46 research outputs found

    Simultaneous Scheduling of Replication and Computation for Data-Intensive Applications on the Grid

    Get PDF
    One of the first motivations of using grids comes from applications managing large data sets like for example in High Energy Physic or Life Sciences. To improve the global throughput of software environments, replicas are usually put at wisely selected sites. Moreover, computation requests have to be scheduled among the available resources. To get the best performance, scheduling and data replication have to be tightly coupled which is not always the case in existing approaches. This paper presents an algorithm that combines data management and scheduling at the same time using a steady-state approach. Our theoretical results are validated using simulation and logs from a large life science application (ACI GRID GriPPS).L'une des principales motivations pour utiliser les grilles de calcul vient des applications utilisant de larges ensembles de données comme, par exemple, en Physique des Hautes Energies ou en Science de la Vie. Pour améliorer le rendement global des environnements logiciels utilisées pour porter ces applications sur les grilles, des réplicats des données sont déposées sur différents sites sélectionnés. De plus es requêtes de calcul doivent être ordonnancées en tenant compte des ressources disponibles. Pour obtenir de meilleures performances, l'ordonnancement des requêtes et la réplication des données doivent être étroitement couplés ce qui n'est généralement pas le cas dans les approches existantes. Cet article présente un algorithme qui combine la gestion des données et l'ordonnancement en utilisant une approche en régime permanent. Nos résultats théoriques sont validés par simulations et par l'utilisation des traces d'un serveur de calcul d'application de Sciences de la Vie(ACIGRIDGRIPPS)

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    Metascheduling of HPC Jobs in Day-Ahead Electricity Markets

    Full text link
    High performance grid computing is a key enabler of large scale collaborative computational science. With the promise of exascale computing, high performance grid systems are expected to incur electricity bills that grow super-linearly over time. In order to achieve cost effectiveness in these systems, it is essential for the scheduling algorithms to exploit electricity price variations, both in space and time, that are prevalent in the dynamic electricity price markets. In this paper, we present a metascheduling algorithm to optimize the placement of jobs in a compute grid which consumes electricity from the day-ahead wholesale market. We formulate the scheduling problem as a Minimum Cost Maximum Flow problem and leverage queue waiting time and electricity price predictions to accurately estimate the cost of job execution at a system. Using trace based simulation with real and synthetic workload traces, and real electricity price data sets, we demonstrate our approach on two currently operational grids, XSEDE and NorduGrid. Our experimental setup collectively constitute more than 433K processors spread across 58 compute systems in 17 geographically distributed locations. Experiments show that our approach simultaneously optimizes the total electricity cost and the average response time of the grid, without being unfair to users of the local batch systems.Comment: Appears in IEEE Transactions on Parallel and Distributed System

    Faculty Publications and Creative Works 2004

    Get PDF
    Faculty Publications & Creative Works is an annual compendium of scholarly and creative activities of University of New Mexico faculty during the noted calendar year. Published by the Office of the Vice President for Research and Economic Development, it serves to illustrate the robust and active intellectual pursuits conducted by the faculty in support of teaching and research at UNM

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    Parallel scientific computing with message-passing toolboxes

    Get PDF
    Los usuarios de Entornos de Computación Científica (SCE, por sus siglas en inglés) siempre requieren mayor potencia de cálculo para sus aplicaciones. Utilizando las herramientas propuestas, los usuarios de las conocidas plataformas Matlab® y Octave, en un cluster de computadores, pueden paralelizar sus aplicaciones interpretadas utilizando paso de mensajes, como el proporcionado por PVM (Parallel Virtual Machine) o MPI (Message Passing Interface). Para muchas aplicaciones SCE es posible encontrar un esquema de paralelización con ganancia en velocidad casi lineal. Estas herramientas son interfaces prácticamente exhaustivas a las correspondientes librerías, soportan todos los tipos de datos compatibles en el SCE base y se han diseñado teniendo en cuenta el rendimiento y la facilidad de mantenimiento. En este artículo se resumen trabajos anteriores, su repercusión, y algunos resultados obtenidos por usuarios finales. Con base en la herramienta más reciente, la Toolbox MPI para Octave, se describen brevemente sus características principales, y se presenta un estudio de caso, el conjunto de Mandelbrotusers of Scientific Computing Environments (SCE) always demand more computing power for their CPu-intensive SCE applications. using the proposed toolboxes, users of the well-known Matlab® and Octave platforms in a computer cluster can parallelize their interpreted applications using the native multi-computer programming paradigm of message-passing, such as that provided by PVM (Parallel Virtual Machine) and MPI (Message Passing Inter-face). For many SCE applications, a parallelization scheme can be found so that the resulting speedup is nearly linear on the number of computers used. The toolboxes are almost compre-hensive interfaces to the corresponding libraries, they support all the compatible data types in the base SCE and they have been designed with performance and maintainability in mind. In this paper, we summarize our previous work, its repercussion, and some results obtained by end-users. Focusing on our most recent MPI Toolbox for Octave, we briefly describe its main features, and introduce a case study: the Mandelbrot se
    corecore