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Abstract 
 

The LTE (Long Term Evolution) and LTE-Advanced are the latest  

mobile communications s tandards developed by the Third Generation 

Partnership Project  (3GPP). These standards represent a 

transformative change in the evolution of m obile technology. Within 

the present  decade, the network infrastructures and mobile terminals 

have been designed and upgraded to  support  the LTE standards. As 

these systems are deployed in every corner of the globe, the  LTE 

standards have finally realized the dream of providing a truly global 

broadband mobile  access technology.  

 

The turbo decoder is the most challenging component  in a digital  

HSDPA receiver in terms of computation requirement and power 

consumption, where large block size and recursive algor ithm prevent 

pipelining. 

 

This thesis addresses hardware  implementation aspects of parallel  

Turbo-Decoder on FPGA that reach more than 150 Mb/s LTE data-

rate using multiple soft -input soft-output (SIS0) decoders that 

operate in parallel .  To improve efficacy, we harness a radix-4-based 

8x parallel turbo-decoder.  Turbo-Decoding rate is set to 1/3.  

 

 

 

 

 

Keywords: 

LTE, mobile communication standards,  HSDPA receiver,  hardware 

implementation, parallel Turbo -Decoder,  FPGA 

 

 

  



 

ix 

 

 

 



 

1 

 

Chapter 1 

 

Introduction 

 
Turbo coding was introduced in 1993 by Berrou, Glavieux,  and 

Thitimajashima [1], [2], who reported extremely impressive results 

for a code with a long frame length. Since its recent invention, turbo 

coding has evolved at an unprecedented rate and has reached a state 

of maturity within just a few years due to the intensive research 

efforts of the turbo coding community.  The excellent performance of 

turbo codes however, comes at  the expense of significant 

computational complexity and consequently high power consumption 

at the receiver for proper  decoding. Indeed, the computational burden 

of the turbo decoder  far exceeds that  of any other component in a  

receiver,  especially for high  data rates.  

 
 

1.1 Motivation 
 

In the past  two decades we have seen the introduction of various 

mobile standards,  from 2G to 3G to the present 4G, and we expect 

the trend to continue. The primary mandate of the 2G standards was 

the support of mobile telephony and voice applications.  The 3G 

standards marked the beginning of the packet -based data revolution 

and the support of Internet applications such as email,  Web browsing, 

text messaging, and other client -server services. The 4G standards 

will feature all -IP packet-based networks and wi ll support the 

explosive demand for bandwidth-demanding applications such as 

mobile video-on-demand services.  The rapid increase in wireless data 

traffic now begins to strain the network capacity and operators are 

looking for novel technologies enabling even higher data-rates than 

those in the past.  The channel  coding scheme for LTE [3] is  Turbo 

coding. Turbo codes achieve close to Shannon capacity [ 4]  and the 

Turbo decoder  is  typically one of the major blocks in a LTE wireless 

receiver. Turbo decoders suffer from high decoding latency due to 

the i terative decoding process, the forward–backward recursion in the 
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maximum a posteriori (MAP) decoding algorithm and the 

interleaving/de- interleaving between iterations  

 

 
 

 

1.2 Thesis goal 
 

In this work, we present the implementation of  a power-efficient and 

high throughput  parallel  Turbo-Decoder architecture for LTE, 

proposed in [5]. It is detailed an 8x parallel radix-4-based SISO 

Decoder.  We used the Verilog Hardware Description Language 

(HDL) for the development of the hardware modules and we 

performed the verification by comparing the HDL simulation results 

with the corresponding from Matlab.   

 

Another goal of this thesis is  to integrate the hardware 

implementation of the Turbo-Decoder into a LTE compliant Single-

In Single-Out model in order to accelerate the receiver’s  (Rx) 

baseband processing (Figure 2.1).  
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Figure 1.2  LTE SISO Processing Chain  

 

 

1.3 Thesis Structure 
 

The remainder of the thesis is  organized as follows. Section 2 reviews 

the principle of turbo decoding and details the algori thm used for 

SISO decoding. The paralle l  turbo-decoder architecture is presented 

in Section 3 and the corresponding throughput/area tradeoffs are 

studied. The interleaver architecture is  detailed in Section 4 and 

Section 5 describes the architecture of the SISO decoder .  Section 6 

provides the implementation results and we  conclude in Section 7.  
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Chapter 2 

 

Turbo-Decoding for LTE 

 
2.1 Introduction 
 

The components  of the receiver [6] that is shown in figure 1.2 is 

shortly described below:  

 

 OFDM  (including Demapper) 

o Subdivides the information transmitted in the frequency 

domain and aligns data symbols with subcarriers  

o Cycle prefix removal  

o FFT (Fast  Fourier Transform)  operation to recover the 

received data and reference signals at each subcarrier  

 

 Channel Estimation and Equalizer 

o Estimate channel frequency response based on 

transmitting known data or symbols  

o Recover the best estimate of the transmitting signal 

using a low complexity-frequency-domain equalizer  

 

 Demodulator 

o Demodulate the payload symbols to the chosen 

constellation grid.  

 

 Descrambler 

o Inverse transmitter’s scrambling operation in which had 

encrypted the transmitted signal.  

 

 Turbo Decoder 

o is used in conjunction with a Turbo Convolutional 

Encoder to provide an extremely effective way of 

transmitting data reliably over noisy dat a channels  

o is designed to meet the LTE specification  

 

According to Matlab-Simulator (table 2.1) the most t ime consuming 

receiver’s component is Turbo-Decoder by far.  
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Component 

 

Time (sec)  

OFDM 0.008512 

Demapper 0.004483 

Channel Estimation  0.026690 

Equalizer  0.001541 

Demodulator  0.055949 

Descrambler  0.015564 

Turbo Decoder  0.153524 

Table 2.1  Matlab Simulator Prof il ing for SISO Receiver  
 

 

 

 

2.2 Turbo-Decoding Algorithm 
 

The turbo encoder is illustrated in the left -hand of figure 2.1. The 

first component encoder receives uncoded (systematic) data bits in 

natural order and outputs a se t of parity bits. The second component 

encoder receives a permutation of the  data bits from a block 

interleaver and outputs a second set of parity bits. The systematic 

bits and the two sets of parity bits are then transmitted over the 

wireless channel.   
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Figure 2.1  Parallel -concatenated turbo-encoder and block 

diagram of a  turbo-decoder .  

 

  

However,  since this signal is usually distorted by noise and 

interference, the demodulator can only obtain estimates of the 

systematic and two sets of parity bits.  These estimates are provided 

to the subsequent turbo decoder in the form of log-likelihood ratios 

(LLRs), 𝐿𝑘𝑠, 𝐿𝑘𝑝2, 𝐿𝑘𝑝1,  and which express the ratio between  the 

probabilities of the transmitted bits being 0 and being 1.  The turbo 

decoder inverts the operations performed by the turbo encoder. A 

turbo decoder is based on the use of two  decoders and two 

interleavers in a feedback loop.  Figure 2.1 depicts the main idea. The 

first and second SD perform decoding of the convolutional code 

generated by the first or the second CE, respectively.  One pass by 

both the first  and the second SD is referred to as a full -iteration; the 

operation performed by a single SD a half-i teration. In this work is 

used 11 half iterations  in order to produce the final decoded bits.  

 

Each SD computes intrinsic a-posteriori LLRs 𝐿𝑘𝐷1 and 𝐿𝑘𝐷2,  for the 

transmitted bits,  based on the systematic LLRs in natural 𝐿𝑘𝑠 or 

interleaved order 𝐿𝜋(𝑘)𝑠 ,  on the parity LLRs 𝐿𝑘𝑝1 or 𝐿𝑘𝑝2,  and on the 

so-called a-priori  LLRs 𝐿𝑘𝐴1 or 𝐿𝑘𝐴2.  In subsequent iterations,  each 

SD uses the extrinsic LLRs 𝐿𝑘𝐸𝑖 = 𝐿𝑘𝐷1 –  (𝐿𝑘𝑠 + 𝐿𝑘𝐴𝑖) computed by 

the other SD. For the first iteration  the a-priori LLRs are set to 0 .   

Due to the interleaving used at  the encoder,  care must be taken to 

properly interleave and de-interleave the LLRs which  are used to  

represent the soft values of the bits. Furthermore, because of the 

iterative nature of the decoding, care must be taken not to re-use the 

same information more than once at each decoding step.  
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A soft-in soft-out decoder is a type of soft-decision decoder used 

with error correcting codes.  "Soft-in" refers to the fact  that  the 

incoming data may take on values other than 0 or 1, in order to  

indicate reliability.  "Soft -out" refers to the fact that each  bit  in the 

decoded output also takes on a value indicating reliability.  

 

The soft outputs  and inputs from the component decoders are 

typically represented in terms of the so-called Log Likelihood 

Ratios(LLRs),  the magnitude of which gives the sign of the bit, and 

the amplitude the probability of a co rrect decision. The LLRs are 

simply, as their name implies , the logarithm of the ratio of two 

probabilities. For example, the LLR 𝐿(𝑢𝑘) for the value of a decoded 

bit 𝑢𝑘 is given by 

 

 

𝐿(𝑢𝑘) = 𝑙𝑛 (
𝑃(𝑢𝑘=+1)

𝑃(𝑢𝑘=−1)
)     (2.1) 

 

 

We summarize below what is meant by the terms a-priori ,  

a-posteriori ,  and extrinsic information.  

 

a-priori: The a-priori information about a bit is information 

known before decoding starts, from a  source other than   

the received sequence or the  code constraints.  It  is  also 

sometimes referred to as intrinsic information to contrast  

with the extrinsic information described next.  

 

extrinsic:  The extrinsic information about a bit  𝑢𝑘 is the 

information provided by a decoder based on  the received 

sequence and on a-priori  information excluding  the 

received systematic bit  and the a-priori information for  

the bit . Typically,  the component decoder provides this 

information using the constraints  imposed on the 

transmitted sequence by the  code used. It  processes the 

received bits and  a-priori  information surrounding the 

systematic bit, and uses this information and the  code 

constraints to provide information about  the value of 𝑢𝑘.  

 

a-posterior: The a-posteriori information about a bit is the  

information that  the decoder gives taking into account   

all  available sources of information  about 𝑢𝑘.  It  is  the 

a-posteriori LLR, that the MAP algorithm gives as its  

 output.  
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2.3 Radix-4 Max-Log BCJR Algorithm 

 
In 1974 an algorithm, known as the Maximum A -Posteriori  (MAP) 

algorithm, was proposed by Bahl, Cocke, Jelinek and Raviv  [7] for 

estimating the a-posteriori probabilities of the states and the 

transitions of an observed Markov source, when subjected to 

memoryless noise. This algorithm has also become known as the 

BCJR algorithm, named after its inventors. They showed how the 

algorithm could be used for decoding both algebraic and 

convolutional codes.  The MAP algorithm examines every possib le 

path through the convolutional decoder trellis  and therefore initially 

seemed to be unfeasibly complex for application in most systems. 

Hence, it  was not widely used before the discovery of turbo codes. 

The MAP algorithm provides not only the estimated bit sequence, but 

also the probabilities for each bit has been decoded correctly.  This is  

essential  for the iterative decoding of turbo codes and makes the MAP 

algorithm very suitable for turbo decoders  

 

The BCJR algorithm resembles the Viterbi algorithm [8] and 

traverses a trellis representing the convolutional code to compute the 

intrinsic LLRs. 

Trellis  codes do not operate on independent blocks of source data,  

unlike the block codes. A trellis encoder maps an arbitrari ly long 

input data stream to an arbi trari ly long output code stream. Trellis  

codes can encode data continuously.  A trellis encoder is a finite state 

machine. The output of the encoder depends on the inputs at that time 

and the current state of the encoder. The rate of encoder is k/n as in 

block codes because it gives n outputs for k inputs. In this trellis  

coded modulation method the receiver’s decision is taken depending 

on entire sequence of symbols rather than on symbol by symbol 

calculation.  
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Figure 2.1  Basic Trell is Diagram 

 

 

.  
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Figure 2.2  Basic structure o f an i tera t ive  Turbo  

decoder .  I tera t ive decoding based on MAP decoders.  

Forward/backward recursions on the tre l l is  diagram .  

 

 

It  is  applied the Max-log approximation to the forward state-metric 

recursions:  

  𝑎𝑘(𝑠) = max{𝑎𝑘−1(𝑠
′
0) +𝛾𝑘(𝑠

′
0, 𝑠), 

𝑎𝑘−1(𝑠
′
2) +𝛾𝑘(𝑠

′
2, 𝑠)}                      (2.2) 

 

where 𝑠′0 and 𝑠′2 correspond to the two possible predecessor  states 

of s (see Fig.  2).  The backward st ate-metrics 𝛽𝑘(𝑠) are computed 

similarly to (2.2) in the opposite direction. Both recursions can be 

performed efficiently based on hardware -friendly add-compare-

select (ACS) operations.  The 𝛾𝑘 term above is the branch transition 

probability that depends on the trellis  diagram, and is  usually 

referred to as the branch metric  (see [9] for details) .   
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Figure 2.3  Example of the calcula t ion of the forward and 

backward sta te  metr ics for  radix -2 recurs ions  

 

 

 

Once all  𝑎𝑘 and 𝛽𝑘  have been obtained, the a-posteriori output of the 

max-log-MAP decoder can be computed. To this  end, the decoder 

must consider the state transitions  𝑠′ → 𝑠 associated with 𝑥𝑠= 0 and 

the ones associated with 𝑥𝑠= 1 separately and then computes :  

 

𝐿𝑘
𝐷1,𝐷2

  =     max    {𝑎𝑘−1(𝑠
′) +𝛾𝑘(𝑠

′, 𝑠) + 𝛽𝑘(𝑠)} 
            ( s ’ , s ) : 𝑥𝑠=0  
 

-      max   {𝑎𝑘−1(𝑠
′) +𝛾𝑘(𝑠

′, 𝑠) + 𝛽𝑘(𝑠)}.        (2.3) 
                      ( s ’ , s ) : 𝑥𝑠=1  
 

 

In this work, it  is  used a radix-4 (see figure 2.4) Max-Log turbo 

decoder in order to enhance the throughput. The Log -MAP core 

processes two received symbols per clock cycle using a radix -4 

architecture, doubling the throughput for a given cl ock rate over a 

similar radix-2 architecture.  Specifically,  the radix-4 forward state 

metrics (figure 2.4) are computed on the basis of its  four admissible 

predecessor states 𝑠′0,  𝑠′1,  𝑠′2 and 𝑠′3 (at  step k-2) as follows:  

 

𝑎𝑘(𝑠) = max{𝑎𝑘−2(𝑠
′′
0) +𝛾𝑘(𝑠

′′
0, 𝑠), +𝑎𝑘−2(𝑠

′′
1) +𝛾𝑘(𝑠

′′
1, 𝑠),  

 𝑎𝑘−2(𝑠
′′
2) +𝛾𝑘(𝑠

′′
2, 𝑠), +𝑎𝑘−2(𝑠

′′
3) +𝛾𝑘(𝑠

′′
3, 𝑠)}.          (2.4) 

         

For the first trellis step (k=0) we initialize 𝑎𝑘(𝑠

0) = 1, 𝑎𝑘(𝑠


1) = 0,

𝑎𝑘(𝑠

2) = 0𝑎𝑛𝑑𝑎𝑘(𝑠


3) = 0.  The radix-4 branch metrics required in 

(2.4) are computing according to:  

   

  𝛾𝑘(𝑠
′′
𝑖, 𝑠) =𝛾𝑘(𝑠

′′
𝑖, 𝑠

′
𝑗) +𝛾𝑘(𝑠

′
𝑗 , 𝑠


)    (2.5), 
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using the six branch metrics associated with the trellis step k and k -

1 required in the radix-2 recursion.  

 

Since the backward recursion progresses from the end of trellis  

diagram to its  beginning for every step we initially set 𝛽𝑘(𝑠

)= 1/Ν ,  

where N is the number of states in the turbo encoder.  Then we use 

the radix-2 recursion (2.2)  to calculate 𝛽𝑘−1(𝑠
′
).  

 

 

 

Figure 2.4  Radix-2 and radix-4 recursions  

 

 

2.4 LTE Interleaver 
 

Interleavers for turbo codes scramble the data in a  pseudo-random 

order to minimize the correlation between the outputs of component 

encoders.  Interleaver is an essential part and i s also responsible for 

an excellent  Bit Error Rate (BER) performance of turbo code. 

Although parallelism can be obtained using multiple hardware 

instances of a single decoder, this solution increases the memory 

requirements (each decoder requires separate  memory) and also 

incurring a long latency. Recognizing these  deficiencies,  the LTE 

working group decided upon an approach  that enables internal 

parallel ism within a fast serial decode r .    

 

Generally,  the task of an interleaver  is  to permute the soft  values  

generated by the MAP decoder and write them into random or pseudo-

random positions.  Interleaver architectures are well  studied in 

literature [10], [11] and the recent wireless  communication standards 
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like LTE have incorporated QPP and ARP interleavers  [12]  

respectively.   

 

In this work, contention free QPP interleaver architecture is used in  

the turbo decoder design. The recursive architecture of QPP 

interleaver has a simplified design and it can be easily used in the 

parallel  architecture of turbo decoder to achieve higher throughput. 

Subsequently,  QPP interleaver can be configured to calculate 

interleaved addresses for any value of block length (K) . For example, 

3GPP-LTE wireless standard uses 188 different values of K , ranging 

from 40 bits to 6144 bits .  Specifically,  address -computation for QPP 

interleavers is carried out from:  

  

  𝜋𝑘(𝑘) = (𝑓1𝑘 + 𝑓2𝑘
2)𝑚𝑜𝑑𝐾   (2.6) 

 

Where f1 and f2 are suitably chosen interleaver parameter s that 

depend on the code-block length K.  
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Table 2.2  Turbo codes Interleaver parameters (Part  1 of 2)   
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Table 2.3  Turbo codes Interleaver parameters (Part  2 of 2)  

 

 
QPP interleaver can be configured to produce contention -free 

interleaved addresses for any of these values by changing the values 

of f1 and f2 in the expression (2.6). The expression (2.6) can be 

implemented efficiently in hardware because only addition, multi ply 

and modulo-operations are involved. Furthermore, QPP interleavers  

map even addresses to even addresses and odd to odd.  
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Chapter 3  

 

Parallel Turbo-Decoder Architecture 

 
In the conventional BCJR algorithm (non-parallel),  computations of 

forward-state, backward-state and branch metrics for entire trellis  

stages result in huge memory requirement and impose large decod ing 

delay.  Major steps involving in these parallel Turbo -decoding 

relating to state metrics are presented as follow.  

 

Initialization :  Assuming that  the encoder is reset, the forward state 

metrics are initialized as 𝑎𝑘=0(𝑠 𝑖) = 1 ∀  i=0 and 𝑎𝑘=0(𝑠

𝑖) = 0 ∀  i≠0.  

 

Forward recursion :  During this process, the forward state metric of 

each states for successive trellis stages are computed as in (2.4).  

 

Backward-recursion and estimation of backward state metrics :  If  

N represents total  number of states in each trellis  stage, the backward 

state metrics are initialized as 𝛽𝑘(𝑠 𝑖) =1/N ∀  i∈N (N is the number of 

trellis states) and during the backward recursion it is used the radix -

2 recursion as in (2.2) in order to carry out 𝛽𝑘−1(𝑠 𝑖).  

 

In order to increase throughput,  a promising solution is to instantiate 

N-BCJR units and to perform N-fold parallel  decoding of trell is. This 

approach increases the turbo-decoding throughput by a factor of N 

compared to a non-parallel turbo-decoder.  

 

 

3.1 High-Level Architecture 
 

This work contains N=16 max-log BCJR instances,  input memories 

for the storage of systematic and parity LLRs and one intermediate 

memory for the storage of the extrinsic LLRs. Radix-4 technique is 

used therefore two trellis  steps are processed per clock cycle.  It  is  

noteworthy that  the use of radix -4 recursions entails 2x increased 

memory-bandwidth, since the LLRs associated with even and odd 

numbered trellis steps are requi red per clock.   
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Figure 3.1  High-level architecture of the parallel  turbo -

decoder  
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3.2 Memory Architecture 
 

With low power and big throughput  in mind, turbo-decoder is  based 

on the architecture in figure 3.1. In this desi gn and taking into 

consideration the fact  that  radix -4 recursion is used , 4 block-rams 

store one block of the LLRs of the systematic and both sets of parity 

bits and 2.  Two input block rams are associated to the systematic 

LLRs, one stores the systematic LLRs relating to the even numbered 

and the other for the odd-numbered trellis  steps. In addition, 2 input 

block rams are used to store parity 1 and parity 2 LLRs.  Furthermore, 

2 block rams store the intermediate extrinsic LLRs, one for the odd 

and one for the even trellis -steps and 2 block ram in for the de -

interleave unit .  Totally,  8 block rams are used and the 4 block rams 

for systematic and extrinsic require half the amount of storage in 

contrast with the parities block rams. Each memory  contains N LLR-

values per address. This partitioning enables 2xN (N is the number 

of the parallel  decoders) LLRs to be read per clock cycle.  
 

     

3.3 Implementation Tradeoffs 
 

Typically,  the throughput of digital  circuits can be increased  by 

architectural and circuit -level transformations such as pipelining or 

parallel  processing. For turbo decoders,  the applicabil ity of 

pipelining is limited due to the presence of feedback loops and the 

accompanying extra registers increase the energy consumption.  

 

Comparative study of BER performances has shown that the parallel  

turbo decoder achieves an adequate BER performance. Recently,  the 

VLSI implementations of para llel turbo decoders with N=8 [13], 

N=16 [14], N=32 [15] and N=64 [16] have been reported for higher 

data-rate applications. One of the key aspects of this work is the use 

of radix-4 recursions in order to achieve high throughput.  Despite the 

fact  that  the use of radix -4 increases the area that  BCJR decoders 

occupied, the area of the rather large,  input and intermediate,  

memories remains the same.  Clearly,  the throughput improvement has 

to be paid for by a complexity increase.   
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Chapter 4 
 

 

LTE Interleaver Architecture 

 
Interleaving means the permutation of the order of the data bits in a 

code block. Turbo codes requi re specific interleavers which minimize 

the correlation between the SISO decoder inputs of subsequent half -

iterations to achieve best  decoding error rate performance. However, 

the rules for the generation of the interleaved pattern are highly 

complex.  

 

In turbo decoder implementations the interleaver is a sub -block of 

the address generator,  which generates the addresses for the 

memories in natural  or permuted order. Thus, depending on the turbo 

decoder half-iteration, the SISO decoder inputs can be read fro m the 

input and from the intermediate memory in natural or interleaved 

order.  After decoding, the LLR outputs of the SISO decoder block 

are written back in natural or interleaved order to the same address 

in the intermediate memory, depending on the specif ic turbo decoder 

half-iteration.  

 

For most interleavers, parallel  and interleaved memory access  

leads to an interleaver bottleneck which is caused by access -

contentions.  Thus, an Interleaver that  alleviates the interleave 

bottleneck is of primary importance for parallel turbo decoding.  

 

 

4.1 Contention-Free Interleaving for   LTE 
 

This LTE Interleaver exhibits two approaches to in order to have 

access to the memories in interleaved and natural  order.  The first  

approach to solve the memory access contention problem is to 

constrain the interleaver  to be contention-free. Contention-free 

interleavers  [17] allow instant access and trivial mapping for LLRs 

values that are required for the N parallel SISO decoders. For 

example,  if  K is the block length and N divide s the K without 

remainder, the interleaved or natural  order LLRs values can be 

always read from N memories. The second property is that  the 

interleaver is maximally vectorizable  [18], the address-distance 



 

22 

 

between each of the N interleaved addresses is alwa ys an integer 

multiple of the trellis -segment length S.   

 

 
Figure 4.1  Architecture of the contention -free interleaver  

 

 

As it  is  said in this work, radix -4 is used and therefore even and odd -

numbered systematic and extrinsic LLRs are stored in separate RA Ms 

with S/2 addresses.  Figure 4.1 indicates the storage of K LLRs 

relating to one code-block (with length K) in a folded memory. 

Folded memory has S addresses and each address contains N LLRs. 

Therefore, K = NxS LLR values can be stored. In figure 4.1 it  i s used 

N=8 and S=5. LLRs are written column-wise and each column 

corresponds to an SISO decoder .  As is il lustrated in figure 4.1 the 

address-distance between each of the N LLRs in the same row is a n 

integer multiple of 5 (trellis -segment S) and this is  due  to the 

maximally-vectorizable interleaver.  
 

In the natural order phase, starting from the folded memory address 

0 in increment way, the straightforward N LLrs located to the N BCJR 

instances. The value of nth corresponds to the nth BCJR.  
 

Since LTE interleaver is maximally-vectorizable, the N interleaved 

addresses always point out at  the same row in the folded memory. As 

illustrated in figure 4.1 the 8 interleaved addresses 

(6,31,36,21,26,11,16,1) relevant to  address 1 in the folded memory 

point out in the same row. In the interleaved phase,  address -decoding 
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generates the sorting order that  is  required to assign the LLRs from 

the folded memory to the corresponding SISO decoders and a 

permutation according to the extracted sorting -order is applied to the 

N LLR values, which are then passed to the corresponding BCJR 

instances. This enables N-fold parallel access to the folded memory .  

 

 

4.2 Master-Slave Batcher Network 
 

Address decoding and permutation for maximally-vectorizable 

contention-free interleaver based on [5]  is depicted in figure Master -

Slave Batcher Network.  

 

Address-decoding that it  is reffered in 4.1 chapter is carried out in 

the master network and the slave network performs the permutation 

by applying the inverse-sorting order to the N LLRs. The master 

network consists of a number of 2 -input sorter (SO) units and the 

slave network of a 2-input switches (SW). The permutational signals 

from the master networks control the switches in the slave network.  
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Figure 4.2  The Master-Slave Batcher Network     

architecture  

 

This network is a hardware efficient way to perform address -

decoding and permutation because only Multiplexers (MUXs) with 2 

inputs and 1 output are required. LTE interleaver is of primary 

significance for parallel turbo -decoders.  
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Chapter 5 

 

Radix-4 Max-Log BCJR Architecture 

 
In this design, Radix-4 Max-log BCJR with 16 instances dominate 

the circuit area and the power consumption. Consequently,  is  very 

significant an area-power efficient implementation of radix -4 max-

log BCJR. 

 

 

5.1 VLSI Architecture 
 

The architecture of the radix -4 max-log BCJR is presented in figure 

5.1.   
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Figure 5.1  Architecture of the implemented  radix-4 max-

log BCJR core  

 

In this design, two trellis  steps are computed per clock cycle. This  

computation is performed using 2 parallel units,  the forward state -

metric recursion unit and the backward state -metric recursion unit . 

The problem of this  approach is the unknown backward (or forward) 

state metrics which are required in the beginning of the backward (or  

forward) recursion.  In the very first iteration, uniform state metrics 

can be used for initialization . The forward state metrics are 

initialized as 𝑎𝑘=0(𝑠 𝑖) = 1 ∀  i=0 and 𝑎𝑘=0(𝑠

𝑖) = 0 ∀  i≠0 and in every 

clock cycle (2.4) is  used to compute the forward state metrics for this 

trellis step. In the backward state -metric recursion unit in every step 

the backward metrics are initi alize 𝛽𝑘(𝑠 𝑖) =1/N ∀  i∈N, where N is the 

number of trellis -states (in this work we have 4 states).  

 

The branch metrics unit first work out the radix -2 branch metrics and 

then compute the radix-4 branch metrics according to  (2.5). The 
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results of the forward state-metric recursion unit are passed from 

flip-flops before used to compute the intrinsic LLRs. This occurs 

because we want to delay a cycle the results from forward state -

metric recursion unit  because in the LLR computation unit we need 

the forward metrics from the previous cycle. For example, for the 

computation of 𝐿𝑘−1
𝐷 we need to know 𝑎𝑘−2 ,  see (2.3).  

 

 

5.2 Radix-4 ACS Units with Modulo-

Normalization 
 

The recursive state metric computation cannot be pipelined or 

parallel ized due to the presence of the feedback loop.  Hence, we 

shall focus on measures for reducing the complexity of the state 

metric recursions to shorten the critical path and to reduce area and 

power consumption.  The normalization technique used in this thesis 

is focused to achieve high-speed performance of turbo decoder from 

an implementation perspective. In addition, radix -2 and radix-4 

ACS that  is depicted in figure 5.2 are hardware friendly.   

 

The comparison (CMP circuit for modulo-normalization [19] 

achieves the renormalization with a controlled overflow in the data 

path and requires only a 3-input XOR gate. In the parallel radix -4 

ACS is utilized 4 adders,  6 CMP circuits and a 4-1 MUX (4 inputs,1 

output). The selection signal is  carried out by the six parallel CMP 

followed by Karnaugh-map minimization. Radix-2 ACS requires 

only 2 adders a CMP circuit and a MUX with select signal the 

output from CMP circuit .  

 

 
Figure 5.2 Radix-2 and Radix-4 architectures 
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5.3  LLR Computation Unit 
 

The LLR computation unit  that  is  presented in figure 5.1 calculate 

the intrinsic and extrinsic LLRs for th e trellis  step k-1 and k in each 

clock cycle. Hence for the computation of the intrinsic and extrinsic 

LLRs for step k-1, 𝑎𝑘−2,  𝛽𝑘−1and 𝛾𝑘−1 are required.  𝑎𝑘−2 came from 

the flip flop after the forward state metric-recursion unit, 𝛾𝑘−1 came 

from branch metric unit and 𝛽𝑘−1 from backward state metric-

recursion unit.  𝑎𝑘−1,  𝛽𝑘and 𝛾𝑘 are required for the calculation of the 

intrinsic and extrinsic LLRs for the step k. With aid of radix -2 ACS 

𝑎𝑘−1 stem from 𝑎𝑘−2 ,  𝛾𝑘 came from branch metric unit and 𝛽𝑘 from 

backward state metric-recursion unit.  

 

Now for the computation of the intrinsic LLRs (2.3), the max of 

𝑎𝑘−1(𝑠
′) +𝛾𝑘(𝑠

′, 𝑠) + 𝛽𝑘(𝑠) relating to a state transitions  𝑠′ → 𝑠 

associated with 𝑥𝑠= 0 and the ones associated with 𝑥𝑠= 1 must be 

calculated. In order to compute this is used a design similar with 

radix-4 ACS with the difference that  adders have 3 inputs  (α, β, γ) .   
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Chapter 6 

 

Implementation Results 

 
In this chapter,  it  is  shown simulation and synthesis results and it is  

summarized the key points of the 8x parallel  implemented Tutbo -

Decoder.  

 

 

6.1 Axi-4 Stream Ip 

 

AXI4-Stream is a subset  of Advanced Microcontroller Bus 

Architecture (AMBA) AXI4 protocol. It  is designed for high -speed 

streaming data. To simplify interoperability, Xilinx IP requiring 

streaming interfaces use a strict subset of the AXI4 -Stream protocol.  

An AXI4-Stream Ip is easy to use, flexible and is a high perf ormance 

IP.  This Turbo Decoder Ip must have a master and a slave interface 

because it is requirement to  receive and send data.  Table 6.1 and 

Table 6.2 show the signal names of the slave and master interface  and 

define them. 

 

 

 

 

 
Pin 

 
Direction 

Port  
width 
(bits)  

 
Description 

 
Aclk  

 
Input 

 
1 

 

Clock:  Sample  on the r i sing edge  

 
Arst  

 
Input 

 
1 

 

Rese t:  Act ive  lo w reset .  When asser ted  
low the decoder  i s  rese t .  
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En 

 
Input 

 
      1  

 

Enable :  Clock enable  s ignal  

 
Tvalid_s  

 
Input 

 
1 

Tval id:  ind icates that  the mast er  i s  

dr iving a va lid  transfer .  A trans fer  

takes p lace when both Tval id  and  

Tready are asser ted  

 
Tready_s 

 
Output 

 
1 

 

Tready:  ind ica tes tha t  the slave can 

accep t  a  transfer  in the cur rent  cyc le.  

 
Tlast_s  

 
Input 

 
1 

 

T last :  ind ica tes the boundary of a  

packet .  

 
Tdata_s 

 
Input 

 
32 

Tdata:  is  the  pr imary payload tha t  i s  

used to  provide the data that  i s  pass ing 

across the inter face.  The wid th of the  

data payload i s  an integer  number  o f 

bytes.  

 

Table 6.1  Signals  associated with slave interface 
 

 

 
 

 
Pin 

 
Direction 

Port  
width 
(bits)  

 
Description 

 
Aclk  

 
Input 

 
1 

 

Clock:  Sample  on the r i sing edge  

 
Arst  

 
Input 

 
1 

 

Rese t:  Act ive  lo w reset .  When asser ted  
low the decoder  i s  rese t .  

 
En 

Input  
1 

 

Enable :  Clock enable  s ignal  

 
Tvalid_m 

 
Output 

 
1 

Tval id:  ind icates that  the master  i s  

dr iving a va lid  transfer .  A trans fer  

takes p lace when both Tval id  and  

Tready are asser ted  

 
Tready_m 

 
Input 

 
1 

 

Tready:  ind ica tes tha t  the slave can 

accep t  a  transfer  in the cur rent  cyc le.  
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Tlast_m 

 
Output 

 
1 

 

T last :  ind ica tes the boundary of a  

packet .  

 
Tdata_m 

 
Output 

 
64 

Tdata:  is  the  pr imary payload tha t  i s  

used to  provide the data that  i s  pass ing 

across the inter face.  The wid th of the  

data payload i s  an integer  number  o f 

bytes.  

 

Table 6.2  Signals  associated with master  interface  

 

Tdata_s is  the primary input for this work and its  length is  8 Byte.  

This size contains the systematic LLR, parity 1 and 2, the number of 

iterations the decoder must implement and code block and is 

organized as follows:  

 

31             19 18             15  14             10 9               5  4               0  

Block length  iterations S ys t ema t i c  LLR  Pari ty 1  LLR  Pari ty 2  LLR  

 

Table 6.3  Construction of Tdata_s  

 

  

6.2 Verilog Implementation   
 

It  is shown that Max-Log BCJR algorithm is totally suitable between 

the implantation complexity and the decoding performance. Now it is 

investigated how to implement the turbo decoder into a Field - 

Programming Gate Array (FPGA). Verilog is used as the Hardware 

Design Language for design entry and behavioral simulation. A basic 

Application Specific Integration Circuit (ASIC) /  FPGA design 

process is depicted in figure 6.1.  
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Figure 6.1  ASIC/FPGA Design process.  

 

1) Design entry  

In this step system interfaces and functionalitie s are defined. The 

detailed design is captured in Verilog, which provides useful 

programming features for structured design techniques.  With these 

techniques,  a complex design can be analyzed into simpler 

implementation modules. Each module has its own def inition of 

functionality and interface.  

 

2) Test bench development  

The functionality of Verilog Design must be verified before going 

further in synthesis.  Test  benches is developed with this purpose, 

which is also programmed in Verilog that  provides design  enti ty with 

the stimulus and verifies the outputs.  

 

3)Functionality verification  

In this step, combinations of inputs (st imulus) are fed into the design 

entity and the outputs are verified. Usually the stimulus and results 

are generated and saved into fil es before the Verilog simulation. The 

test  bench will read in the st imulus, feed them into the design entity,  

obtain the outputs of the design entity and compare these outputs to 

the outputs that should be obtained. A properly design verification 

program should be take into account the mathematic limitations in a 
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realistic hardware design including the finite resolution and limited 

dynamic range of the date representation.  

  

4) Synthesis  

Synthesis is a process of transforming a design specification into an 

implementation, i .e converting an abstract design description into a 

hardware abstract. This process is performed using the synthesis 

tools based on certain synthesis technology l ibrary provided by FPGA 

manufactures.   

 

5) Device mapping 

This process tries  to find proper devices from a library based on 

synthesis result. In this phase,  a t iming model generation program 

provided by a device vendor or third part  simulation model supplier 

could be used to generate the accurate timing model of the design.  

 

6) Timing Simulation 

The t iming model generated during the device mapping is combined 

into the test bench and the verif ication is performed again.  When  the 

design is performed correctly with the timing model, is ready to be 

manufactured. However,  if  the design fails with this t iming model ,  

the designer has to go back to the first  step, modify the design and 

go through all the steps again until the design passes the t iming 

simulation.  

 

In this thesis,  it  is  implemented a parallel  turbo decoder and the 

corresponding Verilog test bench in Verilog. The functional  

verification is performed by comparing the decoding performance of 

Verilog implementation with a Matlab -simulation. The parallel  

Turbo-Decoder for LTE at Register -Transfer-Level (RTL) and the 

design description follows a proper coding style to make it  

synthesizable.  For implementation, simulation and synthesis is used 

a Xill inx tool,  Vivado and the test platform was ZYNQ -7 ZC706 [20].   

 

Synthesis results are presented below:  
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 Figure 6.2   Synthesis report  (part  1 of 3)  

 

 
Figure 6.3   Synthesis report  (part  2 of 3)  
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       Figure 6.4   Synthesis report  (part  3 of 3)  

  

 

6.3 Error-Rate Performance and key 

characteristics 
 

To achieve a good error-rate performance, the input LLRs are 

quantized to 5 bit,  the ext rinsic LLRs to 6 bit  and all state metrics in 

the radix-4 ACS units require 10 bits.  This Turbo-Decoder 

implements 5.5 full i terations to carry out the decoded bits.  

 

The majority of chip area is occupied by the BCJR instances. The 

maximum measured clock frequency is 300 MHz, at which a 

throughput of 200 Mb/s has measured.  
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Chapter 7 

 

Conclusions 

  
In the recent years,  high-throughput design and implementation have 

become dominating requirement in the field of VLSI design of 

wireless-communication systems. There has been a rapid surge in 

data-rate for next-generation wireless -communication and this will  

lead to more complex algorithms and VLSI architectures in next few 

decades.  Based on this scenario,  I have aggregated the study of turbo -

code and the implementation of high-throughput parallel -turbo 

decoder on FPGA in this thesis.  In this work it  is detailed a parallel  

turbo decoder for the 3GPP-LTE standard. The use of radix -4 in 

combination with 8 parallel SISO decoders is  of paramount  

importance in order to achieve high throughput and an area efficient 

design.  

 

 

7.1 Future Work 
 

For the future work, proposed VLSI-architecture of high-throughput 

parallel-turbo decoder can be re -designed into area-efficient 

architecture.  Similarly,  power -reduction techniques could be 

incorporated to conceive high -throughput architecture for low-power 

applications.  Possible extensions in this project may be the 

following :  

 

 Windowing 

To significantly reduce the large memory requirements, 

windowing can be employed. In this app roach the trellis is  

processed in small windows.  

 

 Early termination  

Decoders for turbo codes are iterative in nature.  There are 

techniques that  can be used to reduce the average number of 

iterations. There are stopping rules  based on comparing a 

metric on bit  reliabil ities (soft bit decisions) with a threshold.  

If the metric is smaller than the threshold, the decoder 

continues with a new iteration; otherwise,  it  stops.  
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