26 research outputs found

    A promising plasma-catalytic approach towards single-step methane conversion to oxygenates at room temperature

    Get PDF
    Direct conversion of methane into chemicals and fuels under mild conditions has been considered as a 'holy grail' of chemistry and catalysis in the 21st century. Plasma-catalytic partial oxidation of methane (POM) to higher-value liquid fuels and chemicals over supported transition metal catalysts (Ni/gamma-Al2O3, Cu/gamma-Al2O3 and Fe/gamma-Al2O3) has been investigated in a co-axial dielectric barrier discharge (DBD) reactor at room temperature and atmospheric pressure. The selectivity of oxygenates was 58.3% in the plasma POM reaction without a catalyst, while the combination of DBD with the catalysts enhanced the selectivity of oxygenates up to 71.5%. Of the three catalysts, Fe/gamma-Al2O3 showed the highest methanol selectivity of 36.0% and a significant methanol yield of 4.7%, while the use of Cu/gamma-Al2O3 improved the selectivity of C-2 oxygenates to 9.4%, which can be attributed to the presence of more acid sites on the surfaces of the Cu catalyst. The possible reaction pathways in the plasmacatalytic POM reaction have been explored by combined means of plasma electrical and optical diagnostics, analysis of gas and liquid products, as well as comprehensive catalyst characterization. The plausible reaction routes for the production of major oxygenate (methanol) on the Fe/gamma-Al2O3 surfaces have been proposed. The surface CHx species are found to be critical for methanol synthesis; they can be formed through the direct adsorption of CHx radicals generated in the plasma gas-phase reactions or through the dissociation of adsorbed CH4 on the catalyst surface

    Abatement of volatile organic compounds by combined use of non-thermal plasma and heterogeneous catalysis

    Get PDF

    Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources

    Get PDF
    It is well known that urbanization and industrialization have resulted in the rapidly increasing emissions of volatile organic compounds (VOCs), which are a major contributor to the formation of secondary pollutants (e.g., tropospheric ozone, PAN (peroxyacetyl nitrate), and secondary organic aerosols) and photochemical smog. The emission of these pollutants has led to a large decline in air quality in numerous regions around the world, which has ultimately led to concerns regarding their impact on human health and general well-being. Catalytic oxidation is regarded as one of the most promising strategies for VOC removal from industrial waste streams. This Review systematically documents the progresses and developments made in the understanding and design of heterogeneous catalysts for VOC oxidation over the past two decades. It addresses in detail how catalytic performance is often drastically affected by the pollutant sources and reaction conditions. It also highlights the primary routes for catalyst deactivation and discusses protocols for their subsequent reactivation. Kinetic models and proposed oxidation mechanisms for representative VOCs are also provided. Typical catalytic reactors and oxidizers for industrial VOC destruction are further discussed. We believe that this Review will provide a great foundation and reference point for future design and development in this field
    corecore