149 research outputs found

    Reliability analysis of planar and symmetrical & asymmetrical trench discrete SiC Power MOSFETs

    Get PDF
    Silicon Carbide MOSFETs are shown in research to outperform Silicon counterparts on many performance metrics, including switching rates and power losses. To further improve their performance, trench and double-trench structures have recently been developed. To replace conventional planar SiC MOSFETs, besides the performance parameters which are mostly stated in datasheets, reliability studies under stress are also needed. This thesis presents a comprehensive comparison between 3rd generation trench SiC power MOSFETs, namely symmetrical double-trench and asymmetrical trench with planar SiC power MOSFETs on four aspects of: switching slew rates (dI/dt & dV/dt), crosstalk characteristics, bias temperature instability and power cycling stability.First, the dynamic performance in both 1st quadrant and 3rd quadrant has been eval- uated on the differences in stress by dI/dt & dV/dt and resultant losses. This is key in understanding many other reliability criterions, i.e. severity of crosstalk induced switchings. In the 1st quadrant, the source current and drain-source voltage switching rates at both turn-ON and turn-OFF are measured under a range of test conditions. Both the symmetrical and asymmetrical trench MOSFETs have up to 2 times faster voltage and current slew rates compared with the planar one. They also indicate only slight changes in switching rate with junction temperature. In the 3rd quadrant, the reverse recovery peak current and total reverse recovery charge are measured with respect to junction temper- ature and load current level. Both the symmetrical and asymmetrical trench MOSFETs have less than half of the reverse recovery charge of that of the planar SiC MOSFET.In the evaluation of crosstalk characteristics, peak shoot-through current and induced gate voltage at crosstalk are measured with respect to junction temperature and external gate resistance. With particularly large external gate resistances connected to intentionally induce parasitic turn-ON, the symmetrical double-trench MOSFET is shown to be more prone to crosstalk with 23 A peak shoot-through current measured while it is only 10 A for asymmetrical trench and 4 A for planar MOSFET under similar test conditions. As the temperature increase, the peak shoot-through current drops for the symmetrical double-trench, while constant for the asymmetrical trench and rising for the planar device.Threshold voltage drift is also measured to reflect the degradation happened with bias temperature instability at various junction temperatures, stressing voltages and time periods. Under low-magnitude gate stress (within the range of datasheets) in both positive and negative bias cases, there is more threshold drift observed on the two trench MOSFETs at all junction temperatures than the planar MOSFET. When the stress magnitude is raised, there is less threshold drift observed on the two trench MOSFETs.To evaluate the ruggedness in continuous switchings, the devices are placed under repetitive turn-ON events. The thermal performance under such operation are compared. The asymmetrical trench MOSFET experiences the highest case temperature rise while the least is observed for the planar MOSFET. With an external heatsink equipped to achieve more efficient cooling, the repetitive turn-ON test transforms into the conventional power cycling. In this condition, both the symmetrical and asymmetrical trench MOSFETs fail earlier than the degraded (but not failed) planar MOSFET

    Crosstalk in SiC power MOSFETs for evaluation of threshold voltage shift caused by bias temperature instability

    Get PDF
    Threshold voltage drift from Bias Temperature Instability is known to be a reliability concern for SiC MOSFETs. Negative bias temperature instability (NBTI) results from positive charge trapping at the gate dielectric interface and is more problematic in SiC due to the higher interface trap density. Turning SiC MOSFETs OFF with negative voltages to avoid Miller coupling induced cross-talk can cause VTH shifts in periods with long standby duration and high temperatures. This paper proposes a novel test method for BTI characterization that relies on measuring the shoot-through current and charge during switching transients. The method exploits the Miller coupling between 2 devices in the same phase and uses the shoot-through current from parasitic turn-ON to monitor VTH. Standard techniques require the use of static measurements (typically from a parameter analyzer or a curve tracer) to determine the threshold voltage shift. These conventional methods can underestimate the VTH shift since the recovery from charge de-trapping can mask the true extent of the problem. The proposed methodology uses the actual converter environment to investigate the VTH shift and should therefore be of more interest to applications engineers as opposed to device physicists. Furthermore, it avoids the problem of VTH recovery and is therefore more accurate in VTH shift characterization

    Bias temperature instability and junction temperature measurement using electrical parameters in SiC power MOSFETs

    Get PDF
    Junction temperature sensing is an integral part of both on-line and off-line condition monitoring where direct access the bare die surface is not available. Given a defined power input, the junction temperature enables the estimation of the junction-to-case thermal resistance, which is a key indicator of packaging failure mechanisms like solder voiding and cracks. The use of temperature sensitive electrical parameters has widely been proposed as a means of junction temperature sensing however, there are certain challenges regarding their use in SiC MOSFETs. Bias Temperature Instability from charge trapping in the gate dielectric causes threshold voltage drift, which in SiC affects some of the key temperature sensitive electrical parameters including ON-state resistance, body diode forward voltage as well as the current commutation rate. This paper reviews the impact of bias temperature instability on the accurate junction temperature measurement using temperature sensitive electrical parameters in SiC MOSFETs

    Trade-offs between gate oxide protection and performance in SiC MOSFETs

    Get PDF
    The reliability of gate oxides in SiC MOSFETs has come under increased scrutiny due to reduced performance under time dependent dielectric breakdown and increased threshold voltage instability. This paper investigates how 10% gate voltage (V GS ) derating in SiC MOSFETs can be implemented with minimal impact on loss performance. Using experimental measurements and electrothermal simulations of power converters, the trade-off between reduced V GS and conversion loss is investigated. It is shown that 10% V GS de-rating increases the ON-state resistance by 10% and the turn-ON switching energy by 7% average while the turn-OFF switching energy is unaffected. The low temperature sensitivity of the ON-state losses in SiC MOSFETs can be exploited since the rise in junction temperature due to V GS derating is marginal, unlike Si devices where ON-state resistance rises significantly with temperature. The load current and switching frequency influences the effectiveness of V GS derating. It is also shown that reducing the gate drive output impedance can compensate for V GS derating at high switching frequencies, with reduced total loss penalization. This may be important for protecting the gate oxide and enhancing its reliability

    Characterization and Modeling of Semiconductor Power Devices Reliability

    Get PDF
    This thesis aims at studying, characterizing and modeling the trapping and de-trapping mechanisms occurring during the ON-state operation mode and leading to the degradation of semiconductor power devices. In this operating condition, the combined effect of moderate electric fields, high currents and temperatures due to self-heating effects can seriously affect the long-term reliability leading to device failure. Detailed analyses are performed on both silicon and gallium nitride based technologies by means of accelerated life test methods and electro-thermal simulations, aimed at understanding the physical origins of the degradation. In particular, this thesis provides the following contributions: i) the role of the interface and oxide trapped charge induced by negative bias temperature instability (NBTI) stress in p-channel Si-based U-MOSFETs is investigated. The impact of relevant electrical and physical parameters, such as stress voltage, recovery voltage and temperature, is accounted for and proper models are also proposed. In the field of innovative semiconductor power devices, this work focuses on the study of GaN-based devices. In particular, three different subtopics are considered: ii) a thermal model, accounting for the temperature dependence of the thermal boundary resistance (TBR), is implemented in TCAD simulator in order to realistically model self-heating effects in GaN-based power devices; iii) the degradation mechanisms induced by ON-state stress in GaN-based Schottky barrier diodes (SBDs) are proposed by analyzing their dependence on the device geometry; iv) the trapping mechanisms underlying the time-dependent gate breakdown and their effects on the performance of GaN-based power HEMTs with p-type gate are investigated, and an original empirical model representing the relationship between gate leakage current and time to failure is proposed

    Feature Papers in Electronic Materials Section

    Get PDF
    This book entitled "Feature Papers in Electronic Materials Section" is a collection of selected papers recently published on the journal Materials, focusing on the latest advances in electronic materials and devices in different fields (e.g., power- and high-frequency electronics, optoelectronic devices, detectors, etc.). In the first part of the book, many articles are dedicated to wide band gap semiconductors (e.g., SiC, GaN, Ga2O3, diamond), focusing on the current relevant materials and devices technology issues. The second part of the book is a miscellaneous of other electronics materials for various applications, including two-dimensional materials for optoelectronic and high-frequency devices. Finally, some recent advances in materials and flexible sensors for bioelectronics and medical applications are presented at the end of the book

    Miniaturized Transistors, Volume II

    Get PDF
    In this book, we aim to address the ever-advancing progress in microelectronic device scaling. Complementary Metal-Oxide-Semiconductor (CMOS) devices continue to endure miniaturization, irrespective of the seeming physical limitations, helped by advancing fabrication techniques. We observe that miniaturization does not always refer to the latest technology node for digital transistors. Rather, by applying novel materials and device geometries, a significant reduction in the size of microelectronic devices for a broad set of applications can be achieved. The achievements made in the scaling of devices for applications beyond digital logic (e.g., high power, optoelectronics, and sensors) are taking the forefront in microelectronic miniaturization. Furthermore, all these achievements are assisted by improvements in the simulation and modeling of the involved materials and device structures. In particular, process and device technology computer-aided design (TCAD) has become indispensable in the design cycle of novel devices and technologies. It is our sincere hope that the results provided in this Special Issue prove useful to scientists and engineers who find themselves at the forefront of this rapidly evolving and broadening field. Now, more than ever, it is essential to look for solutions to find the next disrupting technologies which will allow for transistor miniaturization well beyond silicon’s physical limits and the current state-of-the-art. This requires a broad attack, including studies of novel and innovative designs as well as emerging materials which are becoming more application-specific than ever before

    Strain-Engineered MOSFETs

    Get PDF
    This book brings together new developments in the area of strain-engineered MOSFETs using high-mibility substrates such as SIGe, strained-Si, germanium-on-insulator and III-V semiconductors into a single text which will cover the materials aspects, principles, and design of advanced devices, their fabrication and applications. The book presents a full TCAD methodology for strain-engineering in Si CMOS technology involving data flow from process simulation to systematic process variability simulation and generation of SPICE process compact models for manufacturing for yield optimization
    • …
    corecore