4,941 research outputs found

    High-order compact schemes for parabolic problems with mixed derivatives in multiple space dimensions

    Get PDF
    We present a high-order compact finite difference approach for a rather general class of parabolic partial differential equations with time and space dependent coefficients as well as with mixed second-order derivative terms in n spatial dimensions. Problems of this type arise frequently in computational fluid dynamics and computational finance. We derive general conditions on the coefficients which allow us to obtain a high-order compact scheme which is fourth-order accurate in space and second-order accurate in time. Moreover, we perform a thorough von Neumann stability analysis of the Cauchy problem in two and three spatial dimensions for vanishing mixed derivative terms, and also give partial results for the general case. The results suggest unconditional stability of the scheme. As an application example we consider the pricing of European Power Put Options in the multidimensional Black-Scholes model for two and three underlying assets. Due to the low regularity of typical initial conditions we employ the smoothing operators of Kreiss et al. to ensure high-order convergence of the approximations of the smoothed problem to the true solution

    Krylov implicit integration factor discontinuous Galerkin methods on sparse grids for high dimensional reaction-diffusion equations

    Full text link
    Computational costs of numerically solving multidimensional partial differential equations (PDEs) increase significantly when the spatial dimensions of the PDEs are high, due to large number of spatial grid points. For multidimensional reaction-diffusion equations, stiffness of the system provides additional challenges for achieving efficient numerical simulations. In this paper, we propose a class of Krylov implicit integration factor (IIF) discontinuous Galerkin (DG) methods on sparse grids to solve reaction-diffusion equations on high spatial dimensions. The key ingredient of spatial DG discretization is the multiwavelet bases on nested sparse grids, which can significantly reduce the numbers of degrees of freedom. To deal with the stiffness of the DG spatial operator in discretizing reaction-diffusion equations, we apply the efficient IIF time discretization methods, which are a class of exponential integrators. Krylov subspace approximations are used to evaluate the large size matrix exponentials resulting from IIF schemes for solving PDEs on high spatial dimensions. Stability and error analysis for the semi-discrete scheme are performed. Numerical examples of both scalar equations and systems in two and three spatial dimensions are provided to demonstrate the accuracy and efficiency of the methods. The stiffness of the reaction-diffusion equations is resolved well and large time step size computations are obtained

    Review of Summation-by-parts schemes for initial-boundary-value problems

    Full text link
    High-order finite difference methods are efficient, easy to program, scales well in multiple dimensions and can be modified locally for various reasons (such as shock treatment for example). The main drawback have been the complicated and sometimes even mysterious stability treatment at boundaries and interfaces required for a stable scheme. The research on summation-by-parts operators and weak boundary conditions during the last 20 years have removed this drawback and now reached a mature state. It is now possible to construct stable and high order accurate multi-block finite difference schemes in a systematic building-block-like manner. In this paper we will review this development, point out the main contributions and speculate about the next lines of research in this area

    High-order compact finite difference scheme for option pricing in stochastic volatility jump models

    Get PDF
    We derive a new high-order compact finite difference scheme for option pricing in stochastic volatility jump models, e.g. in Bates model. In such models the option price is determined as the solution of a partial integro-differential equation. The scheme is fourth order accurate in space and second order accurate in time. Numerical experiments for the European option pricing problem are presented. We validate the stability of the scheme numerically and compare its performance to standard finite difference and finite element methods. The new scheme outperforms a standard discretisation based on a second-order central finite difference approximation in all our experiments. At the same time, it is very efficient, requiring only one initial -factorisation of a sparse matrix to perform the option price valuation. Compared to finite element approaches, it is very parsimonious in terms of memory requirements and computational effort, since it achieves high-order convergence without requiring additional unknowns, unlike finite element methods with higher polynomial order basis functions. The new high-order compact scheme can also be useful to upgrade existing implementations based on standard finite differences in a straightforward manner to obtain a highly efficient option pricing code

    "Mariage des Maillages": A new numerical approach for 3D relativistic core collapse simulations

    Full text link
    We present a new 3D general relativistic hydrodynamics code for simulations of stellar core collapse to a neutron star, as well as pulsations and instabilities of rotating relativistic stars. It uses spectral methods for solving the metric equations, assuming the conformal flatness approximation for the three-metric. The matter equations are solved by high-resolution shock-capturing schemes. We demonstrate that the combination of a finite difference grid and a spectral grid can be successfully accomplished. This "Mariage des Maillages" (French for grid wedding) approach results in high accuracy of the metric solver and allows for fully 3D applications using computationally affordable resources, and ensures long term numerical stability of the evolution. We compare our new approach to two other, finite difference based, methods to solve the metric equations. A variety of tests in 2D and 3D is presented, involving highly perturbed neutron star spacetimes and (axisymmetric) stellar core collapse, demonstrating the ability to handle spacetimes with and without symmetries in strong gravity. These tests are also employed to assess gravitational waveform extraction, which is based on the quadrupole formula.Comment: 29 pages, 16 figures; added more information about convergence tests and grid setu

    High-order conservative finite difference GLM-MHD schemes for cell-centered MHD

    Get PDF
    We present and compare third- as well as fifth-order accurate finite difference schemes for the numerical solution of the compressible ideal MHD equations in multiple spatial dimensions. The selected methods lean on four different reconstruction techniques based on recently improved versions of the weighted essentially non-oscillatory (WENO) schemes, monotonicity preserving (MP) schemes as well as slope-limited polynomial reconstruction. The proposed numerical methods are highly accurate in smooth regions of the flow, avoid loss of accuracy in proximity of smooth extrema and provide sharp non-oscillatory transitions at discontinuities. We suggest a numerical formulation based on a cell-centered approach where all of the primary flow variables are discretized at the zone center. The divergence-free condition is enforced by augmenting the MHD equations with a generalized Lagrange multiplier yielding a mixed hyperbolic/parabolic correction, as in Dedner et al. (J. Comput. Phys. 175 (2002) 645-673). The resulting family of schemes is robust, cost-effective and straightforward to implement. Compared to previous existing approaches, it completely avoids the CPU intensive workload associated with an elliptic divergence cleaning step and the additional complexities required by staggered mesh algorithms. Extensive numerical testing demonstrate the robustness and reliability of the proposed framework for computations involving both smooth and discontinuous features.Comment: 32 pages, 14 figure, submitted to Journal of Computational Physics (Aug 7 2009
    • …
    corecore