

University of Thessaly

Department of Electrical and Computer Engineering

Μελέτη και Υλοποίηση ενός Παράλληλου Αποκωδικοποιητή σε

Eπαναπρογραμματιζόμενη Λογική για δίκτυα 4𝜂𝜍 γενιάς

Study and Implementation of a Parallel Turbo-Decoder on FPGA for

3GPP-LTE

Diploma Thesis by

Tsiokanos Ioannis

 Supervisors:

 Georgios Stamoulis Antonios Argyriou

 Professor Assistant Professor

Volos, July 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Thessaly Institutional Repository

https://core.ac.uk/display/157700596?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 University of Thessaly

Department of Electrical and Computer Engineering

“Μελέτη και Υλοποίηση ενός Παράλληλου Αποκωδικοποιητή

σε Επαναπρογραμματιζόμενη Λογική

για δίκτυα 𝟒𝜼𝝇 γενιάς”

 “Study and Implementation of a Parallel Turbo-Decoder on

FPGA for 3GPP-LTE”

 By

Tsiokanos Ioannis

Graduate Thesis for the degree of

Diploma of Science in Computer and Communication Engineering

 Approved by the two-member inquiry committee at 8𝑡ℎ of July

 ……………………..... . . ………………………. .

 Dr. Georgios Stamoulis Dr. Antonios Argyriou

Declaration of Authorship

I, Tsiokanos Ioannis, declare that this thesis titled, ‘Study and Implementation of a

Parallel Turbo Decoder’ and the work presented in it are my own. The research was

carried out wholly or mainly while in candidature for the graduate degree of Diploma

of Science in Computer and Communication Engineering, at the University of

Thessaly, Department of Electrical and Computer Engineering, Volos, Greece.

…………………..

Tsiokanos Ioannis

Copyrights © Tsiokanos Ioannis, 2016

All rights reserved.

i

To my family and my friends

i i

Acknowledgements

Upon completion of my thesis, I would like to thank my supervisor

Dr,Georgios Stamoulis and my co -supervisor Dr. Antonios Argyriou

for their trust and excellent corporation we had during this thesis and

my studies.

I would also like to thank my friends and cooperators at VLSI and

EDA Tools Laboratory and especially Ph.D candidate Charalampos

Antoniadis for their assistance and guidance on this work.

Finally, I have to thank my family for their endless and invaluable

moral support that offered me all those academic years.

Tsiokanos Ioannis,

 Volos 2016

i ii

Contents

List of Tables ……………………………………………………………. iv

List of Figures ……………………………………………………… v

List of Acronyms ……………………………………………………….. vi

Abstract …………………………………………………………………. vii

1 Introduction …………………………………………………………… . 1

1.1 Motivation …………………………………………………………. 1

1.2 Thesis goal ………………………………………………………… 2

1.3 Thesis structure …………………………………………………… 3

2 Turbo-Decoding for LTE …………………………………………… .. 5

 2.1 Intoduction …………………………………………………….. 5

 2.2 Turbo-Decoding Algorithm ……………………………………….6

 2.3 Radix-4 Max log BCJR Algorithm ……………………………….9

 2.4 LTE Interleaver .…………………………………………………. 13

3 Parallel Turbo-Decoder architecture …………………………….. 17

 3.1 High-Level Architecture ………………………………………… 17

 3.2 Memory Architecture ……………………………………………..19

 3.3 Implementation Tradeoffs ………………………………………..19

4 LTE Interleaver Architecture ……………………………………… 21

 4.1 Contention Free Interleaving for LTE …………………………. 21

 4.2 Master-Slave Batcher Network ………………………………… 23

5 Radix-4 Max-Log BCJR Architecture ……………………………. 25

 5.1 VLSI Architecture ……………………………………………….. 25

 5.2 Radix-4 ACS Units with Modulo-Normalization ……………… 27

 5.3 LLR Computation Unit …………………………………………. . 28

6 Implementation Results …………………………………………… .. 29

 6.1 Axi-4 Stream Ip ………………………………………………….. 29

 6.2 Verilog Implementation ………………………………………… 31

 6.3 Error-Rate Performance and key characteristics ……………… 35

7 Conclusion ……………………………………………………………. 37

 7.1 Future work ………………………………………………………. 37

Bibliography …………………………………………………………… . 39

iv

List of Tables

Table 2.1 Matlab Simulator Prof il ing for SISO Receiver

Table 2.2 Turbo codes Interleaver parameters (Part 1 of 2)

Table 2.3 Turbo codes Interleaver parameters (Part 2 of 2)

Table 6.1 Signals associated with slave interface

Table 6.2 Signals associated with master interface

Table 6.3 Construction of Tdata_s

v

List of Figures

Figure 1.1 Evolution of wireless s tandards in the last two

decades

Figure 1.2 LTE SISO Processing Chain

Figure 2.1 Parallel -concatenated turbo-encoder and block

diagram of a turbo-decoder.

Figure 2.1 Basic Trel l is Diagram

Figure 2.2 Basic structure of an i t erative Turbo decoder.

Iterative decoding based on MAP decoders.

Forward/backward recursions on the trell is diagram

Figure 2.3 Example of the calculation of the forward and

backward state metrics for radix -2 recursions

Figure 2.4 Radix-2 and radix-4 recursions

Figure 3.1 High-level architecture of the parallel turbo -decoder

Figure 4.1 Architecture of the contention -free interleaver

Figure 4.2 The Master-Slave Batcher Network architecture

Figure 5.1 Architecture of the implemented radix -4 max-log

BCJR core

Figure 5.2 Radix-2 and Radix-4 architectures

Figure 6.1 ASIC/FPGA Design process

Figure 6.2 Synthesis report (part 1 of 3)

Figure 6.3 Synthesis report (part 2 of 3)

Figure 6.4 Synthesis report (part 3 of 3)

vi

List of Acronyms

LTE Long Term Evolution

3GPP Third Generation Partnership Project

SISO Soft-input Soft -output

LLR Log-Likelihood-Ratio

SD SISO Decoder

CE Convolutional Encoder
QPP Quadratic Polynomial Permutation

ARP Almost Regular Permutation

HSDPA High-Speed Downlink Packet Access

𝒂𝒌(𝒔) forward state metric

𝜷𝒌(𝒔) backward state metric

𝜸𝒌(𝒔
′, 𝒔) branch metric

𝑳𝒌𝒔 Systematic Log-Likelihood-Ration

𝑳𝒌𝒑𝟐 Parity LLR from the second CE

𝑳𝒌𝒑𝟏 Parity LLR from the first CE

𝑳𝒌𝑨 A-priori LLR

𝑳𝒌𝑫 Intrinsic LLR

𝑳𝒌𝑬 Extrinsic LLR

BCJR Bahl, Cocke, Jelinek and Ravin

ACS Add-Compare-Select

OFDM Orthogonal Frequency Division Multiplexing

AWGN Additive White Gaussian Noise

FFT Fast Fourier Transform

HDL Hardware Descript ion Language

AMBA Advanced Microcontroller Bus Architecture

vii

FPGA Field- Programming Gate Array

IP Internet Protocol

MAP Maximum A Posteriori

OFDM Orthogonal Frequency-Division Multiplexing

FFT Fast Fourier Transform

BER Bit Error Rate

Rx Receiver

viii

Abstract

The LTE (Long Term Evolution) and LTE-Advanced are the latest

mobile communications s tandards developed by the Third Generation

Partnership Project (3GPP). These standards represent a

transformative change in the evolution of m obile technology. Within

the present decade, the network infrastructures and mobile terminals

have been designed and upgraded to support the LTE standards. As

these systems are deployed in every corner of the globe, the LTE

standards have finally realized the dream of providing a truly global

broadband mobile access technology.

The turbo decoder is the most challenging component in a digital

HSDPA receiver in terms of computation requirement and power

consumption, where large block size and recursive algor ithm prevent

pipelining.

This thesis addresses hardware implementation aspects of parallel

Turbo-Decoder on FPGA that reach more than 150 Mb/s LTE data-

rate using multiple soft -input soft-output (SIS0) decoders that

operate in parallel . To improve efficacy, we harness a radix-4-based

8x parallel turbo-decoder. Turbo-Decoding rate is set to 1/3.

Keywords:

LTE, mobile communication standards, HSDPA receiver, hardware

implementation, parallel Turbo -Decoder, FPGA

ix

1

Chapter 1

Introduction

Turbo coding was introduced in 1993 by Berrou, Glavieux, and

Thitimajashima [1], [2], who reported extremely impressive results

for a code with a long frame length. Since its recent invention, turbo

coding has evolved at an unprecedented rate and has reached a state

of maturity within just a few years due to the intensive research

efforts of the turbo coding community. The excellent performance of

turbo codes however, comes at the expense of significant

computational complexity and consequently high power consumption

at the receiver for proper decoding. Indeed, the computational burden

of the turbo decoder far exceeds that of any other component in a

receiver, especially for high data rates.

1.1 Motivation

In the past two decades we have seen the introduction of various

mobile standards, from 2G to 3G to the present 4G, and we expect

the trend to continue. The primary mandate of the 2G standards was

the support of mobile telephony and voice applications. The 3G

standards marked the beginning of the packet -based data revolution

and the support of Internet applications such as email, Web browsing,

text messaging, and other client -server services. The 4G standards

will feature all -IP packet-based networks and wi ll support the

explosive demand for bandwidth-demanding applications such as

mobile video-on-demand services. The rapid increase in wireless data

traffic now begins to strain the network capacity and operators are

looking for novel technologies enabling even higher data-rates than

those in the past. The channel coding scheme for LTE [3] is Turbo

coding. Turbo codes achieve close to Shannon capacity [4] and the

Turbo decoder is typically one of the major blocks in a LTE wireless

receiver. Turbo decoders suffer from high decoding latency due to

the i terative decoding process, the forward–backward recursion in the

2

maximum a posteriori (MAP) decoding algorithm and the

interleaving/de- interleaving between iterations

1.2 Thesis goal

In this work, we present the implementation of a power-efficient and

high throughput parallel Turbo-Decoder architecture for LTE,

proposed in [5]. It is detailed an 8x parallel radix-4-based SISO

Decoder. We used the Verilog Hardware Description Language

(HDL) for the development of the hardware modules and we

performed the verification by comparing the HDL simulation results

with the corresponding from Matlab.

Another goal of this thesis is to integrate the hardware

implementation of the Turbo-Decoder into a LTE compliant Single-

In Single-Out model in order to accelerate the receiver’s (Rx)

baseband processing (Figure 2.1).

3

Figure 1.2 LTE SISO Processing Chain

1.3 Thesis Structure

The remainder of the thesis is organized as follows. Section 2 reviews

the principle of turbo decoding and details the algori thm used for

SISO decoding. The paralle l turbo-decoder architecture is presented

in Section 3 and the corresponding throughput/area tradeoffs are

studied. The interleaver architecture is detailed in Section 4 and

Section 5 describes the architecture of the SISO decoder . Section 6

provides the implementation results and we conclude in Section 7.

4

5

Chapter 2

Turbo-Decoding for LTE

2.1 Introduction

The components of the receiver [6] that is shown in figure 1.2 is

shortly described below:

 OFDM (including Demapper)

o Subdivides the information transmitted in the frequency

domain and aligns data symbols with subcarriers

o Cycle prefix removal

o FFT (Fast Fourier Transform) operation to recover the

received data and reference signals at each subcarrier

 Channel Estimation and Equalizer

o Estimate channel frequency response based on

transmitting known data or symbols

o Recover the best estimate of the transmitting signal

using a low complexity-frequency-domain equalizer

 Demodulator

o Demodulate the payload symbols to the chosen

constellation grid.

 Descrambler

o Inverse transmitter’s scrambling operation in which had

encrypted the transmitted signal.

 Turbo Decoder

o is used in conjunction with a Turbo Convolutional

Encoder to provide an extremely effective way of

transmitting data reliably over noisy dat a channels

o is designed to meet the LTE specification

According to Matlab-Simulator (table 2.1) the most t ime consuming

receiver’s component is Turbo-Decoder by far.

6

Component

Time (sec)

OFDM 0.008512

Demapper 0.004483

Channel Estimation 0.026690

Equalizer 0.001541

Demodulator 0.055949

Descrambler 0.015564

Turbo Decoder 0.153524

Table 2.1 Matlab Simulator Prof il ing for SISO Receiver

2.2 Turbo-Decoding Algorithm

The turbo encoder is illustrated in the left -hand of figure 2.1. The

first component encoder receives uncoded (systematic) data bits in

natural order and outputs a se t of parity bits. The second component

encoder receives a permutation of the data bits from a block

interleaver and outputs a second set of parity bits. The systematic

bits and the two sets of parity bits are then transmitted over the

wireless channel.

7

Figure 2.1 Parallel -concatenated turbo-encoder and block

diagram of a turbo-decoder .

However, since this signal is usually distorted by noise and

interference, the demodulator can only obtain estimates of the

systematic and two sets of parity bits. These estimates are provided

to the subsequent turbo decoder in the form of log-likelihood ratios

(LLRs), 𝐿𝑘𝑠, 𝐿𝑘𝑝2, 𝐿𝑘𝑝1, and which express the ratio between the

probabilities of the transmitted bits being 0 and being 1. The turbo

decoder inverts the operations performed by the turbo encoder. A

turbo decoder is based on the use of two decoders and two

interleavers in a feedback loop. Figure 2.1 depicts the main idea. The

first and second SD perform decoding of the convolutional code

generated by the first or the second CE, respectively. One pass by

both the first and the second SD is referred to as a full -iteration; the

operation performed by a single SD a half-i teration. In this work is

used 11 half iterations in order to produce the final decoded bits.

Each SD computes intrinsic a-posteriori LLRs 𝐿𝑘𝐷1 and 𝐿𝑘𝐷2, for the

transmitted bits, based on the systematic LLRs in natural 𝐿𝑘𝑠 or

interleaved order 𝐿𝜋(𝑘)𝑠 , on the parity LLRs 𝐿𝑘𝑝1 or 𝐿𝑘𝑝2, and on the

so-called a-priori LLRs 𝐿𝑘𝐴1 or 𝐿𝑘𝐴2. In subsequent iterations, each

SD uses the extrinsic LLRs 𝐿𝑘𝐸𝑖 = 𝐿𝑘𝐷1 – (𝐿𝑘𝑠 + 𝐿𝑘𝐴𝑖) computed by

the other SD. For the first iteration the a-priori LLRs are set to 0 .

Due to the interleaving used at the encoder, care must be taken to

properly interleave and de-interleave the LLRs which are used to

represent the soft values of the bits. Furthermore, because of the

iterative nature of the decoding, care must be taken not to re-use the

same information more than once at each decoding step.

8

A soft-in soft-out decoder is a type of soft-decision decoder used

with error correcting codes. "Soft-in" refers to the fact that the

incoming data may take on values other than 0 or 1, in order to

indicate reliability. "Soft -out" refers to the fact that each bit in the

decoded output also takes on a value indicating reliability.

The soft outputs and inputs from the component decoders are

typically represented in terms of the so-called Log Likelihood

Ratios(LLRs), the magnitude of which gives the sign of the bit, and

the amplitude the probability of a co rrect decision. The LLRs are

simply, as their name implies , the logarithm of the ratio of two

probabilities. For example, the LLR 𝐿(𝑢𝑘) for the value of a decoded

bit 𝑢𝑘 is given by

𝐿(𝑢𝑘) = 𝑙𝑛 (
𝑃(𝑢𝑘=+1)

𝑃(𝑢𝑘=−1)
) (2.1)

We summarize below what is meant by the terms a-priori ,

a-posteriori , and extrinsic information.

a-priori: The a-priori information about a bit is information

known before decoding starts, from a source other than

the received sequence or the code constraints. It is also

sometimes referred to as intrinsic information to contrast

with the extrinsic information described next.

extrinsic: The extrinsic information about a bit 𝑢𝑘 is the

information provided by a decoder based on the received

sequence and on a-priori information excluding the

received systematic bit and the a-priori information for

the bit . Typically, the component decoder provides this

information using the constraints imposed on the

transmitted sequence by the code used. It processes the

received bits and a-priori information surrounding the

systematic bit, and uses this information and the code

constraints to provide information about the value of 𝑢𝑘.

a-posterior: The a-posteriori information about a bit is the

information that the decoder gives taking into account

all available sources of information about 𝑢𝑘. It is the

a-posteriori LLR, that the MAP algorithm gives as its

 output.

9

2.3 Radix-4 Max-Log BCJR Algorithm

In 1974 an algorithm, known as the Maximum A -Posteriori (MAP)

algorithm, was proposed by Bahl, Cocke, Jelinek and Raviv [7] for

estimating the a-posteriori probabilities of the states and the

transitions of an observed Markov source, when subjected to

memoryless noise. This algorithm has also become known as the

BCJR algorithm, named after its inventors. They showed how the

algorithm could be used for decoding both algebraic and

convolutional codes. The MAP algorithm examines every possib le

path through the convolutional decoder trellis and therefore initially

seemed to be unfeasibly complex for application in most systems.

Hence, it was not widely used before the discovery of turbo codes.

The MAP algorithm provides not only the estimated bit sequence, but

also the probabilities for each bit has been decoded correctly. This is

essential for the iterative decoding of turbo codes and makes the MAP

algorithm very suitable for turbo decoders

The BCJR algorithm resembles the Viterbi algorithm [8] and

traverses a trellis representing the convolutional code to compute the

intrinsic LLRs.

Trellis codes do not operate on independent blocks of source data,

unlike the block codes. A trellis encoder maps an arbitrari ly long

input data stream to an arbi trari ly long output code stream. Trellis

codes can encode data continuously. A trellis encoder is a finite state

machine. The output of the encoder depends on the inputs at that time

and the current state of the encoder. The rate of encoder is k/n as in

block codes because it gives n outputs for k inputs. In this trellis

coded modulation method the receiver’s decision is taken depending

on entire sequence of symbols rather than on symbol by symbol

calculation.

10

Figure 2.1 Basic Trell is Diagram

.

11

Figure 2.2 Basic structure o f an i tera t ive Turbo

decoder . I tera t ive decoding based on MAP decoders.

Forward/backward recursions on the tre l l is diagram .

It is applied the Max-log approximation to the forward state-metric

recursions:

 𝑎𝑘(𝑠) = max{𝑎𝑘−1(𝑠
′
0) +𝛾𝑘(𝑠

′
0, 𝑠),

𝑎𝑘−1(𝑠
′
2) +𝛾𝑘(𝑠

′
2, 𝑠)} (2.2)

where 𝑠′0 and 𝑠′2 correspond to the two possible predecessor states

of s (see Fig. 2). The backward st ate-metrics 𝛽𝑘(𝑠) are computed

similarly to (2.2) in the opposite direction. Both recursions can be

performed efficiently based on hardware -friendly add-compare-

select (ACS) operations. The 𝛾𝑘 term above is the branch transition

probability that depends on the trellis diagram, and is usually

referred to as the branch metric (see [9] for details) .

12

Figure 2.3 Example of the calcula t ion of the forward and

backward sta te metr ics for radix -2 recurs ions

Once all 𝑎𝑘 and 𝛽𝑘 have been obtained, the a-posteriori output of the

max-log-MAP decoder can be computed. To this end, the decoder

must consider the state transitions 𝑠′ → 𝑠 associated with 𝑥𝑠= 0 and

the ones associated with 𝑥𝑠= 1 separately and then computes :

𝐿𝑘
𝐷1,𝐷2

 = max {𝑎𝑘−1(𝑠
′) +𝛾𝑘(𝑠

′, 𝑠) + 𝛽𝑘(𝑠)}
 (s ’ , s) : 𝑥𝑠=0

- max {𝑎𝑘−1(𝑠
′) +𝛾𝑘(𝑠

′, 𝑠) + 𝛽𝑘(𝑠)}. (2.3)
 (s ’ , s) : 𝑥𝑠=1

In this work, it is used a radix-4 (see figure 2.4) Max-Log turbo

decoder in order to enhance the throughput. The Log -MAP core

processes two received symbols per clock cycle using a radix -4

architecture, doubling the throughput for a given cl ock rate over a

similar radix-2 architecture. Specifically, the radix-4 forward state

metrics (figure 2.4) are computed on the basis of its four admissible

predecessor states 𝑠′0, 𝑠′1, 𝑠′2 and 𝑠′3 (at step k-2) as follows:

𝑎𝑘(𝑠) = max{𝑎𝑘−2(𝑠
′′
0) +𝛾𝑘(𝑠

′′
0, 𝑠), +𝑎𝑘−2(𝑠

′′
1) +𝛾𝑘(𝑠

′′
1, 𝑠),

 𝑎𝑘−2(𝑠
′′
2) +𝛾𝑘(𝑠

′′
2, 𝑠), +𝑎𝑘−2(𝑠

′′
3) +𝛾𝑘(𝑠

′′
3, 𝑠)}. (2.4)

For the first trellis step (k=0) we initialize 𝑎𝑘(𝑠

0) = 1, 𝑎𝑘(𝑠

1) = 0,

𝑎𝑘(𝑠

2) = 0𝑎𝑛𝑑𝑎𝑘(𝑠

3) = 0. The radix-4 branch metrics required in

(2.4) are computing according to:

 𝛾𝑘(𝑠
′′
𝑖, 𝑠) =𝛾𝑘(𝑠

′′
𝑖, 𝑠

′
𝑗) +𝛾𝑘(𝑠

′
𝑗 , 𝑠

) (2.5),

13

using the six branch metrics associated with the trellis step k and k -

1 required in the radix-2 recursion.

Since the backward recursion progresses from the end of trellis

diagram to its beginning for every step we initially set 𝛽𝑘(𝑠

)= 1/Ν ,

where N is the number of states in the turbo encoder. Then we use

the radix-2 recursion (2.2) to calculate 𝛽𝑘−1(𝑠
′
).

Figure 2.4 Radix-2 and radix-4 recursions

2.4 LTE Interleaver

Interleavers for turbo codes scramble the data in a pseudo-random

order to minimize the correlation between the outputs of component

encoders. Interleaver is an essential part and i s also responsible for

an excellent Bit Error Rate (BER) performance of turbo code.

Although parallelism can be obtained using multiple hardware

instances of a single decoder, this solution increases the memory

requirements (each decoder requires separate memory) and also

incurring a long latency. Recognizing these deficiencies, the LTE

working group decided upon an approach that enables internal

parallel ism within a fast serial decode r .

Generally, the task of an interleaver is to permute the soft values

generated by the MAP decoder and write them into random or pseudo-

random positions. Interleaver architectures are well studied in

literature [10], [11] and the recent wireless communication standards

14

like LTE have incorporated QPP and ARP interleavers [12]

respectively.

In this work, contention free QPP interleaver architecture is used in

the turbo decoder design. The recursive architecture of QPP

interleaver has a simplified design and it can be easily used in the

parallel architecture of turbo decoder to achieve higher throughput.

Subsequently, QPP interleaver can be configured to calculate

interleaved addresses for any value of block length (K) . For example,

3GPP-LTE wireless standard uses 188 different values of K , ranging

from 40 bits to 6144 bits . Specifically, address -computation for QPP

interleavers is carried out from:

 𝜋𝑘(𝑘) = (𝑓1𝑘 + 𝑓2𝑘
2)𝑚𝑜𝑑𝐾 (2.6)

Where f1 and f2 are suitably chosen interleaver parameter s that

depend on the code-block length K.

15

Table 2.2 Turbo codes Interleaver parameters (Part 1 of 2)

16

Table 2.3 Turbo codes Interleaver parameters (Part 2 of 2)

QPP interleaver can be configured to produce contention -free

interleaved addresses for any of these values by changing the values

of f1 and f2 in the expression (2.6). The expression (2.6) can be

implemented efficiently in hardware because only addition, multi ply

and modulo-operations are involved. Furthermore, QPP interleavers

map even addresses to even addresses and odd to odd.

17

Chapter 3

Parallel Turbo-Decoder Architecture

In the conventional BCJR algorithm (non-parallel), computations of

forward-state, backward-state and branch metrics for entire trellis

stages result in huge memory requirement and impose large decod ing

delay. Major steps involving in these parallel Turbo -decoding

relating to state metrics are presented as follow.

Initialization : Assuming that the encoder is reset, the forward state

metrics are initialized as 𝑎𝑘=0(𝑠 𝑖) = 1 ∀ i=0 and 𝑎𝑘=0(𝑠

𝑖) = 0 ∀ i≠0.

Forward recursion : During this process, the forward state metric of

each states for successive trellis stages are computed as in (2.4).

Backward-recursion and estimation of backward state metrics : If

N represents total number of states in each trellis stage, the backward

state metrics are initialized as 𝛽𝑘(𝑠 𝑖) =1/N ∀ i∈N (N is the number of

trellis states) and during the backward recursion it is used the radix -

2 recursion as in (2.2) in order to carry out 𝛽𝑘−1(𝑠 𝑖).

In order to increase throughput, a promising solution is to instantiate

N-BCJR units and to perform N-fold parallel decoding of trell is. This

approach increases the turbo-decoding throughput by a factor of N

compared to a non-parallel turbo-decoder.

3.1 High-Level Architecture

This work contains N=16 max-log BCJR instances, input memories

for the storage of systematic and parity LLRs and one intermediate

memory for the storage of the extrinsic LLRs. Radix-4 technique is

used therefore two trellis steps are processed per clock cycle. It is

noteworthy that the use of radix -4 recursions entails 2x increased

memory-bandwidth, since the LLRs associated with even and odd

numbered trellis steps are requi red per clock.

18

Input Ram

Parity-1

LLRs

Input Ram

Parity-2

LLRs

1
st

BCJR

Decoder

2
nd

BCJR

Decoder

N

BCJR

Decoder

Intermediate

Ram

Extrinsic LLRs

interleaver

interleaver

Input Ram

Systematic

LLRS

1
st

Intrl

BCJR

Decoder

2
nd

Intrl

BCJR

Decoder

N

Intrl

BCJR

Decoder

De-Interleaver

Address

generator

Sytematic LLRs

Parity 1 LLRs

Parity 2 LLRs

Figure 3.1 High-level architecture of the parallel turbo -

decoder

19

3.2 Memory Architecture

With low power and big throughput in mind, turbo-decoder is based

on the architecture in figure 3.1. In this desi gn and taking into

consideration the fact that radix -4 recursion is used , 4 block-rams

store one block of the LLRs of the systematic and both sets of parity

bits and 2. Two input block rams are associated to the systematic

LLRs, one stores the systematic LLRs relating to the even numbered

and the other for the odd-numbered trellis steps. In addition, 2 input

block rams are used to store parity 1 and parity 2 LLRs. Furthermore,

2 block rams store the intermediate extrinsic LLRs, one for the odd

and one for the even trellis -steps and 2 block ram in for the de -

interleave unit . Totally, 8 block rams are used and the 4 block rams

for systematic and extrinsic require half the amount of storage in

contrast with the parities block rams. Each memory contains N LLR-

values per address. This partitioning enables 2xN (N is the number

of the parallel decoders) LLRs to be read per clock cycle.

3.3 Implementation Tradeoffs

Typically, the throughput of digital circuits can be increased by

architectural and circuit -level transformations such as pipelining or

parallel processing. For turbo decoders, the applicabil ity of

pipelining is limited due to the presence of feedback loops and the

accompanying extra registers increase the energy consumption.

Comparative study of BER performances has shown that the parallel

turbo decoder achieves an adequate BER performance. Recently, the

VLSI implementations of para llel turbo decoders with N=8 [13],

N=16 [14], N=32 [15] and N=64 [16] have been reported for higher

data-rate applications. One of the key aspects of this work is the use

of radix-4 recursions in order to achieve high throughput. Despite the

fact that the use of radix -4 increases the area that BCJR decoders

occupied, the area of the rather large, input and intermediate,

memories remains the same. Clearly, the throughput improvement has

to be paid for by a complexity increase.

20

21

Chapter 4

LTE Interleaver Architecture

Interleaving means the permutation of the order of the data bits in a

code block. Turbo codes requi re specific interleavers which minimize

the correlation between the SISO decoder inputs of subsequent half -

iterations to achieve best decoding error rate performance. However,

the rules for the generation of the interleaved pattern are highly

complex.

In turbo decoder implementations the interleaver is a sub -block of

the address generator, which generates the addresses for the

memories in natural or permuted order. Thus, depending on the turbo

decoder half-iteration, the SISO decoder inputs can be read fro m the

input and from the intermediate memory in natural or interleaved

order. After decoding, the LLR outputs of the SISO decoder block

are written back in natural or interleaved order to the same address

in the intermediate memory, depending on the specif ic turbo decoder

half-iteration.

For most interleavers, parallel and interleaved memory access

leads to an interleaver bottleneck which is caused by access -

contentions. Thus, an Interleaver that alleviates the interleave

bottleneck is of primary importance for parallel turbo decoding.

4.1 Contention-Free Interleaving for LTE

This LTE Interleaver exhibits two approaches to in order to have

access to the memories in interleaved and natural order. The first

approach to solve the memory access contention problem is to

constrain the interleaver to be contention-free. Contention-free

interleavers [17] allow instant access and trivial mapping for LLRs

values that are required for the N parallel SISO decoders. For

example, if K is the block length and N divide s the K without

remainder, the interleaved or natural order LLRs values can be

always read from N memories. The second property is that the

interleaver is maximally vectorizable [18], the address-distance

22

between each of the N interleaved addresses is alwa ys an integer

multiple of the trellis -segment length S.

Figure 4.1 Architecture of the contention -free interleaver

As it is said in this work, radix -4 is used and therefore even and odd -

numbered systematic and extrinsic LLRs are stored in separate RA Ms

with S/2 addresses. Figure 4.1 indicates the storage of K LLRs

relating to one code-block (with length K) in a folded memory.

Folded memory has S addresses and each address contains N LLRs.

Therefore, K = NxS LLR values can be stored. In figure 4.1 it i s used

N=8 and S=5. LLRs are written column-wise and each column

corresponds to an SISO decoder . As is il lustrated in figure 4.1 the

address-distance between each of the N LLRs in the same row is a n

integer multiple of 5 (trellis -segment S) and this is due to the

maximally-vectorizable interleaver.

In the natural order phase, starting from the folded memory address

0 in increment way, the straightforward N LLrs located to the N BCJR

instances. The value of nth corresponds to the nth BCJR.

Since LTE interleaver is maximally-vectorizable, the N interleaved

addresses always point out at the same row in the folded memory. As

illustrated in figure 4.1 the 8 interleaved addresses

(6,31,36,21,26,11,16,1) relevant to address 1 in the folded memory

point out in the same row. In the interleaved phase, address -decoding

23

generates the sorting order that is required to assign the LLRs from

the folded memory to the corresponding SISO decoders and a

permutation according to the extracted sorting -order is applied to the

N LLR values, which are then passed to the corresponding BCJR

instances. This enables N-fold parallel access to the folded memory .

4.2 Master-Slave Batcher Network

Address decoding and permutation for maximally-vectorizable

contention-free interleaver based on [5] is depicted in figure Master -

Slave Batcher Network.

Address-decoding that it is reffered in 4.1 chapter is carried out in

the master network and the slave network performs the permutation

by applying the inverse-sorting order to the N LLRs. The master

network consists of a number of 2 -input sorter (SO) units and the

slave network of a 2-input switches (SW). The permutational signals

from the master networks control the switches in the slave network.

24

Figure 4.2 The Master-Slave Batcher Network

architecture

This network is a hardware efficient way to perform address -

decoding and permutation because only Multiplexers (MUXs) with 2

inputs and 1 output are required. LTE interleaver is of primary

significance for parallel turbo -decoders.

25

Chapter 5

Radix-4 Max-Log BCJR Architecture

In this design, Radix-4 Max-log BCJR with 16 instances dominate

the circuit area and the power consumption. Consequently, is very

significant an area-power efficient implementation of radix -4 max-

log BCJR.

5.1 VLSI Architecture

The architecture of the radix -4 max-log BCJR is presented in figure

5.1.

26

Figure 5.1 Architecture of the implemented radix-4 max-

log BCJR core

In this design, two trellis steps are computed per clock cycle. This

computation is performed using 2 parallel units, the forward state -

metric recursion unit and the backward state -metric recursion unit .

The problem of this approach is the unknown backward (or forward)

state metrics which are required in the beginning of the backward (or

forward) recursion. In the very first iteration, uniform state metrics

can be used for initialization . The forward state metrics are

initialized as 𝑎𝑘=0(𝑠 𝑖) = 1 ∀ i=0 and 𝑎𝑘=0(𝑠

𝑖) = 0 ∀ i≠0 and in every

clock cycle (2.4) is used to compute the forward state metrics for this

trellis step. In the backward state -metric recursion unit in every step

the backward metrics are initi alize 𝛽𝑘(𝑠 𝑖) =1/N ∀ i∈N, where N is the

number of trellis -states (in this work we have 4 states).

The branch metrics unit first work out the radix -2 branch metrics and

then compute the radix-4 branch metrics according to (2.5). The

27

results of the forward state-metric recursion unit are passed from

flip-flops before used to compute the intrinsic LLRs. This occurs

because we want to delay a cycle the results from forward state -

metric recursion unit because in the LLR computation unit we need

the forward metrics from the previous cycle. For example, for the

computation of 𝐿𝑘−1
𝐷 we need to know 𝑎𝑘−2 , see (2.3).

5.2 Radix-4 ACS Units with Modulo-

Normalization

The recursive state metric computation cannot be pipelined or

parallel ized due to the presence of the feedback loop. Hence, we

shall focus on measures for reducing the complexity of the state

metric recursions to shorten the critical path and to reduce area and

power consumption. The normalization technique used in this thesis

is focused to achieve high-speed performance of turbo decoder from

an implementation perspective. In addition, radix -2 and radix-4

ACS that is depicted in figure 5.2 are hardware friendly.

The comparison (CMP circuit for modulo-normalization [19]

achieves the renormalization with a controlled overflow in the data

path and requires only a 3-input XOR gate. In the parallel radix -4

ACS is utilized 4 adders, 6 CMP circuits and a 4-1 MUX (4 inputs,1

output). The selection signal is carried out by the six parallel CMP

followed by Karnaugh-map minimization. Radix-2 ACS requires

only 2 adders a CMP circuit and a MUX with select signal the

output from CMP circuit .

Figure 5.2 Radix-2 and Radix-4 architectures

28

5.3 LLR Computation Unit

The LLR computation unit that is presented in figure 5.1 calculate

the intrinsic and extrinsic LLRs for th e trellis step k-1 and k in each

clock cycle. Hence for the computation of the intrinsic and extrinsic

LLRs for step k-1, 𝑎𝑘−2, 𝛽𝑘−1and 𝛾𝑘−1 are required. 𝑎𝑘−2 came from

the flip flop after the forward state metric-recursion unit, 𝛾𝑘−1 came

from branch metric unit and 𝛽𝑘−1 from backward state metric-

recursion unit. 𝑎𝑘−1, 𝛽𝑘and 𝛾𝑘 are required for the calculation of the

intrinsic and extrinsic LLRs for the step k. With aid of radix -2 ACS

𝑎𝑘−1 stem from 𝑎𝑘−2 , 𝛾𝑘 came from branch metric unit and 𝛽𝑘 from

backward state metric-recursion unit.

Now for the computation of the intrinsic LLRs (2.3), the max of

𝑎𝑘−1(𝑠
′) +𝛾𝑘(𝑠

′, 𝑠) + 𝛽𝑘(𝑠) relating to a state transitions 𝑠′ → 𝑠

associated with 𝑥𝑠= 0 and the ones associated with 𝑥𝑠= 1 must be

calculated. In order to compute this is used a design similar with

radix-4 ACS with the difference that adders have 3 inputs (α, β, γ) .

29

Chapter 6

Implementation Results

In this chapter, it is shown simulation and synthesis results and it is

summarized the key points of the 8x parallel implemented Tutbo -

Decoder.

6.1 Axi-4 Stream Ip

AXI4-Stream is a subset of Advanced Microcontroller Bus

Architecture (AMBA) AXI4 protocol. It is designed for high -speed

streaming data. To simplify interoperability, Xilinx IP requiring

streaming interfaces use a strict subset of the AXI4 -Stream protocol.

An AXI4-Stream Ip is easy to use, flexible and is a high perf ormance

IP. This Turbo Decoder Ip must have a master and a slave interface

because it is requirement to receive and send data. Table 6.1 and

Table 6.2 show the signal names of the slave and master interface and

define them.

Pin

Direction

Port
width
(bits)

Description

Aclk

Input

1

Clock: Sample on the r i sing edge

Arst

Input

1

Rese t: Act ive lo w reset . When asser ted
low the decoder i s rese t .

30

En

Input

 1

Enable : Clock enable s ignal

Tvalid_s

Input

1

Tval id: ind icates that the mast er i s

dr iving a va lid transfer . A trans fer

takes p lace when both Tval id and

Tready are asser ted

Tready_s

Output

1

Tready: ind ica tes tha t the slave can

accep t a transfer in the cur rent cyc le.

Tlast_s

Input

1

T last : ind ica tes the boundary of a

packet .

Tdata_s

Input

32

Tdata: is the pr imary payload tha t i s

used to provide the data that i s pass ing

across the inter face. The wid th of the

data payload i s an integer number o f

bytes.

Table 6.1 Signals associated with slave interface

Pin

Direction

Port
width
(bits)

Description

Aclk

Input

1

Clock: Sample on the r i sing edge

Arst

Input

1

Rese t: Act ive lo w reset . When asser ted
low the decoder i s rese t .

En

Input
1

Enable : Clock enable s ignal

Tvalid_m

Output

1

Tval id: ind icates that the master i s

dr iving a va lid transfer . A trans fer

takes p lace when both Tval id and

Tready are asser ted

Tready_m

Input

1

Tready: ind ica tes tha t the slave can

accep t a transfer in the cur rent cyc le.

31

Tlast_m

Output

1

T last : ind ica tes the boundary of a

packet .

Tdata_m

Output

64

Tdata: is the pr imary payload tha t i s

used to provide the data that i s pass ing

across the inter face. The wid th of the

data payload i s an integer number o f

bytes.

Table 6.2 Signals associated with master interface

Tdata_s is the primary input for this work and its length is 8 Byte.

This size contains the systematic LLR, parity 1 and 2, the number of

iterations the decoder must implement and code block and is

organized as follows:

31 19 18 15 14 10 9 5 4 0

Block length iterations S ys t ema t i c LLR Pari ty 1 LLR Pari ty 2 LLR

Table 6.3 Construction of Tdata_s

6.2 Verilog Implementation

It is shown that Max-Log BCJR algorithm is totally suitable between

the implantation complexity and the decoding performance. Now it is

investigated how to implement the turbo decoder into a Field -

Programming Gate Array (FPGA). Verilog is used as the Hardware

Design Language for design entry and behavioral simulation. A basic

Application Specific Integration Circuit (ASIC) / FPGA design

process is depicted in figure 6.1.

32

Figure 6.1 ASIC/FPGA Design process.

1) Design entry

In this step system interfaces and functionalitie s are defined. The

detailed design is captured in Verilog, which provides useful

programming features for structured design techniques. With these

techniques, a complex design can be analyzed into simpler

implementation modules. Each module has its own def inition of

functionality and interface.

2) Test bench development

The functionality of Verilog Design must be verified before going

further in synthesis. Test benches is developed with this purpose,

which is also programmed in Verilog that provides design enti ty with

the stimulus and verifies the outputs.

3)Functionality verification

In this step, combinations of inputs (st imulus) are fed into the design

entity and the outputs are verified. Usually the stimulus and results

are generated and saved into fil es before the Verilog simulation. The

test bench will read in the st imulus, feed them into the design entity,

obtain the outputs of the design entity and compare these outputs to

the outputs that should be obtained. A properly design verification

program should be take into account the mathematic limitations in a

33

realistic hardware design including the finite resolution and limited

dynamic range of the date representation.

4) Synthesis

Synthesis is a process of transforming a design specification into an

implementation, i .e converting an abstract design description into a

hardware abstract. This process is performed using the synthesis

tools based on certain synthesis technology l ibrary provided by FPGA

manufactures.

5) Device mapping

This process tries to find proper devices from a library based on

synthesis result. In this phase, a t iming model generation program

provided by a device vendor or third part simulation model supplier

could be used to generate the accurate timing model of the design.

6) Timing Simulation

The t iming model generated during the device mapping is combined

into the test bench and the verif ication is performed again. When the

design is performed correctly with the timing model, is ready to be

manufactured. However, if the design fails with this t iming model ,

the designer has to go back to the first step, modify the design and

go through all the steps again until the design passes the t iming

simulation.

In this thesis, it is implemented a parallel turbo decoder and the

corresponding Verilog test bench in Verilog. The functional

verification is performed by comparing the decoding performance of

Verilog implementation with a Matlab -simulation. The parallel

Turbo-Decoder for LTE at Register -Transfer-Level (RTL) and the

design description follows a proper coding style to make it

synthesizable. For implementation, simulation and synthesis is used

a Xill inx tool, Vivado and the test platform was ZYNQ -7 ZC706 [20].

Synthesis results are presented below:

34

 Figure 6.2 Synthesis report (part 1 of 3)

Figure 6.3 Synthesis report (part 2 of 3)

35

 Figure 6.4 Synthesis report (part 3 of 3)

6.3 Error-Rate Performance and key

characteristics

To achieve a good error-rate performance, the input LLRs are

quantized to 5 bit, the ext rinsic LLRs to 6 bit and all state metrics in

the radix-4 ACS units require 10 bits. This Turbo-Decoder

implements 5.5 full i terations to carry out the decoded bits.

The majority of chip area is occupied by the BCJR instances. The

maximum measured clock frequency is 300 MHz, at which a

throughput of 200 Mb/s has measured.

36

37

Chapter 7

Conclusions

In the recent years, high-throughput design and implementation have

become dominating requirement in the field of VLSI design of

wireless-communication systems. There has been a rapid surge in

data-rate for next-generation wireless -communication and this will

lead to more complex algorithms and VLSI architectures in next few

decades. Based on this scenario, I have aggregated the study of turbo -

code and the implementation of high-throughput parallel -turbo

decoder on FPGA in this thesis. In this work it is detailed a parallel

turbo decoder for the 3GPP-LTE standard. The use of radix -4 in

combination with 8 parallel SISO decoders is of paramount

importance in order to achieve high throughput and an area efficient

design.

7.1 Future Work

For the future work, proposed VLSI-architecture of high-throughput

parallel-turbo decoder can be re -designed into area-efficient

architecture. Similarly, power -reduction techniques could be

incorporated to conceive high -throughput architecture for low-power

applications. Possible extensions in this project may be the

following :

 Windowing

To significantly reduce the large memory requirements,

windowing can be employed. In this app roach the trellis is

processed in small windows.

 Early termination

Decoders for turbo codes are iterative in nature. There are

techniques that can be used to reduce the average number of

iterations. There are stopping rules based on comparing a

metric on bit reliabil ities (soft bit decisions) with a threshold.

If the metric is smaller than the threshold, the decoder

continues with a new iteration; otherwise, it stops.

38

39

Bibliography

[1] C. Berrou, A. Glavieux, and P. Thit imajshima, "Near Shannon l imit

error-correcting coding and decoding. Turbo codes", in Proc, Int .

Conf. Communication, May 1993, pp 1064 -1070.

[2] C. Berrou, A. Glavieux, and P. Thit imajshima, "Near optimum error

correcting coding and decoding. Turbo -codes," IEEE Trans.

Commun., vol.44, no 10, pp. 1261- 1271, 1996.

[3] 3rd Generation Partnership Project; Technical Specification Group

Radio Access Network; Evolved Universal Terrestrial Radio Access

(EUTRA); Multiplexing and channel coding (Release 9), 3GPP

Organizational Partners TS 36.212, Rev. 8.3.0, May 2008.

[4] C. E. Shannon and W. Weaver , The Mathematical Theory of

Communication. Urbana, IL: Univ. Il l inois Press, 1949.

[5] C. Studer, C. Benkeser, S. Belfanti , and Q. Huang, “Design and

implementation of a parallel turbo -decoder asic for 3gpp-l te,”

Solid-State Circuits, IEEE Journal of, vol. 46, no. 1, pp. 8 –17, jan.

2011.

[6] H.Zarrinkoub, Understanding LTE with MATLAB From

Mathematical Modeling to Simulation and Prototyping , United

Kingdom: John Wiley & Sons Ltd, 2014

[7] L. Bahl , J . Cocke, F. Jelinek, and J . Raviv, “Optimal decoding of

l inear codes for minimizing symbol error rate,” IEEE Trans. Inf.

Th., vol. 20, no. 2, pp. 284–287, Mar. 1974.

[8] A. J . Viterbi , “Error bounds for convolutional codes and an

asymptotically optimum decoding algorithm,” IEEE Trans. Inf. Th.,

vol. 13, no. 2, pp. 260–269, Apr. 1967.

[9] J . P. Woodard and L. Hanzo, “Comparative study of turbo decoding

techniques: an overview,” IEEE Trans. Vehicular Tech., vol. 49,

no. 6, pp. 2208–2233, Nov. 2000.

[10] S. Vafi and T. Wysocki, “Performance of convolutional interleavers

with different spacing parameters in turbo codes,” Proceedings of

Australian Communication Theory Workshop, pp. 8 -12, 2005.

[11] S. Lee, C. Wang and W. Sheen, “Architecture Design of QPP

Interleaver for Parallel Turbo Decoding,” Proceedings of IEEE

Vehicular Technology Conference (VTC), pp. 1 -5, 2010.

40

[12] A. Nimbalker, Y. Blankenship, B. Classon, and T. K. Blankenship,

“ARP and QPP interleavers for LTE turbo coding,” in Proc. IEEE

WCNC, Las Vegas, NV, USA, Mar. 2008, pp. 1032 –1037.

[13] C-C. Wong and H-C. Chang, “Reconfigurable Turbo Decoder With

Parallel Architecture for 3GPP LTE System,” IEEE Transactions on

Circuits and Systems II: Express Briefs, vol. 57, pp. 566 -570, July-

2010.

[14] C-C. Wong, M-W. Lai, C-C. Lin, H-C. Chang and C-Y. Lee, “Turbo

Decoder Using Contention -Free Interleaver and Parallel

Architecture,” IEEE Journal of Solid -State Circuits, vol. 45, no. 2,

pp. 422-432, February-2010.

[15] S. M. Karim and I. Chakrabarti , “High Throughput Turbo Decoder

Using Pipelined Parallel Architecture and Collision Free

Interleaver,” IET Communications, vol. 6, pp. 1416 -1424, 2012.

[16] Y. Sun and J . R. Caval laro, “Efficient Hardware Implementation of

a Highly-Parallel 3GPP LTE/LTE-Advance Turbo Decoder,”

INTEGRATION, the VLSI Journal, vol. 44, pp. 305 -315, 2011.

[17] O. Y. Takeshita, “On maximum contention -free interleavers and

permutation polynomials over integer rings,” IEEE Trans. Inf. Th. ,

vol. 52, no. 3, pp. 1249–1253, Mar. 2006 .

[18] J . Sun and O. Y. Takeshita, “Interleavers for turbo codes using

permutation polynomials over integer rings,” IEEE Trans. Inf. Th. ,

vol. 51, no. 1, pp. 101–119, Jan. 2005.

[19] C. B. Shung, P. H. Siegel, G. Ungerboeck, and H. K. Thapar, “VLSI

archi tectures for metric normalization in the Viterbi algorithm,” in

Proc. IEEE ICC, vol. 4, Atlanta, GA, USA, Apr. 1990, pp. 1723 –

1728.

[20] ZC706 Evaluation Board for the Zynq -7000 XC7Z045 All

Programmable SoC User Guide.

