63 research outputs found

    High speed low complexity radix-16 Max-Log-MAP SISO decoder

    No full text
    International audienceAt present, the main challenge for hardware implementation turbo decoders is to achieve the high data rates required by current and future communication system standards. In order to address this challenge, a low complexity radix-16 SISO decoder for the Max-Log- MAP algorithm is proposed in this paper. Based on the elimination of parallel paths in the radix-16 trellis diagram, architectural solutions to reduce the hardware complexity of the different blocks of a SISO decoder are detailed. Moreover, two complementary techniques are introduced order to overcome BER/FER performance degradation when turbo decoders based on the proposed SISO decoder are considered. Thus, a penalty lower than 0.05dB is observed for a 8 state binary turbo code with respect to a traditional radix-2 turbo decoder for 6 decoding iterations

    Configurable and Scalable Turbo Decoder for 4G Wireless Receivers

    Get PDF
    The increasing requirements of high data rates and quality of service (QoS) in fourth-generation (4G) wireless communication require the implementation of practical capacity approaching codes. In this chapter, the application of Turbo coding schemes that have recently been adopted in the IEEE 802.16e WiMax standard and 3GPP Long Term Evolution (LTE) standard are reviewed. In order to process several 4G wireless standards with a common hardware module, a reconfigurable and scalable Turbo decoder architecture is presented. A parallel Turbo decoding scheme with scalable parallelism tailored to the target throughput is applied to support high data rates in 4G applications. High-level decoding parallelism is achieved by employing contention-free interleavers. A multi-banked memory structure and routing network among memories and MAP decoders are designed to operate at full speed with parallel interleavers. A new on-line address generation technique is introduced to support multiple Turbo interleaving patterns, which avoids the interleaver address memory that is typically necessary in the traditional designs. Design trade-offs in terms of area and power efficiency are analyzed for different parallelism and clock frequency goals

    Configurable and Scalable High Throughput Turbo Decoder Architecture for Multiple 4GWireless Standards

    Get PDF
    In this paper, we propose a novel multi-code turbo decoder architecture for 4G wireless systems. To support various 4G standards, a configurable multi-mode MAP (maximum a posteriori) decoder is designed for both binary and duo-binary turbo codes with small resource overhead (less than 10%) compared to the single-mode architecture. To achieve high data rates in 4G, we present a parallel turbo decoder architecture with scalable parallelism tailored to the given throughput requirements. High-level parallelism is achieved by employing contention-free interleavers. Multi-banked memory structure and routing network among memories and MAP decoders are designed to operate at full speed with parallel interleavers. We designed a very low-complexity recursive on-line address generator supporting multiple interleaving patterns, which avoids the interleaver address memory. Design trade-offs in terms of area and power efficiency are explored to find the optimal architectures. A 711 Mbps data rate is feasible with 32 Radix-4 MAP decoders running at 200 MHz clock rate.Texas Instruments Incorporate

    Architectural Comparison Model for Area-Efficient PMAP Turbo-Decoders

    Get PDF
    In this paper, a methodology to compare highthroughput turbo decoder architectures, is proposed. The model is based on the area-efficiency estimation of different architectures and design choices. Moreover, it is specifically oriented to the exploration of Parallel-MAP (PMAP) architectures, combined with both the Max-Log-MAP algorithm and the recently proposed Local-SOVA. The main objective is the search for optimal radix-orders, capable to maximize the area-efficiency of the decoder. In this scenario, it is proved that i) radix-orders higher than 4 are expected to drastically reduce the area-efficiency; ii) the optimal choice between radix-2 and radix-4 architectures strongly depends on the area distribution between logic and memory

    Turbo decoder VLSI implementations for multi-standards wireless communication systems

    Get PDF

    VLSI Architectures for WIMAX Channel Decoders

    Get PDF
    This chapter describes the main architectures proposed in the literature to implement the channel decoders required by the WiMax standard, namely convolutional codes, turbo codes (both block and convolutional) and LDPC. Then it shows a complete design of a convolutional turbo code encoder/decoder system for WiMax.Comment: To appear in the book "WIMAX, New Developments", M. Upena, D. Dalal, Y. Kosta (Ed.), ISBN978-953-7619-53-

    High-Throughput Contention-Free Concurrent Interleaver Architecture for Multi-Standard Turbo Decoder

    Get PDF
    To meet the higher data rate requirement of emerging wireless communication technology, numerous parallel turbo decoder architectures have been developed. However, the interleaver has become a major bottleneck that limits the achievable throughput in the parallel decoders due to the massive memory conflicts. In this paper, we propose a flexible Double-Buffer based Contention-Free (DBCF) interleaver architecture that can efficiently solve the memory conflict problem for parallel turbo decoders with very high parallelism. The proposed DBCF architecture enables high throughput concurrent interleaving for multi-standard turbo decoders that support UMTS/HSPA+, LTE and WiMAX, with small datapath delays and low hardware cost. We implemented the DBCF interleaver with a 65nm CMOS technology. The implementation of this highly efficient DBCF interleaver architecture shows significant improvement in terms of the maximum throughput and occupied chip area compared to the previous work.HuaweiNational Science Foundatio

    Turbo Decoder Using Contention-Free Interleaver and Parallel Architecture

    Full text link

    Domain specific high performance reconfigurable architecture for a communication platform

    Get PDF
    corecore