3,539 research outputs found

    Performance modelling of the Cambridge Fast Ring protocol

    Get PDF
    The Cambridge Fast Ring is high-speed slotted ring. The features that make it suitable for use at very large transmission rates are the synchronous transmission, the simplicity of the medium-access-control protocol, and the possibility of immediate retransmission of erroneous packets. A novel analytical model of the Cambridge Fast Ring with normal slots is presented. The model is shown to be accurate and usable over wide range of parameters. A performance analysis based on this model is presented

    MAC for Networks with Multipacket Reception Capability and Spatially Distributed Nodes

    Get PDF

    Extremely high data-rate, reliable network systems research

    Get PDF
    Significant progress was made over the year in the four focus areas of this research group: gigabit protocols, extensions of metropolitan protocols, parallel protocols, and distributed simulations. Two activities, a network management tool and the Carrier Sensed Multiple Access Collision Detection (CSMA/CD) protocol, have developed to the point that a patent is being applied for in the next year; a tool set for distributed simulation using the language SIMSCRIPT also has commercial potential and is to be further refined. The year's results for each of these areas are summarized and next year's activities are described

    An investigation on thermoelastic damping of high-Q ring resonators

    Get PDF
    For applications requiring high performance angular rate measurements it is important to be able to design MEMS rate sensors with high quality factors (Q). This paper considers ring resonator based rate sensors and investigates the influence of design changes to the ring and support legs on thermoelastic damping, which is the dominant dissipation mechanism. A computational method is used to quantify the thermoelastic damping and a detailed parameter study is conducted to understand the influence of ring geometry, support legs and micro-machined slots around the ring circumference. The results show that damping in the support legs can have significant influence on the total energy dissipated from the resonator, and the optimum leg geometry can be identified to achieve high Q. It is also observed that the addition of slots improves Q for resonators having higher energy loss. However, for high-Q, rings slots have a detrimental effect. The results presented are useful for designing ring resonators with reduced levels of damping

    Full-Scale System for Quantifying Loads and Leak Rates of Seals for Space Applications

    Get PDF
    NASA is developing advanced space-rated vacuum seals in support of future space exploration missions to low-Earth orbit and other destinations. These seals may be 50 to 60 in. (127 to 152 cm) in diameter and must exhibit extremely low leak rates to ensure that astronauts have sufficient breathable air for extended missions to the International Space Station or the Moon. Seal compression loads must be below prescribed limits so as not to overload the mechanisms that compress them during docking or mating, and seal adhesion forces must be low to allow two mated systems to separate when required. NASA Glenn Research Center has developed a new test apparatus to measure leak rates and compression and adhesion loads of candidate full-scale seals under simulated thermal, vacuum, and engagement conditions. Tests can be performed in seal-on-seal or seal-on-flange configurations at temperatures from -76 to 140 F (-60 to 60 C) under operational pressure gradients. Nominal and off-nominal mating conditions (e.g., incomplete seal compression) can also be simulated. This paper describes the main design features of the test apparatus as well as techniques used to overcome some of the design challenges

    Slip ring experience in long duration space applications

    Get PDF
    Ball Aerospace experience with slip rings in space extends back to 1962. Over 40 multi-ring assemblies have been flown and continuous operating lifetimes greater than 8 years at up to 60 rpm have been demonstrated. Slip rings provide multi-channel transfer of electrical power and signals in assemblies that are small in size and weight, and low in cost. By use of multiple brushes and sufficient copper within the assembly, power transfer efficiency better than 99.95 percent for high voltage circuits can be achieved. A low slip ring failure rate based on actual space operation totalling billions of ring revolutions has been established. Well qualified suppliers who have been making slip rings for space use for over 25 years are available. It is hoped that the suspected problem in SEASAT will not be allowed to prejudice space system designer against these very useful mechanisms

    Spacelab system analysis: A study of the Marshall Avionics System Testbed (MAST)

    Get PDF
    An analysis of the Marshall Avionics Systems Testbed (MAST) communications requirements is presented. The average offered load for typical nodes is estimated. Suitable local area networks are determined
    corecore