
Low-Latency Routing on Mesh-Like Backbones

Nikola Gvozdiev, Stefano Vissicchio, Brad Karp, Mark Handley
University College London (UCL)

ABSTRACT

Early in in the Internet’s history, routing within a single
provider’s WAN centered on placing traffic on the shortest
path. More recent traffic engineering efforts aim to reduce
congestion and/or increase utilization within the status quo
of greedy, shortest-path first routing on a sparse topology.
In this paper, we argue that this status quo of routing and
topology is fundamentally at odds with placing traffic so as
to minimize latency for users while avoiding congestion. We
advocate instead provider backbone topologies that are more
mesh-like, and hence better at providing multiple low-latency
paths, and a routing system that directly considers latency
minimization and congestion avoidance while dynamically
placing traffic on multiple unequal-cost paths. We offer a
research agenda for achieving this new low-latency approach
to WAN topology design and routing.

1 INTRODUCTION

Historically, Internet providers have run their backbones so
as to provide end-to-end reachability with adequate capacity,
with a measure of redundancy for resilience to backbone link
failures. This arrangement falls out of the interaction between
a backbone’s topology and the intra-domain routing system
the provider employs. For example, failure resilience requires
some degree of path diversity and a routing system that can
choose paths, while providing adequate capacity depends on
whether the routing system avoids concentrating traffic on
some of those paths and congesting them. Given this close
interaction, it is natural not only that network topology has
influenced routing system design, but also that routing system
design influences topology: a provider will deploy links in
light of what the routing system will do with them.

Early backbones used shortest-path (SP) intra-domain rout-
ing; first distance-vector [20], then link-state [21, 24, 25].
These algorithms worked well when relatively sparse topolo-
gies were run at low utilization. More recently, cost pressures
have pushed ISPs toward higher link utilization. SP rout-
ing has a natural tendency to concentrate traffic and cause

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotNets-XVI, November 30–December 1, 2017, Palo Alto, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to
Association for Computing Machinery.
ACM ISBN 978-1-4503-5569-8/17/11. . . $15.00
https://doi.org/10.1145/3152434.3152453

Frankfurt

Vienna

Budapest26 x 10Gbps

13 x 10Gbps

Warsaw

3 x 10Gbps

Berlin

1 x 10Gbps

1 x 100Gbps
to Marseille

to Amsterdam
12 x 10Gbps
1 x 100Gbps

Figure 1: A subset of NTT’s European network. Drawn to scale.

congestion, so ISPs have augmented SP routing with traffic
engineering (TE) mechanisms such as MPLS-TE [3] that of-
fload traffic onto longer paths. However, the sparseness of
topologies has not greatly changed over the last 15 years, as
we will explore in Section 2. This status quo—SP routing
augmented with TE, running over sparse topologies—does a
good job of delivering capacity to end users. It also provides
a clear path for upgrades: add capacity to links where TE is
needed to reduce congestion.

Users’ expectations of the Internet have evolved beyond
mere capacity, however. Web page load time is determined by
completion times for short web TCP flows, which are gated by
slow start, and thus round-trip time (RTT). Interactive applica-
tions, from gaming to voice and videoconferencing, offer the
best quality of experience when latency is low. Providers need
means to deliver not only capacity to end users, but also low
latency [6, 28], and have an economic incentive to do so [23].
One seemingly promising strategy for cutting latency is to
build more mesh-like backbones: to introduce links that carry
demand along a more direct geographic path, shortcutting a
more circuitous one. Unfortunately, SP routing hampers the
introduction of latency-cutting links into a backbone’s topol-
ogy, making it hard to build low-latency, mesh-like backbones.
When augmented by TE, SP fares somewhat better, but as we
will show, this combination still falls short.

To see where SP struggles, consider Figure 1, which depicts
a portion of the European network of NTT, a large global
ISP [1]. Most hops in this part of NTT’s network consist of
bundles of individual 10 Gbps links. Clearly this structure
is the result of incremental upgrades—once a hop starts to
approach capacity, NTT adds a new 10 Gbps link.

In NTT’s network, note that traffic from Budapest to Vienna
must go via Frankfurt, and thus experience higher latency
than strictly necessary. Suppose, for the sake of argument,
that the traffic from Budapest to Vienna varies between 7
Gbps and 20 Gbps depending on time of day. Suppose further
that traffic has grown such that the Budapest → Frankfurt link
is running uncomfortably close to capacity. The operator must

https://doi.org/10.1145/3152434.3152453

add capacity. One option is to add another 10 Gbps to the
Budapest → Frankfurt link; another is to add a new 10 Gbps
link direct between Budapest and Vienna. Both would help
with capacity, but the new link would also improve latency
and might well be cheaper, as it is shorter.

In practice, though, the routing system’s limitations make
using this direct link difficult.1 At off-peak times, 7 Gbps of
traffic fits, but at peak times SP routing would result in heavy
congestion as 20 Gbps of demand tries to fit down a 10 Gbps
link. What the operator would like is for the 10 Gbps link to
run at fairly high utilization all the time, but for excess traffic
to take the indirect path. In this way, capacity is provided
cheaply, and at least some traffic sees improved latency.

TE schemes [2, 9, 10, 13, 16, 31] can, in principle, solve
this problem. To do so, they need to split the Budapest →
Vienna traffic unequally, and do so automatically and dy-
namically depending on the time of day and level of traffic.
However, these schemes primarily concern themselves with
capacity; none places traffic within a backbone so as to mini-
mize delay and fit offered load. B4 [14] comes close, albeit
in a private network environment in which the operator con-
trols sources’ demands. Indeed, as we explore in Section 2,
on mesh-like networks, neither SP routing (with or without
ECMP) nor state-of-the-art TE schemes can achieve delay
minimization while fitting user demands.

In the remainder of this paper we expound upon the na-
ture of the delay-minimizing routing problem for mesh-like
backbones; identify goals for a routing system that solves this
problem; discuss the practical design constraints that fall out
of these goals, including optimal path selection and response
to short-timescale traffic changes; and finally articulate open
research challenges that the community must address to make
low-delay routing on mesh-like backbones a reality.

2 ROUTING ON MESH-LIKE NETS

Just how mesh-like are today’s backbones—i.e., to what ex-
tent do they incorporate direct, latency-minimizing links?
To shed some light on this question, we examine a set of
date-stamped real-world POP-level backbone topologies from
the Topology Zoo [18], spanning 1998 to 2012. We limit
our study to backbones with more than 10 POPs, as it is
at medium-to-large scale where cost pressures constrain a
backbone’s density of connectivity. For each backbone we
compute f = (L−N +1)/L—the fraction of its links whose
removal would render the backbone a spanning tree—where
N is the number of nodes and L the number of links. As a
spanning tree contains the minimum number of links that ren-
der a set of nodes connected, this value intuitively represents
the extent to which a topology incorporates links inessential
for “bare” connectivity, but that reduce latency by offering
more direct paths than a spanning tree. The value of f is 0 for
a tree topology; a rectilinear 2D grid topology’s value will be
close to 0.5. Figure 2 shows a CDF of f across backbones.

1NTT may, of course, have other reasons for arriving at this topology. Re-
gardless, adding and using the direct link is difficult.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

fraction of links

0.0

0.5

1.0

C
D

F

Figure 2: CDF of the fraction of links that, when removed from
each topology, converts it into a spanning tree (237 topologies).

Most of the backbones in this dataset are not mesh-like: half
of them are rendered trees by removing fewer than 20% of
their links. Moreover, it is likely that a significant fraction of
the topologies in the dataset include virtual links, which exag-
gerate a topology’s “meshiness.” Few topologies approach a
grid-like density of connectivity, and closer inspection reveals
that there is no noticeable increasing trend in “meshiness”
over the 14-year period spanned by this dataset.

2.1 The Bandwidth-Propagation Delay Tradeoff

Why aren’t backbones becoming more mesh-like? One reason
may be that routing over mesh-like backbones is hard. Any
routing system that tries to minimize latency over a mesh-like
topology must place as much traffic as possible on low-delay
paths, and route the rest on higher-delay paths. Doing so re-
quires maintaining a precarious balance between propagation
and queuing delay—if the system places more traffic on a
path than any of that path’s links can handle, congestion will
occur, leading to queuing delays. Alternatively, if the system
leaves a lot of spare capacity on low-delay paths, it will again
increase latency, by causing traffic that could have been routed
on a shorter-delay path to incur longer propagation delay.

This fundamental bandwidth-propagation delay trade-off
manifests in surprising ways, even in simple scenarios. Con-
sider SP/ECMP routing, MPLS-TE as currently deployed,
and state-of-the-art routing systems like B4.2 SP/ECMP rout-
ing ignores traffic demands, and places all traffic bound for a
destination on the shortest path or paths. MPLS-TE takes ac-
count of demand: it places entire aggregates—each between
one ingress and egress in the backbone—one by one. Once
some links become full, further aggregates will be placed on
the shortest path where there is still enough capacity. B4 will
split aggregates where necessary, and greedily places traffic
from aggregates on progressively longer paths. What these
schemes share is that they greedily place each aggregate’s
traffic on its shortest path first. It is this common feature that
leads to undesirable behavior for all these schemes in some
scenarios. We refer to these systems as greedy SP routing.

2In this paper we assume automatic bandwidth allocation for MPLS-TE, as
it is often used in practice [29, 30].

A

B

D

C

?

2 units
1

1

(a) Initial scenario.

A

B

D

C

1 unit

2 units

(b) Minimal propagation delay;
congestion at A.

A

B

D

C
2 units

1 unit

1

1

(c) Longer propagation delay;
no congestion.

Figure 3: Simple scenario drawn to scale; all links have capacity of one unit. SP routing, MPLS-TE, and B4
exhibit congestion when a new link is added whether cost is hop count or propagation delay.

A B

D C

1 unit2 units

capacity: 2

ca
pa

ci
ty

: 2

capacity: 2

Figure 4: Congestion-
free solution unattain-
able by SP routing re-
gardless of weights; thick
lines have 2x capacity.

Greedy SP routing systems differ in mechanism, but largely
share the same objective. B4 is centralized; its central con-
troller periodically assigns as much of each aggregate’s traffic
as possible to its respective shortest path, and then sends
the rest on the next shortest path that still has free capacity,
and so on. MPLS-TE is distributed, and each ingress router
is responsible for aggregates that enter the network via that
ingress. Periodically each aggregate is assigned by its ingress
to the shortest path with enough free capacity to meet the
aggregate’s demand. The demand is then subtracted from the
available capacity of the hops along the path, and new free
capacities are propagated to other participating devices via
the IGP.

Consider the ISP in Figure 3a. All links have unit capacity;
arrows denote aggregates. Let us assume that the operator has
set link weights either to all be equal or to be proportional to
propagation delay in an effort to minimize latency. Regardless
of which of SP routing, MPLS-TE, or B4 one runs on the
topology in Figure 3, one obtains exactly the same result.

Initially, as shown in Figure 3a, suppose there are flows
from A → C totaling 2 units of demand, which the routing
spreads among the two equal-cost paths A → B → C and
A → D → C. Now suppose further that the ISP adds a new
customer at B and, as a result, must carry 1 unit of traffic
between B and D. The operator must upgrade capacity in the
backbone to carry this new demand, as the single aggregate
from A already fills links A → D and B → C. Virtuously
aiming to provide the lowest possible latency, the operator
installs a direct link between B and D to carry the new traffic.
To their surprise, as shown in Figure 3b, the new link causes
congestion in seemingly unrelated part of the network—at A.

Why should adding capacity cause congestion? Because
the new link’s delay is low, its provisioning reduces the delay
of the shortest path for the A → C aggregate. Any greedy
SP-based routing scheme will thus dutifully place all of the
A →C flows on the A → D → B →C path. Doing so saturates
both links A → D and B → C. The reverse path—D → B—
which carries the new customer’s traffic is also saturated. In
sum, under greedy SP routing, adding the new link reduces the
capacity available to A →C, which no longer fits and incurs
drops at A. A different solution, though not within reach of

greedy SP routing with delay-based link metrics, appears
in Figure 3c. This placement of traffic avoids congestion
by keeping only traffic for B → D on the direct link, and
spreads A →C traffic evenly over the upper and lower paths,
essentially ignoring the direct link.

Given the choice between routing flows over links with
insufficient capacity, and hence increasing queuing delay (as
in Figure 3b) and choosing longer-delay paths, and hence
increasing propagation delay (as in Figure 3c), we posit that
the routing system should avoid queuing if the topology as a
whole allows doing so. While prior work outlined an attempt
at trading off propagation delay and queuing delay [11], queu-
ing delay is much less predictable than propagation delay: its
magnitude depends on how deep the queues are at network
devices. More importantly, it may worsen end-to-end delay
for multiple aggregates that share a congested link.

Obviously, if the routing system is to prioritize the avoid-
ance of congestion when it places traffic, it must measure
aggregates’ demands—otherwise the routing system cannot
proactively determine how much of an aggregate can safely
be placed on a low-delay path before incurring queuing de-
lays. In some enterprise WAN scenarios all end hosts are
controlled by the same principal; in such cases that principal
may simply cap aggregates’ demands and report the caps to
the routing system [13, 14]. In the more general ISP-like sce-
nario, however, the routing system must carry traffic from end
hosts whose traffic demands the ISP does not control. These
demands further may exhibit high short-term variability. In
Section 4 we discuss the challenges associated with coping
with each aggregate’s variability, and the consequences should
the routing system fail to do so adequately.

2.2 Greedy Routing and Varied Link Capacities

Another shortcoming of greedy SP routing schemes is that
they can fail to avoid congestion even in very simple scenarios
in the presence of varied link capacities. In the topology in
Figure 5, all links have the same delay and the same unit
capacity, except for A → D, whose capacity is 2 units. In
this case greedy SP routing starts by filling each aggregate’s
shortest paths evenly: B → C → D and B → A → D for the
B → D aggregate and A → B → C and A → D → C for the

A B

D C

1 unit2 units

0.5

0.5

0.5capacity: 2

1

(a) Greedy routing.

A B

D C

1 unit2 units

capacity: 2

1
1

(b) Congestion-free solution.
Figure 5: Greedy routing gets stuck in local minimum, fails to avoid
congestion.

1 unit

1 unit

0.5

0.5

0.5

0.5

(a) Greedy routing.

1 unit

1 unit

(b) Lower-delay solution.
Figure 6: Greedy routing yields high delay on mesh-like networks.

A →C aggregate. It will assign 0.5 units of capacity to each
one of these paths, at which point the B →C link will saturate.
At this point the B → D aggregate’s demand has fully been
met, but there is no way for greedy routing to meet A →C’s
one more remaining unit of demand, as there are only 0.5 units
of capacity left on the D →C link. This solution will result
in persistent congestion at A. Figure 5b shows a solution that
avoids congestion, though centralized greedy solutions such
as B4 can’t find it. Distributed greedy solutions like MPLS-TE
may or may not find it depending on when different devices
perform path recomputation and reserve bandwidth.

2.3 Greedy Routing and Local Aggregates

An astute observer will notice that the main reason greedy
routing fails to achieve the preferred, congestion-free out-
comes in Figures 3 and 5 is that there is not enough path
diversity for it to find alternative paths. Will making the net-
work more mesh-like cure that problem?

Alas, even in networks with great path diversity, greedy
SP routing exhibits undesirable behavior. In Figure 6 we
show a highly connected topology—a complete rectilinear
grid. There are two aggregates—an aggregate that carries
long-haul traffic from one end of the network to the other
and an aggregate that is purely local whose shortest path
is a single hop. As the local aggregate’s shortest path falls
along the shortest path of the long aggregate, a greedy SP
routing solution (shown in Figure 6a) would saturate the link
on the local aggregate’s shortest path with traffic from both
aggregates and then allocate the rest of both aggregates on
their respective second-best paths.

Notice that while the second-best path of the long aggregate
is only fractionally longer than its best path, half of the local
aggregate’s traffic will suffer a needlessly circuitous path. It is

much better to route all of the long aggregate over its second-
best path and route all of the local aggregate on its shortest
path (as in Figure 6b). In essence, greedy SP routing tends to
“punish” local aggregates in propagation delay.

2.4 The Need for Non-Greedy Routing
In Figure 3 it is possible for an experienced network operator
to artificially increase the cost of one or more links, in the
spirit of [10], in order to nudge even basic single-path SP rout-
ing into finding the congestion-free solution from Figure 3c.
By adopting weights that do not correspond to link delays, the
operator effectively repurposes routing to achieve a different
objective—to avoid congestion rather than minimize delay.
This process requires intimate knowledge of the network’s de-
mands at any point in time, as even in simple scenarios it can
be difficult to pick a weight assignment. For example there
exists no assignment of link weights that will cause single-
path SP routing to produce the desired outcome in Figure 4.
To see why, note that it is impossible to force the single-unit
aggregate over the B → A → D path without also routing the
two-unit aggregate over the B → A link and congesting it. B4
will be able to handle Figure 4; depending on the ordering
of events MPLS-TE may also be able to handle it. However,
those more advanced schemes fail to alleviate congestion and
deliver low propagation delay in Figures 5 and 6 respectively.

These examples lead us to conclude that today’s routing and
TE systems can’t place traffic onto a mesh-like backbone’s
multiple alternative paths so as to satisfy user demands and
minimize delay. There is no dearth of low-level mechanisms
for flexible forwarding: e.g., SP routing can be combined
with virtual routing tables (VRFs) [27] to correctly handle
the scenario in Figure 4; and SDN-based forwarding [19]
can unevenly split traffic belonging to the same aggregate
over any arbitrary path through the backbone. What is lacking
is a dynamic routing system that chooses paths and how
aggregates should be split among them.

An intra-domain routing system capable of providing low
latency over mesh-like WAN backbones should:
• Minimize end-to-end delay within a provider’s backbone;
• Avoid congesting links, which is at odds with delay mini-

mization, given queuing;
• Let the operator add a link of any capacity anywhere in the

network, with the certainty that if that link carries traffic,
overall service will improve;

• Drive links at high utilization, splitting aggregates among
multiple, unequal delay paths as necessary;

• Achieve all the above goals while coping with variability
in per-aggregate demand;

• Be tractable in state, measurement overhead, and control
traffic at backbone routers.

3 SOLUTION SPACE

Two complementary approaches will help advance our goals.
On the one hand, we can adapt the topology on the basis of
demand—overprovisioning can be seen as demand-driven

Minimize delay

Goal Constraint

Ensure low queuing (avoid congestion)

Meet demands

Always prefer lower delay paths

Do not route all traffic on lowest delay paths

Support dense topologies Compute optimal paths

Run links at high utilization Achieve sub-second response time

Cope with traffic variability Be able to reason about how aggregates
dynamically combine

Ensure scalability in ISPs Be tractable in state, measurement overhead

and control traffic

Figure 7: Constraints on the solution space induced by our goals.

topology adaptation at long timescales. Recently the research
community has explored dynamic adaptation of the topology
using reconfigurable optical devices; thus far, this work has
focused on completion times for bulk transfers [15]. On the
other hand, we can adapt routing dynamically as demand
changes—such approaches optimize the paths that aggregates
take within a fixed topology.

A demand-fitting, delay-minimizing routing system might
combine both these approaches. We focus herein on the latter,
which is usable with or without the former.

3.1 Overview

Figure 7 summarizes how the goals articulated in the previous
section constrain the design space of possible solutions.

What might a routing system subject to these constraints
look like? Given SDN and MPLS, we today have the low-
level primitives to enable low-latency routing on mesh-like
networks; how can we use these primitives effectively?

To pack as much traffic as possible onto the lowest-delay
paths, and route the rest on longer paths, we must first have a
good estimate of the demand between each backbone ingress
and egress. This itself is a challenge, as we discuss later.

Given a topology (including link delays) and estimates
of demands, our ideal routing system should then optimize
the allocation of demands over paths, so as to offer low de-
lay to users. Provided that every demand can be represented
by a single estimated value, it is relatively straightforward
to cast fitting traffic with minimal delay as an optimization
problem, and use standard solvers to solve it, in the vein of
Bertsekas [5], with link costs proportional to link propagation
delay instead of link utilization. If we add constraints that the
demands must fit, and optimize subject to these constraints,
we have the essence of a dynamic centralized routing system
that can avoid the local minima discussed in Section 2. To-
day’s linear optimization software is fast enough to be able to
cope with millions of possible paths in networks with thou-
sands of links, and find an optimal solution in a few seconds.

Unfortunately, formulating this optimization problem is the
easy part – and there already exist TE-oriented frameworks
that can help us solve the problem [12]. Building a practical
routing system requires making choices about how to balance

mutually contradictory constraints in Figure 7. In the follow-
ing, we discuss how these constraints trade off against each
other, and delve into associated challenges the research com-
munity must address. Only then will it be possible to build
low-latency, mesh-like networks that run at high-enough uti-
lization to be economically viable.

3.2 Trade-Offs
Nearly any constraint in Figure 7 can be relaxed in the in-
terest of better supporting another constraint. For example,
Figure 3 provides a concrete example of how to balance be-
tween the second and the third constraints by suffering longer
propagation delay to avoid congestion. Doing so is easy if we
know precise traffic demands—an optimizer can minimize
for total per-flow delay without causing persistent congestion
by avoiding overcomitting any link. However, traffic demands
are not constant, nor are they precisely known, so any such
routing system needs to leave some capacity unallocated on
even the busiest links if queuing is to be avoided.

Thus there is a trade-off between high link utilization
(which allows more flows to achieve lower propagation de-
lay), and responsiveness to demand changes. If a system can
respond rapidly to traffic changes, it can run links at higher
utilization without risking excessive queuing delay. However,
responding rapidly incurs more control traffic, which may
limit scalability. Conversely, if the operator can tolerate lower
utilization (more “headroom”) on low-delay paths, demand
increases can initially be absorbed by this spare capacity.

These trade-offs also impact a low-delay routing system’s
architecture. In a fully centralized system, one can ensure op-
timality by notifying the controller every time an aggregate’s
demand changes even slightly. This approach, however, has
intrinsic limitations in responsiveness if the controller is geo-
graphically distant from the devices it manages, and in scala-
bility owing to measurement and control traffic overhead. An
alternative is to delegate some autonomy to network switches,
which can respond more rapidly. For example, switches might
autonomously react to significant demand changes, using
heuristics to reason about how aggregates combine and which
paths ensure low queuing, without always contacting the cen-
tral controller. Such a hybrid distributed/centralized approach
is more scalable and can respond more rapidly when acting
to avoid congestion upon changes in demand. However, such
heuristics come at the expense of optimality, at least until the
central controller learns of demand changes and re-optimizes.

4 RESEARCH AGENDA

We now outline a research agenda focusing on central chal-
lenges in achieving low-delay routing on mesh-like networks.

Determine how aggregates combine. Most TE work uses
the mean traffic level as an indicator of whether or not per-
sistent queues will form—when the mean level exceeds a
link’s capacity, traffic will be dropped. However, a latency-
minimizing system that runs some links at high utilization
must avoid not only persistent queues, but also transient ones.

A

B

D

C
1ms 1ms

100ms
1ms

(a) Topology

0 2 4 6 8
run #

0.0

0.2

0.4

0.6

0.8

1.0

fr
a
ct

io
n

[D->A->B->C] 102.081ms

[D->C] 1ms

(b) Oscillation
Figure 8: Oscillation with B4—all links have the same capacity, all
aggregates the same initial demand.

To do so, it needs to allocate extra headroom to those links
whose aggregates are more variable. The challenge is twofold:
• Measure aggregates so as to capture their variability.
• Perform optimization that is aware of each aggregate’s

variability, not only its mean traffic level.
The simplest way to capture variability is to periodically

read traffic counters. The frequency depends on flows’ RTTs:
in a data center, one would need to query multiple times each
millisecond to get a meaningful estimate. Luckily, in WANs,
most flows have an RTT on the order of tens of millisec-
onds, so reading counters multiple times per second should be
enough. Recent advances [8] and proposals [22] demonstrate
that this is becoming possible at scale.

Given this extra information, the controller needs to predict
how aggregates will combine—i.e., how the traffic levels of
aggregates that share links will sum at any time. Incorporating
aggregates’ variability into the optimization process itself is
an open challenge. To do so, one would need to represent ev-
ery demand with a range of values, representing the demand’s
statistical distribution of traffic levels over time (rather than
a single value as assumed in Section 3). Considering distri-
butions of values for every demand, however, causes path
optimization to become a non-linear problem, which is com-
putationally intractable. An alternative is to independently
optimize path delays and check how aggregates combine, in
separate steps. The downside is that a circular dependency is
inherent to this two-step process. The system needs to know
which aggregates combine well in order to assign them to
paths, but it will not know how aggregates’ various distribu-
tions multiplex before it produces an assignment.
Guarantee stability. Given a set of input demands, the rout-
ing system should eventually settle on a stable assignment
of traffic to paths. Unfortunately, delay-minimizing routing
systems cannot guarantee stability in general.

As already discussed, any delay-minimizing routing system
has to dynamically move traffic from lower-delay paths to
higher-delay ones when demand increases and no longer fits,
and vice-versa when demand shrinks. Moving an aggregate to
a higher delay path can, however, reduce its throughput—e.g.
when (i) its flows are competing with flows on a bottleneck
link outside the network (as the TCP throughput equation tells
us [26]), (ii) the traffic is generated by delay-sensitive appli-
cations, or (iii) delay-based congestion control is applied [7].
In turn, reducing the throughput of the moved aggregate in-
creases the possibility that the routing system will shift that

aggregate to a lower-delay path, increasing its bandwidth
again. This can result in temporary instability or a permanent
oscillation—never settling on a stable routing state. Oscilla-
tions of this type are fundamentally different from the widely
studied ones which affect distributed routing [4, 17].

Figure 8 demonstrates a simple example where these os-
cillations occur with B4 (but are likely to happen with any
load-dependent routing system). We perform ten runs of the
TE component of B4, where after each run we modify each
aggregate’s demand, assuming its flows exhibit a linear depen-
dency between throughput and delay—for example, if half
of its flows move to a path that is twice as long, the aggre-
gate’s throughput is reduced by a third. Initially the D →C
aggregate (whose paths are shown in Figure 8b) is split evenly
among D →C and the longer D → A → B →C. The flows on
the long path then reduce their throughput, and on the next
optimization pass B4 moves all of them back to the direct
D →C link. The A → B aggregate also oscillates, but is not
shown, as it always mirrors D →C.

Even though in the real world flows are unlikely to exhibit
such strong correlation between throughput and delay, char-
acterizing and dealing with those oscillations is an interesting
open problem. The study of practical mechanisms that guaran-
tee stability, as well as techniques to mitigate instability when
it cannot be avoided, are fertile ground for the community.

Provide Internet-wide benefits. So far, we considered a sin-
gle ISP, and a routing system optimizing paths for flow ag-
gregates defined by a fixed pair of ingress and egress routers
within a single administrative domain. How does such opti-
mization fit in the big picture? If all autonomous systems (AS)
on the path of a flow in the Internet were each to perform
a latency-minimizing optimization locally, what would the
global outcome be? Clearly, if each AS has only one ingress
and egress point, minimizing the propagation delay of each
segment of the end-to-end path will also minimize the to-
tal end-to-end propagation delay. In the real world, however,
neighboring ASs often peer with each other in multiple places,
with many potential egresses for an ingress. If path choice
within each AS is a purely local decision, it is possible to end
up with a sub-optimal end-to-end path.

We believe that interesting research directions can arise
from studying how to achieve end-to-end minimal latency
with and without coordination between ISPs in the hot-potato
routing scenario—e.g., through tailored ISP interfaces for
automated interactions, or independent decisions made by
single ISPs on the basis of external latency measurements.

While these challenges are substantial, we argue that build-
ing delay-minimizing routing systems that can dynamically
leverage path diversity in richly connected, mesh-like topolo-
gies is essential to meeting users’ demands for low latency in
tomorrow’s networks. This line of research has the potential
to break the ossified status quo of tree-like topologies and
shortest-path routing, moving the state of the art to a regime
where flexible routing systems can extract benefit from com-
plex topologies, and vice-versa.

REFERENCES

[1] NTT’s network topology. http://www.us.ntt.net/about/network-map.
cfm. Accessed: 2017-08-04.

[2] D. Applegate and E. Cohen. Making intra-domain routing robust to
changing and uncertain traffic demands: Understanding fundamental
tradeoffs. In Proc. ACM SIGCOMM, August 2003.

[3] D. O. Awduche and J. Agogbua. Requirements for traffic engineering
over MPLS. RFC 2702, September 1999.

[4] A. Basu and J. Riecke. Stability issues in OSPF routing. ACM SIG-
COMM Computer Communication Review, 31(4):225–236, 2001.

[5] D. P. Bertsekas, R. G. Gallager, and P. Humblet. Data networks, vol-
ume 2. Prentice-hall Englewood Cliffs, NJ, 1987.

[6] I. N. Bozkurt, A. Aguirre, B. Chandrasekaran, P. B. Godfrey, G. Laugh-
lin, B. Maggs, and A. Singla. Why is the internet so slow?! In Proc.
Passive and Active Measurements Conference, March 2017.

[7] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson.
BBR: Congestion-based congestion control. ACM Queue, 14(5):50,
December 2016.

[8] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee. DevoFlow: Scaling flow management for high-
performance networks. In Proc. ACM SIGCOMM, August 2011.

[9] A. Elwalid, C. Jin, S. Low, and I. Widjaja. MATE: MPLS adaptive
traffic engineering. In Proc. IEEE INFOCOM, April 2001.

[10] B. Fortz and M. Thorup. Optimizing OSPF/IS-IS weights in a changing
world. IEEE J.Sel. A. Commun., 20(4):756–767, Sept. 2006.

[11] N. Gvozdiev, B. Karp, and M. Handley. FUBAR: Flow utility based
routing. In Proc. ACM Hotnets, October 2014.

[12] R. Hartert, S. Vissicchio, P. Schaus, O. Bonaventure, C. Filsfils,
T. Telkamp, and P. Francois. A declarative and expressive approach
to control forwarding paths in carrier-grade networks. In Proc. ACM
SIGCOMM, August 2015.

[13] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer. Achieving high utilization with software-driven
WAN. In Proc. ACM SIGCOMM, August 2013.

[14] S. Jain, A. Kumar, S. M, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. W, J. Zhou, M. Zhu, J. Zolla, U. Holzle, S. Stuart, and A. Vahdat. B4:
Experience with a globally-deployed software defined WAN. In Proc.
ACM SIGCOMM, 2015.

[15] X. Jin, Y. Li, D. Wei, S. Li, J. Gao, L. Xu, G. Li, W. Xu, and J. Rexford.
Optimizing bulk transfers with software-defined optical WAN. In Proc.
ACM SIGCOMM, August 2016.

[16] S. Kandula, D. Katabi, B. Davie, and A. Charny. Walking the tightrope:
Responsive yet stable traffic engineering. In Proc. ACM SIGCOMM
2005.

[17] A. Khanna and J. Zinky. The revised ARPANET routing metric. ACM
SIGCOMM Computer Communication Review, 19(4):45–56, 1989.

[18] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan.
The Internet topology zoo. IEEE Journal on Selected Areas in Commu-
nications, 29(9):1765–1775, 2011.

[19] N. McKeown. Software-defined networking. INFOCOM keynote talk,
17(2):30–32, 2009.

[20] J. McQuillan, G. Falk, and I. Richer. A review of the development and
performance of the arpanet routing algorithm. IEEE Transactions on
Communications, 26(12):1802–1811, 1978.

[21] J. McQuillan, I. Richer, and E. Rosen. The new routing algorithm for the
ARPANET. IEEE Transactions on Communications, 28(5):711–719,
1980.

[22] J. C. Mogul and P. Congdon. Hey, you darned counters!: get off my
ASIC! In Proc. ACM HotSDN, August 2012.

[23] T. P. Morgan. How Google wants to rewire the internet, July 2017.
[Interview with Amin Vahdat; https://www.nextplatform.com/2017/07/
17/google-wants-rewire-internet/].

[24] J. Moy. OSPF version 2. RFC 2328, April 1998.
[25] D. Oran. OSI IS-IS intra-domain routing protocol. RFC 1142, February

1990.

[26] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling tcp through-
put: A simple model and its empirical validation. In Proc. ACM SIG-
COMM, August 1998.

[27] G. A. Santana. Data Center Virtualization Fundamentals: Understand-
ing Techniques and Designs for Highly Efficient Data Centers with
Cisco Nexus, UCS, MDS, and Beyond. Cisco Press, 2013.

[28] A. Singla, B. Chandrasekaran, P. Godfrey, and B. Maggs. The internet
at the speed of light. In Proc. ACM Hotnets, October 2014.

[29] R. Steenbergen. MPLS RSVP-TE auto-bandwidth: Practical
lessons learned. https://www.nanog.org/sites/default/files/tues.general.
steenbergen.autobandwidth.30.pdf. Accessed: 2017-10-31.

[30] P. Templin. MPLS traffic engineering. https://www.nanog.org/meetings/
nanog37/presentations/pete-templin.pdf. Accessed: 2017-10-31.

[31] H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Greenberg.
COPE: Traffic engineering in dynamic networks. In Proc. ACM SIG-
COMM, August 2006.

http://www.us.ntt.net/about/network-map.cfm
http://www.us.ntt.net/about/network-map.cfm
https://www.nextplatform.com/2017/07/17/google-wants-rewire-internet/
https://www.nextplatform.com/2017/07/17/google-wants-rewire-internet/
https://www.nanog.org/sites/default/files/tues.general.steenbergen.autobandwidth.30.pdf
https://www.nanog.org/sites/default/files/tues.general.steenbergen.autobandwidth.30.pdf
https://www.nanog.org/meetings/nanog37/presentations/pete-templin.pdf
https://www.nanog.org/meetings/nanog37/presentations/pete-templin.pdf

	Abstract
	1 Introduction
	2 Routing on Mesh-like Nets
	2.1 The Bandwidth-Propagation Delay Tradeoff
	2.2 Greedy Routing and Varied Link Capacities
	2.3 Greedy Routing and Local Aggregates
	2.4 The Need for Non-Greedy Routing

	3 Solution Space
	3.1 Overview
	3.2 Trade-Offs

	4 Research Agenda
	References

