3,328 research outputs found

    Thin film thermocouples for high temperature measurement on ceramic materials

    Get PDF
    Thin film thermocouples have been developed for use on metal parts in jet engines to 1000 C. However, advanced propulsion systems are being developed that will use ceramic materials and reach higher temperatures. The purpose of this work is to develop thin film thermocouples for use on ceramic materials. The thin film thermocouples are Pt13Rh/Pt fabricated by the sputtering process. Lead wires are attached using the parallel-gap welding process. The ceramic materials are silicon nitride, silicon carbide, aluminum oxide, and mullite. Both steady state and thermal cycling furnace tests were performed in the temperature range to 1500 C. High-heating-rate tests were performed in an arc lamp heat-flux-calibration facility. The fabrication of the thin film thermocouples is described. The thin film thermocouple output was compared to a reference wire thermocouple. Drift of the thin film thermocouples was determined, and causes of drift are discussed. The results of high-heating-rate tests up to 2500 C/sec are presented. The stability of the ceramic materials is examined. It is concluded that Pt13Rh/Pt thin film thermocouples are capable of meeting lifetime goals of 50 hours or more up to temperatures of 1500 C depending on the stability of the particular ceramic substrate

    Development of thin film thermocouples on ceramic materials for advanced propulsion system applications

    Get PDF
    Thin film thermocouples were developed for use on metal parts in jet engines to 1000 C. However, advanced propulsion systems are being developed that will use ceramic materials and reach higher temperatures. The purpose is to develop thin film thermocouples for use on ceramic materials. The new thin film thermocouples are Pt13Rh/Pt fabricated by the sputtering process. Lead wires are attached using the parallel-gap welding process. The ceramic materials tested are silicon nitride, silicon carbide, aluminum oxide, and mullite. Both steady state and thermal cycling furnace tests were performed in the temperature range to 1500 C. High-heating-rate tests were performed in an arc lamp heat-flux-calibration facility. The fabrication of the thin film thermocouples is described. The thin film thermocouple output was compared to a reference wire thermocouple. Drift of the thin film thermocouples was determined, and causes of drift are discussed. The results of high heating rate tests up to 2500 C/sec are presented. The stability of the ceramic materials is examined. It is concluded that Pt13Rh/Pt thin film thermocouples are capable of meeting lifetime goals of 50 hr or more up to temperatures of 1500 C depending on the stability of the particular ceramic substrate

    Attachment of lead wires to thin film thermocouples mounted on high temperature materials using the parallel gap welding process

    Get PDF
    Parallel gap resistance welding was used to attach lead wires to sputtered thin film sensors. Ranges of optimum welding parameters to produce an acceptable weld were determined. The thin film sensors were Pt13Rh/Pt thermocouples; they were mounted on substrates of MCrAlY-coated superalloys, aluminum oxide, silicon carbide and silicon nitride. The entire sensor system is designed to be used on aircraft engine parts. These sensor systems, including the thin-film-to-lead-wire connectors, were tested to 1000 C

    Sensors for ceramic components in advanced propulsion systems: Summary of literature survey and concept analysis, task 3 report

    Get PDF
    The results of a literature survey and concept analysis related to sensing techniques for measuring of surface temperature, strain, and heat flux for (non-specific) ceramic materials exposed to elevated temperatures (to 2200 K) are summarized. Concepts capable of functioning in a gas turbine hot section environment are favored but others are reviewed also. Recommendation are made for sensor development in each of the three areas

    Joining lead wires to thin platinum alloy films

    Get PDF
    A two step process of joining a lead wire to .000002 m thick platinum alloy film which rests upon an equally thin alumina insulating layer which is adhered to a metal substrate is described. Typically the platinum alloy film forms part of a thermocouple for measuring the surface temperature of a gas turbine airfoil. In the first step the lead wire is deformed 30 to 60% at room temperature while the characteristic one million ohm resistance of the alumina insulating layer is monitored for degradation. In the second step the cold pressed assembly is heated at 865 to 1025 C for 4 to 75 hr in air. During the heating step any degradation of insulating layer resistance may be reversed, provided the resistance was not decreased below 100 ohm in the cold pressing

    Fabrication and Testing of a Nonstandard Thin-Film Heat Flux Sensor for Power System Applications

    Get PDF
    Stirling convertors are being operated by NASA Glenn Research Center for many years to demonstrate a Radioisotope Power System (RPS) capable of providing reliable power for potential multi-year space missions. Techniques used to monitor Stirling convertors for change in performance include measurements of temperature, pressure, energy addition, and power output. It is difficult to measure energy addition to Stirling convertors due to the complex geometries of the hot components, temperature limits of sensor materials, and invasive integration of sensors. A thin-film heat flux sensor was used to directly measure heat energy addition to a Stirling convertor. The one micron thick, Gold vs. Platinum thermocouples were designed to make a noninvasive temperature measurement on the surface of an Alumina ceramic disk located between the heat source and Stirling convertor. Fabrication techniques included creation of ceramic substrates, which hold the thermocouples, using the slipcasting technique and creation of the thin metallic film thermocouples using Physical Vapor Deposition (PVD). The effort succeeded in designing and fabricating unique sensors which, for the first time, were integrated into a Stirling convertor ground test and exposed to test temperatures exceeding 700°C in air for 10,000 hours. The heat transfer measurements are discussed. Also, the sensors were examined after being removed when the test was complete

    Thin film ceramic thermocouples

    Get PDF
    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors

    Fabrication and Testing of a Nonstandard Thin-Film Heat Flux Sensor for Power System Applications

    Get PDF
    Stirling convertors are being operated by NASA Glenn Research Center for many years to demonstrate a Radioisotope Power System (RPS) capable of providing reliable power for potential multi-year space missions. Techniques used to monitor Stirling convertors for change in performance include measurements of temperature, pressure, energy addition, and power output. It is difficult to measure energy addition to Stirling convertors due to the complex geometries of the hot components, temperature limits of sensor materials, and invasive integration of sensors. A thin-film heat flux sensor was used to directly measure heat energy addition to a Stirling convertor. The one micron thick, Gold vs. Platinum thermocouples were designed to make a noninvasive temperature measurement on the surface of an Alumina ceramic disk located between the heat source and Stirling convertor. Fabrication techniques included creation of ceramic substrates, which hold the thermocouples, using the slipcasting technique and creation of the thin metallic film thermocouples using Physical Vapor Deposition (PVD). The effort succeeded in designing and fabricating unique sensors which, for the first time, were integrated into a Stirling convertor ground test and exposed to test temperatures exceeding 700°C in air for 10,000 hours. The heat transfer measurements are discussed. Also, the sensors were examined after being removed when the test was complete

    Fabrication and Thermoelectric Characterization of Transition Metal Silicide-Based Composite Thermocouples

    Get PDF
    Metal silicide-based thermocouples were fabricated by screen printing thick films of the powder compositions onto alumina tapes followed by lamination and sintering processes. The legs of the embedded thermocouples were composed of composite compositions consisting of MoSi2, WSi2, ZrSi2, or TaSi2 with an additional 10 vol % Al2O3 to form a silicide–oxide composite. The structural and high-temperature thermoelectric properties of the composite thermocouples were examined using X-ray diffraction, scanning electron microscopy and a typical hot–cold junction measurement technique. MoSi2-Al2O3 and WSi2-Al2O3 composites exhibited higher intrinsic Seebeck coefficients (22.2–30.0 μV/K) at high-temperature gradients, which were calculated from the thermoelectric data of composite//Pt thermocouples. The composite thermocouples generated a thermoelectric voltage up to 16.0 mV at high-temperature gradients. The MoSi2-Al2O3//TaSi2-Al2O3 thermocouple displayed a better performance at high temperatures. The Seebeck coefficients of composite thermocouples were found to range between 20.9 and 73.0 μV/K at a temperature gradient of 1000 ◦C. There was a significant difference between the calculated and measured Seebeck coefficients of these thermocouples, which indicated the significant influence of secondary silicide phases (e.g., Mo5Si3, Ta5Si3) and possible local compositional changes on the overall thermoelectric response. The thermoelectric performance, high sensitivity, and cost efficiency of metal silicide–alumina ceramic composite thermocouples showed promise for high-temperature and harsh-environment sensing applications
    • …
    corecore