
Simultaneous Scheduling of Replication and

Computation for Data-Intensive Applications on the

Grid

Frédéric Desprez, Antoine Vernois

To cite this version:

Frédéric Desprez, Antoine Vernois. Simultaneous Scheduling of Replication and Computation
for Data-Intensive Applications on the Grid. RR-5460, INRIA. 2005, pp.19. <inria-00070546>

HAL Id: inria-00070546

https://hal.inria.fr/inria-00070546

Submitted on 19 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-ENS-LYON

https://core.ac.uk/display/52330706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00070546

IS
S

N
 0

24
9-

63
99

 IS
R

N
 IN

R
IA

/R
R

--
54

60
--

F
R

+
E

N
G

appor t
de r ech er ch e

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Simultaneous Scheduling of Replication and
Computation for Data-Intensive Applications on the

Grid

Frédéric Desprez — Antoine Vernois

N° 5460

January 2005

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier (France)

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Simultaneous Scheduling of Replication and Computation for

Data-Intensive Applications on the Grid

Frédéric Desprez, Antoine Vernois

Thème NUM — Systèmes numériques
Projet GRAAL

Rapport de recherche n
�

5460 — January 2005 — 19 pages

Abstract: One of the first motivations of using grids comes from applications managing
large data sets like for example in High Energy Physic or Life Sciences. To improve the
global throughput of software environments, replicas are usually put at wisely selected sites.
Moreover, computation requests have to be scheduled among the available resources. To get
the best performance, scheduling and data replication have to be tightly coupled which is not
always the case in existing approaches.

This paper presents an algorithm that combines data management and scheduling at
the same time using a steady-state approach. Our theoretical results are validated using
simulation and logs from a large life science application (ACI GRID GriPPS).

Key-words: scheduling, replication, data management, grid computing

This text is also available as a research report of the Laboratoire de l’Informatique du Parallélisme
http://www.ens-lyon.fr/LIP.

Ordonnancement conjoint du placement des données et des

calculs sur la grille

Résumé : L’une des principales motivations pour utiliser les grilles de calcul vient des
applications utilisant de larges ensembles de données comme, par exemple, en Physique des
Hautes Énergies ou en Science de la Vie. Pour améliorer le rendement global des environ-
nements logiciels utilisés pour porter ces applications sur les grilles, des réplicats des données
sont déposés sur différents sites sélectionnés. De plus, les requêtes de calcul doivent être
ordonnancées en tenant compte des ressources disponibles. Pour obtenir de meilleures perfor-
mances, l’ordonnancement des requêtes et la réplication des données doivent être étroitement
couplés ce qui n’est généralement pas le cas dans les approches existantes.

Cet article présente un algorithme qui combine la gestion des données et l’ordonnancement
en utilisant une approche en régime permanent. Nos résultats théoriques sont validés par
simulations et par l’utilisation des traces d’un serveur de calcul d’application de Sciences de
la Vie (ACI GRID GRIPPS).

Mots-clés : ordonnancement, réplication, gestion de données, grille de calcul

Simultaneous Scheduling of Replication and Computation on the Grid 3

1 Introduction

One of the first motivations of using grids [6, 13] comes from the applications managing large
data sets [10, 22] like for example in High Energy Physic [16] or Life Sciences [18]. To improve
the global throughput of software environments, replicas are usually put at wisely selected
sites. Moreover, computation requests have to be scheduled among the available resources.
To get the best performance, scheduling and data replication have to be tightly coupled which
is not always the case in existing approaches.

Usually, in existing grid computing environments, data replication and scheduling are two
independent tasks. In some cases, replication managers are requested to find best replicas in
term of access costs. But the choice of the best replica has to be done at the same time as
the schedule of computation requests.

Our motivating example comes from an existing life science application (see Section 2).
This kind of application has usually the following characteristics: a large number of indepen-
dent tasks of small duration (searching for signature or functional site of a protein or protein
family into a databank), reference databases from some MBs to several GBs which are up-
dated on a daily or weekly basis, several computational servers available on the network,
and the size of the overall data set is too important to be replicated on every computational
server on the whole. The resolution of such application on the grid leads to solve two prob-
lems related to replication: finding how (and where) to replicate the databases and
choosing wisely the data to be deleted when new data have to be stored. On the
scheduling side, computation requests must be scheduled on servers by minimizing
some performance metric, taking into account the data location.

This paper presents an algorithm that combines data management and scheduling simulta-
neously using a steady-state approach. Our theoretical results are validated using simulation
and logs from a large life science application.

This paper is organized as follows. In a first section, we present the application that
motivated this work. In Section 3, we discuss some previous work around data replication,
web cache mapping, data and computation scheduling. In Section 4, we present our model
of the problem and the algorithm we designed to solve it. Finally, before some conclusions
and our future work, we discuss our experimentations using the OptorSim simulator [4] for
replica managers.

2 Motivation Example

Our motivation for this work comes from an application in life science and more precisely
around the search of sites and signatures of proteins into databanks of protein sequences.

Genomic acquiring programs such as full genomes sequencing projects are producing large
amounts of data. Functional sites and signatures of protein are very useful for analyzing
these data or for correlating different kind of existing biological data. Sites and signatures
of protein can be expressed using the syntax defined by the PROSITE [7] databank, and
written as a kind of regular expression. Then, the search of functional sites or signature into
databanks can be very similar to simple pattern matching except that some biological relevant
error between search pattern and matching protein can be allowed. These methods can be
applied, for example, to identify and find a characterization of the potential functions of new
sequenced proteins, or to clusterize the sequences contained into international databanks into

RR n
�

5460

4 F. Desprez, A. Vernois

Number of databanks 23

Number of algorithms 8

Number of couple algorithm-databanks 80

Number of requests 88730

Average size of databanks 1 GB

Size of smallest databank 1 MB

Size of largest databank 12 GB

Table 1: Informations extracted from logs of an existing bioinformatic cluster.

families of proteins. Most of the time, this kind of analysis, i.e. searching for a matching
protein into a databank, is quite fast and its execution time mainly depends on the size of
the databanks, but the number of requests for such analysis can also be very high.

Figure 1 describes the classical architecture of a bioinformatic application. We can notice
two kind of components connected together by the Internet network. On one side, there is
a set of clients which submit requests to computational servers. Clients are seen as personal
computers that have no knowledge from each others but which are often gathered in some big
sites. Usually, these are office computer of researchers in biology or bioinformatics research
centers. Computational servers are dedicated to computation. They usually are single pro-
cessors computers or, sometime clusters of computers. These servers locally store a limited
number of reference databanks and algorithms on which they can be applied. Often, they are
independent from each other and are located and managed in bioinformatic centers. Client
can access computational servers through web portals or directly asking for an account to
servers administrators.

Database 1

Clients

Database 2

Database 3

INTERNET

Figure 1: Current view of a Bioinformatic Application.

We accessed the logs of such a cluster that allow users to apply some well known algorithms
to existing databanks. The cluster is located at IBCP [1] in Lyon (France), a research institute
on biology and chemistry of proteins, and it is managed by the bioinformatic team of this
laboratory. Input of such requests are user’s protein sequences or signatures and usually do
not excess a few kilobytes. This is a centralized cluster with limited capacities so only major
databanks and algorithms are available. Table 1 shows some information extracted from these
logs.

INRIA

Simultaneous Scheduling of Replication and Computation on the Grid 5

3 Related Work

Data replication has attracted much attention over the last decade. Our work is connected
to several others: high performance web caches, data replication, and scheduling in grids.

With the rapid growth of the Internet, scalability became in major issue for the design of
high performance web services [26]. Several researches have studied how to optimally replace
data in distributed web caches [8, 21]. Even if this problem seems to be close to ours, the
fundamental difference between the two is that our problem has a non-negligible computation
cost that depends upon the speed of the machine hosting a given replica.

In computation grids, some work exist around replication [19] and among them the re-
searches for the Datagrid project from the CERN [2]. OptorSim [4, 11] allows to simulate
data replication algorithms over a grid. This tool is more precisely described in Section 5.1.
In [3], several strategies are simulated like unconditional replication (oldest file deleted, LRU)
and with an economic approach. The target application is the data management of the Data-
grid physic application. Simulation shows that the economical model is as fast as classical
algorithms.

In [17], the authors describe Stork, a scheduler for data mapping in grid environments.
Data are considered as resources that have to be managed as computation resources. This
environment is mainly used to be able to map data close to computation during the scheduling
of task graphs in Condor [25].

In [20], the scheduling of computation is linked to a previous data mapping. Tasks are
scheduled on least loaded processors close to sites where data are stored. Replication is also
used to improve performance.

The closest researches to the results presented in our paper are the one that aim to schedule
computation requests and data mapping on remote sites at the same time. In [23, 24], several
strategies are evaluated to manage data and computation scheduling. These strategies are
either strongly related to the scheduling of computation or completely disconnected. However,
these strategies are highly dynamic and the mapping is not proved close to the optimal. In [9],
the authors present an algorithm (Integrated Replication and Scheduling Strategy) in which
performance are iteratively improved by working alternatively on the data mapping and the
task mapping.

4 Joint Data and Computation Scheduling Algorithm

In this section, we present the algorithm we designed that combines data replication and
scheduling (Scheduling and Replication Algorithm or SRA).

Figure 2 shows one typical architecture used in our motivation application. Several clients
are connected through the Internet to clusters managing databases and computation requests.
Databases can be replicated on different servers. We also assume that a given server can host
different databases at the same time provided that there is enough storage and the application
related to this database is available on this server. Figure 3, present the model we use in
our algorithm. We assume that a single broker manages data replication and scheduling of
requests.

4.1 Hypothesis

We assume that we have the following:

RR n
�

5460

6 F. Desprez, A. Vernois

Clients

Database 3

INTERNET

Database 2Database 1

Figure 2: Data Replication and Load-Balancing
of Computation Requests.

d1, d2

BROKER

P1 P2 P3 P4 P5

d3 d2, d3, d4 d5 d3, d5

Figure 3: Theoretical Model Used in the SRA
Algorithm.

� a set of computational servers Pi, i ∈ [1..m].

� a set of data dj , j ∈ [1..n]. Data dj is of size sizej

� a set of algorithms ak, k ∈ [1..p] that use one dj as an input.

We call a request, or task, Rk,j a couple (ak, dj) where ak is an algorithm and dj is a data
which will be used as an input of the algorithm ak. All algorithms can not be applied on all
kind of data, so we define vk,j = 1 if Rk,j is a request that is possible, otherwise vk,j = 0.
The complexity of algorithm ak is linear in time with the size of the data. Thus the amount
of computation needed to compute a request Rk,j is αk · sizej + ck, where αk and ck are two
constants defined for each algorithm ak. For each server, we also introduce ni(k, j), which is
the number of requests Rk,j that will be executed on server Pi.

A server Pi is described by two constants: its computational power wi and its storage
capacity mi.

fk,j is the fraction of request of type Rk,j in the pool of requests. We suppose that this
proportion of request is always the same whatever the interval of time you consider as soon
as it is large enough.

Our study focus on managing data and their replication taking all these parameters into
account to improve the computation time of a set of requests. We also make the assumption
that for each data, there is at least one server with enough space to store it.

From data point of view, there are two possibilities for the platform:

� the total space available is large enough to store, at least, one replica of each data.

m
∑

i=1

mi ≥
n

∑

j=1

sizej (1)

� the total space available is too small, and only a subset of data can be stored in the
platform at a given time.

m
∑

i=1

mi <

n
∑

j=1

sizej (2)

In the following, we will consider that we are in the first case when for each data there is
at least one server that can hold a replica of it.We will try to find the best way to place data
in these conditions.

INRIA

Simultaneous Scheduling of Replication and Computation on the Grid 7

As we have enough space, we want that there is at least one replica of each databanks in
the system. Let δ

j
i = 1 if there is a replica of data dj on server Pi, δ

j
i = 0 otherwise.

∀j

m
∑

i=1

δ
j
i ≥ 1 (3)

But space on each server is limited by its storage capacity. So total size of data stored on
server Pi cannot exceed mi

∀i

n
∑

j=1

δ
j
i .sizej ≤ mi (4)

The number of requests a server Pi can handle is restricted by its computation capacity.
Thus the amount of computation that a server will execute cannot exceed wi.

∀i

p
∑

k=1

n
∑

j=1

ni(k, j)(αk · sizej + ck) ≤ wi (5)

To compute a request Rk,j on server Pi, the data dj should be stored on this server. If it is
not the case, then ni(k, j) should be equal to 0, otherwise, ni(k, j) is limited by the maximal
number of requests Rk,j this server can handle.

∀i ∀j ∀k ni(k, j) ≤ vk,j .δ
j
i .

wi

αk.sizej + ck

(6)

Let TP be the throughput of the platform, i.e., TP is the number of requests that can
be executed per unit time on the platform. The ratio of each kind of request is defined by
f(j, k). So, the number of requests of type R(k, j) that is executed is restricted by this ratio
in order to avoid to take in account more requests than the number that will be submitted.

∀j ∀k

m
∑

i=1

ni(k, j) = fk,j .TP (7)

Considering all the previous equations, our goal is to define a mapping, i.e. δ
j
i , of data

to be able to compute as much as possible requests in a fixed period of time. It means that
we want to maximise the throughput TP . From previous constraints, and this goal, we can
define the following linear program.

linear programming formulation
Maximize TP,

subject to

(1)
∑n

j=1 δ
j
i ≥ 1 1 ≤ i ≤ m

(2)
∑n

j=1 δ
j
i .sizej ≤ mi 1 ≤ i ≤ m

(3) ni(k, j) ≤ vk,j .δ
j
i .

wi

αk.sizej+ck
1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ p

(4)
∑p

k=1

∑n
j=1 ni(k, j)(αk · sizej + ck) ≤ wi 1 ≤ i ≤ m

(5)
∑m

i=1 ni(k, j) = fk,j .TP 1 ≤ i ≤ m, 1 ≤ j ≤ n

(6) δ
j
i ∈ {0, 1} 1 ≤ i ≤ m, 1 ≤ j ≤ nRR n

�

5460

8 F. Desprez, A. Vernois

The solution of this linear program will give us a placement for the databanks on the
servers but also, for each kind of job, on which server they should be executed. More precisely,
for a kind of request Rk,j , we know how many job can be executed on the platform and we
also know how many requests of this kind should be executed on each server to reach optimal
throughput. Thus, with the placement of data, the linear program also gives good information
for the scheduling of requests.

4.2 NP-Completness Proof

Definition 1 (SCHEDULE-REPLICATION-DEC). Given m processors Pi with computation
power wi and storage mi, n data dj of size sizej, p algorithms ak that can be applied on data
dj, vk,j defining if algorithm ak can be applied on dj, αk and ck such that αk · sizej + ck is
the amount of computation needed to compute algorithm ak on data dj, fk,j the proportion of

requests of ak on dj, and a bound K, is it possible to find a placement δ
j
i and a scheduling

ni(k, j) such that the throughput TP ≥ K ?

Theorem 1. SCHEDULE-REPLICATION-DEC is NP-complete.

Proof. First SCHEDULE-REPLICATION-DEC obviously belong to the class NP. To prove
its NP-completness, we proceed by a reduction from 2-PARTITION, which is known to be NP-
complete [14]. An arbitrary instance I1 of 2-PARTITION is the following: given N positive
integer S ai, 1 ≤ i ≤ N and a positive integer S such that 2S =

∑

i ai, is it possible to find
a set I ⊂ {1..N} such that

∑

i∈I ai =
∑

i6∈I ai = S ? We construct the following instance
I2 of SCHEDULE-REPLICATION-DEC: let N databanks of sizej = aj , P1 and P2 be two
processors such that w1 = w2 = S + N and m1 = m2 = S, one algorithm a1 with parameter
α1 = 1 and c1 = 1, f1,j = 1

N
, v1,j = 1 and K = N . The construction of such instance I2 from

I1 is polynomial. We show that I2 admits a solution if and only if I1 does:

� Assume first that I1 admits a solution and let I be a subset of {1..N}. For each j ∈ I,
we define δ

j
1 = 1, δ

j
2 = 0, n1(1, j) = 1 and n2(1, j) = 0. For each j 6∈ I, we define δ

j
1 = 0,

δ
j
2 = 1, n1(1, j) = 0 and n2(1, j) = 1. With such a placement and scheduling, we have

all databases placed at least on one processor. The size of all data stored on processor
P1 is

N
∑

j=1

δ
j
1 · sizej =

∑

j∈I

sizej =
∑

j∈I

aj = S

The amount of computation on processor P1 is

N
∑

j=1

n1(1, j)(αk · sizej + ck) =
∑

j∈I

(aj + 1) = S +
∑

j∈I

1 ≤ S + N

The same results are obtained for processor P2. The throughput of the platform is equal
to

TP =
2

∑

i=1

N
∑

j=1

ni(1, j) =
N

∑

j=1

n1(1, j) +
N

∑

j=1

n2(1, j) =
∑

j∈I

1 +
∑

j 6∈I

1 ≥ N

Therefore TP ≥ N and I2 has a solution.

INRIA

Simultaneous Scheduling of Replication and Computation on the Grid 9

� Assume now that I2 has a solution, and let δ
j
i and ni(k, j) be the placement and

scheduling of this solution. On each processor, the space of stored databanks does not
exceed mi, then

∀i ∈ {1, 2}
N

∑

j=1

δ
j
i · sizej ≤ mi.

But, sizej = aj , mi = S and
∑

j aj = 2S then, if we add the two previous inequations:

N
∑

j=1

(δj
1 + δ

j
2) · aj ≤ 2S

N
∑

j=1

(δj
1 + δ

j
2) · aj ≤

N
∑

j=1

aj

But δ
j
i ∈ {0, 1} and as each data is stored at least one time in the platform we have

∀j ∈ {1..N} δ
j
1 + δ

j
2 ≥ 1

so ∀j ∈ {1..N} either δ
j
1 = 1 and δ

j
2 = 0 either δ

j
1 = 0 and δ

j
2 = 1. Then let I = {j, δj

1 =
1}, and we have

∑

j∈I

aj =

N
∑

j=1

δ
j
1 · aj = S

and I1 has a solution.

4.3 Integer Solution Approximation

As δ
j
i are equal to 0 or 1, this linear program is mixed, both rational and integer. As proved

in previous section, this problem is NP-complete. So we choose to solve the relaxed program
over rational number. Starting from the rational solution, we will find an approximate integer
solution for the problem. We try to approximate the solution using the known information.

Algorithm 1 is used to find an integer approximation of the relaxed problem. We start
from the relaxed solution of the linear problem an construct three sets: S0 will contain couples
(i, j) where δ

j
i = 0 in the solution, S1 contains (i, j) where δ

j
i = 1 and S all (i, j) that are not

yet in S1 nor in S0. Then we compute notP laced, the set of databanks indexes that are not
yet placed anywhere. If this set is not empty i.e., there is still at least one databank that is
not mapped, we choose a (i1, j1) with j1 ∈ notP laced for which the sum of the computation
time required for each algorithm that can applied to the concerned databanks multiplied by
the current value of δ

j
i is the highest. If notP laced is empty, we choose a couple (i1, j1) from

S with the same method. We add this couple to S1. For each couple in S1 we then add the
constraint δ

j
i = 1 to the original relaxed linear program. We do the same with constraint

δ
j
i = 0 for couple in S0. We then solve the new linear program and restart to the beginning

until S = ∅. If with the construction, the linear program becomes infeasible, we remove the
chosen (i1, j1) from S1, add it to S0 and reconstruct the new linear program.

RR n
�

5460

10 F. Desprez, A. Vernois

Algorithm 1 Integer Approximation algorithm

1: Solve relaxed linear program lp

2: let S0 = {(i, j)|δj
i = 0}

3: let S1 = {(i, j)|δj
i = 1}

4: let S = {(i, j)|(i, j) 6∈ S0and(i, j) 6∈ S1}
5: let notP laced = {j ∈ [1..n]|∀i ∈ [1..m]δj

i 6= 1}
6: if notP laced 6= ∅ then
7: (i1, j1)|(

∑p
k=1 mj1 · αk + ck) · δ

j1
i1

= max{j∈notP laced,(i,j)∈S}

∑p
k=1 mj · αk + ck) · δ

j
i

8: add (i1, j1) to S1

9: else
10: (i1, j1)|(

∑p
k=1 mj1 · αk + ck) · δ

j1
i1

= max{(i,j)∈S}

∑p
k=1 mj · αk + ck) · δ

j
i

11: add (i1, j1) to S1

12: end if
13: for all δ

j
i ∈ S1 do

14: add constraint δ
j
i = 1 to lp

15: end for
16: for all δ

j
i ∈ S0 do

17: add constraint δ
j
i = 0 to lp

18: end for
19: Solve new lp

20: if lp is not feasible then
21: Remove (i1, j1) from S1

22: Add (i1, j1) to S0

23: Redo step 13 to 18 and solve it again
24: end if
25: Go to step 2 until S = ∅

4.4 A Greedy Solution

Starting with the same platform and algorithm models, we also design the greedy algorithm
(Algorithm 2) to solve the mapping problem. The idea behind this algorithm is to try to map
data that need the most computational power to the server that has the most computation
capacities first.

The algorithm starts by computing the amount of computation needed by each data
proportionally to its usage. Then we sort data by decreasing values of this amount. We also
sort the list of servers by decreasing computation abilities. We try to map the data that need
the most computational power to the server that has the highest computation capacity. If
there is not enough space, we try to map the data on the second server and so on and so forth
until the data is mapped. Then, we try to place the second data by computation need to the
first server. We do this operation for each data. If a data cannot be placed on any server we
skip it and try to place the following data item. We restart from the beginning of data list
till there is enough space available to place a data on the platform.

INRIA

Simultaneous Scheduling of Replication and Computation on the Grid 11

Algorithm 2 Greedy algorithm for mapping problem

1: for all data dj do
2: sj =

∑p
k=1 f(j, k) · (αk · mj + ck)

3: end for
4: Sort data by decreasing values of sj in sortData
5: Sort servers by decreasing values of wi in sortServer
6: while No data have been mapped do
7: for j = 0;j < n;j + + do
8: i = 0, place = false

9: while !place and i < n do
10: if there is enough space on server sortServer[i] for data sortData[j] then
11: if data sortData[j] not already on server sortServer[i] then
12: map this data on that server
13: place = true

14: end if
15: i + +
16: end if
17: end while
18: end for
19: end while

5 Experiments

To experiment the results of our model, we used OptorSim [4, 11], a simulator of Data Grid
environments developed in the Work Package 2 of EU Datagrid project [2]. We have modified
OptorSim to exactly match our needs.

This simulator takes a Grid topology and configuration file as an input that let you define
its behaviour and all input parameters.

5.1 Experimental Environment

The simulated grids have five major components. Computing Elements (CE) act like gate-
ways, or masters of a batch scheduler system and will distribute jobs that are submitted
to them to their Worker Nodes (WN). Worker Nodes execute jobs and are defined by their
computation power expressed in flops. All Worker Nodes managed by the same CE have the
same capacity of computation, but WN from different CE may have different capacities. So
we have an heterogeneous cluster of homogeneous nodes, which is usually the case on real
grids.

The third kind of component is the Storage Element (SE). It is where data are stored and
is defined by its storage capacity (in MB). A same file can be stored on different SE at the
same time, and each SE can decide to delete a data from its storage if this file is not used and
space is required for another file. As a SE does not ask to other SEs or the Replica Manager
(see below) if it can delete a file, it is possible that all copies of a same file are deleted. To
prevent that, for each file, there is one master copy that cannot be deleted. The way master
copies are distributed is defined in configuration file and can be random, following information
that tell on which server to place each master copy or a list of SE where master copies will be

RR n
�

5460

12 F. Desprez, A. Vernois

evenly distributed. This distribution is done before the beginning of the simulation. Thus,
the cost of placing master copies is considered to be null. To work properly, a CE should have
a local SE that is accessible by all of its Worker Nodes. Access time to data located on the
local SE by a WN is considered to be null.

The Replica Manager (RM) has in charge all data movements between sites. And finally,
jobs are created and scheduled by a unique Resource Broker which is able to instantiate
communications with CE and RM to get all information needed about SE such as< network
bandwidth, job queues, etc. for scheduling purpose. The way jobs are created and scheduled is
defined in the configuration file. In our case, a job is defined by an algorithm and a databank
on which the algorithm is applied. Jobs are created following the information given in a
separate file consisting on a succession of couples (algorithm, data). Such file is generated
from logs of existing bioinformatics clusters.

For our experiments, we extracted from raw logs, all information about data sets and
algorithm usage. With external information about data sizes, algorithm computation costs,
and a description of the target platform, we generated the concrete instance of the linear
program described in Section 4. This linear program is solved using lp solve [5]. The results
give us all information about data mapping and job scheduling. These outputs are used, with
other configuration files, as inputs for the simulator.

For the experiments, the topology of the simulated platform is given in Figure 4 and this
topology is inspired from the architecture of the European DataGrid testbed. There are 10
CE with associated SE and 7 routers without any storage nor computation abilities.

Requests are submitted to the RB with a frequency around ten per second. This could
seems to be a very high rate, but discussions with the biologist and bioinformatic community
lead to the conclusion that the more computation power we can give them, the more they
will use.

11

13

14

12

15

16

17

1 2

3

4 5 6 7 8

9

10

Figure 4: Topology of the simulated platform. Nodes 1 to 10 are CE with SE, nodes 11 to 17
(gray filled) are routers without any computation or storage abilities.

INRIA

Simultaneous Scheduling of Replication and Computation on the Grid 13

5.2 Experiment Results and Discussion

In this section we will discuss our experiments using OptorSim and the results we obtained.
We have done simulations for three kinds of mapping and schedulers.

The first one, SRA, corresponds to our algorithm. Scheduling and mapping that are used
for the simulation are those that match the solution of our linear program.

In the MCT 1 simulation, only the mapping has been done using the results of the linear
program. The scheduling is on-line: at each request submission, it tries to find the compu-
tation server that should be able to finish this task first (considering time to retrieve data if
needed and computation time of all jobs already scheduled on the CE).

Finally, the greedy simulation is done using the mapping of the greedy algorithm. The
scheduling is done with the previous on-line scheduler. Simulations have been done for a pool
a 40000 requests.

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 0 50 100 150 200

tim
e

(s
)

network bandwith (MB/s)

SRA
MCT

greedy

Figure 5: Execution time for 40000 jobs as function of the network bandwidth between CE
for different mapping and scheduling algorithms.

Figure 5 shows the execution time of whole set of requests depending on the network
bandwidth. In this simulation, the bandwidth between nodes is chosen to be homogeneous
to see more easily its impact on execution time. Figure 6 represents the volume of data
transferred during the simulation for each kind of placement and scheduling. On Figure 5, we
can see that for SRA and greedy, the time of execution is totally constant and independent
of network bandwidth. It is due to the fact that there are no data movement with these two
methods as we can see in Figure 6.

But reasons for which there are no movement are not the same in both cases. With SRA
algorithm, the scheduling is computed at the same time as the placement. So the scheduler
always schedules a job on a server that has needed data for this request. In the greedy case,

1Minimum Completion Time

RR n
�

5460

14 F. Desprez, A. Vernois

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200

vo
lu

m
e

tr
an

sf
er

ed
 (

G
B

)

network bandwith (MB/s)

SRA
MCT

greedy

Figure 6: Volume of data transfered during execution.

the scheduling uses an on-line MCT method but there is still no data movement because
the algorithm totally fills the available space in the platform. So the MCT scheduler always
schedules requests where a data is available. As shown by Figure 6, MCT does a lot of transfers
of data favouring the execution time of current request to schedule. But its lack of knowledge
on request usage scheme leads him to perform a lot of errors and useless data transfers. Then,
it becomes efficient only when transfers costs are negligible in front of computation costs.

Figure 7 shows the execution time of same set of 40000 requests depending on the storage
space available on the platform. The space is expressed as the ratio between the total volume
of databanks and the global space available. For this simulation the network bandwidth is
equal to 10MB/s.

We can notice that for all kind of mapping and scheduling algorithms, the execution time
decreases with the increase of available space. It can be easily explained by the fact that the
more space is available, the more replicas can be placed on different servers. As we can expect,
when storage space is small, less than 8 times the size of databanks, our solution gives better
results than greedy and MCT. The linear program makes a better use of restricted resources.
With the increase of available space, the results of the greedy algorithm improves regularly
to become better than the SRA algorithm. This appears when next to all databanks can be
stored on each server.

Figure 8 is a zoom of the previous figure restricted to SRA and greedy simulations. When
space storage is very limited, the results of our algorithm are not regular. That comes from
our heuristic that constructs an integer solution of the linear program from the solution over
rational numbers . With a small storage space, the impact of a bad mapping choice has a high
impact on the objective function. In this case, we notice very high differences between value
of the objective function of the approximation integer solution and the solution in rational

INRIA

Simultaneous Scheduling of Replication and Computation on the Grid 15

numbers. When available space becomes large enough, our integer approximation gives the
same result of the objective value than resolution in rational number.

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 0 5 10 15 20 25 30 35 40

ex
ec

ut
io

n
tim

e
(s

)

space available / size of databanks

SRA
MCT

greedy

Figure 7: Execution time for 40000 jobs as a function of available space on SE.

 5000

 10000

 15000

 20000

 25000

 30000

 2 3 4 5 6 7 8

ex
ec

ut
io

n
tim

e
(s

)

space available / size of databanks

SRA
greedy

Figure 8: Zoom of execution time.

RR n
�

5460

16 F. Desprez, A. Vernois

5.3 Comparison of Integer Approximation Algorithms

In order to obtain an estimation of the performance of our algorithm of integer approximation,
we have compared it with a random method. These algorithms are very close, and the main
difference between both is in the choice of the variable whose values will be approximated at
each turn and the value that will be set. In the random method, the unknown that will be
set is randomly choose between all δ

j
i that has not yet been set. Let call δ

j1
i1

such a chosen

unknown to be set. If δ
j1
i1

is greater or equal to 0.5 in the previous solution of the linear

program, then δ
j1
i1

is set to 1 else, it set to 0.
Figure 9 shows the execution time of 40000 request for both approximation methods. As

we can expect, our approximation algorithm gives better results than the random algorithm.
That can be explained by the choose of the unknown set at each run of the linear solver. The
method used in SRA takes into account information about databank’s usage, and let the final
solution to stay close to the solution over rational number.

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tim
e

(s
)

space avaliable / size of databanks

SRA
random approx.

Figure 9: Execution time for 40000 jobs as a function of the network bandwidth between CE
for different approximation algorithms.

6 Conclusion and Future Work

In this paper, we have presented an algorithm that computes at the same time the mapping
of data and computational requests on these data.

Our approach uses a good knowledge of databank usage scheme and of the target platform.
Starting with these information, we have designed a linear program and a method to obtain
a mixed solution, i.e., integer and rational numbers, of this program. With the OptorSim
simulator, we have been able to compare the results of our algorithm to other approaches: a
greedy algorithm for data mapping, and an on-line algorithm for the scheduling of requests.

INRIA

Simultaneous Scheduling of Replication and Computation on the Grid 17

We came to the conclusion that when the storage space available on the grid is not large
enough to store all databanks that lead to very time consuming requests on all computation
servers, then our approach improves the throughput of the platform. But our heuristic for
approximating an integer solution of the linear program does not always give the best mapping
of data and can give results that are very far from the value of the objective function in the
solution over rational number.

Our future works will consist on adding communication costs for the requests in the model
to be able to consider other kind of applications. We are also working on an implementation of
these algorithm in the DIET [12] environment to deploy efficiently the GriPPS [15] application.
A replica manager will be designed and developed in this environment.

Acknowledgements

The authors would like to thanks Christophe Blanchet for having inspired this work, his help
with bioinformatic applications, and for the execution logs of the NPS@ server. We also would
like to thanks Arnaud Legrand, Loris Marchal and Yves Robert for their work on steady-state
scheduling and discussion about the model used in this article. The authors would also give
a special thanks to Loris Marchal for his advices about the NP-completness proof.

References

[1] Institut de Biologie et Chime des Protéines. http://www.ibcp.fr.

[2] The European DataGrid Project. http://www.eu-datagrid.org.

[3] W.H. Bell, D.G. Cameron, L. Capozza, A.P. Millar, K. Stockinger, and F. Zini. Sim-
ulation of Dynamic Grid Replication Strategies in OptorSim. In Proc. of the 3rd Int’l.
IEEE Workshop on Grid Computing (Grid’2002), Lecture Notes in Computer Science,
Baltimore, USA, November 2002. Springer Verlag.

[4] W.H. Bell, D.G. Cameron, L. Capozza, A.P. Millar, K. Stockinger, and F. Zini.
OptorSim - A Grid Simulator for Studying Dynamic Data Replication Strategies.
International Journal of High Performance Computing Applications, 17(4), 2003.
http://edg-wp2.web.cern.ch/edg-wp2/publications.html.

[5] M. Berkelaar. LP SOLVE. http://www.cs.sunysb.edu/∼algorith/implement/lpsolve/implement.shtml.

[6] F. Berman, G.C. Fox, and A.J.H. Hey, editors. Grid Computing: Making the Global
Infrastructure a Reality. Wiley, 2003.

[7] P. Bucher and A. Bairoch. A Generalized Profile Syntax for Biomolecular Sequences
Motifs and Its Function in Automatic Sequence Interpretation. In R. Altman, D. Brutlag,
P. Karp, R. Lathrop, and D. Searls, editors, Proceedings 2nd International Conference
on Intelligent Systems for Molecular Biology, volume 2, pages 53–61. AAAIPress, 1994.

[8] V. Cardellini, E. Casalicchio, M. Colajanni, and P.S. Su. The State of the Art in Locally
Distributed Web-Server Systems. ACM Computing Surveys, 34(2):263–311, June 2002.

RR n
�

5460

http://www.ibcp.fr
http://www.eu-datagrid.org
http://edg-wp2.web.cern.ch/edg-wp2/publications.html
http://www.cs.sunysb.edu/~algorith/implement/lpsolve/implement.shtml

18 F. Desprez, A. Vernois

[9] A. Chakrabarti, R.A. Dheepak, and S. Sengupta. Integration of Scheduling and Repli-
cation in Data Grids. In L. Bougé and V. K. Prasanna, editors, Proceedings 11th In-
ternational Conference on High Performance Computing (HiPC 2004), pages 375–385,
Bangalore, India, December 2004. Springer.

[10] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The Data Grid:
Towards an Architecture for the Distributed Management and Analysis of Large Scientific
Datasets. Journal of Network and Computer Applications, 23:187–200, 2001.

[11] R. Carvajal-Schiaffino D.G. Cameron, A.P. Millar, C. Nicholson, K. Stockinger, and
F. Zini. Evaluating Scheduling and Replica Optimisation Strategies in OptorSim. In 4th
International Workshop on Grid Computing (Grid2003), Phoenix, Arizona, November
2003. IEEE Computer Society Press.

[12] DIET. http://graal.ens-lyon.fr/DIET/.

[13] I. Foster and C. Kesselman, editors. The Grid 2: Blueprint for a New Computing In-
frastructure. Morgan Kaufmann, 2004.

[14] M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, 1979.

[15] GRIPPS. http://gripps.ibcp.fr/index.php.

[16] W. Hoscheck, J. Jaen-Martinez, A. Samar, H. Stockinger, and K. Stockinger. Data
Management in an International Data Grid Project. In First IEEE/ACM Int’l Workshop
on Grid Computing (Grid 2000), December 2000.

[17] T. Kosar and M. Livny. Stork: Making Data Placement a First Class Citizen in the
Grid. In Proceedings of 24th IEEE Int. Conference on Distributed Computing Systems
(ICDCS2004), Tokyo, Japan, March 2004.

[18] A. Krishnan. A Survey of Life Sciences Applications on the Grid. New Generation
Computing, 22:111–126, 2004.

[19] H. Lamehamedi, B. Szymanski, Zujun Shentu, and E. Deelman. Data Replication Strate-
gies in Grid Environments. In Proc. 5th International Conference on Algorithms and Ar-
chitecture for Parallel Processing, ICA3PP’2002, pages 378–383, Bejing, China, October
2002. IEEE Computer Science Press.

[20] H.H. Mohamed and D.H.J Epema. An Evaluation of the Close-to-Files Processor and
Data Co-Allocation Policy in Multiclusters. In Cluster 2004, pages 287–298. IEEE Com-
puter Society Press, 2004.

[21] S. Podlipding and L. Böszörmenyi. A Survey of Web Cache Replacement Strategies.
ACM Computing Surveys, 35(4):374–398, December 2003.

[22] X. Qin and H. Jiang. Data Grid: Supporting Data-Intensive Applications in Wide-Area
Networks. Technical Report TR-03-05-01, University of Nebraska-Lincoln, Lincoln, NE,
USA, May 2003.

INRIA

http://graal.ens-lyon.fr/DIET/
http://gripps.ibcp.fr/index.php

Simultaneous Scheduling of Replication and Computation on the Grid 19

[23] K. Ranganathan and I. Foster. Decoupling Computation and Data Scheduling in Dis-
tributed Data Intensive Applications. In Proceedings of the 11th International Symposium
for High Performance Distributed Computing (HPDC-11), Edinburgh, July 2002.

[24] K. Ranganathan and I. Foster. Simulation Studies of Computation and Data Scheduling
Algorithms for Data Grids. Journal of Grid Computing, 1(1):53–62, 2003.

[25] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: The condor
experience. Concurrency and Computation: Practice and Experience, 2004.

[26] C.Z. Xu, H. Jin, and P.K Srimani. Special Issue on Scalable Web Services and Architec-
ture. Journal on Parallel and Distributed Computing, 63, 2003.

RR n
�

5460

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	1 Introduction
	2 Motivation Example
	3 Related Work
	4 Joint Data and Computation Scheduling Algorithm
	4.1 Hypothesis
	4.2 NP-Completness Proof
	4.3 Integer Solution Approximation
	4.4 A Greedy Solution

	5 Experiments
	5.1 Experimental Environment
	5.2 Experiment Results and Discussion
	5.3 Comparison of Integer Approximation Algorithms

	6 Conclusion and Future Work

