20 research outputs found

    Research reports: 1991 NASA/ASEE Summer Faculty Fellowship Program

    Get PDF
    The basic objectives of the programs, which are in the 28th year of operation nationally, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. The faculty fellows spent 10 weeks at MSFC engaged in a research project compatible with their interests and background and worked in collaboration with a NASA/MSFC colleague. This is a compilation of their research reports for summer 1991

    Flight Mechanics/Estimation Theory Symposium, 1991

    Get PDF
    Twenty-six papers and abstracts are presented. A wide range of issues related to orbit attitude prediction, orbit determination, and orbit control are examined including attitude sensor calibration, attitude dynamics, and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers

    Numerical Boundary Condition Procedures

    Get PDF
    Topics include numerical procedures for treating inflow and outflow boundaries, steady and unsteady discontinuous surfaces, far field boundaries, and multiblock grids. In addition, the effects of numerical boundary approximations on stability, accuracy, and convergence rate of the numerical solution are discussed

    Flight Mechanics/Estimation Theory Symposium, 1989

    Get PDF
    Numerous topics in flight mechanics and estimation were discussed. Satellite attitude control, quaternion estimation, orbit and attitude determination, spacecraft maneuvers, spacecraft navigation, gyroscope calibration, spacecraft rendevous, and atmospheric drag model calculations for spacecraft lifetime prediction are among the topics covered

    Articulating Space: Geometric Algebra for Parametric Design -- Symmetry, Kinematics, and Curvature

    Get PDF
    To advance the use of geometric algebra in practice, we develop computational methods for parameterizing spatial structures with the conformal model. Three discrete parameterizations – symmetric, kinematic, and curvilinear – are employed to generate space groups, linkage mechanisms, and rationalized surfaces. In the process we illustrate techniques that directly benefit from the underlying mathematics, and demonstrate how they might be applied to various scenarios. Each technique engages the versor – as opposed to matrix – representation of transformations, which allows for structure-preserving operations on geometric primitives. This covariant methodology facilitates constructive design through geometric reasoning: incidence and movement are expressed in terms of spatial variables such as lines, circles and spheres. In addition to providing a toolset for generating forms and transformations in computer graphics, the resulting expressions could be used in the design and fabrication of machine parts, tensegrity systems, robot manipulators, deployable structures, and freeform architectures. Building upon existing algorithms, these methods participate in the advancement of geometric thinking, developing an intuitive spatial articulation that can be creatively applied across disciplines, ranging from time-based media to mechanical and structural engineering, or reformulated in higher dimensions

    Precise Orbit Determination of CubeSats

    Get PDF
    CubeSats are faced with some limitations, mainly due to the limited onboard power and the quality of the onboard sensors. These limitations significantly reduce CubeSats' applicability in space missions requiring high orbital accuracy. This thesis first investigates the limitations in the precise orbit determination of CubeSats and next develops algorithms and remedies to reach high orbital and clock accuracies. The outputs would help in increasing CubeSats' applicability in future space missions

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    The application of spaceborne GPS to atmospheric limb sounding and global change monitoring

    Get PDF
    This monograph is intended for readers with minimal background in radio science who seek a relatively comprehensive treatment of the mission and technical aspects of an Earth-orbiting radio occultation satellite. Part 1 (chapters 1-6) describes mission concepts and programmatic information; Part 2 (chapters 7-12) deals with the theoretical aspects of analyzing and interpreting radio occultation measurements. In this mission concept the navigation signals from a Global Positioning System (GPS) satellite that is being occulted by the Earth's limb are observed by a GPS flight receiver on board a low Earth orbiter (LEO) satellite. This technique can be used to recover profiles of the Earth's atmospheric refractivity, pressure, and temperature using small, dedicated, and relatively low-cost space systems. Chapter 2 summarizes the basic space system concepts of the limb-sounding technique and describes a low-cost strawman demonstration mission. Chapter 3 discusses some of the scientific benefits of using radio occultation on a suite of small satellites. Chapter 4 provides a more detailed discussion of several system elements in a radio occultation mission, including the launch system for small payloads, the LEO microsat, the GPS constellation, the GPS flight receiver payload, the mission operations ground control and data receiving system, the ground-based GPS global tracking network for precision orbit determination, and the central data processing and archive system. Chapter 5 addresses the various technology readiness questions that invariably arise. Chapter 6 discusses the overall costs of a demonstration mission such as GPS/MET (meteorological) proposed by the University Navstar Consortium (UNAVCO). Chapter 7 describes a geometrical optics approach to coplanar atmospheric occultation. Chapter 8 addresses major questions regarding accuracy of the occultation techniques. Chapter 9 describes some simulations that have been performed to evaluate the sensitivity of the recovered profiles of atmospheric parameters to different error sources, such as departure from spherical symmetry, water vapor, etc. Chapter 10 discusses horizontal and vertical resolution associated with limb sounders in general. Chapter 11 treats selected Fresnel diffraction techniques that can be used in radio occultation measurements to sharpen resolution. Chapter 12 provides brief discussions on selected special topics, such as strategies for handling interference and multipath processes that may arise for rays traveling in the lower troposphere

    Social work with airports passengers

    Get PDF
    Social work at the airport is in to offer to passengers social services. The main methodological position is that people are under stress, which characterized by a particular set of characteristics in appearance and behavior. In such circumstances passenger attracts in his actions some attention. Only person whom he trusts can help him with the documents or psychologically
    corecore