systems are functionally equivalent 
to fuzzy control actions based on equivalent rules. Therefore, 
the same fuzzy controller can be applied to both one-tank 
systems. 

 
The third type uses two tanks and the controller must act 

on the motor pump and both electronic valves at the same 
time. The goal in the three systems is to maintain the level in 
each tank as near as possible to the target control positions, 
with the lowest possible overshoot, and with the smallest 
transient time. 

 
The applied control strategy corresponds to the fuzzy 

equivalent of an incremental PI controller. Therefore, the 
fuzzy controller for one-tank systems has two inputs (error 
and error variation) and its output is the change of the valve 
aperture or the change of the pump motor speed.  

 
Two independent fuzzy controllers can be implemented for 

the whole plant, each one acting upon one electronic valve, 
whereas the pump will be controlled by the bounded sum of 
the output of both controllers. Nevertheless, due to the 
symmetry between the tanks, both fuzzy controllers will be 
identical.  Thus, only one will be necessary if the inference 
processes are executed sequentially. 
 
4.2. Implementation Details 
   

Using the present methodology, the XFL description phase 
was developed for an inference system corresponding to an 
incremental fuzzy-PI controller for a one-tank system. The 
input (error and error variation) and output (variation of the 
voltage applied to the electro-valve) membership functions 
were estimated based on the behavior of the system, but also 
considering the limitations imposed by the future hardware 
implementation. For this reason, three membership functions 
with overlapping degree of two were used for the inputs, five 
singletons for the output, and defuzzification by the Fuzzy 
Mean method. Figure 3 shows these membership functions as 
well as the system rule base.   

 
Afterwards, the system behavior was simulated by means 

of xfsim using a simplified model of the plant. This simula-
tion was useful for a first adjustment of the inference system 
knowledge base.  

  
A better adjustment was obtained during the on-line verifi-

cation phase when the controller was inserted into the control 



loop. Using xflab, 27 different implementations (in which 
the input/output memberships functions were modified) were 
carried out. In each implementation, the system works during 
2000 iterations using four different target positions. A group 
of selected variables (error, error variation, liquid level, 
output variation, etc) was registered for each test and was 
later processed obtaining the data (rise time, overshoot, mean 
quadratic error, etc.) which allows us to select the XFL 
specification with the best performance [13]. 

 
Based on the previous results, the fuzzy controller for the 

two-tank system was also developed with xflab, obtaining 

quite similar behavior. Thus, the XFL specification which 
must later be implemented on hardware was obtained. In 
addition, all the tasks which the fuzzy controller must carry 
out were identified. This was the starting point for the 
HW/SW partitioning stage. 

 
The platform used to implement the controller was the 

development board XS-Board (XS40-005XL, from XESS 
Corporation [14]), which has an Intel 8031 microcontroller, a 
Xilinx XC-4005 FPGA, 32 Kbytes of static RAM, a pro-
grammable clock circuit, and other devices. XESS provides 
software facilities which allow for the setting of the clock 
circuit, configuring the FPGA, and downloading the micro-
controller program. 

 
In order to minimize the resources of the available FPGA, 

the symmetry between both one-tank controllers was consid-
ered. Therefore, only one controller was implemented on the 
FPGA and two consecutive inference cycles were executed. 

 
In the hardware implementation phase, the FPGA synthesis 

was carried out with the “Xilinx Foundation 3.1i” environ-
ment [15]. The VHDL description of the inference system 
was obtained based on its XFL specification and using the 
xfvhdl tool.  Controller input/output resolutions were limited 
to 6 bits. The controller uses memory–based antecedents and 
the Fuzzy Mean defuzzification method. On the other hand, 
since the inference system acts as an 8031 coprocessor, it was 
also necessary to incorporate interface circuits with this 
device in the FPGA, as well as the circuitry necessary to 
access the memory. The result of the implementation led to a 
98% of CLBs used in the FPGA (193 of 196) and a maxi-
mum frequency of 20 MHz. At 10 MHz (for both the FPGA 
and the microcontroller) the hardware inference cycle delays 
700 nanoseconds, which is lower than the 8031 single in-
struction execution time. The developed experimental assem-
bly consisted of an XS-Board inserted into another board 
which also includes the A/D (AD7824) and D/A (AD7226) 
conversion devices and the signal conditioning circuits. 

 
Software implementation on the 8031 was carried out with 

the aid of available development tools for the MCS-51 
family. The microcontroller program includes the general 
algorithm for the control cycle (input acquisition, pre-
processing, communication with the inference engine, post-
processing, and output generation), together with several 
auxiliary routines which control the interrupt mechanisms 
and the communication with a PC. 

 
A first implementation of the fuzzy controller was carried out 
based on the same XFL specification which led to the best 
behavior in the verification phase. The obtained results, 
although acceptable, were far from the expected ones due to 
the precision difference between software and hardware 
inference. Therefore, it was necessary to realize additional 
adjustments of the memberships functions shown in Figure 3. 
Hardware implementation was carried out again and the 
controller parameters were processed. The behavior was 
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better than in the previous one but not as good as the one 
from the verification phase. The sampling time was then 
reduced from 500 to 100 ms (by means of a simple modifica-
tion in the microcontroller program) obtaining very similar 
results to those obtained with xflab control. Figure 4, repre-
senting the evolution of the level of liquid in a tank for 
different target positions, shows some of the experimental 
results. 

 
 

 
 
Figure 4. Liquid level vs. samples in tank-2 (each sample 

corresponds to 500 ms). 
 
 

5. SUMMARY 
   

A codesign methodology for fuzzy controllers, based on 
the ‘a priori’ partition of the tasks implemented by hardware 
and software components, has been presented. The Xfuzzy 
environment integrates all the necessary tools to carry out the 
design flow of a fuzzy logic-based system (from the high-
level description to its implementation according to this 
methodology). Finally, the application of the methodology to 
a real problem was discussed. A very attractive option, for its 
combination of speed and flexibility, consists of implement-
ing the fuzzy controller by using commercial development 
boards which include microcontrollers and FPGAs.   
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