2,041 research outputs found

    Omnidirectional Stereo Vision for Autonomous Vehicles

    Get PDF
    Environment perception with cameras is an important requirement for many applications for autonomous vehicles and robots. This work presents a stereoscopic omnidirectional camera system for autonomous vehicles which resolves the problem of a limited field of view and provides a 360° panoramic view of the environment. We present a new projection model for these cameras and show that the camera setup overcomes major drawbacks of traditional perspective cameras in many applications

    Visual Odometry and Sparse Scene Reconstruction for UAVs with a Multi-Fisheye Camera System

    Get PDF
    Autonomously operating UAVs demand a fast localization for navigation, to actively explore unknown areas and to create maps. For pose estimation, many UAV systems make use of a combination of GPS receivers and inertial sensor units (IMU). However, GPS signal coverage may go down occasionally, especially in the close vicinity of objects, and precise IMUs are too heavy to be carried by lightweight UAVs. This and the high cost of high quality IMU motivate the use of inexpensive vision based sensors for localization using visual odometry or visual SLAM (simultaneous localization and mapping) techniques. The first contribution of this thesis is a more general approach to bundle adjustment with an extended version of the projective coplanarity equation which enables us to make use of omnidirectional multi-camera systems which may consist of fisheye cameras that can capture a large field of view with one shot. We use ray directions as observations instead of image points which is why our approach does not rely on a specific projection model assuming a central projection. In addition, our approach allows the integration and estimation of points at infinity, which classical bundle adjustments are not capable of. We show that the integration of far or infinitely far points stabilizes the estimation of the rotation angles of the camera poses. In its second contribution, we employ this approach to bundle adjustment in a highly integrated system for incremental pose estimation and mapping on light-weight UAVs. Based on the image sequences of a multi-camera system our system makes use of tracked feature points to incrementally build a sparse map and incrementally refines this map using the iSAM2 algorithm. Our system is able to optionally integrate GPS information on the level of carrier phase observations even in underconstrained situations, e.g. if only two satellites are visible, for georeferenced pose estimation. This way, we are able to use all available information in underconstrained GPS situations to keep the mapped 3D model accurate and georeferenced. In its third contribution, we present an approach for re-using existing methods for dense stereo matching with fisheye cameras, which has the advantage that highly optimized existing methods can be applied as a black-box without modifications even with cameras that have field of view of more than 180 deg. We provide a detailed accuracy analysis of the obtained dense stereo results. The accuracy analysis shows the growing uncertainty of observed image points of fisheye cameras due to increasing blur towards the image border. Core of the contribution is a rigorous variance component estimation which allows to estimate the variance of the observed disparities at an image point as a function of the distance of that point to the principal point. We show that this improved stochastic model provides a more realistic prediction of the uncertainty of the triangulated 3D points.Autonom operierende UAVs benötigen eine schnelle Lokalisierung zur Navigation, zur Exploration unbekannter Umgebungen und zur Kartierung. Zur Posenbestimmung verwenden viele UAV-Systeme eine Kombination aus GPS-EmpfĂ€ngern und Inertial-Messeinheiten (IMU). Die VerfĂŒgbarkeit von GPS-Signalen ist jedoch nicht ĂŒberall gewĂ€hrleistet, insbesondere in der NĂ€he abschattender Objekte, und prĂ€zise IMUs sind fĂŒr leichtgewichtige UAVs zu schwer. Auch die hohen Kosten qualitativ hochwertiger IMUs motivieren den Einsatz von kostengĂŒnstigen bildgebenden Sensoren zur Lokalisierung mittels visueller Odometrie oder SLAM-Techniken zur simultanen Lokalisierung und Kartierung. Im ersten wissenschaftlichen Beitrag dieser Arbeit entwickeln wir einen allgemeineren Ansatz fĂŒr die BĂŒndelausgleichung mit einem erweiterten Modell fĂŒr die projektive KollinearitĂ€tsgleichung, sodass auch omnidirektionale Multikamerasysteme verwendet werden können, welche beispielsweise bestehend aus Fisheyekameras mit einer Aufnahme einen großen Sichtbereich abdecken. Durch die Integration von Strahlrichtungen als Beobachtungen ist unser Ansatz nicht von einem kameraspezifischen Abbildungsmodell abhĂ€ngig solange dieses der Zentralprojektion folgt. Zudem erlaubt unser Ansatz die Integration und SchĂ€tzung von unendlich fernen Punkten, was bei klassischen BĂŒndelausgleichungen nicht möglich ist. Wir zeigen, dass durch die Integration weit entfernter und unendlich ferner Punkte die SchĂ€tzung der Rotationswinkel der Kameraposen stabilisiert werden kann. Im zweiten Beitrag verwenden wir diesen entwickelten Ansatz zur BĂŒndelausgleichung fĂŒr ein System zur inkrementellen PosenschĂ€tzung und dĂŒnnbesetzten Kartierung auf einem leichtgewichtigen UAV. Basierend auf den Bildsequenzen eines Mulitkamerasystems baut unser System mittels verfolgter markanter Bildpunkte inkrementell eine dĂŒnnbesetzte Karte auf und verfeinert diese inkrementell mittels des iSAM2-Algorithmus. Unser System ist in der Lage optional auch GPS Informationen auf dem Level von GPS-TrĂ€gerphasen zu integrieren, wodurch sogar in unterbestimmten Situation - beispielsweise bei nur zwei verfĂŒgbaren Satelliten - diese Informationen zur georeferenzierten PosenschĂ€tzung verwendet werden können. Im dritten Beitrag stellen wir einen Ansatz zur Verwendung existierender Methoden fĂŒr dichtes Stereomatching mit Fisheyekameras vor, sodass hoch optimierte existierende Methoden als Black Box ohne Modifzierungen sogar mit Kameras mit einem Gesichtsfeld von mehr als 180 Grad verwendet werden können. Wir stellen eine detaillierte Genauigkeitsanalyse basierend auf dem Ergebnis des dichten Stereomatchings dar. Die Genauigkeitsanalyse zeigt, wie stark die Genauigkeit beobachteter Bildpunkte bei Fisheyekameras zum Bildrand aufgrund von zunehmender UnschĂ€rfe abnimmt. Das KernstĂŒck dieses Beitrags ist eine VarianzkomponentenschĂ€tzung, welche die SchĂ€tzung der Varianz der beobachteten DisparitĂ€ten an einem Bildpunkt als Funktion von der Distanz dieses Punktes zum Hauptpunkt des Bildes ermöglicht. Wir zeigen, dass dieses verbesserte stochastische Modell eine realistischere PrĂ€diktion der Genauigkeiten der 3D Punkte ermöglicht

    Geometrical Calibration for the Panrover: a Stereo Omnidirectional System for Planetary Rover

    Get PDF
    Abstract. A novel panoramic stereo imaging system is proposed in this paper. The system is able to carry out a 360° stereoscopic vision, useful for rover autonomous-driving, and capture simultaneously a high-resolution stereo scene. The core of the concept is a novel "bifocal panoramic lens" (BPL) based on hyper hemispheric model (Pernechele et al. 2016). This BPL is able to record a panoramic field of view (FoV) and, simultaneously, an area (belonging to the panoramic FoV) with a given degree of magnification by using a unique image sensor. This strategy makes possible to avoid rotational mechanisms. Using two BPLs settled in a vertical baseline (system called PANROVER) allows the monitoring of the surrounding environment in stereoscopic (3D) mode and, simultaneously, capturing an high-resolution stereoscopic images to analyse scientific cases, making it a new paradigm in the planetary rovers framework.Differently from the majority of the Mars systems which are based on rotational mechanisms for the acquisition of the panoramic images (mosaicked on ground), the PANROVER does not contain any moving components and can rescue a hi-rate stereo images of the context panorama.Scope of this work is the geometric calibration of the panoramic acquisition system by the omnidirectional calibration methods (Scaramuzza et al. 2006) based on Zhang calibration grid. The procedures are applied in order to obtain well rectified synchronized stereo images to be available for 3D reconstruction. We applied a Zhang chess boards based approach even during STC/SIMBIO-SYS stereo camera calibration (Simioni et al. 2014, 2017). In this case the target of the calibration will be the stereo heads (the BPLs) of the PANROVER with the scope of extracting the intrinsic parameters of the optical systems. Differently by previous pipelines, using the same data bench the estimate of the extrinsic parameters is performed

    Design and Analysis of a Single-Camera Omnistereo Sensor for Quadrotor Micro Aerial Vehicles (MAVs)

    Full text link
    We describe the design and 3D sensing performance of an omnidirectional stereo (omnistereo) vision system applied to Micro Aerial Vehicles (MAVs). The proposed omnistereo sensor employs a monocular camera that is co-axially aligned with a pair of hyperboloidal mirrors (a vertically-folded catadioptric configuration). We show that this arrangement provides a compact solution for omnidirectional 3D perception while mounted on top of propeller-based MAVs (not capable of large payloads). The theoretical single viewpoint (SVP) constraint helps us derive analytical solutions for the sensor’s projective geometry and generate SVP-compliant panoramic images to compute 3D information from stereo correspondences (in a truly synchronous fashion). We perform an extensive analysis on various system characteristics such as its size, catadioptric spatial resolution, field-of-view. In addition, we pose a probabilistic model for the uncertainty estimation of 3D information from triangulation of back-projected rays. We validate the projection error of the design using both synthetic and real-life images against ground-truth data. Qualitatively, we show 3D point clouds (dense and sparse) resulting out of a single image captured from a real-life experiment. We expect the reproducibility of our sensor as its model parameters can be optimized to satisfy other catadioptric-based omnistereo vision under different circumstances

    Pohang Canal Dataset: A Multimodal Maritime Dataset for Autonomous Navigation in Restricted Waters

    Full text link
    This paper presents a multimodal maritime dataset and the data collection procedure used to gather it, which aims to facilitate autonomous navigation in restricted water environments. The dataset comprises measurements obtained using various perception and navigation sensors, including a stereo camera, an infrared camera, an omnidirectional camera, three LiDARs, a marine radar, a global positioning system, and an attitude heading reference system. The data were collected along a 7.5-km-long route that includes a narrow canal, inner and outer ports, and near-coastal areas in Pohang, South Korea. The collection was conducted under diverse weather and visual conditions. The dataset and its detailed description are available for free download at https://sites.google.com/view/pohang-canal-dataset.Comment: Submitted to IJRR as a data paper for revie
    • 

    corecore