5,804 research outputs found

    Automatic Segmentation of Multiparty Dialogue

    Get PDF
    In this paper, we investigate the problem of automatically predicting segment boundaries in spoken multiparty dialogue. We extend prior work in two ways. We first apply approaches that have been proposed for predicting top-level topic shifts to the problem of identifying subtopic boundaries. We then explore the impact on performance of using ASR output as opposed to human transcription. Examination of the effect of features shows that predicting top-level and predicting subtopic boundaries are two distinct tasks: (1) for predicting subtopic boundaries, the lexical cohesion-based approach alone can achieve competitive results, (2) for predicting top-level boundaries, the machine learning approach that combines lexical-cohesion and conversational features performs best, and (3) conversational cues, such as cue phrases and overlapping speech, are better indicators for the top-level prediction task. We also find that the transcription errors inevitable in ASR output have a negative impact on models that combine lexical-cohesion and conversational features, but do not change the general preference of approach for the two tasks

    Access to recorded interviews: A research agenda

    Get PDF
    Recorded interviews form a rich basis for scholarly inquiry. Examples include oral histories, community memory projects, and interviews conducted for broadcast media. Emerging technologies offer the potential to radically transform the way in which recorded interviews are made accessible, but this vision will demand substantial investments from a broad range of research communities. This article reviews the present state of practice for making recorded interviews available and the state-of-the-art for key component technologies. A large number of important research issues are identified, and from that set of issues, a coherent research agenda is proposed

    I hear you eat and speak: automatic recognition of eating condition and food type, use-cases, and impact on ASR performance

    Get PDF
    We propose a new recognition task in the area of computational paralinguistics: automatic recognition of eating conditions in speech, i. e., whether people are eating while speaking, and what they are eating. To this end, we introduce the audio-visual iHEARu-EAT database featuring 1.6 k utterances of 30 subjects (mean age: 26.1 years, standard deviation: 2.66 years, gender balanced, German speakers), six types of food (Apple, Nectarine, Banana, Haribo Smurfs, Biscuit, and Crisps), and read as well as spontaneous speech, which is made publicly available for research purposes. We start with demonstrating that for automatic speech recognition (ASR), it pays off to know whether speakers are eating or not. We also propose automatic classification both by brute-forcing of low-level acoustic features as well as higher-level features related to intelligibility, obtained from an Automatic Speech Recogniser. Prediction of the eating condition was performed with a Support Vector Machine (SVM) classifier employed in a leave-one-speaker-out evaluation framework. Results show that the binary prediction of eating condition (i. e., eating or not eating) can be easily solved independently of the speaking condition; the obtained average recalls are all above 90%. Low-level acoustic features provide the best performance on spontaneous speech, which reaches up to 62.3% average recall for multi-way classification of the eating condition, i. e., discriminating the six types of food, as well as not eating. The early fusion of features related to intelligibility with the brute-forced acoustic feature set improves the performance on read speech, reaching a 66.4% average recall for the multi-way classification task. Analysing features and classifier errors leads to a suitable ordinal scale for eating conditions, on which automatic regression can be performed with up to 56.2% determination coefficient

    Continuous Interaction with a Virtual Human

    Get PDF
    Attentive Speaking and Active Listening require that a Virtual Human be capable of simultaneous perception/interpretation and production of communicative behavior. A Virtual Human should be able to signal its attitude and attention while it is listening to its interaction partner, and be able to attend to its interaction partner while it is speaking – and modify its communicative behavior on-the-fly based on what it perceives from its partner. This report presents the results of a four week summer project that was part of eNTERFACE’10. The project resulted in progress on several aspects of continuous interaction such as scheduling and interrupting multimodal behavior, automatic classification of listener responses, generation of response eliciting behavior, and models for appropriate reactions to listener responses. A pilot user study was conducted with ten participants. In addition, the project yielded a number of deliverables that are released for public access

    The L2 acquisition of syllable structure and stress in Spanish.

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN027136 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Comparing different machine learning approaches for disfluency structure detection in a corpus of university lectures

    Get PDF
    This paper presents a number of experiments focusing on assessing the performance of different machine learning methods on the identification of disfluencies and their distinct structural regions over speech data. Several machine learning methods have been applied, namely Naive Bayes, Logistic Regression, Classification and Regression Trees (CARTs), J48 and Multilayer Perceptron. Our experiments show that CARTs outperform the other methods on the identification of the distinct structural disfluent regions. Reported experiments are based on audio segmentation and prosodic features, calculated from a corpus of university lectures in European Portuguese, containing about 32h of speech and about 7.7% of disfluencies. The set of features automatically extracted from the forced alignment corpus proved to be discriminant of the regions contained in the production of a disfluency. This work shows that using fully automatic prosodic features, disfluency structural regions can be reliably identified using CARTs, where the best results achieved correspond to 81.5% precision, 27.6% recall, and 41.2% F-measure. The best results concern the detection of the interregnum, followed by the detection of the interruption point.info:eu-repo/semantics/publishedVersio
    corecore