3,473 research outputs found

    Dynamic Power Evaluation of LTE Wireless Baseband Processing on FPGA

    Get PDF
    International audienceMobile networks and user equipments continuously evolve to circumvent the data traffic growth and the increasing number of users. However, the complexity and heterogeneity of such systems (3G, LTE, LTE-A, etc.) makes power one of the most critical metric. In this context, power estimation has become an unavoidable task in the design process. In this paper, a dynamic power estimation methodology for FPGA-based systems is presented. It aims at providing accurate and fast power estimations of an entire system prior to its implementation. It also aims at making design space exploration easier. We introduce an innovative scenario-level in order to facilitate the comparison of domain-specific systems. We show the effectiveness of our approach on several LTE baseband configurations which leads to a low absolute error, compared to classic estimations. It also exhibits a high speed-up factor which is determinant during design space exploration. I. INTRODUCTION Today, the data traffic that is generated on mobile networks continues to grow rapidly. According to [1], global mobile data increases of 69% in 2014 and it will have a compound annual growth rate of 57% from 2014 to 2019. To deal with these issues, mobile networks and user equipments tend to constantly adapt their processing capabilities. Among all possible solutions, a popular example is the LTE standard. The complexity of systems like LTE makes their design and development a challenging task, especially when they are implemented in embedded systems in which specific constraints have to be taken into account (power, size, performance , etc.). The number of parameters that can have an impact over power consumption makes the power estimation even more difficult. As the new technologies clearly enhance the performance in terms of throughput, QoS, it also implies a higher power consumption and more heat dissipation. One of the most popular families of digital circuits in embedded systems are the Field Programmable Gate Arrays (FPGA). These devices represent an attractive technology and make it possible to implement complex systems due to their high density of gates and heterogeneous resources. As compare to ASIC that can achieve better performance [2], FPGAs offer more flexibility. FPGA-based systems can be made of IP (Intellectual Property) which are hardware cores that facilitate design reuse and speed up development time. Their power consumption is generally divided into static and dynamic power. Static power comes from leakage currents whereas dynamic power is generated by the transistors switching activity as soon as the circuit is active

    Type-driven automated program transformations and cost modelling for optimising streaming programs on FPGAs

    Get PDF
    In this paper we present a novel approach to program optimisation based on compiler-based type-driven program transformations and a fast and accurate cost/performance model for the target architecture. We target streaming programs for the problem domain of scientific computing, such as numerical weather prediction. We present our theoretical framework for type-driven program transformation, our target high-level language and intermediate representation languages and the cost model and demonstrate the effectiveness of our approach by comparison with a commercial toolchain

    FASTCUDA: Open Source FPGA Accelerator & Hardware-Software Codesign Toolset for CUDA Kernels

    Get PDF
    Using FPGAs as hardware accelerators that communicate with a central CPU is becoming a common practice in the embedded design world but there is no standard methodology and toolset to facilitate this path yet. On the other hand, languages such as CUDA and OpenCL provide standard development environments for Graphical Processing Unit (GPU) programming. FASTCUDA is a platform that provides the necessary software toolset, hardware architecture, and design methodology to efficiently adapt the CUDA approach into a new FPGA design flow. With FASTCUDA, the CUDA kernels of a CUDA-based application are partitioned into two groups with minimal user intervention: those that are compiled and executed in parallel software, and those that are synthesized and implemented in hardware. A modern low power FPGA can provide the processing power (via numerous embedded micro-CPUs) and the logic capacity for both the software and hardware implementations of the CUDA kernels. This paper describes the system requirements and the architectural decisions behind the FASTCUDA approach

    A Micro Power Hardware Fabric for Embedded Computing

    Get PDF
    Field Programmable Gate Arrays (FPGAs) mitigate many of the problemsencountered with the development of ASICs by offering flexibility, faster time-to-market, and amortized NRE costs, among other benefits. While FPGAs are increasingly being used for complex computational applications such as signal and image processing, networking, and cryptology, they are far from ideal for these tasks due to relatively high power consumption and silicon usage overheads compared to direct ASIC implementation. A reconfigurable device that exhibits ASIC-like power characteristics and FPGA-like costs and tool support is desirable to fill this void. In this research, a parameterized, reconfigurable fabric model named as domain specific fabric (DSF) is developed that exhibits ASIC-like power characteristics for Digital Signal Processing (DSP) style applications. Using this model, the impact of varying different design parameters on power and performance has been studied. Different optimization techniques like local search and simulated annealing are used to determine the appropriate interconnect for a specific set of applications. A design space exploration tool has been developed to automate and generate a tailored architectural instance of the fabric.The fabric has been synthesized on 160 nm cell-based ASIC fabrication process from OKI and 130 nm from IBM. A detailed power-performance analysis has been completed using signal and image processing benchmarks from the MediaBench benchmark suite and elsewhere with comparisons to other hardware and software implementations. The optimized fabric implemented using the 130 nm process yields energy within 3X of a direct ASIC implementation, 330X better than a Virtex-II Pro FPGA and 2016X better than an Intel XScale processor

    Design exploration and performance strategies towards power-efficient FPGA-based achitectures for sound source localization

    Get PDF
    Many applications rely on MEMS microphone arrays for locating sound sources prior to their execution. Those applications not only are executed under real-time constraints but also are often embedded on low-power devices. These environments become challenging when increasing the number of microphones or requiring dynamic responses. Field-Programmable Gate Arrays (FPGAs) are usually chosen due to their flexibility and computational power. This work intends to guide the design of reconfigurable acoustic beamforming architectures, which are not only able to accurately determine the sound Direction-Of-Arrival (DoA) but also capable to satisfy the most demanding applications in terms of power efficiency. Design considerations of the required operations performing the sound location are discussed and analysed in order to facilitate the elaboration of reconfigurable acoustic beamforming architectures. Performance strategies are proposed and evaluated based on the characteristics of the presented architecture. This power-efficient architecture is compared to a different architecture prioritizing performance in order to reveal the unavoidable design trade-offs

    Exploiting partial reconfiguration through PCIe for a microphone array network emulator

    Get PDF
    The current Microelectromechanical Systems (MEMS) technology enables the deployment of relatively low-cost wireless sensor networks composed of MEMS microphone arrays for accurate sound source localization. However, the evaluation and the selection of the most accurate and power-efficient network’s topology are not trivial when considering dynamic MEMS microphone arrays. Although software simulators are usually considered, they consist of high-computational intensive tasks, which require hours to days to be completed. In this paper, we present an FPGA-based platform to emulate a network of microphone arrays. Our platform provides a controlled simulated acoustic environment, able to evaluate the impact of different network configurations such as the number of microphones per array, the network’s topology, or the used detection method. Data fusion techniques, combining the data collected by each node, are used in this platform. The platform is designed to exploit the FPGA’s partial reconfiguration feature to increase the flexibility of the network emulator as well as to increase performance thanks to the use of the PCI-express high-bandwidth interface. On the one hand, the network emulator presents a higher flexibility by partially reconfiguring the nodes’ architecture in runtime. On the other hand, a set of strategies and heuristics to properly use partial reconfiguration allows the acceleration of the emulation by exploiting the execution parallelism. Several experiments are presented to demonstrate some of the capabilities of our platform and the benefits of using partial reconfiguration
    corecore