307 research outputs found

    Alternative Multiple Spanning Tree Protocol (AMSTP) for Optical Ethernet Backbones

    Get PDF
    The availability and affordable cost of Gigabit and 10 Gigabit Ethernet switches has impacted the deployment of metropolitan area networks (MAN) and campus networks. This paper presents a new protocol, the alternative multiple spanning tree protocol (AMSTP), that uses multiple source based spanning trees for backbones using Ethernet switches. It provides minimum paths and more efficient usage of optical backbone infrastructure than currently proposed protocols such as resilient packet ring and rapid spanning tree. The protocol exhibits features similar to MAC routing protocols like Link State Over MAC (LSOM) such as optimum path and effective infrastructure usage, without requiring MAC routing due to the use of the spanning tree protocol paradigm. AMSTP is not restricted to specific topologies such as ring or tree, but performs efficiently in arbitrary topologies. Among the application areas are optical backbones of campus and MANs.Publicad

    A Survey on Communication Networks for Electric System Automation

    Get PDF
    Published in Computer Networks 50 (2006) 877–897, an Elsevier journal. The definitive version of this publication is available from Science Direct. Digital Object Identifier:10.1016/j.comnet.2006.01.005In today’s competitive electric utility marketplace, reliable and real-time information become the key factor for reliable delivery of power to the end-users, profitability of the electric utility and customer satisfaction. The operational and commercial demands of electric utilities require a high-performance data communication network that supports both existing functionalities and future operational requirements. In this respect, since such a communication network constitutes the core of the electric system automation applications, the design of a cost-effective and reliable network architecture is crucial. In this paper, the opportunities and challenges of a hybrid network architecture are discussed for electric system automation. More specifically, Internet based Virtual Private Networks, power line communications, satellite communications and wireless communications (wireless sensor networks, WiMAX and wireless mesh networks) are described in detail. The motivation of this paper is to provide a better understanding of the hybrid network architecture that can provide heterogeneous electric system automation application requirements. In this regard, our aim is to present a structured framework for electric utilities who plan to utilize new communication technologies for automation and hence, to make the decision making process more effective and direct.This work was supported by NEETRAC under Project #04-157

    Optical fibre local area networks

    Get PDF

    Low-Latency Routing on Mesh-Like Backbones

    Get PDF
    Early in in the Internet's history, routing within a single provider's WAN centered on placing traffic on the shortest path. More recent traffic engineering efforts aim to reduce congestion and/or increase utilization within the status quo of greedy shortest-path first routing on a sparse topology. In this paper, we argue that this status quo of routing and topology is fundamentally at odds with placing traffic so as to minimize latency for users while avoiding congestion. We advocate instead provider backbone topologies that are more mesh-like, and hence better at providing multiple low-latency paths, and a routing system that directly considers latency minimization and congestion avoidance while dynamically placing traffic on multiple unequal-cost paths. We offer a research agenda for achieving this new low-latency approach to WAN topology design and routing

    Wavelength assignment in all-optical networks for mesh topologies

    Get PDF
    All-Optical Networks employing Dense Wavelength Division Multiplexing (DWDM) are believed to be the next generation networks that can meet the ever-increasing demand for bandwidth of the end users. This thesis presents some new heuristics for wavelength assignment and converter placement in mesh topologies. Our heuristics try to assign the wavelengths in an efficient manner that results in very low blocking probability. We propose novel static and dynamic assignment schemes that outperform the assignments reported in the literature even when converters are used. The proposed on-line scheme called Round-Robin assignment outperforms previously proposed strategies such as first-fit and random assignment schemes. The performance improvement obtained with the proposed static assignments is very significant when compared with the dynamic schemes. We designed and developed a simulator in the C language that supports the 2D mesh topology with DWDM. We ran extensive simulations and compared our heuristics with those reported in the literature. We have examined converter placement in mesh topologies and proposed that placing converters at the center yields better results than uniform placement when dimension order routing is employed. We introduced a new concept called wavelength assignment with second trial that results in extremely low blocking probabilities when compared to schemes based on a single trial. Our proposed schemes are simple to implement and do not add to the cost. Thus we conclude that wavelength assignment plays more significant role in affecting the blocking probability than wavelength converters. We further conclude that static schemes without converters could easily outperform dynamic schemes thus resulting in great savings

    Understanding Internet topology: principles, models, and validation

    Get PDF
    Building on a recent effort that combines a first-principles approach to modeling router-level connectivity with a more pragmatic use of statistics and graph theory, we show in this paper that for the Internet, an improved understanding of its physical infrastructure is possible by viewing the physical connectivity as an annotated graph that delivers raw connectivity and bandwidth to the upper layers in the TCP/IP protocol stack, subject to practical constraints (e.g., router technology) and economic considerations (e.g., link costs). More importantly, by relying on data from Abilene, a Tier-1 ISP, and the Rocketfuel project, we provide empirical evidence in support of the proposed approach and its consistency with networking reality. To illustrate its utility, we: 1) show that our approach provides insight into the origin of high variability in measured or inferred router-level maps; 2) demonstrate that it easily accommodates the incorporation of additional objectives of network design (e.g., robustness to router failure); and 3) discuss how it complements ongoing community efforts to reverse-engineer the Internet

    Multi-domain crankback operation for IP/MPLS & DWDM networks

    Get PDF
    Network carriers and operators have built and deployed a very wide range of networking technologies to meet their customers needs. These include ultra scalable fibre-optic backbone networks based upon dense wavelength division multiplexing (DWDM) solutions as well as advanced layer 2/3 IP multiprotocol label switching (MPLS) and Ethernet technologies as well. A range of networking control protocols has also been developed to implement service provisioning and management across these networks. As these infrastructures have been deployed, a range of new challenges have started to emerge. In particular, a major issue is that of provisioning connection services between networks running across different domain boundaries, e.g., administrative geographic, commercial, etc. As a result, many carriers are keenly interested in the design of multi-domain provisioning solutions and algorithms. Nevertheless, to date most such efforts have only looked at pre-configured, i.e., static, inter-domain route computation or more complex solutions based upon hierarchical routing. As such there is significant scope in developing more scalable and simplified multi-domain provisioning solutions. Moreover, it is here that crankback signaling offers much promise. Crankback makes use of active messaging techniques to compute routes in an iterative manner and avoid problematic resource-deficient links. However very few multi-domain crankback schemes have been proposed, leaving much room for further investigation. Along these lines, this thesis proposes crankback signaling solution for multi-domain IP/MPLS and DWDM network operation. The scheme uses a joint intra/inter-domain signaling strategy and is fully-compatible with the standardized resource reservation (RSVP-TE) protocol. Furthermore, the proposed solution also implements and advanced next-hop domain selection strategy to drive the overall crankback process. Finally the whole framework assumes realistic settings in which individual domains have full internal visibility via link-state routing protocols, e.g., open shortest path first traffic engineering (OSPF-TE), but limited \u27next-hop\u27 inter-domain visibility, e.g., as provided by inter-area or inter-autonomous system (AS) routing protocols. The performance of the proposed crankback solution is studied using software-based discrete event simulation. First, a range of multi-domain topologies are built and tested. Next, detailed simulation runs are conducted for a range of scenarios. Overall, the findings show that the proposed crankback solution is very competitive with hierarchical routing, in many cases even outperforming full mesh abstraction. Moreover the scheme maintains acceptable signaling overheads (owing to it dual inter/intra domain crankback design) and also outperforms existing multi-domain crankback algorithms.\u2

    Migration strategies toward all optical metropolitan access rings

    Full text link
    This paper was published in Journal of Lightwave Technology and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the IEEE website: http://dx.doi.org/10.1109/JLT.2007.901325. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.Nowadays, network operators are steadily deploying optical circuit switching (OCS) equipment in their metropolitan networks in order to cope with traffic increase and, most importantly, in order to reduce capital expenditures and operational expenditures of existing active technologies. On the other hand, optical burst switching (OBS) technology is expected to become mature in the medium term, and it may be used as an alternative to current OCS networks due to its potential advantages in terms of bandwidth allocation granularity. While OBS is being extensively studied in the literature, little attention has been paid in conducting a comparative analysis of OBS versus OCS, especially concerning cost analysis. In this paper, we provide a comparative analysis of OBS versus OCS as an evolutionary technology for all-optical rings in the metropolitan-access network. This paper is specifically targeted toward optimizing the number of optoelectronic receivers and wavelengths with real traffic matrices from the metropolitan rings in Madrid, Spain. Such matrices also include traffic projections of foreseeable broadband services, which are based on a market analysis from the largest operator in Spain. Our findings show that OCS might be more efficient than OBS in the metro-access segment, which is characterized by a highly centralized traffic pattern. However, the more distributed the traffic is, the more efficient the OBS is as well. Consequently, OBS might be better suited to metro-core networks, which show a more distributed and dynamic traffic pattern.The authors would like to thank the e-Photon/ONe+ network of excellenc

    Design and implementation of the OFELIA FP7 facility: The European OpenFlow testbed

    Get PDF
    The growth of the Internet in terms of number of devices, the number of networks associated to each device and the mobility of devices and users makes the operation and management of the Internet network infrastructure a very complex challenge. In order to address this challenge, innovative solutions and ideas must be tested and evaluated in real network environments and not only based on simulations or laboratory setups. OFELIA is an European FP7 project and its main objective is to address the aforementioned challenge by building and operating a multi-layer, multi-technology and geographically distributed Future Internet testbed facility, where the network itself is precisely controlled and programmed by the experimenter using the emerging OpenFlow technology. This paper reports on the work done during the first half of the project, the lessons learned as well as the key advantages of the OFELIA facility for developing and testing new networking ideas. An overview on the challenges that have been faced on the design and implementation of the testbed facility is described, including the OFELIA Control Framework testbed management software. In addition, early operational experience of the facility since it was opened to the general public, providing five different testbeds or islands, is described
    corecore